--- a/src/HOL/Data_Structures/AVL_Map.thy Mon Jun 11 22:43:52 2018 +0100
+++ b/src/HOL/Data_Structures/AVL_Map.thy Tue Jun 12 07:18:18 2018 +0200
@@ -23,7 +23,7 @@
GT \<Rightarrow> balL l (a,b) (delete x r))"
-subsection \<open>Functional Correctness Proofs\<close>
+subsection \<open>Functional Correctness\<close>
theorem inorder_update:
"sorted1(inorder t) \<Longrightarrow> inorder(update x y t) = upd_list x y (inorder t)"
@@ -36,9 +36,153 @@
(auto simp: del_list_simps inorder_balL inorder_balR
inorder_del_root inorder_split_maxD split: prod.splits)
+
+subsection \<open>AVL invariants\<close>
+
+
+subsubsection \<open>Insertion maintains AVL balance\<close>
+
+theorem avl_update:
+ assumes "avl t"
+ shows "avl(update x y t)"
+ "(height (update x y t) = height t \<or> height (update x y t) = height t + 1)"
+using assms
+proof (induction x y t rule: update.induct)
+ case eq2: (2 x y l a b h r)
+ case 1
+ show ?case
+ proof(cases "x = a")
+ case True with eq2 1 show ?thesis by simp
+ next
+ case False
+ with eq2 1 show ?thesis
+ proof(cases "x<a")
+ case True with eq2 1 show ?thesis by (auto simp add:avl_balL)
+ next
+ case False with eq2 1 \<open>x\<noteq>a\<close> show ?thesis by (auto simp add:avl_balR)
+ qed
+ qed
+ case 2
+ show ?case
+ proof(cases "x = a")
+ case True with eq2 1 show ?thesis by simp
+ next
+ case False
+ show ?thesis
+ proof(cases "x<a")
+ case True
+ show ?thesis
+ proof(cases "height (update x y l) = height r + 2")
+ case False with eq2 2 \<open>x < a\<close> show ?thesis by (auto simp: height_balL2)
+ next
+ case True
+ hence "(height (balL (update x y l) (a,b) r) = height r + 2) \<or>
+ (height (balL (update x y l) (a,b) r) = height r + 3)" (is "?A \<or> ?B")
+ using eq2 2 \<open>x<a\<close> by (intro height_balL) simp_all
+ thus ?thesis
+ proof
+ assume ?A with 2 \<open>x < a\<close> show ?thesis by (auto)
+ next
+ assume ?B with True 1 eq2(2) \<open>x < a\<close> show ?thesis by (simp) arith
+ qed
+ qed
+ next
+ case False
+ show ?thesis
+ proof(cases "height (update x y r) = height l + 2")
+ case False with eq2 2 \<open>\<not>x < a\<close> show ?thesis by (auto simp: height_balR2)
+ next
+ case True
+ hence "(height (balR l (a,b) (update x y r)) = height l + 2) \<or>
+ (height (balR l (a,b) (update x y r)) = height l + 3)" (is "?A \<or> ?B")
+ using eq2 2 \<open>\<not>x < a\<close> \<open>x \<noteq> a\<close> by (intro height_balR) simp_all
+ thus ?thesis
+ proof
+ assume ?A with 2 \<open>\<not>x < a\<close> show ?thesis by (auto)
+ next
+ assume ?B with True 1 eq2(4) \<open>\<not>x < a\<close> show ?thesis by (simp) arith
+ qed
+ qed
+ qed
+ qed
+qed simp_all
+
+
+subsubsection \<open>Deletion maintains AVL balance\<close>
+
+theorem avl_delete:
+ assumes "avl t"
+ shows "avl(delete x t)" and "height t = (height (delete x t)) \<or> height t = height (delete x t) + 1"
+using assms
+proof (induct t)
+ case (Node l n h r)
+ obtain a b where [simp]: "n = (a,b)" by fastforce
+ case 1
+ show ?case
+ proof(cases "x = a")
+ case True with Node 1 show ?thesis by (auto simp:avl_del_root)
+ next
+ case False
+ show ?thesis
+ proof(cases "x<a")
+ case True with Node 1 show ?thesis by (auto simp add:avl_balR)
+ next
+ case False with Node 1 \<open>x\<noteq>a\<close> show ?thesis by (auto simp add:avl_balL)
+ qed
+ qed
+ case 2
+ show ?case
+ proof(cases "x = a")
+ case True
+ with 1 have "height (Node l n h r) = height(del_root (Node l n h r))
+ \<or> height (Node l n h r) = height(del_root (Node l n h r)) + 1"
+ by (subst height_del_root,simp_all)
+ with True show ?thesis by simp
+ next
+ case False
+ show ?thesis
+ proof(cases "x<a")
+ case True
+ show ?thesis
+ proof(cases "height r = height (delete x l) + 2")
+ case False with Node 1 \<open>x < a\<close> show ?thesis by(auto simp: balR_def)
+ next
+ case True
+ hence "(height (balR (delete x l) n r) = height (delete x l) + 2) \<or>
+ height (balR (delete x l) n r) = height (delete x l) + 3" (is "?A \<or> ?B")
+ using Node 2 by (intro height_balR) auto
+ thus ?thesis
+ proof
+ assume ?A with \<open>x < a\<close> Node 2 show ?thesis by(auto simp: balR_def)
+ next
+ assume ?B with \<open>x < a\<close> Node 2 show ?thesis by(auto simp: balR_def)
+ qed
+ qed
+ next
+ case False
+ show ?thesis
+ proof(cases "height l = height (delete x r) + 2")
+ case False with Node 1 \<open>\<not>x < a\<close> \<open>x \<noteq> a\<close> show ?thesis by(auto simp: balL_def)
+ next
+ case True
+ hence "(height (balL l n (delete x r)) = height (delete x r) + 2) \<or>
+ height (balL l n (delete x r)) = height (delete x r) + 3" (is "?A \<or> ?B")
+ using Node 2 by (intro height_balL) auto
+ thus ?thesis
+ proof
+ assume ?A with \<open>\<not>x < a\<close> \<open>x \<noteq> a\<close> Node 2 show ?thesis by(auto simp: balL_def)
+ next
+ assume ?B with \<open>\<not>x < a\<close> \<open>x \<noteq> a\<close> Node 2 show ?thesis by(auto simp: balL_def)
+ qed
+ qed
+ qed
+ qed
+qed simp_all
+
+
interpretation Map_by_Ordered
where empty = Leaf and lookup = lookup and update = update and delete = delete
-and inorder = inorder and inv = "\<lambda>_. True"
+and inorder = inorder and inv = avl
proof (standard, goal_cases)
case 1 show ?case by simp
next
@@ -47,6 +191,12 @@
case 3 thus ?case by(simp add: inorder_update)
next
case 4 thus ?case by(simp add: inorder_delete)
-qed auto
+next
+ case 5 show ?case by simp
+next
+ case 6 thus ?case by(simp add: avl_update(1))
+next
+ case 7 thus ?case by(simp add: avl_delete(1))
+qed
end
--- a/src/HOL/Data_Structures/AVL_Set.thy Mon Jun 11 22:43:52 2018 +0100
+++ b/src/HOL/Data_Structures/AVL_Set.thy Tue Jun 12 07:18:18 2018 +0200
@@ -121,22 +121,6 @@
inorder_del_root inorder_split_maxD split: prod.splits)
-subsubsection "Overall functional correctness"
-
-interpretation Set_by_Ordered
-where empty = Leaf and isin = isin and insert = insert and delete = delete
-and inorder = inorder and inv = "\<lambda>_. True"
-proof (standard, goal_cases)
- case 1 show ?case by simp
-next
- case 2 thus ?case by(simp add: isin_set_inorder)
-next
- case 3 thus ?case by(simp add: inorder_insert)
-next
- case 4 thus ?case by(simp add: inorder_delete)
-qed (rule TrueI)+
-
-
subsection \<open>AVL invariants\<close>
text\<open>Essentially the AFP/AVL proofs\<close>
@@ -224,7 +208,7 @@
text\<open>Insertion maintains the AVL property:\<close>
-theorem avl_insert_aux:
+theorem avl_insert:
assumes "avl t"
shows "avl(insert x t)"
"(height (insert x t) = height t \<or> height (insert x t) = height t + 1)"
@@ -232,32 +216,28 @@
proof (induction t)
case (Node l a h r)
case 1
- with Node show ?case
+ show ?case
proof(cases "x = a")
- case True
- with Node 1 show ?thesis by simp
+ case True with Node 1 show ?thesis by simp
next
case False
- with Node 1 show ?thesis
+ show ?thesis
proof(cases "x<a")
- case True
- with Node 1 show ?thesis by (auto simp add:avl_balL)
+ case True with Node 1 show ?thesis by (auto simp add:avl_balL)
next
- case False
- with Node 1 \<open>x\<noteq>a\<close> show ?thesis by (auto simp add:avl_balR)
+ case False with Node 1 \<open>x\<noteq>a\<close> show ?thesis by (auto simp add:avl_balR)
qed
qed
case 2
- from 2 Node show ?case
+ show ?case
proof(cases "x = a")
- case True
- with Node 1 show ?thesis by simp
+ case True with Node 1 show ?thesis by simp
next
case False
- with Node 1 show ?thesis
- proof(cases "x<a")
+ show ?thesis
+ proof(cases "x<a")
case True
- with Node 2 show ?thesis
+ show ?thesis
proof(cases "height (insert x l) = height r + 2")
case False with Node 2 \<open>x < a\<close> show ?thesis by (auto simp: height_balL2)
next
@@ -267,19 +247,16 @@
using Node 2 by (intro height_balL) simp_all
thus ?thesis
proof
- assume ?A
- with 2 \<open>x < a\<close> show ?thesis by (auto)
+ assume ?A with 2 \<open>x < a\<close> show ?thesis by (auto)
next
- assume ?B
- with True 1 Node(2) \<open>x < a\<close> show ?thesis by (simp) arith
+ assume ?B with True 1 Node(2) \<open>x < a\<close> show ?thesis by (simp) arith
qed
qed
next
case False
- with Node 2 show ?thesis
+ show ?thesis
proof(cases "height (insert x r) = height l + 2")
- case False
- with Node 2 \<open>\<not>x < a\<close> show ?thesis by (auto simp: height_balR2)
+ case False with Node 2 \<open>\<not>x < a\<close> show ?thesis by (auto simp: height_balR2)
next
case True
hence "(height (balR l a (insert x r)) = height l + 2) \<or>
@@ -287,11 +264,9 @@
using Node 2 by (intro height_balR) simp_all
thus ?thesis
proof
- assume ?A
- with 2 \<open>\<not>x < a\<close> show ?thesis by (auto)
+ assume ?A with 2 \<open>\<not>x < a\<close> show ?thesis by (auto)
next
- assume ?B
- with True 1 Node(4) \<open>\<not>x < a\<close> show ?thesis by (simp) arith
+ assume ?B with True 1 Node(4) \<open>\<not>x < a\<close> show ?thesis by (simp) arith
qed
qed
qed
@@ -310,9 +285,7 @@
case (Node l a h r)
case 1
thus ?case using Node
- by (auto simp: height_balL height_balL2 avl_balL
- linorder_class.max.absorb1 linorder_class.max.absorb2
- split:prod.split)
+ by (auto simp: height_balL height_balL2 avl_balL split:prod.split)
next
case (Node l a h r)
case 2
@@ -360,16 +333,15 @@
have "height t = height ?t' \<or> height t = height ?t' + 1" using \<open>avl t\<close> Node_Node
proof(cases "height ?r = height ?l' + 2")
case False
- show ?thesis using l'_height t_height False by (subst height_balR2[OF \<open>avl ?l'\<close> \<open>avl ?r\<close> False])+ arith
+ show ?thesis using l'_height t_height False
+ by (subst height_balR2[OF \<open>avl ?l'\<close> \<open>avl ?r\<close> False])+ arith
next
case True
show ?thesis
proof(cases rule: disjE[OF height_balR[OF True \<open>avl ?l'\<close> \<open>avl ?r\<close>, of "snd (split_max ?l)"]])
- case 1
- thus ?thesis using l'_height t_height True by arith
+ case 1 thus ?thesis using l'_height t_height True by arith
next
- case 2
- thus ?thesis using l'_height t_height True by arith
+ case 2 thus ?thesis using l'_height t_height True by arith
qed
qed
thus ?thesis using Node_Node by (auto split:prod.splits)
@@ -377,30 +349,27 @@
text\<open>Deletion maintains the AVL property:\<close>
-theorem avl_delete_aux:
+theorem avl_delete:
assumes "avl t"
shows "avl(delete x t)" and "height t = (height (delete x t)) \<or> height t = height (delete x t) + 1"
using assms
proof (induct t)
case (Node l n h r)
case 1
- with Node show ?case
+ show ?case
proof(cases "x = n")
- case True
- with Node 1 show ?thesis by (auto simp:avl_del_root)
+ case True with Node 1 show ?thesis by (auto simp:avl_del_root)
next
case False
- with Node 1 show ?thesis
+ show ?thesis
proof(cases "x<n")
- case True
- with Node 1 show ?thesis by (auto simp add:avl_balR)
+ case True with Node 1 show ?thesis by (auto simp add:avl_balR)
next
- case False
- with Node 1 \<open>x\<noteq>n\<close> show ?thesis by (auto simp add:avl_balL)
+ case False with Node 1 \<open>x\<noteq>n\<close> show ?thesis by (auto simp add:avl_balL)
qed
qed
case 2
- with Node show ?case
+ show ?case
proof(cases "x = n")
case True
with 1 have "height (Node l n h r) = height(del_root (Node l n h r))
@@ -409,8 +378,8 @@
with True show ?thesis by simp
next
case False
- with Node 1 show ?thesis
- proof(cases "x<n")
+ show ?thesis
+ proof(cases "x<n")
case True
show ?thesis
proof(cases "height r = height (delete x l) + 2")
@@ -422,11 +391,9 @@
using Node 2 by (intro height_balR) auto
thus ?thesis
proof
- assume ?A
- with \<open>x < n\<close> Node 2 show ?thesis by(auto simp: balR_def)
+ assume ?A with \<open>x < n\<close> Node 2 show ?thesis by(auto simp: balR_def)
next
- assume ?B
- with \<open>x < n\<close> Node 2 show ?thesis by(auto simp: balR_def)
+ assume ?B with \<open>x < n\<close> Node 2 show ?thesis by(auto simp: balR_def)
qed
qed
next
@@ -441,11 +408,9 @@
using Node 2 by (intro height_balL) auto
thus ?thesis
proof
- assume ?A
- with \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> Node 2 show ?thesis by(auto simp: balL_def)
+ assume ?A with \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> Node 2 show ?thesis by(auto simp: balL_def)
next
- assume ?B
- with \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> Node 2 show ?thesis by(auto simp: balL_def)
+ assume ?B with \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> Node 2 show ?thesis by(auto simp: balL_def)
qed
qed
qed
@@ -453,6 +418,28 @@
qed simp_all
+subsection "Overall correctness"
+
+interpretation Set_by_Ordered
+where empty = Leaf and isin = isin and insert = insert and delete = delete
+and inorder = inorder and inv = avl
+proof (standard, goal_cases)
+ case 1 show ?case by simp
+next
+ case 2 thus ?case by(simp add: isin_set_inorder)
+next
+ case 3 thus ?case by(simp add: inorder_insert)
+next
+ case 4 thus ?case by(simp add: inorder_delete)
+next
+ case 5 thus ?case by simp
+next
+ case 6 thus ?case by (simp add: avl_insert(1))
+next
+ case 7 thus ?case by (simp add: avl_delete(1))
+qed
+
+
subsection \<open>Height-Size Relation\<close>
text \<open>Based on theorems by Daniel St\"uwe, Manuel Eberl and Peter Lammich.\<close>