Wellfoundedness proof for the multiset order (preliminary version).
authorwenzelm
Wed, 01 Sep 1999 21:35:04 +0200
changeset 7432 c32a0fd117a0
parent 7431 83e60a678c3a
child 7433 27887c52b9c8
Wellfoundedness proof for the multiset order (preliminary version).
src/HOL/Isar_examples/MultisetOrder.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_examples/MultisetOrder.thy	Wed Sep 01 21:35:04 1999 +0200
@@ -0,0 +1,88 @@
+(*  Title:      HOL/Isar_examples/MultisetOrder.thy
+    ID:         $Id$
+    Author:     Markus Wenzel
+
+Wellfoundedness proof for the multiset order.  Based on
+HOL/induct/Multiset by Tobias Nipkow.
+*)
+
+
+theory MultisetOrder = Multiset:;
+
+
+lemma all_accessible: "wf r ==> ALL M. M : acc (mult1 r)";
+proof;
+  let ??R = "mult1 r";
+  let ??W = "acc ??R";
+
+
+  {{;
+    fix M M0 a;
+    assume wf_hyp: "ALL b. (b, a) : r --> (ALL M:??W. M + {#b#} : ??W)"
+      and M0: "M0 : ??W"
+      and acc_hyp: "ALL M. (M, M0) : ??R --> M + {#a#} : ??W";
+    have "M0 + {#a#} : ??W";
+    proof (rule accI); thm accI; thm accI [where ?a = "M0 + {#a#}" and ?r = "??R"];
+      fix N; assume "(N, M0 + {#a#}) : ??R";
+      hence "((EX M. (M, M0) : ??R & N = M + {#a#}) |
+             (EX K. (ALL b. elem K b --> (b, a) : r) & N = M0 + K))";
+	by (simp only: less_add_conv);
+      thus "N : ??W";
+      proof (elim exE disjE conjE);
+	fix M; assume "(M, M0) : ??R" and N: "N = M + {#a#}";
+	from acc_hyp; have "(M, M0) : ??R --> M + {#a#} : ??W"; ..;
+	hence "M + {#a#} : ??W"; ..;
+	thus "N : ??W"; by (simp only: N);
+      next;
+	fix K; assume K: "ALL b. elem K b --> (b, a) : r" (is ??K) and N: "N = M0 + K";
+
+	have "??K --> M0 + K : ??W" (is "??P K");
+	proof (rule multiset_induct [of _ K]); thm multiset_induct [of _ K];
+	  show "??P {#}"; by asm_simp;   (* FIXME *)
+	  fix K x; assume hyp: "??P K";
+	  show "??P (K + {#x#})";
+	  proof -;
+	    apply (simp_tac add: union_assoc [RS sym]);
+	    apply blast;        (* FIXME *)
+	  qed;
+	qed;
+	hence "M0 + K : ??W"; ..;
+	thus "N : ??W"; by (simp only: N);
+      qed;
+    qed;
+  }}; note subproof = this;
+
+
+  assume wf: "wf r";
+  fix M;
+  show "M : ??W";
+  proof (rule multiset_induct [of _ M]); thm multiset_induct [of _ M];
+    show "{#} : ??W";
+    proof (rule accI);
+      fix b; assume "(b, {#}) : ??R";
+      with not_less_empty; show "b : ??W"; by contradiction;
+    qed;
+
+    fix a;
+    from wf; have "ALL M:??W. M + {#a#} : ??W";
+    proof (rule wf_induct [of r]);  thm wf_induct [of r];
+      fix a; assume wf_hyp: "ALL b. (b, a) : r --> (ALL M:??W. M + {#b#} : ??W)";
+      show "ALL M:??W. M + {#a#} : ??W";
+      proof;
+	fix M; assume "M : ??W";
+	thus "M + {#a#} : ??W"; by (rule acc_induct) (rule subproof, finish);   (* FIXME elim finish *)
+      qed;
+    qed;
+    thus "!!M. M:??W ==> M + {#a#} : ??W"; by (rule bspec);    (* FIXME !? *)
+  qed;
+qed;
+
+
+theorem wf_mult1: "wf r ==> wf (mult1 r)";
+  by (rule acc_wfI, rule all_accessible);
+
+theorem wf_mult: "wf r ==> wf (mult r)";
+  by (unfold mult_def, rule wf_trancl, rule wf_mult1);
+
+
+end;