--- a/src/HOL/Archimedean_Field.thy Fri Aug 05 09:05:03 2016 +0200
+++ b/src/HOL/Archimedean_Field.thy Fri Aug 05 09:30:20 2016 +0200
@@ -642,6 +642,9 @@
by (auto simp add: frac_def algebra_simps)
qed
+lemma floor_add2[simp]: "frac x = 0 \<or> frac y = 0 \<Longrightarrow> \<lfloor>x + y\<rfloor> = \<lfloor>x\<rfloor> + \<lfloor>y\<rfloor>"
+by (metis add.commute add.left_neutral frac_lt_1 floor_add)
+
lemma frac_add:
"frac (x + y) = (if frac x + frac y < 1 then frac x + frac y else (frac x + frac y) - 1)"
by (simp add: frac_def floor_add)
--- a/src/HOL/Real.thy Fri Aug 05 09:05:03 2016 +0200
+++ b/src/HOL/Real.thy Fri Aug 05 09:30:20 2016 +0200
@@ -1503,9 +1503,6 @@
lemma floor_eq_iff: "\<lfloor>x\<rfloor> = b \<longleftrightarrow> of_int b \<le> x \<and> x < of_int (b + 1)"
by (simp add: floor_unique_iff)
-lemma floor_add2[simp]: "\<lfloor>of_int a + x\<rfloor> = a + \<lfloor>x\<rfloor>"
- by (simp add: add.commute)
-
lemma floor_divide_real_eq_div:
assumes "0 \<le> b"
shows "\<lfloor>a / real_of_int b\<rfloor> = \<lfloor>a\<rfloor> div b"
@@ -1526,27 +1523,25 @@
proof -
have "real_of_int (j * b) < real_of_int i + 1"
using \<open>a < 1 + real_of_int i\<close> \<open>real_of_int j * real_of_int b \<le> a\<close> by force
- then show "j * b < 1 + i"
- by linarith
+ then show "j * b < 1 + i" by linarith
qed
ultimately have "(j - i div b) * b \<le> i mod b" "i mod b < ((j - i div b) + 1) * b"
by (auto simp: field_simps)
then have "(j - i div b) * b < 1 * b" "0 * b < ((j - i div b) + 1) * b"
using pos_mod_bound [OF b, of i] pos_mod_sign [OF b, of i]
by linarith+
- then show ?thesis
- using b unfolding mult_less_cancel_right by auto
+ then show ?thesis using b unfolding mult_less_cancel_right by auto
qed
- with b show ?thesis
- by (auto split: floor_split simp: field_simps)
+ with b show ?thesis by (auto split: floor_split simp: field_simps)
qed
-lemma floor_divide_eq_div_numeral [simp]: "\<lfloor>numeral a / numeral b::real\<rfloor> = numeral a div numeral b"
- by (metis floor_divide_of_int_eq of_int_numeral)
+lemma floor_divide_eq_div_numeral [simp]:
+ "\<lfloor>numeral a / numeral b::real\<rfloor> = numeral a div numeral b"
+by (metis floor_divide_of_int_eq of_int_numeral)
lemma floor_minus_divide_eq_div_numeral [simp]:
"\<lfloor>- (numeral a / numeral b)::real\<rfloor> = - numeral a div numeral b"
- by (metis divide_minus_left floor_divide_of_int_eq of_int_neg_numeral of_int_numeral)
+by (metis divide_minus_left floor_divide_of_int_eq of_int_neg_numeral of_int_numeral)
lemma of_int_ceiling_cancel [simp]: "of_int \<lceil>x\<rceil> = x \<longleftrightarrow> (\<exists>n::int. x = of_int n)"
using ceiling_of_int by metis