renaming LSC to Quickcheck_Narrowing
authorbulwahn
Fri, 11 Mar 2011 15:21:13 +0100
changeset 41929 c3c8b14f480a
parent 41928 05abcee548a1
child 41930 1e008cc4883a
renaming LSC to Quickcheck_Narrowing
src/HOL/Library/LSC.thy
src/HOL/Library/Quickcheck_Narrowing.thy
--- a/src/HOL/Library/LSC.thy	Fri Mar 11 15:21:13 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,352 +0,0 @@
-(* Author: Lukas Bulwahn, TU Muenchen *)
-
-header {* Counterexample generator based on LazySmallCheck *}
-
-theory LSC
-imports Main "~~/src/HOL/Library/Code_Char"
-uses ("~~/src/HOL/Tools/LSC/lazysmallcheck.ML")
-begin
-
-subsection {* Counterexample generator *}
-
-subsubsection {* Code generation setup *}
-
-code_type typerep
-  ("Haskell" "Typerep")
-
-code_const Typerep.Typerep
-  ("Haskell" "Typerep")
-
-code_reserved Haskell Typerep
-
-subsubsection {* Type code_int for Haskell's Int type *}
-
-typedef (open) code_int = "UNIV \<Colon> int set"
-  morphisms int_of of_int by rule
-
-lemma int_of_inject [simp]:
-  "int_of k = int_of l \<longleftrightarrow> k = l"
-  by (rule int_of_inject)
-
-definition nat_of :: "code_int => nat"
-where
-  "nat_of i = nat (int_of i)"
-
-instantiation code_int :: "{zero, one, minus, linorder}"
-begin
-
-definition [simp, code del]:
-  "0 = of_int 0"
-
-definition [simp, code del]:
-  "1 = of_int 1"
-
-definition [simp, code del]:
-  "n - m = of_int (int_of n - int_of m)"
-
-definition [simp, code del]:
-  "n \<le> m \<longleftrightarrow> int_of n \<le> int_of m"
-
-definition [simp, code del]:
-  "n < m \<longleftrightarrow> int_of n < int_of m"
-
-
-instance proof qed (auto)
-
-end
-(*
-lemma zero_code_int_code [code, code_unfold]:
-  "(0\<Colon>code_int) = Numeral0"
-  by (simp add: number_of_code_numeral_def Pls_def)
-lemma [code_post]: "Numeral0 = (0\<Colon>code_numeral)"
-  using zero_code_numeral_code ..
-
-lemma one_code_numeral_code [code, code_unfold]:
-  "(1\<Colon>code_int) = Numeral1"
-  by (simp add: number_of_code_numeral_def Pls_def Bit1_def)
-lemma [code_post]: "Numeral1 = (1\<Colon>code_int)"
-  using one_code_numeral_code ..
-*)
-
-code_const "0 \<Colon> code_int"
-  (Haskell "0")
-
-code_const "1 \<Colon> code_int"
-  (Haskell "1")
-
-code_const "minus \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> code_int"
-  (Haskell "(_/ -/ _)")
-
-code_const "op \<le> \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
-  (Haskell infix 4 "<=")
-
-code_const "op < \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
-  (Haskell infix 4 "<")
-
-code_type code_int
-  (Haskell "Int")
-
-subsubsection {* LSC's deep representation of types of terms *}
-
-datatype type = SumOfProd "type list list"
-
-datatype "term" = Var "code_int list" type | Ctr code_int "term list"
-
-datatype 'a cons = C type "(term list => 'a) list"
-
-subsubsection {* auxilary functions for LSC *}
-
-consts nth :: "'a list => code_int => 'a"
-
-code_const nth ("Haskell" infixl 9  "!!")
-
-consts error :: "char list => 'a"
-
-code_const error ("Haskell" "error")
-
-consts toEnum :: "code_int => char"
-
-code_const toEnum ("Haskell" "toEnum")
-
-consts map_index :: "(code_int * 'a => 'b) => 'a list => 'b list"  
-
-consts split_At :: "code_int => 'a list => 'a list * 'a list"
- 
-subsubsection {* LSC's basic operations *}
-
-type_synonym 'a series = "code_int => 'a cons"
-
-definition empty :: "'a series"
-where
-  "empty d = C (SumOfProd []) []"
-  
-definition cons :: "'a => 'a series"
-where
-  "cons a d = (C (SumOfProd [[]]) [(%_. a)])"
-
-fun conv :: "(term list => 'a) list => term => 'a"
-where
-  "conv cs (Var p _) = error (Char Nibble0 Nibble0 # map toEnum p)"
-| "conv cs (Ctr i xs) = (nth cs i) xs"
-
-fun nonEmpty :: "type => bool"
-where
-  "nonEmpty (SumOfProd ps) = (\<not> (List.null ps))"
-
-definition "apply" :: "('a => 'b) series => 'a series => 'b series"
-where
-  "apply f a d =
-     (case f d of C (SumOfProd ps) cfs =>
-       case a (d - 1) of C ta cas =>
-       let
-         shallow = (d > 0 \<and> nonEmpty ta);
-         cs = [(%xs'. (case xs' of [] => undefined | x # xs => cf xs (conv cas x))). shallow, cf <- cfs]
-       in C (SumOfProd [ta # p. shallow, p <- ps]) cs)"
-
-definition sum :: "'a series => 'a series => 'a series"
-where
-  "sum a b d =
-    (case a d of C (SumOfProd ssa) ca => 
-      case b d of C (SumOfProd ssb) cb =>
-      C (SumOfProd (ssa @ ssb)) (ca @ cb))"
-
-lemma [fundef_cong]:
-  assumes "a d = a' d" "b d = b' d" "d = d'"
-  shows "sum a b d = sum a' b' d'"
-using assms unfolding sum_def by (auto split: cons.split type.split)
-
-lemma [fundef_cong]:
-  assumes "f d = f' d" "(\<And>d'. 0 <= d' & d' < d ==> a d' = a' d')"
-  assumes "d = d'"
-  shows "apply f a d = apply f' a' d'"
-proof -
-  note assms moreover
-  have "int_of (LSC.of_int 0) < int_of d' ==> int_of (LSC.of_int 0) <= int_of (LSC.of_int (int_of d' - int_of (LSC.of_int 1)))"
-    by (simp add: of_int_inverse)
-  moreover
-  have "int_of (LSC.of_int (int_of d' - int_of (LSC.of_int 1))) < int_of d'"
-    by (simp add: of_int_inverse)
-  ultimately show ?thesis
-    unfolding apply_def by (auto split: cons.split type.split simp add: Let_def)
-qed
-
-definition cons0 :: "'a => 'a series"
-where
-  "cons0 f = cons f"
-
-type_synonym pos = "code_int list"
-(*
-subsubsection {* Term refinement *}
-
-definition new :: "pos => type list list => term list"
-where
-  "new p ps = map_index (%(c, ts). Ctr c (map_index (%(i, t). Var (p @ [i]) t) ts)) ps"
-
-fun refine :: "term => pos => term list" and refineList :: "term list => pos => (term list) list"
-where
-  "refine (Var p (SumOfProd ss)) [] = new p ss"
-| "refine (Ctr c xs) p = map (Ctr c) (refineList xs p)"
-| "refineList xs (i # is) = (let (ls, xrs) = split_At i xs in (case xrs of x#rs => [ls @ y # rs. y <- refine x is]))"
-
-text {* Find total instantiations of a partial value *}
-
-function total :: "term => term list"
-where
-  "total (Ctr c xs) = [Ctr c ys. ys <- map total xs]"
-| "total (Var p (SumOfProd ss)) = [y. x <- new p ss, y <- total x]"
-by pat_completeness auto
-
-termination sorry
-*)
-subsubsection {* LSC's type class for enumeration *}
-
-class serial =
-  fixes series :: "code_int => 'a cons"
-
-definition cons1 :: "('a::serial => 'b) => 'b series"
-where
-  "cons1 f = apply (cons f) series"
-
-definition cons2 :: "('a :: serial => 'b :: serial => 'c) => 'c series"
-where
-  "cons2 f = apply (apply (cons f) series) series"
-  
-instantiation unit :: serial
-begin
-
-definition
-  "series = cons0 ()"
-
-instance ..
-
-end
-
-instantiation bool :: serial
-begin
-
-definition
-  "series = sum (cons0 True) (cons0 False)" 
-
-instance ..
-
-end
-
-instantiation option :: (serial) serial
-begin
-
-definition
-  "series = sum (cons0 None) (cons1 Some)"
-
-instance ..
-
-end
-
-instantiation sum :: (serial, serial) serial
-begin
-
-definition
-  "series = sum (cons1 Inl) (cons1 Inr)"
-
-instance ..
-
-end
-
-instantiation list :: (serial) serial
-begin
-
-function series_list :: "'a list series"
-where
-  "series_list d = sum (cons []) (apply (apply (cons Cons) series) series_list) d"
-by pat_completeness auto
-
-termination proof (relation "measure nat_of")
-qed (auto simp add: of_int_inverse nat_of_def)
-    
-instance ..
-
-end
-
-instantiation nat :: serial
-begin
-
-function series_nat :: "nat series"
-where
-  "series_nat d = sum (cons 0) (apply (cons Suc) series_nat) d"
-by pat_completeness auto
-
-termination proof (relation "measure nat_of")
-qed (auto simp add: of_int_inverse nat_of_def)
-
-instance ..
-
-end
-
-instantiation Enum.finite_1 :: serial
-begin
-
-definition series_finite_1 :: "Enum.finite_1 series"
-where
-  "series_finite_1 = cons (Enum.finite_1.a\<^isub>1 :: Enum.finite_1)"
-
-instance ..
-
-end
-
-instantiation Enum.finite_2 :: serial
-begin
-
-definition series_finite_2 :: "Enum.finite_2 series"
-where
-  "series_finite_2 = sum (cons (Enum.finite_2.a\<^isub>1 :: Enum.finite_2)) (cons (Enum.finite_2.a\<^isub>2 :: Enum.finite_2))"
-
-instance ..
-
-end
-
-instantiation Enum.finite_3 :: serial
-begin
-
-definition series_finite_3 :: "Enum.finite_3 series"
-where
-  "series_finite_3 = sum (cons (Enum.finite_3.a\<^isub>1 :: Enum.finite_3)) (sum (cons (Enum.finite_3.a\<^isub>2 :: Enum.finite_3)) (cons (Enum.finite_3.a\<^isub>3 :: Enum.finite_3)))"
-
-instance ..
-
-end
-
-instantiation Enum.finite_4 :: serial
-begin
-
-definition series_finite_4 :: "Enum.finite_4 series"
-where
-  "series_finite_4 = sum (cons Enum.finite_4.a\<^isub>1) (sum (cons Enum.finite_4.a\<^isub>2) (sum (cons Enum.finite_4.a\<^isub>3) (cons Enum.finite_4.a\<^isub>4)))"
-
-instance ..
-
-end
-
-subsubsection {* class is_testable *}
-
-text {* The class is_testable ensures that all necessary type instances are generated. *}
-
-class is_testable
-
-instance bool :: is_testable ..
-
-instance "fun" :: ("{term_of, serial}", is_testable) is_testable ..
-
-definition ensure_testable :: "'a :: is_testable => 'a :: is_testable"
-where
-  "ensure_testable f = f"
-
-declare simp_thms(17,19)[code del]
-
-subsubsection {* Setting up the counterexample generator *}
-  
-use "~~/src/HOL/Tools/LSC/lazysmallcheck.ML"
-
-setup {* Lazysmallcheck.setup *}
-
-hide_const (open) empty
-
-end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Quickcheck_Narrowing.thy	Fri Mar 11 15:21:13 2011 +0100
@@ -0,0 +1,352 @@
+(* Author: Lukas Bulwahn, TU Muenchen *)
+
+header {* Counterexample generator based on LazySmallCheck *}
+
+theory LSC
+imports Main "~~/src/HOL/Library/Code_Char"
+uses ("~~/src/HOL/Tools/LSC/lazysmallcheck.ML")
+begin
+
+subsection {* Counterexample generator *}
+
+subsubsection {* Code generation setup *}
+
+code_type typerep
+  ("Haskell" "Typerep")
+
+code_const Typerep.Typerep
+  ("Haskell" "Typerep")
+
+code_reserved Haskell Typerep
+
+subsubsection {* Type code_int for Haskell's Int type *}
+
+typedef (open) code_int = "UNIV \<Colon> int set"
+  morphisms int_of of_int by rule
+
+lemma int_of_inject [simp]:
+  "int_of k = int_of l \<longleftrightarrow> k = l"
+  by (rule int_of_inject)
+
+definition nat_of :: "code_int => nat"
+where
+  "nat_of i = nat (int_of i)"
+
+instantiation code_int :: "{zero, one, minus, linorder}"
+begin
+
+definition [simp, code del]:
+  "0 = of_int 0"
+
+definition [simp, code del]:
+  "1 = of_int 1"
+
+definition [simp, code del]:
+  "n - m = of_int (int_of n - int_of m)"
+
+definition [simp, code del]:
+  "n \<le> m \<longleftrightarrow> int_of n \<le> int_of m"
+
+definition [simp, code del]:
+  "n < m \<longleftrightarrow> int_of n < int_of m"
+
+
+instance proof qed (auto)
+
+end
+(*
+lemma zero_code_int_code [code, code_unfold]:
+  "(0\<Colon>code_int) = Numeral0"
+  by (simp add: number_of_code_numeral_def Pls_def)
+lemma [code_post]: "Numeral0 = (0\<Colon>code_numeral)"
+  using zero_code_numeral_code ..
+
+lemma one_code_numeral_code [code, code_unfold]:
+  "(1\<Colon>code_int) = Numeral1"
+  by (simp add: number_of_code_numeral_def Pls_def Bit1_def)
+lemma [code_post]: "Numeral1 = (1\<Colon>code_int)"
+  using one_code_numeral_code ..
+*)
+
+code_const "0 \<Colon> code_int"
+  (Haskell "0")
+
+code_const "1 \<Colon> code_int"
+  (Haskell "1")
+
+code_const "minus \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> code_int"
+  (Haskell "(_/ -/ _)")
+
+code_const "op \<le> \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
+  (Haskell infix 4 "<=")
+
+code_const "op < \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
+  (Haskell infix 4 "<")
+
+code_type code_int
+  (Haskell "Int")
+
+subsubsection {* LSC's deep representation of types of terms *}
+
+datatype type = SumOfProd "type list list"
+
+datatype "term" = Var "code_int list" type | Ctr code_int "term list"
+
+datatype 'a cons = C type "(term list => 'a) list"
+
+subsubsection {* auxilary functions for LSC *}
+
+consts nth :: "'a list => code_int => 'a"
+
+code_const nth ("Haskell" infixl 9  "!!")
+
+consts error :: "char list => 'a"
+
+code_const error ("Haskell" "error")
+
+consts toEnum :: "code_int => char"
+
+code_const toEnum ("Haskell" "toEnum")
+
+consts map_index :: "(code_int * 'a => 'b) => 'a list => 'b list"  
+
+consts split_At :: "code_int => 'a list => 'a list * 'a list"
+ 
+subsubsection {* LSC's basic operations *}
+
+type_synonym 'a series = "code_int => 'a cons"
+
+definition empty :: "'a series"
+where
+  "empty d = C (SumOfProd []) []"
+  
+definition cons :: "'a => 'a series"
+where
+  "cons a d = (C (SumOfProd [[]]) [(%_. a)])"
+
+fun conv :: "(term list => 'a) list => term => 'a"
+where
+  "conv cs (Var p _) = error (Char Nibble0 Nibble0 # map toEnum p)"
+| "conv cs (Ctr i xs) = (nth cs i) xs"
+
+fun nonEmpty :: "type => bool"
+where
+  "nonEmpty (SumOfProd ps) = (\<not> (List.null ps))"
+
+definition "apply" :: "('a => 'b) series => 'a series => 'b series"
+where
+  "apply f a d =
+     (case f d of C (SumOfProd ps) cfs =>
+       case a (d - 1) of C ta cas =>
+       let
+         shallow = (d > 0 \<and> nonEmpty ta);
+         cs = [(%xs'. (case xs' of [] => undefined | x # xs => cf xs (conv cas x))). shallow, cf <- cfs]
+       in C (SumOfProd [ta # p. shallow, p <- ps]) cs)"
+
+definition sum :: "'a series => 'a series => 'a series"
+where
+  "sum a b d =
+    (case a d of C (SumOfProd ssa) ca => 
+      case b d of C (SumOfProd ssb) cb =>
+      C (SumOfProd (ssa @ ssb)) (ca @ cb))"
+
+lemma [fundef_cong]:
+  assumes "a d = a' d" "b d = b' d" "d = d'"
+  shows "sum a b d = sum a' b' d'"
+using assms unfolding sum_def by (auto split: cons.split type.split)
+
+lemma [fundef_cong]:
+  assumes "f d = f' d" "(\<And>d'. 0 <= d' & d' < d ==> a d' = a' d')"
+  assumes "d = d'"
+  shows "apply f a d = apply f' a' d'"
+proof -
+  note assms moreover
+  have "int_of (LSC.of_int 0) < int_of d' ==> int_of (LSC.of_int 0) <= int_of (LSC.of_int (int_of d' - int_of (LSC.of_int 1)))"
+    by (simp add: of_int_inverse)
+  moreover
+  have "int_of (LSC.of_int (int_of d' - int_of (LSC.of_int 1))) < int_of d'"
+    by (simp add: of_int_inverse)
+  ultimately show ?thesis
+    unfolding apply_def by (auto split: cons.split type.split simp add: Let_def)
+qed
+
+definition cons0 :: "'a => 'a series"
+where
+  "cons0 f = cons f"
+
+type_synonym pos = "code_int list"
+(*
+subsubsection {* Term refinement *}
+
+definition new :: "pos => type list list => term list"
+where
+  "new p ps = map_index (%(c, ts). Ctr c (map_index (%(i, t). Var (p @ [i]) t) ts)) ps"
+
+fun refine :: "term => pos => term list" and refineList :: "term list => pos => (term list) list"
+where
+  "refine (Var p (SumOfProd ss)) [] = new p ss"
+| "refine (Ctr c xs) p = map (Ctr c) (refineList xs p)"
+| "refineList xs (i # is) = (let (ls, xrs) = split_At i xs in (case xrs of x#rs => [ls @ y # rs. y <- refine x is]))"
+
+text {* Find total instantiations of a partial value *}
+
+function total :: "term => term list"
+where
+  "total (Ctr c xs) = [Ctr c ys. ys <- map total xs]"
+| "total (Var p (SumOfProd ss)) = [y. x <- new p ss, y <- total x]"
+by pat_completeness auto
+
+termination sorry
+*)
+subsubsection {* LSC's type class for enumeration *}
+
+class serial =
+  fixes series :: "code_int => 'a cons"
+
+definition cons1 :: "('a::serial => 'b) => 'b series"
+where
+  "cons1 f = apply (cons f) series"
+
+definition cons2 :: "('a :: serial => 'b :: serial => 'c) => 'c series"
+where
+  "cons2 f = apply (apply (cons f) series) series"
+  
+instantiation unit :: serial
+begin
+
+definition
+  "series = cons0 ()"
+
+instance ..
+
+end
+
+instantiation bool :: serial
+begin
+
+definition
+  "series = sum (cons0 True) (cons0 False)" 
+
+instance ..
+
+end
+
+instantiation option :: (serial) serial
+begin
+
+definition
+  "series = sum (cons0 None) (cons1 Some)"
+
+instance ..
+
+end
+
+instantiation sum :: (serial, serial) serial
+begin
+
+definition
+  "series = sum (cons1 Inl) (cons1 Inr)"
+
+instance ..
+
+end
+
+instantiation list :: (serial) serial
+begin
+
+function series_list :: "'a list series"
+where
+  "series_list d = sum (cons []) (apply (apply (cons Cons) series) series_list) d"
+by pat_completeness auto
+
+termination proof (relation "measure nat_of")
+qed (auto simp add: of_int_inverse nat_of_def)
+    
+instance ..
+
+end
+
+instantiation nat :: serial
+begin
+
+function series_nat :: "nat series"
+where
+  "series_nat d = sum (cons 0) (apply (cons Suc) series_nat) d"
+by pat_completeness auto
+
+termination proof (relation "measure nat_of")
+qed (auto simp add: of_int_inverse nat_of_def)
+
+instance ..
+
+end
+
+instantiation Enum.finite_1 :: serial
+begin
+
+definition series_finite_1 :: "Enum.finite_1 series"
+where
+  "series_finite_1 = cons (Enum.finite_1.a\<^isub>1 :: Enum.finite_1)"
+
+instance ..
+
+end
+
+instantiation Enum.finite_2 :: serial
+begin
+
+definition series_finite_2 :: "Enum.finite_2 series"
+where
+  "series_finite_2 = sum (cons (Enum.finite_2.a\<^isub>1 :: Enum.finite_2)) (cons (Enum.finite_2.a\<^isub>2 :: Enum.finite_2))"
+
+instance ..
+
+end
+
+instantiation Enum.finite_3 :: serial
+begin
+
+definition series_finite_3 :: "Enum.finite_3 series"
+where
+  "series_finite_3 = sum (cons (Enum.finite_3.a\<^isub>1 :: Enum.finite_3)) (sum (cons (Enum.finite_3.a\<^isub>2 :: Enum.finite_3)) (cons (Enum.finite_3.a\<^isub>3 :: Enum.finite_3)))"
+
+instance ..
+
+end
+
+instantiation Enum.finite_4 :: serial
+begin
+
+definition series_finite_4 :: "Enum.finite_4 series"
+where
+  "series_finite_4 = sum (cons Enum.finite_4.a\<^isub>1) (sum (cons Enum.finite_4.a\<^isub>2) (sum (cons Enum.finite_4.a\<^isub>3) (cons Enum.finite_4.a\<^isub>4)))"
+
+instance ..
+
+end
+
+subsubsection {* class is_testable *}
+
+text {* The class is_testable ensures that all necessary type instances are generated. *}
+
+class is_testable
+
+instance bool :: is_testable ..
+
+instance "fun" :: ("{term_of, serial}", is_testable) is_testable ..
+
+definition ensure_testable :: "'a :: is_testable => 'a :: is_testable"
+where
+  "ensure_testable f = f"
+
+declare simp_thms(17,19)[code del]
+
+subsubsection {* Setting up the counterexample generator *}
+  
+use "~~/src/HOL/Tools/LSC/lazysmallcheck.ML"
+
+setup {* Lazysmallcheck.setup *}
+
+hide_const (open) empty
+
+end
\ No newline at end of file