rename "Metis_Clauses" to "Metis_Translate" for consistency with "Sledgehammer_Translate"
authorblanchet
Thu, 16 Sep 2010 16:12:02 +0200
changeset 39494 bf7dd4902321
parent 39493 cb2208f2c07d
child 39495 bb4fb9ffe2d1
rename "Metis_Clauses" to "Metis_Translate" for consistency with "Sledgehammer_Translate"
src/HOL/IsaMakefile
src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML
src/HOL/Sledgehammer.thy
src/HOL/Tools/Sledgehammer/metis_clauses.ML
src/HOL/Tools/Sledgehammer/metis_tactics.ML
src/HOL/Tools/Sledgehammer/metis_translate.ML
src/HOL/Tools/Sledgehammer/sledgehammer.ML
src/HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML
src/HOL/Tools/Sledgehammer/sledgehammer_translate.ML
--- a/src/HOL/IsaMakefile	Thu Sep 16 15:38:46 2010 +0200
+++ b/src/HOL/IsaMakefile	Thu Sep 16 16:12:02 2010 +0200
@@ -316,7 +316,7 @@
   Tools/semiring_normalizer.ML \
   Tools/Sledgehammer/clausifier.ML \
   Tools/Sledgehammer/meson_tactic.ML \
-  Tools/Sledgehammer/metis_clauses.ML \
+  Tools/Sledgehammer/metis_translate.ML \
   Tools/Sledgehammer/metis_tactics.ML \
   Tools/Sledgehammer/sledgehammer.ML \
   Tools/Sledgehammer/sledgehammer_filter.ML \
--- a/src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML	Thu Sep 16 15:38:46 2010 +0200
+++ b/src/HOL/Mirabelle/Tools/mirabelle_sledgehammer.ML	Thu Sep 16 16:12:02 2010 +0200
@@ -434,7 +434,7 @@
 
 fun run_minimize args named_thms id ({pre=st, log, ...}: Mirabelle.run_args) =
   let
-    open Metis_Clauses
+    open Metis_Translate
     val thy = Proof.theory_of st
     val n0 = length (these (!named_thms))
     val (prover_name, _) = get_atp thy args
--- a/src/HOL/Sledgehammer.thy	Thu Sep 16 15:38:46 2010 +0200
+++ b/src/HOL/Sledgehammer.thy	Thu Sep 16 16:12:02 2010 +0200
@@ -16,7 +16,7 @@
   ("~~/src/Tools/Metis/metis.ML")
   ("Tools/Sledgehammer/clausifier.ML")
   ("Tools/Sledgehammer/meson_tactic.ML")
-  ("Tools/Sledgehammer/metis_clauses.ML")
+  ("Tools/Sledgehammer/metis_translate.ML")
   ("Tools/Sledgehammer/metis_tactics.ML")
   ("Tools/Sledgehammer/sledgehammer_util.ML")
   ("Tools/Sledgehammer/sledgehammer_filter.ML")
@@ -102,7 +102,7 @@
 use "Tools/Sledgehammer/meson_tactic.ML"
 setup Meson_Tactic.setup
 
-use "Tools/Sledgehammer/metis_clauses.ML"
+use "Tools/Sledgehammer/metis_translate.ML"
 use "Tools/Sledgehammer/metis_tactics.ML"
 setup Metis_Tactics.setup
 
--- a/src/HOL/Tools/Sledgehammer/metis_clauses.ML	Thu Sep 16 15:38:46 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,524 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/metis_clauses.ML
-    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Storing/printing FOL clauses and arity clauses.  Typed equality is
-treated differently.
-*)
-
-signature METIS_CLAUSES =
-sig
-  type name = string * string
-  datatype type_literal =
-    TyLitVar of name * name |
-    TyLitFree of name * name
-  datatype arLit =
-    TConsLit of name * name * name list |
-    TVarLit of name * name
-  datatype arity_clause =
-    ArityClause of {name: string, conclLit: arLit, premLits: arLit list}
-  datatype class_rel_clause =
-    ClassRelClause of {name: string, subclass: name, superclass: name}
-  datatype combtyp =
-    CombTVar of name |
-    CombTFree of name |
-    CombType of name * combtyp list
-  datatype combterm =
-    CombConst of name * combtyp * combtyp list (* Const and Free *) |
-    CombVar of name * combtyp |
-    CombApp of combterm * combterm
-  datatype fol_literal = FOLLiteral of bool * combterm
-
-  val type_wrapper_name : string
-  val bound_var_prefix : string
-  val schematic_var_prefix: string
-  val fixed_var_prefix: string
-  val tvar_prefix: string
-  val tfree_prefix: string
-  val const_prefix: string
-  val type_const_prefix: string
-  val class_prefix: string
-  val invert_const: string -> string
-  val ascii_of: string -> string
-  val unascii_of: string -> string
-  val strip_prefix_and_unascii: string -> string -> string option
-  val make_bound_var : string -> string
-  val make_schematic_var : string * int -> string
-  val make_fixed_var : string -> string
-  val make_schematic_type_var : string * int -> string
-  val make_fixed_type_var : string -> string
-  val make_fixed_const : string -> string
-  val make_fixed_type_const : string -> string
-  val make_type_class : string -> string
-  val skolem_theory_name: string
-  val skolem_prefix: string
-  val skolem_infix: string
-  val is_skolem_const_name: string -> bool
-  val num_type_args: theory -> string -> int
-  val type_literals_for_types : typ list -> type_literal list
-  val make_class_rel_clauses: theory -> class list -> class list -> class_rel_clause list
-  val make_arity_clauses: theory -> string list -> class list -> class list * arity_clause list
-  val combtyp_of : combterm -> combtyp
-  val strip_combterm_comb : combterm -> combterm * combterm list
-  val combterm_from_term :
-    theory -> (string * typ) list -> term -> combterm * typ list
-  val literals_of_term : theory -> term -> fol_literal list * typ list
-  val conceal_skolem_terms :
-    int -> (string * term) list -> term -> (string * term) list * term
-  val reveal_skolem_terms : (string * term) list -> term -> term
-  val tfree_classes_of_terms : term list -> string list
-  val tvar_classes_of_terms : term list -> string list
-  val type_consts_of_terms : theory -> term list -> string list
-end
-
-structure Metis_Clauses : METIS_CLAUSES =
-struct
-
-val type_wrapper_name = "ti"
-
-val bound_var_prefix = "B_"
-val schematic_var_prefix = "V_"
-val fixed_var_prefix = "v_"
-
-val tvar_prefix = "T_";
-val tfree_prefix = "t_";
-
-val const_prefix = "c_";
-val type_const_prefix = "tc_";
-val class_prefix = "class_";
-
-fun union_all xss = fold (union (op =)) xss []
-
-(* Readable names for the more common symbolic functions. Do not mess with the
-   last nine entries of the table unless you know what you are doing. *)
-val const_trans_table =
-  Symtab.make [(@{type_name Product_Type.prod}, "prod"),
-               (@{type_name Sum_Type.sum}, "sum"),
-               (@{const_name HOL.eq}, "equal"),
-               (@{const_name HOL.conj}, "and"),
-               (@{const_name HOL.disj}, "or"),
-               (@{const_name HOL.implies}, "implies"),
-               (@{const_name Set.member}, "member"),
-               (@{const_name fequal}, "fequal"),
-               (@{const_name COMBI}, "COMBI"),
-               (@{const_name COMBK}, "COMBK"),
-               (@{const_name COMBB}, "COMBB"),
-               (@{const_name COMBC}, "COMBC"),
-               (@{const_name COMBS}, "COMBS"),
-               (@{const_name True}, "True"),
-               (@{const_name False}, "False"),
-               (@{const_name If}, "If")]
-
-(* Invert the table of translations between Isabelle and ATPs. *)
-val const_trans_table_inv =
-  Symtab.update ("fequal", @{const_name HOL.eq})
-                (Symtab.make (map swap (Symtab.dest const_trans_table)))
-
-val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
-
-(*Escaping of special characters.
-  Alphanumeric characters are left unchanged.
-  The character _ goes to __
-  Characters in the range ASCII space to / go to _A to _P, respectively.
-  Other characters go to _nnn where nnn is the decimal ASCII code.*)
-val A_minus_space = Char.ord #"A" - Char.ord #" ";
-
-fun stringN_of_int 0 _ = ""
-  | stringN_of_int k n = stringN_of_int (k-1) (n div 10) ^ Int.toString (n mod 10);
-
-fun ascii_of_c c =
-  if Char.isAlphaNum c then String.str c
-  else if c = #"_" then "__"
-  else if #" " <= c andalso c <= #"/"
-       then "_" ^ String.str (Char.chr (Char.ord c + A_minus_space))
-  else ("_" ^ stringN_of_int 3 (Char.ord c))  (*fixed width, in case more digits follow*)
-
-val ascii_of = String.translate ascii_of_c;
-
-(** Remove ASCII armouring from names in proof files **)
-
-(*We don't raise error exceptions because this code can run inside the watcher.
-  Also, the errors are "impossible" (hah!)*)
-fun unascii_aux rcs [] = String.implode(rev rcs)
-  | unascii_aux rcs [#"_"] = unascii_aux (#"_"::rcs) []  (*ERROR*)
-      (*Three types of _ escapes: __, _A to _P, _nnn*)
-  | unascii_aux rcs (#"_" :: #"_" :: cs) = unascii_aux (#"_"::rcs) cs
-  | unascii_aux rcs (#"_" :: c :: cs) =
-      if #"A" <= c andalso c<= #"P"  (*translation of #" " to #"/"*)
-      then unascii_aux (Char.chr(Char.ord c - A_minus_space) :: rcs) cs
-      else
-        let val digits = List.take (c::cs, 3) handle Subscript => []
-        in
-            case Int.fromString (String.implode digits) of
-                NONE => unascii_aux (c:: #"_"::rcs) cs  (*ERROR*)
-              | SOME n => unascii_aux (Char.chr n :: rcs) (List.drop (cs, 2))
-        end
-  | unascii_aux rcs (c::cs) = unascii_aux (c::rcs) cs
-val unascii_of = unascii_aux [] o String.explode
-
-(* If string s has the prefix s1, return the result of deleting it,
-   un-ASCII'd. *)
-fun strip_prefix_and_unascii s1 s =
-  if String.isPrefix s1 s then
-    SOME (unascii_of (String.extract (s, size s1, NONE)))
-  else
-    NONE
-
-(*Remove the initial ' character from a type variable, if it is present*)
-fun trim_type_var s =
-  if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
-  else error ("trim_type: Malformed type variable encountered: " ^ s);
-
-fun ascii_of_indexname (v,0) = ascii_of v
-  | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ Int.toString i;
-
-fun make_bound_var x = bound_var_prefix ^ ascii_of x
-fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
-fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
-
-fun make_schematic_type_var (x,i) =
-      tvar_prefix ^ (ascii_of_indexname (trim_type_var x,i));
-fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x));
-
-fun lookup_const c =
-  case Symtab.lookup const_trans_table c of
-    SOME c' => c'
-  | NONE => ascii_of c
-
-(* HOL.eq MUST BE "equal" because it's built into ATPs. *)
-fun make_fixed_const @{const_name HOL.eq} = "equal"
-  | make_fixed_const c = const_prefix ^ lookup_const c
-
-fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
-
-fun make_type_class clas = class_prefix ^ ascii_of clas;
-
-val skolem_theory_name = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
-val skolem_prefix = "sko_"
-val skolem_infix = "$"
-
-(* Hack: Could return false positives (e.g., a user happens to declare a
-   constant called "SomeTheory.sko_means_shoe_in_$wedish". *)
-val is_skolem_const_name =
-  Long_Name.base_name
-  #> String.isPrefix skolem_prefix andf String.isSubstring skolem_infix
-
-(* The number of type arguments of a constant, zero if it's monomorphic. For
-   (instances of) Skolem pseudoconstants, this information is encoded in the
-   constant name. *)
-fun num_type_args thy s =
-  if String.isPrefix skolem_theory_name s then
-    s |> unprefix skolem_theory_name
-      |> space_explode skolem_infix |> hd
-      |> space_explode "_" |> List.last |> Int.fromString |> the
-  else
-    (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
-
-(**** Definitions and functions for FOL clauses for TPTP format output ****)
-
-type name = string * string
-
-(**** Isabelle FOL clauses ****)
-
-(* The first component is the type class; the second is a TVar or TFree. *)
-datatype type_literal =
-  TyLitVar of name * name |
-  TyLitFree of name * name
-
-exception CLAUSE of string * term;
-
-(*Make literals for sorted type variables*)
-fun sorts_on_typs_aux (_, [])   = []
-  | sorts_on_typs_aux ((x,i),  s::ss) =
-      let val sorts = sorts_on_typs_aux ((x,i), ss)
-      in
-          if s = "HOL.type" then sorts
-          else if i = ~1 then TyLitFree (`make_type_class s, `make_fixed_type_var x) :: sorts
-          else TyLitVar (`make_type_class s, (make_schematic_type_var (x,i), x)) :: sorts
-      end;
-
-fun sorts_on_typs (TFree (a,s)) = sorts_on_typs_aux ((a,~1),s)
-  | sorts_on_typs (TVar (v,s))  = sorts_on_typs_aux (v,s);
-
-(*Given a list of sorted type variables, return a list of type literals.*)
-fun type_literals_for_types Ts =
-  fold (union (op =)) (map sorts_on_typs Ts) []
-
-(** make axiom and conjecture clauses. **)
-
-(**** Isabelle arities ****)
-
-datatype arLit =
-  TConsLit of name * name * name list |
-  TVarLit of name * name
-
-datatype arity_clause =
-  ArityClause of {name: string, conclLit: arLit, premLits: arLit list}
-
-
-fun gen_TVars 0 = []
-  | gen_TVars n = ("T_" ^ Int.toString n) :: gen_TVars (n-1);
-
-fun pack_sort(_,[])  = []
-  | pack_sort(tvar, "HOL.type"::srt) = pack_sort (tvar, srt)   (*IGNORE sort "type"*)
-  | pack_sort(tvar, cls::srt) =
-    (`make_type_class cls, (tvar, tvar)) :: pack_sort (tvar, srt)
-
-(*Arity of type constructor tcon :: (arg1,...,argN)res*)
-fun make_axiom_arity_clause (tcons, name, (cls,args)) =
-  let
-    val tvars = gen_TVars (length args)
-    val tvars_srts = ListPair.zip (tvars, args)
-  in
-    ArityClause {name = name,
-                 conclLit = TConsLit (`make_type_class cls,
-                                      `make_fixed_type_const tcons,
-                                      tvars ~~ tvars),
-                 premLits = map TVarLit (union_all (map pack_sort tvars_srts))}
-  end
-
-
-(**** Isabelle class relations ****)
-
-datatype class_rel_clause =
-  ClassRelClause of {name: string, subclass: name, superclass: name}
-
-(*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
-fun class_pairs _ [] _ = []
-  | class_pairs thy subs supers =
-      let
-        val class_less = Sorts.class_less (Sign.classes_of thy)
-        fun add_super sub super = class_less (sub, super) ? cons (sub, super)
-        fun add_supers sub = fold (add_super sub) supers
-      in fold add_supers subs [] end
-
-fun make_class_rel_clause (sub,super) =
-  ClassRelClause {name = sub ^ "_" ^ super,
-                  subclass = `make_type_class sub,
-                  superclass = `make_type_class super}
-
-fun make_class_rel_clauses thy subs supers =
-  map make_class_rel_clause (class_pairs thy subs supers);
-
-
-(** Isabelle arities **)
-
-fun arity_clause _ _ (_, []) = []
-  | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
-      arity_clause seen n (tcons,ars)
-  | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
-      if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
-          make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ Int.toString n, ar) ::
-          arity_clause seen (n+1) (tcons,ars)
-      else
-          make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
-          arity_clause (class::seen) n (tcons,ars)
-
-fun multi_arity_clause [] = []
-  | multi_arity_clause ((tcons, ars) :: tc_arlists) =
-      arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
-
-(*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
-  provided its arguments have the corresponding sorts.*)
-fun type_class_pairs thy tycons classes =
-  let val alg = Sign.classes_of thy
-      fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
-      fun add_class tycon class =
-        cons (class, domain_sorts tycon class)
-        handle Sorts.CLASS_ERROR _ => I
-      fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
-  in  map try_classes tycons  end;
-
-(*Proving one (tycon, class) membership may require proving others, so iterate.*)
-fun iter_type_class_pairs _ _ [] = ([], [])
-  | iter_type_class_pairs thy tycons classes =
-      let val cpairs = type_class_pairs thy tycons classes
-          val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
-            |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
-          val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
-      in (union (op =) classes' classes, union (op =) cpairs' cpairs) end;
-
-fun make_arity_clauses thy tycons classes =
-  let val (classes', cpairs) = iter_type_class_pairs thy tycons classes
-  in  (classes', multi_arity_clause cpairs)  end;
-
-datatype combtyp =
-  CombTVar of name |
-  CombTFree of name |
-  CombType of name * combtyp list
-
-datatype combterm =
-  CombConst of name * combtyp * combtyp list (* Const and Free *) |
-  CombVar of name * combtyp |
-  CombApp of combterm * combterm
-
-datatype fol_literal = FOLLiteral of bool * combterm
-
-(*********************************************************************)
-(* convert a clause with type Term.term to a clause with type clause *)
-(*********************************************************************)
-
-(*Result of a function type; no need to check that the argument type matches.*)
-fun result_type (CombType (_, [_, tp2])) = tp2
-  | result_type _ = raise Fail "non-function type"
-
-fun combtyp_of (CombConst (_, tp, _)) = tp
-  | combtyp_of (CombVar (_, tp)) = tp
-  | combtyp_of (CombApp (t1, _)) = result_type (combtyp_of t1)
-
-(*gets the head of a combinator application, along with the list of arguments*)
-fun strip_combterm_comb u =
-    let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
-        |   stripc  x =  x
-    in stripc(u,[]) end
-
-fun type_of (Type (a, Ts)) =
-    let val (folTypes,ts) = types_of Ts in
-      (CombType (`make_fixed_type_const a, folTypes), ts)
-    end
-  | type_of (tp as TFree (a, _)) = (CombTFree (`make_fixed_type_var a), [tp])
-  | type_of (tp as TVar (x, _)) =
-    (CombTVar (make_schematic_type_var x, string_of_indexname x), [tp])
-and types_of Ts =
-    let val (folTyps, ts) = ListPair.unzip (map type_of Ts) in
-      (folTyps, union_all ts)
-    end
-
-(* same as above, but no gathering of sort information *)
-fun simp_type_of (Type (a, Ts)) =
-      CombType (`make_fixed_type_const a, map simp_type_of Ts)
-  | simp_type_of (TFree (a, _)) = CombTFree (`make_fixed_type_var a)
-  | simp_type_of (TVar (x, _)) =
-    CombTVar (make_schematic_type_var x, string_of_indexname x)
-
-(* Converts a term (with combinators) into a combterm. Also accummulates sort
-   infomation. *)
-fun combterm_from_term thy bs (P $ Q) =
-      let val (P', tsP) = combterm_from_term thy bs P
-          val (Q', tsQ) = combterm_from_term thy bs Q
-      in  (CombApp (P', Q'), union (op =) tsP tsQ)  end
-  | combterm_from_term thy _ (Const (c, T)) =
-      let
-        val (tp, ts) = type_of T
-        val tvar_list =
-          (if String.isPrefix skolem_theory_name c then
-             [] |> Term.add_tvarsT T |> map TVar
-           else
-             (c, T) |> Sign.const_typargs thy)
-          |> map simp_type_of
-        val c' = CombConst (`make_fixed_const c, tp, tvar_list)
-      in  (c',ts)  end
-  | combterm_from_term _ _ (Free (v, T)) =
-      let val (tp,ts) = type_of T
-          val v' = CombConst (`make_fixed_var v, tp, [])
-      in  (v',ts)  end
-  | combterm_from_term _ _ (Var (v, T)) =
-      let val (tp,ts) = type_of T
-          val v' = CombVar ((make_schematic_var v, string_of_indexname v), tp)
-      in  (v',ts)  end
-  | combterm_from_term _ bs (Bound j) =
-      let
-        val (s, T) = nth bs j
-        val (tp, ts) = type_of T
-        val v' = CombConst (`make_bound_var s, tp, [])
-      in (v', ts) end
-  | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
-
-fun predicate_of thy ((@{const Not} $ P), pos) = predicate_of thy (P, not pos)
-  | predicate_of thy (t, pos) =
-    (combterm_from_term thy [] (Envir.eta_contract t), pos)
-
-fun literals_of_term1 args thy (@{const Trueprop} $ P) =
-    literals_of_term1 args thy P
-  | literals_of_term1 args thy (@{const HOL.disj} $ P $ Q) =
-    literals_of_term1 (literals_of_term1 args thy P) thy Q
-  | literals_of_term1 (lits, ts) thy P =
-    let val ((pred, ts'), pol) = predicate_of thy (P, true) in
-      (FOLLiteral (pol, pred) :: lits, union (op =) ts ts')
-    end
-val literals_of_term = literals_of_term1 ([], [])
-
-fun skolem_name i j num_T_args =
-  skolem_prefix ^ (space_implode "_" (map Int.toString [i, j, num_T_args])) ^
-  skolem_infix ^ "g"
-
-fun conceal_skolem_terms i skolems t =
-  if exists_Const (curry (op =) @{const_name skolem} o fst) t then
-    let
-      fun aux skolems
-              (t as (Const (@{const_name skolem}, Type (_, [_, T])) $ _)) =
-          let
-            val (skolems, s) =
-              if i = ~1 then
-                (skolems, @{const_name undefined})
-              else case AList.find (op aconv) skolems t of
-                s :: _ => (skolems, s)
-              | [] =>
-                let
-                  val s = skolem_theory_name ^ "." ^
-                          skolem_name i (length skolems)
-                                        (length (Term.add_tvarsT T []))
-                in ((s, t) :: skolems, s) end
-          in (skolems, Const (s, T)) end
-        | aux skolems (t1 $ t2) =
-          let
-            val (skolems, t1) = aux skolems t1
-            val (skolems, t2) = aux skolems t2
-          in (skolems, t1 $ t2) end
-        | aux skolems (Abs (s, T, t')) =
-          let val (skolems, t') = aux skolems t' in
-            (skolems, Abs (s, T, t'))
-          end
-        | aux skolems t = (skolems, t)
-    in aux skolems t end
-  else
-    (skolems, t)
-
-fun reveal_skolem_terms skolems =
-  map_aterms (fn t as Const (s, _) =>
-                 if String.isPrefix skolem_theory_name s then
-                   AList.lookup (op =) skolems s |> the
-                   |> map_types Type_Infer.paramify_vars
-                 else
-                   t
-               | t => t)
-
-
-(***************************************************************)
-(* Type Classes Present in the Axiom or Conjecture Clauses     *)
-(***************************************************************)
-
-fun set_insert (x, s) = Symtab.update (x, ()) s
-
-fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
-
-(*Remove this trivial type class*)
-fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset;
-
-fun tfree_classes_of_terms ts =
-  let val sorts_list = map (map #2 o OldTerm.term_tfrees) ts
-  in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
-
-fun tvar_classes_of_terms ts =
-  let val sorts_list = map (map #2 o OldTerm.term_tvars) ts
-  in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
-
-(*fold type constructors*)
-fun fold_type_consts f (Type (a, Ts)) x = fold (fold_type_consts f) Ts (f (a,x))
-  | fold_type_consts _ _ x = x;
-
-(*Type constructors used to instantiate overloaded constants are the only ones needed.*)
-fun add_type_consts_in_term thy =
-  let
-    fun aux (Const x) =
-        fold (fold_type_consts set_insert) (Sign.const_typargs thy x)
-      | aux (Abs (_, _, u)) = aux u
-      | aux (Const (@{const_name skolem}, _) $ _) = I
-      | aux (t $ u) = aux t #> aux u
-      | aux _ = I
-  in aux end
-
-fun type_consts_of_terms thy ts =
-  Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty);
-
-end;
--- a/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Thu Sep 16 15:38:46 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Thu Sep 16 16:12:02 2010 +0200
@@ -20,7 +20,7 @@
 structure Metis_Tactics : METIS_TACTICS =
 struct
 
-open Metis_Clauses
+open Metis_Translate
 
 val trace = Unsynchronized.ref false;
 fun trace_msg msg = if !trace then tracing (msg ()) else ();
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Sledgehammer/metis_translate.ML	Thu Sep 16 16:12:02 2010 +0200
@@ -0,0 +1,521 @@
+(*  Title:      HOL/Tools/Sledgehammer/metis_translate.ML
+    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Translation of HOL to FOL for Metis.
+*)
+
+signature METIS_TRANSLATE =
+sig
+  type name = string * string
+  datatype type_literal =
+    TyLitVar of name * name |
+    TyLitFree of name * name
+  datatype arLit =
+    TConsLit of name * name * name list |
+    TVarLit of name * name
+  datatype arity_clause =
+    ArityClause of {name: string, conclLit: arLit, premLits: arLit list}
+  datatype class_rel_clause =
+    ClassRelClause of {name: string, subclass: name, superclass: name}
+  datatype combtyp =
+    CombTVar of name |
+    CombTFree of name |
+    CombType of name * combtyp list
+  datatype combterm =
+    CombConst of name * combtyp * combtyp list (* Const and Free *) |
+    CombVar of name * combtyp |
+    CombApp of combterm * combterm
+  datatype fol_literal = FOLLiteral of bool * combterm
+
+  val type_wrapper_name : string
+  val bound_var_prefix : string
+  val schematic_var_prefix: string
+  val fixed_var_prefix: string
+  val tvar_prefix: string
+  val tfree_prefix: string
+  val const_prefix: string
+  val type_const_prefix: string
+  val class_prefix: string
+  val invert_const: string -> string
+  val ascii_of: string -> string
+  val unascii_of: string -> string
+  val strip_prefix_and_unascii: string -> string -> string option
+  val make_bound_var : string -> string
+  val make_schematic_var : string * int -> string
+  val make_fixed_var : string -> string
+  val make_schematic_type_var : string * int -> string
+  val make_fixed_type_var : string -> string
+  val make_fixed_const : string -> string
+  val make_fixed_type_const : string -> string
+  val make_type_class : string -> string
+  val skolem_theory_name: string
+  val skolem_prefix: string
+  val skolem_infix: string
+  val is_skolem_const_name: string -> bool
+  val num_type_args: theory -> string -> int
+  val type_literals_for_types : typ list -> type_literal list
+  val make_class_rel_clauses: theory -> class list -> class list -> class_rel_clause list
+  val make_arity_clauses: theory -> string list -> class list -> class list * arity_clause list
+  val combtyp_of : combterm -> combtyp
+  val strip_combterm_comb : combterm -> combterm * combterm list
+  val combterm_from_term :
+    theory -> (string * typ) list -> term -> combterm * typ list
+  val literals_of_term : theory -> term -> fol_literal list * typ list
+  val conceal_skolem_terms :
+    int -> (string * term) list -> term -> (string * term) list * term
+  val reveal_skolem_terms : (string * term) list -> term -> term
+  val tfree_classes_of_terms : term list -> string list
+  val tvar_classes_of_terms : term list -> string list
+  val type_consts_of_terms : theory -> term list -> string list
+end
+
+structure Metis_Translate : METIS_TRANSLATE =
+struct
+
+val type_wrapper_name = "ti"
+
+val bound_var_prefix = "B_"
+val schematic_var_prefix = "V_"
+val fixed_var_prefix = "v_"
+
+val tvar_prefix = "T_";
+val tfree_prefix = "t_";
+
+val const_prefix = "c_";
+val type_const_prefix = "tc_";
+val class_prefix = "class_";
+
+fun union_all xss = fold (union (op =)) xss []
+
+(* Readable names for the more common symbolic functions. Do not mess with the
+   last nine entries of the table unless you know what you are doing. *)
+val const_trans_table =
+  Symtab.make [(@{type_name Product_Type.prod}, "prod"),
+               (@{type_name Sum_Type.sum}, "sum"),
+               (@{const_name HOL.eq}, "equal"),
+               (@{const_name HOL.conj}, "and"),
+               (@{const_name HOL.disj}, "or"),
+               (@{const_name HOL.implies}, "implies"),
+               (@{const_name Set.member}, "member"),
+               (@{const_name fequal}, "fequal"),
+               (@{const_name COMBI}, "COMBI"),
+               (@{const_name COMBK}, "COMBK"),
+               (@{const_name COMBB}, "COMBB"),
+               (@{const_name COMBC}, "COMBC"),
+               (@{const_name COMBS}, "COMBS"),
+               (@{const_name True}, "True"),
+               (@{const_name False}, "False"),
+               (@{const_name If}, "If")]
+
+(* Invert the table of translations between Isabelle and ATPs. *)
+val const_trans_table_inv =
+  Symtab.update ("fequal", @{const_name HOL.eq})
+                (Symtab.make (map swap (Symtab.dest const_trans_table)))
+
+val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
+
+(*Escaping of special characters.
+  Alphanumeric characters are left unchanged.
+  The character _ goes to __
+  Characters in the range ASCII space to / go to _A to _P, respectively.
+  Other characters go to _nnn where nnn is the decimal ASCII code.*)
+val A_minus_space = Char.ord #"A" - Char.ord #" ";
+
+fun stringN_of_int 0 _ = ""
+  | stringN_of_int k n = stringN_of_int (k-1) (n div 10) ^ Int.toString (n mod 10);
+
+fun ascii_of_c c =
+  if Char.isAlphaNum c then String.str c
+  else if c = #"_" then "__"
+  else if #" " <= c andalso c <= #"/"
+       then "_" ^ String.str (Char.chr (Char.ord c + A_minus_space))
+  else ("_" ^ stringN_of_int 3 (Char.ord c))  (*fixed width, in case more digits follow*)
+
+val ascii_of = String.translate ascii_of_c;
+
+(** Remove ASCII armouring from names in proof files **)
+
+(*We don't raise error exceptions because this code can run inside the watcher.
+  Also, the errors are "impossible" (hah!)*)
+fun unascii_aux rcs [] = String.implode(rev rcs)
+  | unascii_aux rcs [#"_"] = unascii_aux (#"_"::rcs) []  (*ERROR*)
+      (*Three types of _ escapes: __, _A to _P, _nnn*)
+  | unascii_aux rcs (#"_" :: #"_" :: cs) = unascii_aux (#"_"::rcs) cs
+  | unascii_aux rcs (#"_" :: c :: cs) =
+      if #"A" <= c andalso c<= #"P"  (*translation of #" " to #"/"*)
+      then unascii_aux (Char.chr(Char.ord c - A_minus_space) :: rcs) cs
+      else
+        let val digits = List.take (c::cs, 3) handle Subscript => []
+        in
+            case Int.fromString (String.implode digits) of
+                NONE => unascii_aux (c:: #"_"::rcs) cs  (*ERROR*)
+              | SOME n => unascii_aux (Char.chr n :: rcs) (List.drop (cs, 2))
+        end
+  | unascii_aux rcs (c::cs) = unascii_aux (c::rcs) cs
+val unascii_of = unascii_aux [] o String.explode
+
+(* If string s has the prefix s1, return the result of deleting it,
+   un-ASCII'd. *)
+fun strip_prefix_and_unascii s1 s =
+  if String.isPrefix s1 s then
+    SOME (unascii_of (String.extract (s, size s1, NONE)))
+  else
+    NONE
+
+(*Remove the initial ' character from a type variable, if it is present*)
+fun trim_type_var s =
+  if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
+  else error ("trim_type: Malformed type variable encountered: " ^ s);
+
+fun ascii_of_indexname (v,0) = ascii_of v
+  | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ Int.toString i;
+
+fun make_bound_var x = bound_var_prefix ^ ascii_of x
+fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
+fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
+
+fun make_schematic_type_var (x,i) =
+      tvar_prefix ^ (ascii_of_indexname (trim_type_var x,i));
+fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x));
+
+fun lookup_const c =
+  case Symtab.lookup const_trans_table c of
+    SOME c' => c'
+  | NONE => ascii_of c
+
+(* HOL.eq MUST BE "equal" because it's built into ATPs. *)
+fun make_fixed_const @{const_name HOL.eq} = "equal"
+  | make_fixed_const c = const_prefix ^ lookup_const c
+
+fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
+
+fun make_type_class clas = class_prefix ^ ascii_of clas;
+
+val skolem_theory_name = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
+val skolem_prefix = "sko_"
+val skolem_infix = "$"
+
+(* Hack: Could return false positives (e.g., a user happens to declare a
+   constant called "SomeTheory.sko_means_shoe_in_$wedish". *)
+val is_skolem_const_name =
+  Long_Name.base_name
+  #> String.isPrefix skolem_prefix andf String.isSubstring skolem_infix
+
+(* The number of type arguments of a constant, zero if it's monomorphic. For
+   (instances of) Skolem pseudoconstants, this information is encoded in the
+   constant name. *)
+fun num_type_args thy s =
+  if String.isPrefix skolem_theory_name s then
+    s |> unprefix skolem_theory_name
+      |> space_explode skolem_infix |> hd
+      |> space_explode "_" |> List.last |> Int.fromString |> the
+  else
+    (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
+
+(**** Definitions and functions for FOL clauses for TPTP format output ****)
+
+type name = string * string
+
+(**** Isabelle FOL clauses ****)
+
+(* The first component is the type class; the second is a TVar or TFree. *)
+datatype type_literal =
+  TyLitVar of name * name |
+  TyLitFree of name * name
+
+(*Make literals for sorted type variables*)
+fun sorts_on_typs_aux (_, [])   = []
+  | sorts_on_typs_aux ((x,i),  s::ss) =
+      let val sorts = sorts_on_typs_aux ((x,i), ss)
+      in
+          if s = "HOL.type" then sorts
+          else if i = ~1 then TyLitFree (`make_type_class s, `make_fixed_type_var x) :: sorts
+          else TyLitVar (`make_type_class s, (make_schematic_type_var (x,i), x)) :: sorts
+      end;
+
+fun sorts_on_typs (TFree (a,s)) = sorts_on_typs_aux ((a,~1),s)
+  | sorts_on_typs (TVar (v,s))  = sorts_on_typs_aux (v,s);
+
+(*Given a list of sorted type variables, return a list of type literals.*)
+fun type_literals_for_types Ts =
+  fold (union (op =)) (map sorts_on_typs Ts) []
+
+(** make axiom and conjecture clauses. **)
+
+(**** Isabelle arities ****)
+
+datatype arLit =
+  TConsLit of name * name * name list |
+  TVarLit of name * name
+
+datatype arity_clause =
+  ArityClause of {name: string, conclLit: arLit, premLits: arLit list}
+
+
+fun gen_TVars 0 = []
+  | gen_TVars n = ("T_" ^ Int.toString n) :: gen_TVars (n-1);
+
+fun pack_sort(_,[])  = []
+  | pack_sort(tvar, "HOL.type"::srt) = pack_sort (tvar, srt)   (*IGNORE sort "type"*)
+  | pack_sort(tvar, cls::srt) =
+    (`make_type_class cls, (tvar, tvar)) :: pack_sort (tvar, srt)
+
+(*Arity of type constructor tcon :: (arg1,...,argN)res*)
+fun make_axiom_arity_clause (tcons, name, (cls,args)) =
+  let
+    val tvars = gen_TVars (length args)
+    val tvars_srts = ListPair.zip (tvars, args)
+  in
+    ArityClause {name = name,
+                 conclLit = TConsLit (`make_type_class cls,
+                                      `make_fixed_type_const tcons,
+                                      tvars ~~ tvars),
+                 premLits = map TVarLit (union_all (map pack_sort tvars_srts))}
+  end
+
+
+(**** Isabelle class relations ****)
+
+datatype class_rel_clause =
+  ClassRelClause of {name: string, subclass: name, superclass: name}
+
+(*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
+fun class_pairs _ [] _ = []
+  | class_pairs thy subs supers =
+      let
+        val class_less = Sorts.class_less (Sign.classes_of thy)
+        fun add_super sub super = class_less (sub, super) ? cons (sub, super)
+        fun add_supers sub = fold (add_super sub) supers
+      in fold add_supers subs [] end
+
+fun make_class_rel_clause (sub,super) =
+  ClassRelClause {name = sub ^ "_" ^ super,
+                  subclass = `make_type_class sub,
+                  superclass = `make_type_class super}
+
+fun make_class_rel_clauses thy subs supers =
+  map make_class_rel_clause (class_pairs thy subs supers);
+
+
+(** Isabelle arities **)
+
+fun arity_clause _ _ (_, []) = []
+  | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
+      arity_clause seen n (tcons,ars)
+  | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
+      if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
+          make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ Int.toString n, ar) ::
+          arity_clause seen (n+1) (tcons,ars)
+      else
+          make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
+          arity_clause (class::seen) n (tcons,ars)
+
+fun multi_arity_clause [] = []
+  | multi_arity_clause ((tcons, ars) :: tc_arlists) =
+      arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
+
+(*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
+  provided its arguments have the corresponding sorts.*)
+fun type_class_pairs thy tycons classes =
+  let val alg = Sign.classes_of thy
+      fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
+      fun add_class tycon class =
+        cons (class, domain_sorts tycon class)
+        handle Sorts.CLASS_ERROR _ => I
+      fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
+  in  map try_classes tycons  end;
+
+(*Proving one (tycon, class) membership may require proving others, so iterate.*)
+fun iter_type_class_pairs _ _ [] = ([], [])
+  | iter_type_class_pairs thy tycons classes =
+      let val cpairs = type_class_pairs thy tycons classes
+          val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
+            |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
+          val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
+      in (union (op =) classes' classes, union (op =) cpairs' cpairs) end;
+
+fun make_arity_clauses thy tycons classes =
+  let val (classes', cpairs) = iter_type_class_pairs thy tycons classes
+  in  (classes', multi_arity_clause cpairs)  end;
+
+datatype combtyp =
+  CombTVar of name |
+  CombTFree of name |
+  CombType of name * combtyp list
+
+datatype combterm =
+  CombConst of name * combtyp * combtyp list (* Const and Free *) |
+  CombVar of name * combtyp |
+  CombApp of combterm * combterm
+
+datatype fol_literal = FOLLiteral of bool * combterm
+
+(*********************************************************************)
+(* convert a clause with type Term.term to a clause with type clause *)
+(*********************************************************************)
+
+(*Result of a function type; no need to check that the argument type matches.*)
+fun result_type (CombType (_, [_, tp2])) = tp2
+  | result_type _ = raise Fail "non-function type"
+
+fun combtyp_of (CombConst (_, tp, _)) = tp
+  | combtyp_of (CombVar (_, tp)) = tp
+  | combtyp_of (CombApp (t1, _)) = result_type (combtyp_of t1)
+
+(*gets the head of a combinator application, along with the list of arguments*)
+fun strip_combterm_comb u =
+    let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
+        |   stripc  x =  x
+    in stripc(u,[]) end
+
+fun type_of (Type (a, Ts)) =
+    let val (folTypes,ts) = types_of Ts in
+      (CombType (`make_fixed_type_const a, folTypes), ts)
+    end
+  | type_of (tp as TFree (a, _)) = (CombTFree (`make_fixed_type_var a), [tp])
+  | type_of (tp as TVar (x, _)) =
+    (CombTVar (make_schematic_type_var x, string_of_indexname x), [tp])
+and types_of Ts =
+    let val (folTyps, ts) = ListPair.unzip (map type_of Ts) in
+      (folTyps, union_all ts)
+    end
+
+(* same as above, but no gathering of sort information *)
+fun simp_type_of (Type (a, Ts)) =
+      CombType (`make_fixed_type_const a, map simp_type_of Ts)
+  | simp_type_of (TFree (a, _)) = CombTFree (`make_fixed_type_var a)
+  | simp_type_of (TVar (x, _)) =
+    CombTVar (make_schematic_type_var x, string_of_indexname x)
+
+(* Converts a term (with combinators) into a combterm. Also accummulates sort
+   infomation. *)
+fun combterm_from_term thy bs (P $ Q) =
+      let val (P', tsP) = combterm_from_term thy bs P
+          val (Q', tsQ) = combterm_from_term thy bs Q
+      in  (CombApp (P', Q'), union (op =) tsP tsQ)  end
+  | combterm_from_term thy _ (Const (c, T)) =
+      let
+        val (tp, ts) = type_of T
+        val tvar_list =
+          (if String.isPrefix skolem_theory_name c then
+             [] |> Term.add_tvarsT T |> map TVar
+           else
+             (c, T) |> Sign.const_typargs thy)
+          |> map simp_type_of
+        val c' = CombConst (`make_fixed_const c, tp, tvar_list)
+      in  (c',ts)  end
+  | combterm_from_term _ _ (Free (v, T)) =
+      let val (tp,ts) = type_of T
+          val v' = CombConst (`make_fixed_var v, tp, [])
+      in  (v',ts)  end
+  | combterm_from_term _ _ (Var (v, T)) =
+      let val (tp,ts) = type_of T
+          val v' = CombVar ((make_schematic_var v, string_of_indexname v), tp)
+      in  (v',ts)  end
+  | combterm_from_term _ bs (Bound j) =
+      let
+        val (s, T) = nth bs j
+        val (tp, ts) = type_of T
+        val v' = CombConst (`make_bound_var s, tp, [])
+      in (v', ts) end
+  | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
+
+fun predicate_of thy ((@{const Not} $ P), pos) = predicate_of thy (P, not pos)
+  | predicate_of thy (t, pos) =
+    (combterm_from_term thy [] (Envir.eta_contract t), pos)
+
+fun literals_of_term1 args thy (@{const Trueprop} $ P) =
+    literals_of_term1 args thy P
+  | literals_of_term1 args thy (@{const HOL.disj} $ P $ Q) =
+    literals_of_term1 (literals_of_term1 args thy P) thy Q
+  | literals_of_term1 (lits, ts) thy P =
+    let val ((pred, ts'), pol) = predicate_of thy (P, true) in
+      (FOLLiteral (pol, pred) :: lits, union (op =) ts ts')
+    end
+val literals_of_term = literals_of_term1 ([], [])
+
+fun skolem_name i j num_T_args =
+  skolem_prefix ^ (space_implode "_" (map Int.toString [i, j, num_T_args])) ^
+  skolem_infix ^ "g"
+
+fun conceal_skolem_terms i skolems t =
+  if exists_Const (curry (op =) @{const_name skolem} o fst) t then
+    let
+      fun aux skolems
+              (t as (Const (@{const_name skolem}, Type (_, [_, T])) $ _)) =
+          let
+            val (skolems, s) =
+              if i = ~1 then
+                (skolems, @{const_name undefined})
+              else case AList.find (op aconv) skolems t of
+                s :: _ => (skolems, s)
+              | [] =>
+                let
+                  val s = skolem_theory_name ^ "." ^
+                          skolem_name i (length skolems)
+                                        (length (Term.add_tvarsT T []))
+                in ((s, t) :: skolems, s) end
+          in (skolems, Const (s, T)) end
+        | aux skolems (t1 $ t2) =
+          let
+            val (skolems, t1) = aux skolems t1
+            val (skolems, t2) = aux skolems t2
+          in (skolems, t1 $ t2) end
+        | aux skolems (Abs (s, T, t')) =
+          let val (skolems, t') = aux skolems t' in
+            (skolems, Abs (s, T, t'))
+          end
+        | aux skolems t = (skolems, t)
+    in aux skolems t end
+  else
+    (skolems, t)
+
+fun reveal_skolem_terms skolems =
+  map_aterms (fn t as Const (s, _) =>
+                 if String.isPrefix skolem_theory_name s then
+                   AList.lookup (op =) skolems s |> the
+                   |> map_types Type_Infer.paramify_vars
+                 else
+                   t
+               | t => t)
+
+
+(***************************************************************)
+(* Type Classes Present in the Axiom or Conjecture Clauses     *)
+(***************************************************************)
+
+fun set_insert (x, s) = Symtab.update (x, ()) s
+
+fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
+
+(*Remove this trivial type class*)
+fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset;
+
+fun tfree_classes_of_terms ts =
+  let val sorts_list = map (map #2 o OldTerm.term_tfrees) ts
+  in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
+
+fun tvar_classes_of_terms ts =
+  let val sorts_list = map (map #2 o OldTerm.term_tvars) ts
+  in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
+
+(*fold type constructors*)
+fun fold_type_consts f (Type (a, Ts)) x = fold (fold_type_consts f) Ts (f (a,x))
+  | fold_type_consts _ _ x = x;
+
+(*Type constructors used to instantiate overloaded constants are the only ones needed.*)
+fun add_type_consts_in_term thy =
+  let
+    fun aux (Const x) =
+        fold (fold_type_consts set_insert) (Sign.const_typargs thy x)
+      | aux (Abs (_, _, u)) = aux u
+      | aux (Const (@{const_name skolem}, _) $ _) = I
+      | aux (t $ u) = aux t #> aux u
+      | aux _ = I
+  in aux end
+
+fun type_consts_of_terms thy ts =
+  Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty);
+
+end;
--- a/src/HOL/Tools/Sledgehammer/sledgehammer.ML	Thu Sep 16 15:38:46 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer.ML	Thu Sep 16 16:12:02 2010 +0200
@@ -68,7 +68,7 @@
 open ATP_Problem
 open ATP_Proof
 open ATP_Systems
-open Metis_Clauses
+open Metis_Translate
 open Sledgehammer_Util
 open Sledgehammer_Filter
 open Sledgehammer_Translate
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML	Thu Sep 16 15:38:46 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML	Thu Sep 16 16:12:02 2010 +0200
@@ -30,7 +30,7 @@
 
 open ATP_Problem
 open ATP_Proof
-open Metis_Clauses
+open Metis_Translate
 open Sledgehammer_Util
 open Sledgehammer_Filter
 open Sledgehammer_Translate
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_translate.ML	Thu Sep 16 15:38:46 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_translate.ML	Thu Sep 16 16:12:02 2010 +0200
@@ -3,7 +3,7 @@
     Author:     Makarius
     Author:     Jasmin Blanchette, TU Muenchen
 
-Translation of HOL to FOL.
+Translation of HOL to FOL for Sledgehammer.
 *)
 
 signature SLEDGEHAMMER_TRANSLATE =
@@ -30,7 +30,7 @@
 struct
 
 open ATP_Problem
-open Metis_Clauses
+open Metis_Translate
 open Sledgehammer_Util
 
 val axiom_prefix = "ax_"