Wellfoundedness proof for the multiset order (preliminary version).
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_examples/MultisetOrder.thy Wed Sep 01 21:35:04 1999 +0200
@@ -0,0 +1,88 @@
+(* Title: HOL/Isar_examples/MultisetOrder.thy
+ ID: $Id$
+ Author: Markus Wenzel
+
+Wellfoundedness proof for the multiset order. Based on
+HOL/induct/Multiset by Tobias Nipkow.
+*)
+
+
+theory MultisetOrder = Multiset:;
+
+
+lemma all_accessible: "wf r ==> ALL M. M : acc (mult1 r)";
+proof;
+ let ??R = "mult1 r";
+ let ??W = "acc ??R";
+
+
+ {{;
+ fix M M0 a;
+ assume wf_hyp: "ALL b. (b, a) : r --> (ALL M:??W. M + {#b#} : ??W)"
+ and M0: "M0 : ??W"
+ and acc_hyp: "ALL M. (M, M0) : ??R --> M + {#a#} : ??W";
+ have "M0 + {#a#} : ??W";
+ proof (rule accI); thm accI; thm accI [where ?a = "M0 + {#a#}" and ?r = "??R"];
+ fix N; assume "(N, M0 + {#a#}) : ??R";
+ hence "((EX M. (M, M0) : ??R & N = M + {#a#}) |
+ (EX K. (ALL b. elem K b --> (b, a) : r) & N = M0 + K))";
+ by (simp only: less_add_conv);
+ thus "N : ??W";
+ proof (elim exE disjE conjE);
+ fix M; assume "(M, M0) : ??R" and N: "N = M + {#a#}";
+ from acc_hyp; have "(M, M0) : ??R --> M + {#a#} : ??W"; ..;
+ hence "M + {#a#} : ??W"; ..;
+ thus "N : ??W"; by (simp only: N);
+ next;
+ fix K; assume K: "ALL b. elem K b --> (b, a) : r" (is ??K) and N: "N = M0 + K";
+
+ have "??K --> M0 + K : ??W" (is "??P K");
+ proof (rule multiset_induct [of _ K]); thm multiset_induct [of _ K];
+ show "??P {#}"; by asm_simp; (* FIXME *)
+ fix K x; assume hyp: "??P K";
+ show "??P (K + {#x#})";
+ proof -;
+ apply (simp_tac add: union_assoc [RS sym]);
+ apply blast; (* FIXME *)
+ qed;
+ qed;
+ hence "M0 + K : ??W"; ..;
+ thus "N : ??W"; by (simp only: N);
+ qed;
+ qed;
+ }}; note subproof = this;
+
+
+ assume wf: "wf r";
+ fix M;
+ show "M : ??W";
+ proof (rule multiset_induct [of _ M]); thm multiset_induct [of _ M];
+ show "{#} : ??W";
+ proof (rule accI);
+ fix b; assume "(b, {#}) : ??R";
+ with not_less_empty; show "b : ??W"; by contradiction;
+ qed;
+
+ fix a;
+ from wf; have "ALL M:??W. M + {#a#} : ??W";
+ proof (rule wf_induct [of r]); thm wf_induct [of r];
+ fix a; assume wf_hyp: "ALL b. (b, a) : r --> (ALL M:??W. M + {#b#} : ??W)";
+ show "ALL M:??W. M + {#a#} : ??W";
+ proof;
+ fix M; assume "M : ??W";
+ thus "M + {#a#} : ??W"; by (rule acc_induct) (rule subproof, finish); (* FIXME elim finish *)
+ qed;
+ qed;
+ thus "!!M. M:??W ==> M + {#a#} : ??W"; by (rule bspec); (* FIXME !? *)
+ qed;
+qed;
+
+
+theorem wf_mult1: "wf r ==> wf (mult1 r)";
+ by (rule acc_wfI, rule all_accessible);
+
+theorem wf_mult: "wf r ==> wf (mult r)";
+ by (unfold mult_def, rule wf_trancl, rule wf_mult1);
+
+
+end;