reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
authorwenzelm
Wed, 28 Dec 2011 20:03:13 +0100
changeset 46008 c296c75f4cf4
parent 46007 493d9c4d7ed5
child 46025 64a19ea435fc
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008"; tuned proofs;
src/HOL/Algebra/Group.thy
src/HOL/Algebra/Lattice.thy
src/HOL/Auth/Guard/Analz.thy
src/HOL/Auth/Guard/Extensions.thy
src/HOL/HOLCF/FOCUS/Stream_adm.thy
src/HOL/Hoare_Parallel/OG_Hoare.thy
src/HOL/Inductive.thy
src/HOL/Isar_Examples/Mutilated_Checkerboard.thy
src/HOL/Library/Zorn.thy
src/HOL/NSA/Filter.thy
src/HOL/NSA/StarDef.thy
src/HOL/Nominal/Examples/Class2.thy
src/HOL/Old_Number_Theory/EulerFermat.thy
src/HOL/UNITY/Simple/Deadlock.thy
src/HOL/UNITY/Simple/Reach.thy
src/HOL/UNITY/Simple/Reachability.thy
src/HOL/Word/Bit_Representation.thy
src/HOL/Word/Word.thy
src/HOL/ex/CTL.thy
--- a/src/HOL/Algebra/Group.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Algebra/Group.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -771,42 +771,36 @@
 proof (rule partial_order.complete_lattice_criterion1)
   show "partial_order ?L" by (rule subgroups_partial_order)
 next
-  show "\<exists>G. greatest ?L G (carrier ?L)"
-  proof
-    show "greatest ?L (carrier G) (carrier ?L)"
-      by (unfold greatest_def)
-        (simp add: subgroup.subset subgroup_self)
-  qed
+  have "greatest ?L (carrier G) (carrier ?L)"
+    by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
+  then show "\<exists>G. greatest ?L G (carrier ?L)" ..
 next
   fix A
   assume L: "A \<subseteq> carrier ?L" and non_empty: "A ~= {}"
   then have Int_subgroup: "subgroup (\<Inter>A) G"
     by (fastforce intro: subgroups_Inter)
-  show "\<exists>I. greatest ?L I (Lower ?L A)"
-  proof
-    show "greatest ?L (\<Inter>A) (Lower ?L A)"
-      (is "greatest _ ?Int _")
-    proof (rule greatest_LowerI)
-      fix H
-      assume H: "H \<in> A"
-      with L have subgroupH: "subgroup H G" by auto
-      from subgroupH have groupH: "group (G (| carrier := H |))" (is "group ?H")
-        by (rule subgroup_imp_group)
-      from groupH have monoidH: "monoid ?H"
-        by (rule group.is_monoid)
-      from H have Int_subset: "?Int \<subseteq> H" by fastforce
-      then show "le ?L ?Int H" by simp
-    next
-      fix H
-      assume H: "H \<in> Lower ?L A"
-      with L Int_subgroup show "le ?L H ?Int"
-        by (fastforce simp: Lower_def intro: Inter_greatest)
-    next
-      show "A \<subseteq> carrier ?L" by (rule L)
-    next
-      show "?Int \<in> carrier ?L" by simp (rule Int_subgroup)
-    qed
+  have "greatest ?L (\<Inter>A) (Lower ?L A)" (is "greatest _ ?Int _")
+  proof (rule greatest_LowerI)
+    fix H
+    assume H: "H \<in> A"
+    with L have subgroupH: "subgroup H G" by auto
+    from subgroupH have groupH: "group (G (| carrier := H |))" (is "group ?H")
+      by (rule subgroup_imp_group)
+    from groupH have monoidH: "monoid ?H"
+      by (rule group.is_monoid)
+    from H have Int_subset: "?Int \<subseteq> H" by fastforce
+    then show "le ?L ?Int H" by simp
+  next
+    fix H
+    assume H: "H \<in> Lower ?L A"
+    with L Int_subgroup show "le ?L H ?Int"
+      by (fastforce simp: Lower_def intro: Inter_greatest)
+  next
+    show "A \<subseteq> carrier ?L" by (rule L)
+  next
+    show "?Int \<in> carrier ?L" by simp (rule Int_subgroup)
   qed
+  then show "\<exists>I. greatest ?L I (Lower ?L A)" ..
 qed
 
 end
--- a/src/HOL/Algebra/Lattice.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Algebra/Lattice.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -1285,22 +1285,18 @@
     by default auto
 next
   fix B
-  assume B: "B \<subseteq> carrier ?L"
-  show "EX s. least ?L s (Upper ?L B)"
-  proof
-    from B show "least ?L (\<Union> B) (Upper ?L B)"
-      by (fastforce intro!: least_UpperI simp: Upper_def)
-  qed
+  assume "B \<subseteq> carrier ?L"
+  then have "least ?L (\<Union> B) (Upper ?L B)"
+    by (fastforce intro!: least_UpperI simp: Upper_def)
+  then show "EX s. least ?L s (Upper ?L B)" ..
 next
   fix B
-  assume B: "B \<subseteq> carrier ?L"
-  show "EX i. greatest ?L i (Lower ?L B)"
-  proof
-    from B show "greatest ?L (\<Inter> B \<inter> A) (Lower ?L B)"
-      txt {* @{term "\<Inter> B"} is not the infimum of @{term B}:
-        @{term "\<Inter> {} = UNIV"} which is in general bigger than @{term "A"}! *}
-      by (fastforce intro!: greatest_LowerI simp: Lower_def)
-  qed
+  assume "B \<subseteq> carrier ?L"
+  then have "greatest ?L (\<Inter> B \<inter> A) (Lower ?L B)"
+    txt {* @{term "\<Inter> B"} is not the infimum of @{term B}:
+      @{term "\<Inter> {} = UNIV"} which is in general bigger than @{term "A"}! *}
+    by (fastforce intro!: greatest_LowerI simp: Lower_def)
+  then show "EX i. greatest ?L i (Lower ?L B)" ..
 qed
 
 text {* An other example, that of the lattice of subgroups of a group,
--- a/src/HOL/Auth/Guard/Analz.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Auth/Guard/Analz.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -236,9 +236,10 @@
 
 lemma kparts_insert_synth: "[| Y:parts (insert X G); X:synth (analz G);
 Nonce n:kparts {Y}; Nonce n ~:analz G |] ==> Y:parts G"
-apply (drule parts_insert_substD [where P="%S. Y : S"], clarify)
+apply (drule parts_insert_substD, clarify)
 apply (drule in_sub, drule_tac X=Y in parts_sub, simp)
-by (auto dest: Nonce_kparts_synth)
+apply (auto dest: Nonce_kparts_synth)
+done
 
 lemma Crypt_insert_synth:
   "[| Crypt K Y:parts (insert X G); X:synth (analz G); Nonce n:kparts {Y}; Nonce n ~:analz G |] 
--- a/src/HOL/Auth/Guard/Extensions.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Auth/Guard/Extensions.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -198,7 +198,7 @@
 
 lemma parts_invKey [rule_format,dest]:"X:parts {Y} ==>
 X:analz (insert (Crypt K Y) H) --> X ~:analz H --> Key (invKey K):analz H"
-by (erule parts.induct, (fastforce dest: parts.Fst parts.Snd parts.Body)+)
+by (erule parts.induct, auto dest: parts.Fst parts.Snd parts.Body)
 
 lemma in_analz: "Y:analz H ==> EX X. X:H & Y:parts {X}"
 by (erule analz.induct, auto intro: parts.Fst parts.Snd parts.Body)
@@ -207,10 +207,11 @@
 
 lemma Crypt_synth_insert: "[| Crypt K X:parts (insert Y H);
 Y:synth (analz H); Key K ~:analz H |] ==> Crypt K X:parts H"
-apply (drule parts_insert_substD [where P="%S. Crypt K X : S"], clarify)
+apply (drule parts_insert_substD, clarify)
 apply (frule in_sub)
 apply (frule parts_mono)
-by auto
+apply auto
+done
 
 subsubsection{*greatest nonce used in a message*}
 
--- a/src/HOL/HOLCF/FOCUS/Stream_adm.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/HOLCF/FOCUS/Stream_adm.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -60,7 +60,7 @@
   assumes 3: "(!!Y. [| Porder.chain Y; !i. P (Y i); !k. ? j. enat k < #((Y j)::'a::flat stream)|]
   ==> P(LUB i. Y i))"
   shows "P(LUB i. Y i)"
-apply (rule increasing_chain_adm_lemma [of _ P, OF 1 2])
+apply (rule increasing_chain_adm_lemma [OF 1 2])
 apply (erule 3, assumption)
 apply (erule thin_rl)
 apply (rule allI)
--- a/src/HOL/Hoare_Parallel/OG_Hoare.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Hoare_Parallel/OG_Hoare.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -149,8 +149,7 @@
 
 text {* Strong Soundness for Component Programs:*}
 
-lemma ann_hoare_case_analysis [rule_format]: 
-  defines I: "I \<equiv> \<lambda>C q'.
+lemma ann_hoare_case_analysis [rule_format]: "\<turnstile> C q' \<longrightarrow>
   ((\<forall>r f. C = AnnBasic r f \<longrightarrow> (\<exists>q. r \<subseteq> {s. f s \<in> q} \<and> q \<subseteq> q')) \<and>  
   (\<forall>c0 c1. C = AnnSeq c0 c1 \<longrightarrow> (\<exists>q. q \<subseteq> q' \<and> \<turnstile> c0 pre c1 \<and> \<turnstile> c1 q)) \<and>  
   (\<forall>r b c1 c2. C = AnnCond1 r b c1 c2 \<longrightarrow> (\<exists>q. q \<subseteq> q' \<and>  
@@ -160,9 +159,8 @@
   (\<forall>r i b c. C = AnnWhile r b i c \<longrightarrow>  
   (\<exists>q. q \<subseteq> q' \<and> r \<subseteq> i \<and> i \<inter> b \<subseteq> pre c \<and> \<turnstile> c i \<and> i \<inter> -b \<subseteq> q)) \<and>  
   (\<forall>r b c. C = AnnAwait r b c \<longrightarrow> (\<exists>q. q \<subseteq> q' \<and> \<parallel>- (r \<inter> b) c q)))"
-  shows "\<turnstile> C q' \<longrightarrow> I C q'"
 apply(rule ann_hoare_induct)
-apply (simp_all add: I)
+apply simp_all
  apply(rule_tac x=q in exI,simp)+
 apply(rule conjI,clarify,simp,clarify,rule_tac x=qa in exI,fast)+
 apply(clarify,simp,clarify,rule_tac x=qa in exI,fast)
--- a/src/HOL/Inductive.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Inductive.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -108,7 +108,7 @@
   and P_f: "!!S. P S ==> P(f S)"
   and P_Union: "!!M. !S:M. P S ==> P(Union M)"
   shows "P(lfp f)"
-  using assms by (rule lfp_ordinal_induct [where P=P])
+  using assms by (rule lfp_ordinal_induct)
 
 
 text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
@@ -210,7 +210,7 @@
 apply (rule Un_least [THEN Un_least])
 apply (rule subset_refl, assumption)
 apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
-apply (rule monoD [where f=f], assumption)
+apply (rule monoD, assumption)
 apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
 done
 
--- a/src/HOL/Isar_Examples/Mutilated_Checkerboard.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Isar_Examples/Mutilated_Checkerboard.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -128,7 +128,7 @@
   let ?a = "{i} <*> {2 * n + 1} Un {i} <*> {2 * n}"
   have "?B (Suc n) = ?a Un ?B n"
     by (auto simp add: Sigma_Suc Un_assoc)
-  moreover have "... : ?T"
+  also have "... : ?T"
   proof (rule tiling.Un)
     have "{(i, 2 * n), (i, 2 * n + 1)} : domino"
       by (rule domino.horiz)
@@ -137,7 +137,7 @@
     show "?B n : ?T" by (rule Suc)
     show "?a <= - ?B n" by blast
   qed
-  ultimately show ?case by simp
+  finally show ?case .
 qed
 
 lemma dominoes_tile_matrix:
@@ -150,13 +150,13 @@
   case (Suc m)
   let ?t = "{m} <*> below (2 * n)"
   have "?B (Suc m) = ?t Un ?B m" by (simp add: Sigma_Suc)
-  moreover have "... : ?T"
+  also have "... : ?T"
   proof (rule tiling_Un)
     show "?t : ?T" by (rule dominoes_tile_row)
     show "?B m : ?T" by (rule Suc)
     show "?t Int ?B m = {}" by blast
   qed
-  ultimately show ?case by simp
+  finally show ?case .
 qed
 
 lemma domino_singleton:
@@ -219,8 +219,8 @@
       have "EX i j. ?e a b = {(i, j)}" by (rule domino_singleton)
       then show ?thesis by (blast intro: that)
     qed
-    moreover have "... Un ?e t b = insert (i, j) (?e t b)" by simp
-    moreover have "card ... = Suc (card (?e t b))"
+    also have "... Un ?e t b = insert (i, j) (?e t b)" by simp
+    also have "card ... = Suc (card (?e t b))"
     proof (rule card_insert_disjoint)
       from `t \<in> tiling domino` have "finite t"
         by (rule tiling_domino_finite)
@@ -229,7 +229,7 @@
       from e have "(i, j) : ?e a b" by simp
       with at show "(i, j) ~: ?e t b" by (blast dest: evnoddD)
     qed
-    ultimately show "?thesis b" by simp
+    finally show "?thesis b" .
   qed
   then have "card (?e (a Un t) 0) = Suc (card (?e t 0))" by simp
   also from hyp have "card (?e t 0) = card (?e t 1)" .
--- a/src/HOL/Library/Zorn.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Library/Zorn.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -58,19 +58,18 @@
 lemma Abrial_axiom1: "x \<subseteq> succ S x"
   apply (auto simp add: succ_def super_def maxchain_def)
   apply (rule contrapos_np, assumption)
-  apply (rule_tac Q="\<lambda>S. xa \<in> S" in someI2, blast+)
+  apply (rule someI2)
+  apply blast+
   done
 
 lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]
 
 lemma TFin_induct:
-  assumes H: "n \<in> TFin S"
-  and I: "!!x. x \<in> TFin S ==> P x ==> P (succ S x)"
-    "!!Y. Y \<subseteq> TFin S ==> Ball Y P ==> P(Union Y)"
-  shows "P n" using H
-  apply (induct rule: TFin.induct [where P=P])
-   apply (blast intro: I)+
-  done
+  assumes H: "n \<in> TFin S" and
+    I: "!!x. x \<in> TFin S ==> P x ==> P (succ S x)"
+      "!!Y. Y \<subseteq> TFin S ==> Ball Y P ==> P (Union Y)"
+  shows "P n"
+  using H by induct (blast intro: I)+
 
 lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"
   apply (erule subset_trans)
@@ -160,7 +159,8 @@
 lemma select_super:
      "c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c): super S c"
   apply (erule mem_super_Ex [THEN exE])
-  apply (rule someI2 [where Q="%X. X : super S c"], auto)
+  apply (rule someI2)
+  apply auto
   done
 
 lemma select_not_equals:
@@ -185,8 +185,8 @@
   apply (unfold chain_def chain_subset_def)
   apply (rule CollectI, safe)
    apply (drule bspec, assumption)
-   apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE],
-     best+)
+   apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE])
+      apply blast+
   done
 
 theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"
--- a/src/HOL/NSA/Filter.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/NSA/Filter.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -391,12 +391,10 @@
     fix A assume "A \<in> U"
     with U show "infinite A" by (rule mem_superfrechet_all_infinite)
   qed
-  show ?thesis
-  proof
-    from fil ultra free show "freeultrafilter U"
-      by (rule freeultrafilter.intro [OF ultrafilter.intro])
-      (* FIXME: unfold_locales should use chained facts *)
-  qed
+  from fil ultra free have "freeultrafilter U"
+    by (rule freeultrafilter.intro [OF ultrafilter.intro])
+    (* FIXME: unfold_locales should use chained facts *)
+  then show ?thesis ..
 qed
 
 lemmas freeultrafilter_Ex = UFT.freeultrafilter_ex [OF UFT.intro]
--- a/src/HOL/NSA/StarDef.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/NSA/StarDef.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -17,7 +17,7 @@
 
 lemma freeultrafilter_FreeUltrafilterNat: "freeultrafilter \<U>"
 apply (unfold FreeUltrafilterNat_def)
-apply (rule someI_ex [where P=freeultrafilter])
+apply (rule someI_ex)
 apply (rule freeultrafilter_Ex)
 apply (rule nat_infinite)
 done
--- a/src/HOL/Nominal/Examples/Class2.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Nominal/Examples/Class2.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -3245,7 +3245,7 @@
   { case 1 show ?case 
       apply -
       apply(simp add: lfp_eqvt)
-      apply(simp add: perm_fun_def [where 'a="ntrm set"])
+      apply(simp add: perm_fun_def)
       apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
       apply(perm_simp)
     done
@@ -3256,7 +3256,7 @@
       apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
       apply(simp add: lfp_eqvt)
       apply(simp add: comp_def)
-      apply(simp add: perm_fun_def [where 'a="ntrm set"])
+      apply(simp add: perm_fun_def)
       apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
       apply(perm_simp)
       done
@@ -3269,7 +3269,7 @@
     apply -
     apply(simp only: lfp_eqvt)
     apply(simp only: comp_def)
-    apply(simp only: perm_fun_def [where 'a="ntrm set"])
+    apply(simp only: perm_fun_def)
     apply(simp only: NEGc.simps NEGn.simps)
     apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name NOTRIGHT_eqvt_name NOTLEFT_eqvt_name)
     apply(perm_simp add: ih1 ih2)
@@ -3289,7 +3289,7 @@
     apply -
     apply(simp only: lfp_eqvt)
     apply(simp only: comp_def)
-    apply(simp only: perm_fun_def [where 'a="ntrm set"])
+    apply(simp only: perm_fun_def)
     apply(simp only: NEGc.simps NEGn.simps)
     apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ANDRIGHT_eqvt_name 
                      ANDLEFT2_eqvt_name ANDLEFT1_eqvt_name)
@@ -3311,7 +3311,7 @@
     apply -
     apply(simp only: lfp_eqvt)
     apply(simp only: comp_def)
-    apply(simp only: perm_fun_def [where 'a="ntrm set"])
+    apply(simp only: perm_fun_def)
     apply(simp only: NEGc.simps NEGn.simps)
     apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ORRIGHT1_eqvt_name 
                      ORRIGHT2_eqvt_name ORLEFT_eqvt_name)
@@ -3333,7 +3333,7 @@
     apply -
     apply(simp only: lfp_eqvt)
     apply(simp only: comp_def)
-    apply(simp only: perm_fun_def [where 'a="ntrm set"])
+    apply(simp only: perm_fun_def)
     apply(simp only: NEGc.simps NEGn.simps)
     apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name IMPRIGHT_eqvt_name IMPLEFT_eqvt_name)
     apply(perm_simp add: ih1 ih2 ih3 ih4)
@@ -3355,7 +3355,7 @@
   { case 1 show ?case 
       apply -
       apply(simp add: lfp_eqvt)
-      apply(simp add: perm_fun_def [where 'a="ntrm set"])
+      apply(simp add: perm_fun_def)
       apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
       apply(perm_simp)
     done
@@ -3366,7 +3366,7 @@
       apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
       apply(simp add: lfp_eqvt)
       apply(simp add: comp_def)
-      apply(simp add: perm_fun_def [where 'a="ntrm set"])
+      apply(simp add: perm_fun_def)
       apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
       apply(perm_simp)
       done
@@ -3379,7 +3379,7 @@
     apply -
     apply(simp only: lfp_eqvt)
     apply(simp only: comp_def)
-    apply(simp only: perm_fun_def [where 'a="ntrm set"])
+    apply(simp only: perm_fun_def)
     apply(simp only: NEGc.simps NEGn.simps)
     apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname 
             NOTRIGHT_eqvt_coname NOTLEFT_eqvt_coname)
@@ -3401,7 +3401,7 @@
     apply -
     apply(simp only: lfp_eqvt)
     apply(simp only: comp_def)
-    apply(simp only: perm_fun_def [where 'a="ntrm set"])
+    apply(simp only: perm_fun_def)
     apply(simp only: NEGc.simps NEGn.simps)
     apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ANDRIGHT_eqvt_coname 
                      ANDLEFT2_eqvt_coname ANDLEFT1_eqvt_coname)
@@ -3423,7 +3423,7 @@
     apply -
     apply(simp only: lfp_eqvt)
     apply(simp only: comp_def)
-    apply(simp only: perm_fun_def [where 'a="ntrm set"])
+    apply(simp only: perm_fun_def)
     apply(simp only: NEGc.simps NEGn.simps)
     apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ORRIGHT1_eqvt_coname 
                      ORRIGHT2_eqvt_coname ORLEFT_eqvt_coname)
@@ -3445,7 +3445,7 @@
     apply -
     apply(simp only: lfp_eqvt)
     apply(simp only: comp_def)
-    apply(simp only: perm_fun_def [where 'a="ntrm set"])
+    apply(simp only: perm_fun_def)
     apply(simp only: NEGc.simps NEGn.simps)
     apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname IMPRIGHT_eqvt_coname 
          IMPLEFT_eqvt_coname)
--- a/src/HOL/Old_Number_Theory/EulerFermat.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Old_Number_Theory/EulerFermat.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -151,7 +151,7 @@
 lemma RRset_gcd [rule_format]:
     "is_RRset A m ==> a \<in> A --> zgcd a m = 1"
   apply (unfold is_RRset_def)
-  apply (rule RsetR.induct [where P="%A. a \<in> A --> zgcd a m = 1"], auto)
+  apply (rule RsetR.induct, auto)
   done
 
 lemma RsetR_zmult_mono:
@@ -206,7 +206,7 @@
   "1 < m ==>
     is_RRset A m ==> [a = b] (mod m) ==> a \<in> A --> b \<in> A --> a = b"
   apply (unfold is_RRset_def)
-  apply (rule RsetR.induct [where P="%A. a \<in> A --> b \<in> A --> a = b"])
+  apply (rule RsetR.induct)
     apply (auto simp add: zcong_sym)
   done
 
--- a/src/HOL/UNITY/Simple/Deadlock.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/UNITY/Simple/Deadlock.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -16,26 +16,20 @@
 (*a simplification step*)
 lemma Collect_le_Int_equals:
      "(\<Inter>i \<in> atMost n. A(Suc i) \<inter> A i) = (\<Inter>i \<in> atMost (Suc n). A i)"
-apply (induct_tac "n")
-apply (auto simp add: atMost_Suc)
-done
+  by (induct n) (auto simp add: atMost_Suc)
 
 (*Dual of the required property.  Converse inclusion fails.*)
 lemma UN_Int_Compl_subset:
      "(\<Union>i \<in> lessThan n. A i) \<inter> (- A n) \<subseteq>   
       (\<Union>i \<in> lessThan n. (A i) \<inter> (- A (Suc i)))"
-apply (induct_tac "n", simp)
-apply (simp add: lessThan_Suc, blast)
-done
+  by (induct n) (auto simp: lessThan_Suc)
 
 
 (*Converse inclusion fails.*)
 lemma INT_Un_Compl_subset:
      "(\<Inter>i \<in> lessThan n. -A i \<union> A (Suc i))  \<subseteq>  
       (\<Inter>i \<in> lessThan n. -A i) \<union> A n"
-apply (induct_tac "n", simp)
-apply (simp add: lessThan_Suc, fast)
-done
+  by (induct n) (auto simp: lessThan_Suc)
 
 
 (*Specialized rewriting*)
@@ -47,10 +41,9 @@
 lemma INT_le_equals_Int:
      "(\<Inter>i \<in> atMost n. A i) =  
       A 0 \<inter> (\<Inter>i \<in> lessThan n. -A i \<union> A(Suc i))"
-apply (induct_tac "n", simp)
-apply (simp add: Int_ac Int_Un_distrib Int_Un_distrib2
-                 INT_le_equals_Int_lemma lessThan_Suc atMost_Suc)
-done
+  by (induct n)
+    (simp_all add: Int_ac Int_Un_distrib Int_Un_distrib2
+      INT_le_equals_Int_lemma lessThan_Suc atMost_Suc)
 
 lemma INT_le_Suc_equals_Int:
      "(\<Inter>i \<in> atMost (Suc n). A i) =  
--- a/src/HOL/UNITY/Simple/Reach.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/UNITY/Simple/Reach.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -103,7 +103,7 @@
 lemma Compl_fixedpoint: "- fixedpoint = (\<Union>(u,v)\<in>edges. {s. s u & ~ s v})"
 apply (simp add: FP_fixedpoint [symmetric] Rprg_def mk_total_program_def)
 apply (rule subset_antisym)
-apply (auto simp add: Compl_FP UN_UN_flatten del: subset_antisym)
+apply (auto simp add: Compl_FP UN_UN_flatten)
  apply (rule fun_upd_idem, force)
 apply (force intro!: rev_bexI simp add: fun_upd_idem_iff)
 done
--- a/src/HOL/UNITY/Simple/Reachability.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/UNITY/Simple/Reachability.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -345,7 +345,7 @@
 apply (subgoal_tac [2]
      "({s. (s \<in> reachable v) = ((root,v) \<in> REACHABLE) } \<inter> nmsg_eq 0 (v,w)) = 
       ({s. (s \<in> reachable v) = ( (root,v) \<in> REACHABLE) } \<inter> (- UNIV \<union> nmsg_eq 0 (v,w)))")
-prefer 2 apply simp
+prefer 2 apply blast
 prefer 2 apply blast 
 apply (rule Stable_reachable_EQ_R_AND_nmsg_0
             [simplified Eq_lemma2 Collect_const])
--- a/src/HOL/Word/Bit_Representation.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Word/Bit_Representation.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -235,14 +235,14 @@
     apply safe
     apply (erule rev_mp)
     apply (induct_tac y rule: bin_induct)
-      apply (safe del: subset_antisym)
+      apply safe
       apply (drule_tac x=0 in fun_cong, force)
      apply (erule notE, rule ext, 
             drule_tac x="Suc x" in fun_cong, force)
     apply (drule_tac x=0 in fun_cong, force simp: BIT_simps)
    apply (erule rev_mp)
    apply (induct_tac y rule: bin_induct)
-     apply (safe del: subset_antisym)
+     apply safe
      apply (drule_tac x=0 in fun_cong, force)
     apply (erule notE, rule ext, 
            drule_tac x="Suc x" in fun_cong, force)
--- a/src/HOL/Word/Word.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/Word/Word.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -2407,7 +2407,7 @@
   "n = size (w::'a::len0 word) \<Longrightarrow> ofn = set_bits \<Longrightarrow> [w, ofn g] = l \<Longrightarrow> 
     td_ext test_bit ofn {f. ALL i. f i --> i < n} (%h i. h i & i < n)"
   apply (unfold word_size td_ext_def')
-  apply (safe del: subset_antisym)
+  apply safe
      apply (rule_tac [3] ext)
      apply (rule_tac [4] ext)
      apply (unfold word_size of_nth_def test_bit_bl)
--- a/src/HOL/ex/CTL.thy	Wed Dec 28 15:08:12 2011 +0100
+++ b/src/HOL/ex/CTL.thy	Wed Dec 28 20:03:13 2011 +0100
@@ -252,8 +252,8 @@
       proof -
         {
           have "\<AG> (p \<rightarrow> \<AX> p) \<subseteq> p \<rightarrow> \<AX> p" by (rule AG_fp_1)
-          moreover have "p \<inter> p \<rightarrow> \<AX> p \<subseteq> \<AX> p" ..
-          ultimately have "?lhs \<subseteq> \<AX> p" by auto
+          also have "p \<inter> p \<rightarrow> \<AX> p \<subseteq> \<AX> p" ..
+          finally have "?lhs \<subseteq> \<AX> p" by auto
         }  
         moreover
         {
@@ -261,8 +261,7 @@
           also have "\<dots> \<subseteq> \<AX> \<dots>" by (rule AG_fp_2)
           finally have "?lhs \<subseteq> \<AX> \<AG> (p \<rightarrow> \<AX> p)" .
         }  
-        ultimately have "?lhs \<subseteq> \<AX> p \<inter> \<AX> \<AG> (p \<rightarrow> \<AX> p)"
-          by (rule Int_greatest)
+        ultimately have "?lhs \<subseteq> \<AX> p \<inter> \<AX> \<AG> (p \<rightarrow> \<AX> p)" ..
         also have "\<dots> = \<AX> ?lhs" by (simp only: AX_int)
         finally show ?thesis .
       qed