--- a/src/HOL/Data_Structures/AVL_Set.thy Tue May 29 22:25:59 2018 +0200
+++ b/src/HOL/Data_Structures/AVL_Set.thy Tue May 29 22:29:32 2018 +0200
@@ -455,80 +455,93 @@
subsection \<open>Height-Size Relation\<close>
-text \<open>By Daniel St\"uwe\<close>
-
-fun fib_tree :: "nat \<Rightarrow> unit avl_tree" where
-"fib_tree 0 = Leaf" |
-"fib_tree (Suc 0) = Node 1 Leaf () Leaf" |
-"fib_tree (Suc(Suc n)) = Node (Suc(Suc(n))) (fib_tree (Suc n)) () (fib_tree n)"
-
-lemma [simp]: "ht (fib_tree h) = h"
-by (induction h rule: "fib_tree.induct") auto
+text \<open>By Daniel St\"uwe, Manuel Eberl and Peter Lammich.\<close>
-lemma [simp]: "height (fib_tree h) = h"
-by (induction h rule: "fib_tree.induct") auto
-
-lemma "avl(fib_tree h)"
-by (induction h rule: "fib_tree.induct") auto
-
-lemma fib_tree_size1: "size1 (fib_tree h) = fib (h+2)"
-by (induction h rule: fib_tree.induct) auto
-
-lemma height_invers[simp]:
+lemma height_invers:
"(height t = 0) = (t = Leaf)"
"avl t \<Longrightarrow> (height t = Suc h) = (\<exists> l a r . t = Node (Suc h) l a r)"
by (induction t) auto
-lemma fib_Suc_lt: "fib n \<le> fib (Suc n)"
-by (induction n rule: fib.induct) auto
+text \<open>Any AVL tree of height \<open>h\<close> has at least \<open>fib (h+2)\<close> leaves:\<close>
-lemma fib_mono: "n \<le> m \<Longrightarrow> fib n \<le> fib m"
-proof (induction n arbitrary: m rule: fib.induct )
- case (2 m)
- thus ?case using fib_neq_0_nat[of m] by auto
+lemma avl_fib_bound: "avl t \<Longrightarrow> height t = h \<Longrightarrow> fib (h+2) \<le> size1 t"
+proof (induction h arbitrary: t rule: fib.induct)
+ case 1 thus ?case by (simp add: height_invers)
next
- case (3 n m)
- from 3 obtain m' where "m = Suc (Suc m')"
- by (metis le_Suc_ex plus_nat.simps(2))
- thus ?case using 3(1)[of "Suc m'"] 3(2)[of m'] 3(3) by auto
-qed simp
-
-lemma size1_fib_tree_mono:
- assumes "n \<le> m"
- shows "size1 (fib_tree n) \<le> size1 (fib_tree m)"
-using fib_tree_size1 fib_mono[OF assms] fib_mono[of "Suc n"] add_le_mono assms by fastforce
-
-lemma fib_tree_minimal: "avl t \<Longrightarrow> size1 (fib_tree (ht t)) \<le> size1 t"
-proof (induction "ht t" arbitrary: t rule: fib_tree.induct)
- case (2 t)
- from 2 obtain l a r where "t = Node (Suc 0) l a r" by (cases t) auto
- with 2 show ?case by auto
+ case 2 thus ?case by (cases t) (auto simp: height_invers)
next
- case (3 h t)
- note [simp] = 3(3)[symmetric]
- from 3 obtain l a r where [simp]: "t = Node (Suc (Suc h)) l a r" by (cases t) auto
- show ?case proof (cases rule: linorder_cases[of "ht l" "ht r"])
- case equal
- with 3(3,4) have ht: "ht l = Suc h" "ht r = Suc h" by auto
- with 3 have "size1 (fib_tree (ht l)) \<le> size1 l" by auto moreover
- from 3(1)[of r] 3(3,4) ht(2) have "size1 (fib_tree (ht r)) \<le> size1 r" by auto ultimately
- show ?thesis using ht size1_fib_tree_mono[of h "Suc h"] by auto
- next
- case greater
- with 3(3,4) have ht: "ht l = Suc h" "ht r = h" by auto
- from ht 3(1,2,4) have "size1 (fib_tree (Suc h)) \<le> size1 l" by auto moreover
- from ht 3(1,2,4) have "size1 (fib_tree h) \<le> size1 r" by auto ultimately
- show ?thesis by auto
- next
- case less (* analogously *)
- with 3 have ht: "ht l = h" "Suc h = ht r" by auto
- from ht 3 have "size1 (fib_tree h) \<le> size1 l" by auto moreover
- from ht 3 have "size1 (fib_tree (Suc h)) \<le> size1 r" by auto ultimately
- show ?thesis by auto
- qed
-qed auto
+ case (3 h)
+ from "3.prems" obtain l a r where
+ [simp]: "t = Node (Suc(Suc h)) l a r" "avl l" "avl r"
+ and C: "
+ height r = Suc h \<and> height l = Suc h
+ \<or> height r = Suc h \<and> height l = h
+ \<or> height r = h \<and> height l = Suc h" (is "?C1 \<or> ?C2 \<or> ?C3")
+ by (cases t) (simp, fastforce)
+ {
+ assume ?C1
+ with "3.IH"(1)
+ have "fib (h + 3) \<le> size1 l" "fib (h + 3) \<le> size1 r"
+ by (simp_all add: eval_nat_numeral)
+ hence ?case by (auto simp: eval_nat_numeral)
+ } moreover {
+ assume ?C2
+ hence ?case using "3.IH"(1)[of r] "3.IH"(2)[of l] by auto
+ } moreover {
+ assume ?C3
+ hence ?case using "3.IH"(1)[of l] "3.IH"(2)[of r] by auto
+ } ultimately show ?case using C by blast
+qed
+
+lemma fib_alt_induct [consumes 1, case_names 1 2 rec]:
+ assumes "n > 0" "P 1" "P 2" "\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n) \<Longrightarrow> P (Suc (Suc n))"
+ shows "P n"
+ using assms(1)
+proof (induction n rule: fib.induct)
+ case (3 n)
+ thus ?case using assms by (cases n) (auto simp: eval_nat_numeral)
+qed (insert assms, auto)
+
+text \<open>An exponential lower bound for @{const fib}:\<close>
-theorem avl_size_bound: "avl t \<Longrightarrow> fib(height t + 2) \<le> size1 t"
-using fib_tree_minimal fib_tree_size1 by fastforce
+lemma fib_lowerbound:
+ defines "\<phi> \<equiv> (1 + sqrt 5) / 2"
+ defines "c \<equiv> 1 / \<phi> ^ 2"
+ assumes "n > 0"
+ shows "real (fib n) \<ge> c * \<phi> ^ n"
+proof -
+ have "\<phi> > 1" by (simp add: \<phi>_def)
+ hence "c > 0" by (simp add: c_def)
+ from \<open>n > 0\<close> show ?thesis
+ proof (induction n rule: fib_alt_induct)
+ case (rec n)
+ have "c * \<phi> ^ Suc (Suc n) = \<phi> ^ 2 * (c * \<phi> ^ n)"
+ by (simp add: field_simps power2_eq_square)
+ also have "\<dots> \<le> (\<phi> + 1) * (c * \<phi> ^ n)"
+ by (rule mult_right_mono) (insert \<open>c > 0\<close>, simp_all add: \<phi>_def power2_eq_square field_simps)
+ also have "\<dots> = c * \<phi> ^ Suc n + c * \<phi> ^ n"
+ by (simp add: field_simps)
+ also have "\<dots> \<le> real (fib (Suc n)) + real (fib n)"
+ by (intro add_mono rec.IH)
+ finally show ?case by simp
+ qed (insert \<open>\<phi> > 1\<close>, simp_all add: c_def power2_eq_square eval_nat_numeral)
+qed
+
+text \<open>The size of an AVL tree is (at least) exponential in its height:\<close>
+
+lemma avl_lowerbound:
+ defines "\<phi> \<equiv> (1 + sqrt 5) / 2"
+ assumes "avl t"
+ shows "real (size1 t) \<ge> \<phi> ^ (height t)"
+proof -
+ have "\<phi> > 0" by(simp add: \<phi>_def add_pos_nonneg)
+ hence "\<phi> ^ height t = (1 / \<phi> ^ 2) * \<phi> ^ (height t + 2)"
+ by(simp add: field_simps power2_eq_square)
+ also have "\<dots> \<le> real (fib (height t + 2))"
+ using fib_lowerbound[of "height t + 2"] by(simp add: \<phi>_def)
+ also have "\<dots> \<le> real (size1 t)"
+ using avl_fib_bound[of t "height t"] assms by simp
+ finally show ?thesis .
+qed
end
--- a/src/HOL/Library/Fun_Lexorder.thy Tue May 29 22:25:59 2018 +0200
+++ b/src/HOL/Library/Fun_Lexorder.thy Tue May 29 22:29:32 2018 +0200
@@ -1,6 +1,6 @@
(* Author: Florian Haftmann, TU Muenchen *)
-section \<open>Lexical order on functions\<close>
+section \<open>Lexicographic order on functions\<close>
theory Fun_Lexorder
imports Main
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/List_Lexorder.thy Tue May 29 22:29:32 2018 +0200
@@ -0,0 +1,121 @@
+(* Title: HOL/Library/List_Lexorder.thy
+ Author: Norbert Voelker
+*)
+
+section \<open>Lexicographic order on lists\<close>
+
+theory List_Lexorder
+imports Main
+begin
+
+instantiation list :: (ord) ord
+begin
+
+definition
+ list_less_def: "xs < ys \<longleftrightarrow> (xs, ys) \<in> lexord {(u, v). u < v}"
+
+definition
+ list_le_def: "(xs :: _ list) \<le> ys \<longleftrightarrow> xs < ys \<or> xs = ys"
+
+instance ..
+
+end
+
+instance list :: (order) order
+proof
+ fix xs :: "'a list"
+ show "xs \<le> xs" by (simp add: list_le_def)
+next
+ fix xs ys zs :: "'a list"
+ assume "xs \<le> ys" and "ys \<le> zs"
+ then show "xs \<le> zs"
+ apply (auto simp add: list_le_def list_less_def)
+ apply (rule lexord_trans)
+ apply (auto intro: transI)
+ done
+next
+ fix xs ys :: "'a list"
+ assume "xs \<le> ys" and "ys \<le> xs"
+ then show "xs = ys"
+ apply (auto simp add: list_le_def list_less_def)
+ apply (rule lexord_irreflexive [THEN notE])
+ defer
+ apply (rule lexord_trans)
+ apply (auto intro: transI)
+ done
+next
+ fix xs ys :: "'a list"
+ show "xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs"
+ apply (auto simp add: list_less_def list_le_def)
+ defer
+ apply (rule lexord_irreflexive [THEN notE])
+ apply auto
+ apply (rule lexord_irreflexive [THEN notE])
+ defer
+ apply (rule lexord_trans)
+ apply (auto intro: transI)
+ done
+qed
+
+instance list :: (linorder) linorder
+proof
+ fix xs ys :: "'a list"
+ have "(xs, ys) \<in> lexord {(u, v). u < v} \<or> xs = ys \<or> (ys, xs) \<in> lexord {(u, v). u < v}"
+ by (rule lexord_linear) auto
+ then show "xs \<le> ys \<or> ys \<le> xs"
+ by (auto simp add: list_le_def list_less_def)
+qed
+
+instantiation list :: (linorder) distrib_lattice
+begin
+
+definition "(inf :: 'a list \<Rightarrow> _) = min"
+
+definition "(sup :: 'a list \<Rightarrow> _) = max"
+
+instance
+ by standard (auto simp add: inf_list_def sup_list_def max_min_distrib2)
+
+end
+
+lemma not_less_Nil [simp]: "\<not> x < []"
+ by (simp add: list_less_def)
+
+lemma Nil_less_Cons [simp]: "[] < a # x"
+ by (simp add: list_less_def)
+
+lemma Cons_less_Cons [simp]: "a # x < b # y \<longleftrightarrow> a < b \<or> a = b \<and> x < y"
+ by (simp add: list_less_def)
+
+lemma le_Nil [simp]: "x \<le> [] \<longleftrightarrow> x = []"
+ unfolding list_le_def by (cases x) auto
+
+lemma Nil_le_Cons [simp]: "[] \<le> x"
+ unfolding list_le_def by (cases x) auto
+
+lemma Cons_le_Cons [simp]: "a # x \<le> b # y \<longleftrightarrow> a < b \<or> a = b \<and> x \<le> y"
+ unfolding list_le_def by auto
+
+instantiation list :: (order) order_bot
+begin
+
+definition "bot = []"
+
+instance
+ by standard (simp add: bot_list_def)
+
+end
+
+lemma less_list_code [code]:
+ "xs < ([]::'a::{equal, order} list) \<longleftrightarrow> False"
+ "[] < (x::'a::{equal, order}) # xs \<longleftrightarrow> True"
+ "(x::'a::{equal, order}) # xs < y # ys \<longleftrightarrow> x < y \<or> x = y \<and> xs < ys"
+ by simp_all
+
+lemma less_eq_list_code [code]:
+ "x # xs \<le> ([]::'a::{equal, order} list) \<longleftrightarrow> False"
+ "[] \<le> (xs::'a::{equal, order} list) \<longleftrightarrow> True"
+ "(x::'a::{equal, order}) # xs \<le> y # ys \<longleftrightarrow> x < y \<or> x = y \<and> xs \<le> ys"
+ by simp_all
+
+end
--- a/src/HOL/Library/List_lexord.thy Tue May 29 22:25:59 2018 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,121 +0,0 @@
-(* Title: HOL/Library/List_lexord.thy
- Author: Norbert Voelker
-*)
-
-section \<open>Lexicographic order on lists\<close>
-
-theory List_lexord
-imports Main
-begin
-
-instantiation list :: (ord) ord
-begin
-
-definition
- list_less_def: "xs < ys \<longleftrightarrow> (xs, ys) \<in> lexord {(u, v). u < v}"
-
-definition
- list_le_def: "(xs :: _ list) \<le> ys \<longleftrightarrow> xs < ys \<or> xs = ys"
-
-instance ..
-
-end
-
-instance list :: (order) order
-proof
- fix xs :: "'a list"
- show "xs \<le> xs" by (simp add: list_le_def)
-next
- fix xs ys zs :: "'a list"
- assume "xs \<le> ys" and "ys \<le> zs"
- then show "xs \<le> zs"
- apply (auto simp add: list_le_def list_less_def)
- apply (rule lexord_trans)
- apply (auto intro: transI)
- done
-next
- fix xs ys :: "'a list"
- assume "xs \<le> ys" and "ys \<le> xs"
- then show "xs = ys"
- apply (auto simp add: list_le_def list_less_def)
- apply (rule lexord_irreflexive [THEN notE])
- defer
- apply (rule lexord_trans)
- apply (auto intro: transI)
- done
-next
- fix xs ys :: "'a list"
- show "xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> ys \<le> xs"
- apply (auto simp add: list_less_def list_le_def)
- defer
- apply (rule lexord_irreflexive [THEN notE])
- apply auto
- apply (rule lexord_irreflexive [THEN notE])
- defer
- apply (rule lexord_trans)
- apply (auto intro: transI)
- done
-qed
-
-instance list :: (linorder) linorder
-proof
- fix xs ys :: "'a list"
- have "(xs, ys) \<in> lexord {(u, v). u < v} \<or> xs = ys \<or> (ys, xs) \<in> lexord {(u, v). u < v}"
- by (rule lexord_linear) auto
- then show "xs \<le> ys \<or> ys \<le> xs"
- by (auto simp add: list_le_def list_less_def)
-qed
-
-instantiation list :: (linorder) distrib_lattice
-begin
-
-definition "(inf :: 'a list \<Rightarrow> _) = min"
-
-definition "(sup :: 'a list \<Rightarrow> _) = max"
-
-instance
- by standard (auto simp add: inf_list_def sup_list_def max_min_distrib2)
-
-end
-
-lemma not_less_Nil [simp]: "\<not> x < []"
- by (simp add: list_less_def)
-
-lemma Nil_less_Cons [simp]: "[] < a # x"
- by (simp add: list_less_def)
-
-lemma Cons_less_Cons [simp]: "a # x < b # y \<longleftrightarrow> a < b \<or> a = b \<and> x < y"
- by (simp add: list_less_def)
-
-lemma le_Nil [simp]: "x \<le> [] \<longleftrightarrow> x = []"
- unfolding list_le_def by (cases x) auto
-
-lemma Nil_le_Cons [simp]: "[] \<le> x"
- unfolding list_le_def by (cases x) auto
-
-lemma Cons_le_Cons [simp]: "a # x \<le> b # y \<longleftrightarrow> a < b \<or> a = b \<and> x \<le> y"
- unfolding list_le_def by auto
-
-instantiation list :: (order) order_bot
-begin
-
-definition "bot = []"
-
-instance
- by standard (simp add: bot_list_def)
-
-end
-
-lemma less_list_code [code]:
- "xs < ([]::'a::{equal, order} list) \<longleftrightarrow> False"
- "[] < (x::'a::{equal, order}) # xs \<longleftrightarrow> True"
- "(x::'a::{equal, order}) # xs < y # ys \<longleftrightarrow> x < y \<or> x = y \<and> xs < ys"
- by simp_all
-
-lemma less_eq_list_code [code]:
- "x # xs \<le> ([]::'a::{equal, order} list) \<longleftrightarrow> False"
- "[] \<le> (xs::'a::{equal, order} list) \<longleftrightarrow> True"
- "(x::'a::{equal, order}) # xs \<le> y # ys \<longleftrightarrow> x < y \<or> x = y \<and> xs \<le> ys"
- by simp_all
-
-end
--- a/src/HOL/ROOT Tue May 29 22:25:59 2018 +0200
+++ b/src/HOL/ROOT Tue May 29 22:29:32 2018 +0200
@@ -29,7 +29,7 @@
Library
(*conflicting type class instantiations and dependent applications*)
Finite_Lattice
- List_lexord
+ List_Lexorder
Prefix_Order
Product_Lexorder
Product_Order
--- a/src/HOL/ex/Radix_Sort.thy Tue May 29 22:25:59 2018 +0200
+++ b/src/HOL/ex/Radix_Sort.thy Tue May 29 22:29:32 2018 +0200
@@ -2,7 +2,7 @@
theory Radix_Sort
imports
- "HOL-Library.List_lexord"
+ "HOL-Library.List_Lexorder"
"HOL-Library.Sublist"
"HOL-Library.Multiset"
begin