--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Provers/Arith/assoc_fold.ML Fri Jul 23 17:24:48 1999 +0200
@@ -0,0 +1,85 @@
+(* Title: Provers/Arith/assoc_fold.ML
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1999 University of Cambridge
+
+Simplification procedure for associative operators + and * on numeric types
+
+Performs constant folding when the literals are separated, as in 3+n+4.
+*)
+
+
+signature ASSOC_FOLD_DATA =
+sig
+ val ss : simpset (*basic simpset of object-logtic*)
+ val eq_reflection : thm (*object-equality to meta-equality*)
+ val thy : theory (*the operator's theory*)
+ val T : typ (*the operator's numeric type*)
+ val plus : term (*the operator being folded*)
+ val add_ac : thm list (*AC-rewrites for plus*)
+end;
+
+
+functor Assoc_Fold (Data: ASSOC_FOLD_DATA) =
+struct
+
+ val assoc_ss = Data.ss addsimps Data.add_ac;
+
+ (*prove while suppressing timing information*)
+ fun prove name ct tacf =
+ setmp Goals.proof_timing false (prove_goalw_cterm [] ct) tacf
+ handle ERROR =>
+ error(name ^ " simproc:\nfailed to prove " ^ string_of_cterm ct);
+
+ exception Assoc_fail;
+
+ fun mk_sum [] = raise Assoc_fail
+ | mk_sum tms = foldr1 (fn (x,y) => Data.plus $ x $ y) tms;
+
+ (*Separate the literals from the other terms being combined*)
+ fun sift_terms (t, (lits,others)) =
+ case t of
+ Const("Numeral.number_of", _) $ _ =>
+ (t::lits, others) (*new literal*)
+ | (f as Const _) $ x $ y =>
+ if f = Data.plus
+ then sift_terms (x, sift_terms (y, (lits,others)))
+ else (lits, t::others) (*arbitrary summand*)
+ | _ => (lits, t::others);
+
+ val trace = ref false;
+
+ (*Make a simproc to combine all literals in a associative nest*)
+ fun proc sg _ lhs =
+ let fun show t = string_of_cterm (Thm.cterm_of sg t)
+ val _ = if !trace then writeln ("assoc_fold simproc: LHS = " ^ show lhs)
+ else ()
+ val (lits,others) = sift_terms (lhs, ([],[]))
+ val _ = if length lits < 2
+ then raise Assoc_fail (*we can't reduce the number of terms*)
+ else ()
+ val rhs = Data.plus $ mk_sum lits $ mk_sum others
+ val _ = if !trace then writeln ("RHS = " ^ show rhs) else ()
+ val th = prove "assoc_fold"
+ (Thm.cterm_of sg (Logic.mk_equals (lhs, rhs)))
+ (fn _ => [rtac Data.eq_reflection 1,
+ simp_tac assoc_ss 1])
+ in Some th end
+ handle Assoc_fail => None;
+
+ val conv =
+ Simplifier.mk_simproc "assoc_fold_sums"
+ [Thm.cterm_of (Theory.sign_of Data.thy)
+ (Data.plus $ Free("x",Data.T) $ Free("y",Data.T))]
+ proc;
+
+end;
+
+
+(*test data:
+set proof_timing;
+
+Goal "(#3 * (a * #34)) * (#2 * b * #9) = (x::int)";
+
+Goal "a + b + c + d + e + f + g + h + i + j + k + l + m + n + oo + p + q + r + s + t + u + v + (w + x + y + z + a + #2 + b + #2 + c + #2 + d + #2 + e) + #2 + f + (#2 + g + #2 + h + #2 + i) + #2 + (j + #2 + k + #2 + l + #2 + m + #2) + n + #2 + (oo + #2 + p + #2 + q + #2 + r) + #2 + s + #2 + t + #2 + u + #2 + v + #2 + w + #2 + x + #2 + y + #2 + z + #2 = (uu::nat)";
+*)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Provers/Arith/combine_coeff.ML Fri Jul 23 17:24:48 1999 +0200
@@ -0,0 +1,193 @@
+(* Title: Provers/Arith/combine_coeff.ML
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1999 University of Cambridge
+
+Simplification procedure to combine literal coefficients in sums of products
+
+Example, #3*x + y - (x*#2) goes to x + y
+
+For the relations <, <= and =, the difference is simplified
+
+[COULD BE GENERALIZED to products of exponentials?]
+*)
+
+signature COMBINE_COEFF_DATA =
+sig
+ val ss : simpset (*basic simpset of object-logtic*)
+ val eq_reflection : thm (*object-equality to meta-equality*)
+ val thy : theory (*the theory of the group*)
+ val T : typ (*the type of group elements*)
+
+ val trans : thm (*transitivity of equals*)
+ val add_ac : thm list (*AC-rules for the addition operator*)
+ val diff_def : thm (*Defines x-y as x + -y *)
+ val minus_add_distrib : thm (* -(x+y) = -x + -y *)
+ val minus_minus : thm (* - -x = x *)
+ val mult_commute : thm (*commutative law for the product*)
+ val mult_1_right : thm (*the law x*1=x *)
+ val add_mult_distrib : thm (*law w*(x+y) = w*x + w*y *)
+ val diff_mult_distrib : thm (*law w*(x-y) = w*x - w*y *)
+ val mult_minus_right : thm (*law x * -y = -(x*y) *)
+
+ val rel_iff_rel_0_rls : thm list (*e.g. (x < y) = (x-y < 0) *)
+ val dest_eqI : thm -> term (*to get patterns from the rel rules*)
+end;
+
+
+functor Combine_Coeff (Data: COMBINE_COEFF_DATA) =
+struct
+
+ local open Data
+ in
+ val rhs_ss = ss addsimps
+ [add_mult_distrib, diff_mult_distrib,
+ mult_minus_right, mult_1_right];
+
+ val lhs_ss = ss addsimps
+ add_ac @
+ [diff_def, minus_add_distrib, minus_minus, mult_commute];
+ end;
+
+ (*prove while suppressing timing information*)
+ fun prove name ct tacf =
+ setmp Goals.proof_timing false (prove_goalw_cterm [] ct) tacf
+ handle ERROR =>
+ error(name ^ " simproc:\nfailed to prove " ^ string_of_cterm ct);
+
+ val plus = Const ("op +", [Data.T,Data.T] ---> Data.T);
+ val minus = Const ("op -", [Data.T,Data.T] ---> Data.T);
+ val uminus = Const ("uminus", Data.T --> Data.T);
+ val times = Const ("op *", [Data.T,Data.T] ---> Data.T);
+
+ val number_of = Const ("Numeral.number_of",
+ Type ("Numeral.bin", []) --> Data.T);
+
+ val zero = number_of $ HOLogic.pls_const;
+ val one = number_of $ (HOLogic.bit_const $
+ HOLogic.pls_const $
+ HOLogic.true_const);
+
+ (*We map -t to t and (in other cases) t to -t. No need to check the type of
+ uminus, since the simproc is only called on sums of type T.*)
+ fun negate (Const("uminus",_) $ t) = t
+ | negate t = uminus $ t;
+
+ fun mk_sum [] = zero
+ | mk_sum tms = foldr1 (fn (x,y) => plus $ x $ y) tms;
+
+ fun attach_coeff (Bound ~1,ns) = mk_sum ns (*just a literal*)
+ | attach_coeff (x,ns) = times $ x $ (mk_sum ns);
+
+ fun add_atom (x, (neg,m)) pairs =
+ let val m' = if neg then negate m else m
+ in
+ case gen_assoc (op aconv) (pairs, x) of
+ Some n => gen_overwrite (op aconv) (pairs, (x, m'::n))
+ | None => (x,[m']) :: pairs
+ end;
+
+ (**STILL MISSING: a treatment of nested coeffs, e.g. a*(b*3) **)
+ (*Convert a formula built from +, * and - (binary and unary) to a
+ (atom, coeff) association list. Handles t+t, t-t, -t, a*n, n*a, n, a
+ where n denotes a numeric literal and a is any other term.
+ No need to check types PROVIDED they are checked upon entry!*)
+ fun add_terms neg (Const("op +", _) $ x $ y, pairs) =
+ add_terms neg (x, add_terms neg (y, pairs))
+ | add_terms neg (Const("op -", _) $ x $ y, pairs) =
+ add_terms neg (x, add_terms (not neg) (y, pairs))
+ | add_terms neg (Const("uminus", _) $ x, pairs) =
+ add_terms (not neg) (x, pairs)
+ | add_terms neg (lit as Const("Numeral.number_of", _) $ _, pairs) =
+ (*literal: make it the coefficient of a dummy term*)
+ add_atom (Bound ~1, (neg, lit)) pairs
+ | add_terms neg (Const("op *", _) $ x
+ $ (lit as Const("Numeral.number_of", _) $ _),
+ pairs) =
+ (*coefficient on the right*)
+ add_atom (x, (neg, lit)) pairs
+ | add_terms neg (Const("op *", _)
+ $ (lit as Const("Numeral.number_of", _) $ _)
+ $ x, pairs) =
+ (*coefficient on the left*)
+ add_atom (x, (neg, lit)) pairs
+ | add_terms neg (x, pairs) = add_atom (x, (neg, one)) pairs;
+
+ fun terms fml = add_terms false (fml, []);
+
+ exception CC_fail;
+
+ (*The number of terms in t, assuming no collapsing takes place*)
+ fun term_count (Const("op +", _) $ x $ y) = term_count x + term_count y
+ | term_count (Const("op -", _) $ x $ y) = term_count x + term_count y
+ | term_count (Const("uminus", _) $ x) = term_count x
+ | term_count x = 1;
+
+
+ val trace = ref false;
+
+ (*The simproc for sums*)
+ fun sum_proc sg _ lhs =
+ let fun show t = string_of_cterm (Thm.cterm_of sg t)
+ val _ = if !trace then writeln
+ ("combine_coeff sum simproc: LHS = " ^ show lhs)
+ else ()
+ val ts = terms lhs
+ val _ = if term_count lhs = length ts
+ then raise CC_fail (*we can't reduce the number of terms*)
+ else ()
+ val rhs = mk_sum (map attach_coeff ts)
+ val _ = if !trace then writeln ("RHS = " ^ show rhs) else ()
+ val th = prove "combine_coeff"
+ (Thm.cterm_of sg (Logic.mk_equals (lhs, rhs)))
+ (fn _ => [rtac Data.eq_reflection 1,
+ simp_tac rhs_ss 1,
+ IF_UNSOLVED (simp_tac lhs_ss 1)])
+ in Some th end
+ handle CC_fail => None;
+
+ val sum_conv =
+ Simplifier.mk_simproc "combine_coeff_sums"
+ (map (Thm.read_cterm (Theory.sign_of Data.thy))
+ [("x + y", Data.T), ("x - y", Data.T)])
+ sum_proc;
+
+
+ (*The simproc for relations, which just replaces x<y by x-y<0 and simplifies*)
+
+ val trans_eq_reflection = Data.trans RS Data.eq_reflection |> standard;
+
+ fun rel_proc sg asms (lhs as (rel$lt$rt)) =
+ let val _ = if !trace then writeln
+ ("cc_rel simproc: LHS = " ^
+ string_of_cterm (cterm_of sg lhs))
+ else ()
+ val _ = if lt=zero orelse rt=zero then raise CC_fail
+ else () (*this simproc can do nothing if either side is zero*)
+ val cc_th = the (sum_proc sg asms (minus $ lt $ rt))
+ handle OPTION => raise CC_fail
+ val _ = if !trace then
+ writeln ("cc_th = " ^ string_of_thm cc_th)
+ else ()
+ val cc_lr = #2 (Logic.dest_equals (concl_of cc_th))
+
+ val rhs = rel $ cc_lr $ zero
+ val _ = if !trace then
+ writeln ("RHS = " ^ string_of_cterm (Thm.cterm_of sg rhs))
+ else ()
+ val ct = Thm.cterm_of sg (Logic.mk_equals (lhs,rhs))
+
+ val th = prove "cc_rel" ct
+ (fn _ => [rtac trans_eq_reflection 1,
+ resolve_tac Data.rel_iff_rel_0_rls 1,
+ simp_tac (Data.ss addsimps [cc_th]) 1])
+ in Some th end
+ handle CC_fail => None;
+
+ val rel_conv =
+ Simplifier.mk_simproc "cc_relations"
+ (map (Thm.cterm_of (Theory.sign_of Data.thy) o Data.dest_eqI)
+ Data.rel_iff_rel_0_rls)
+ rel_proc;
+
+end;