moved/updated introduction to Classical Reasoner;
authorwenzelm
Sat, 04 Jun 2011 22:09:42 +0200
changeset 42927 c40adab7568e
parent 42926 a8b655d089ac
child 42928 9d946de41120
moved/updated introduction to Classical Reasoner;
doc-src/IsarRef/Thy/Generic.thy
doc-src/IsarRef/Thy/document/Generic.tex
doc-src/Ref/classical.tex
--- a/doc-src/IsarRef/Thy/Generic.thy	Sat Jun 04 19:39:45 2011 +0200
+++ b/doc-src/IsarRef/Thy/Generic.thy	Sat Jun 04 22:09:42 2011 +0200
@@ -582,6 +582,197 @@
 
 section {* The Classical Reasoner \label{sec:classical} *}
 
+subsection {* Introduction *}
+
+text {* Although Isabelle is generic, many users will be working in
+  some extension of classical first-order logic.  Isabelle/ZF is built
+  upon theory FOL, while Isabelle/HOL conceptually contains
+  first-order logic as a fragment.  Theorem-proving in predicate logic
+  is undecidable, but many automated strategies have been developed to
+  assist in this task.
+
+  Isabelle's classical reasoner is a generic package that accepts
+  certain information about a logic and delivers a suite of automatic
+  proof tools, based on rules that are classified and declared in the
+  context.  These proof procedures are slow and simplistic compared
+  with high-end automated theorem provers, but they can save
+  considerable time and effort in practice.  They can prove theorems
+  such as Pelletier's \cite{pelletier86} problems 40 and 41 in a few
+  milliseconds (including full proof reconstruction): *}
+
+lemma "(\<exists>y. \<forall>x. F x y \<longleftrightarrow> F x x) \<longrightarrow> \<not> (\<forall>x. \<exists>y. \<forall>z. F z y \<longleftrightarrow> \<not> F z x)"
+  by blast
+
+lemma "(\<forall>z. \<exists>y. \<forall>x. f x y \<longleftrightarrow> f x z \<and> \<not> f x x) \<longrightarrow> \<not> (\<exists>z. \<forall>x. f x z)"
+  by blast
+
+text {* The proof tools are generic.  They are not restricted to
+  first-order logic, and have been heavily used in the development of
+  the Isabelle/HOL library and applications.  The tactics can be
+  traced, and their components can be called directly; in this manner,
+  any proof can be viewed interactively.  *}
+
+
+subsubsection {* The sequent calculus *}
+
+text {* Isabelle supports natural deduction, which is easy to use for
+  interactive proof.  But natural deduction does not easily lend
+  itself to automation, and has a bias towards intuitionism.  For
+  certain proofs in classical logic, it can not be called natural.
+  The \emph{sequent calculus}, a generalization of natural deduction,
+  is easier to automate.
+
+  A \textbf{sequent} has the form @{text "\<Gamma> \<turnstile> \<Delta>"}, where @{text "\<Gamma>"}
+  and @{text "\<Delta>"} are sets of formulae.\footnote{For first-order
+  logic, sequents can equivalently be made from lists or multisets of
+  formulae.} The sequent @{text "P\<^sub>1, \<dots>, P\<^sub>m \<turnstile> Q\<^sub>1, \<dots>, Q\<^sub>n"} is
+  \textbf{valid} if @{text "P\<^sub>1 \<and> \<dots> \<and> P\<^sub>m"} implies @{text "Q\<^sub>1 \<or> \<dots> \<or>
+  Q\<^sub>n"}.  Thus @{text "P\<^sub>1, \<dots>, P\<^sub>m"} represent assumptions, each of which
+  is true, while @{text "Q\<^sub>1, \<dots>, Q\<^sub>n"} represent alternative goals.  A
+  sequent is \textbf{basic} if its left and right sides have a common
+  formula, as in @{text "P, Q \<turnstile> Q, R"}; basic sequents are trivially
+  valid.
+
+  Sequent rules are classified as \textbf{right} or \textbf{left},
+  indicating which side of the @{text "\<turnstile>"} symbol they operate on.
+  Rules that operate on the right side are analogous to natural
+  deduction's introduction rules, and left rules are analogous to
+  elimination rules.  The sequent calculus analogue of @{text "(\<longrightarrow>I)"}
+  is the rule
+  \[
+  \infer[@{text "(\<longrightarrow>R)"}]{@{text "\<Gamma> \<turnstile> \<Delta>, P \<longrightarrow> Q"}}{@{text "P, \<Gamma> \<turnstile> \<Delta>, Q"}}
+  \]
+  Applying the rule backwards, this breaks down some implication on
+  the right side of a sequent; @{text "\<Gamma>"} and @{text "\<Delta>"} stand for
+  the sets of formulae that are unaffected by the inference.  The
+  analogue of the pair @{text "(\<or>I1)"} and @{text "(\<or>I2)"} is the
+  single rule
+  \[
+  \infer[@{text "(\<or>R)"}]{@{text "\<Gamma> \<turnstile> \<Delta>, P \<or> Q"}}{@{text "\<Gamma> \<turnstile> \<Delta>, P, Q"}}
+  \]
+  This breaks down some disjunction on the right side, replacing it by
+  both disjuncts.  Thus, the sequent calculus is a kind of
+  multiple-conclusion logic.
+
+  To illustrate the use of multiple formulae on the right, let us
+  prove the classical theorem @{text "(P \<longrightarrow> Q) \<or> (Q \<longrightarrow> P)"}.  Working
+  backwards, we reduce this formula to a basic sequent:
+  \[
+  \infer[@{text "(\<or>R)"}]{@{text "\<turnstile> (P \<longrightarrow> Q) \<or> (Q \<longrightarrow> P)"}}
+    {\infer[@{text "(\<longrightarrow>R)"}]{@{text "\<turnstile> (P \<longrightarrow> Q), (Q \<longrightarrow> P)"}}
+      {\infer[@{text "(\<longrightarrow>R)"}]{@{text "P \<turnstile> Q, (Q \<longrightarrow> P)"}}
+        {@{text "P, Q \<turnstile> Q, P"}}}}
+  \]
+
+  This example is typical of the sequent calculus: start with the
+  desired theorem and apply rules backwards in a fairly arbitrary
+  manner.  This yields a surprisingly effective proof procedure.
+  Quantifiers add only few complications, since Isabelle handles
+  parameters and schematic variables.  See \cite[Chapter
+  10]{paulson-ml2} for further discussion.  *}
+
+
+subsubsection {* Simulating sequents by natural deduction *}
+
+text {* Isabelle can represent sequents directly, as in the
+  object-logic LK.  But natural deduction is easier to work with, and
+  most object-logics employ it.  Fortunately, we can simulate the
+  sequent @{text "P\<^sub>1, \<dots>, P\<^sub>m \<turnstile> Q\<^sub>1, \<dots>, Q\<^sub>n"} by the Isabelle formula
+  @{text "P\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> P\<^sub>m \<Longrightarrow> \<not> Q\<^sub>2 \<Longrightarrow> ... \<Longrightarrow> \<not> Q\<^sub>n \<Longrightarrow> Q\<^sub>1"} where the order of
+  the assumptions and the choice of @{text "Q\<^sub>1"} are arbitrary.
+  Elim-resolution plays a key role in simulating sequent proofs.
+
+  We can easily handle reasoning on the left.  Elim-resolution with
+  the rules @{text "(\<or>E)"}, @{text "(\<bottom>E)"} and @{text "(\<exists>E)"} achieves
+  a similar effect as the corresponding sequent rules.  For the other
+  connectives, we use sequent-style elimination rules instead of
+  destruction rules such as @{text "(\<and>E1, 2)"} and @{text "(\<forall>E)"}.
+  But note that the rule @{text "(\<not>L)"} has no effect under our
+  representation of sequents!
+  \[
+  \infer[@{text "(\<not>L)"}]{@{text "\<not> P, \<Gamma> \<turnstile> \<Delta>"}}{@{text "\<Gamma> \<turnstile> \<Delta>, P"}}
+  \]
+
+  What about reasoning on the right?  Introduction rules can only
+  affect the formula in the conclusion, namely @{text "Q\<^sub>1"}.  The
+  other right-side formulae are represented as negated assumptions,
+  @{text "\<not> Q\<^sub>2, \<dots>, \<not> Q\<^sub>n"}.  In order to operate on one of these, it
+  must first be exchanged with @{text "Q\<^sub>1"}.  Elim-resolution with the
+  @{text swap} rule has this effect: @{text "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R"}
+
+  To ensure that swaps occur only when necessary, each introduction
+  rule is converted into a swapped form: it is resolved with the
+  second premise of @{text "(swap)"}.  The swapped form of @{text
+  "(\<and>I)"}, which might be called @{text "(\<not>\<and>E)"}, is
+  @{text [display] "\<not> (P \<and> Q) \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> (\<not> R \<Longrightarrow> Q) \<Longrightarrow> R"}
+
+  Similarly, the swapped form of @{text "(\<longrightarrow>I)"} is
+  @{text [display] "\<not> (P \<longrightarrow> Q) \<Longrightarrow> (\<not> R \<Longrightarrow> P \<Longrightarrow> Q) \<Longrightarrow> R"}
+
+  Swapped introduction rules are applied using elim-resolution, which
+  deletes the negated formula.  Our representation of sequents also
+  requires the use of ordinary introduction rules.  If we had no
+  regard for readability of intermediate goal states, we could treat
+  the right side more uniformly by representing sequents as @{text
+  [display] "P\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> P\<^sub>m \<Longrightarrow> \<not> Q\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> \<not> Q\<^sub>n \<Longrightarrow> \<bottom>"}
+*}
+
+
+subsubsection {* Extra rules for the sequent calculus *}
+
+text {* As mentioned, destruction rules such as @{text "(\<and>E1, 2)"} and
+  @{text "(\<forall>E)"} must be replaced by sequent-style elimination rules.
+  In addition, we need rules to embody the classical equivalence
+  between @{text "P \<longrightarrow> Q"} and @{text "\<not> P \<or> Q"}.  The introduction
+  rules @{text "(\<or>I1, 2)"} are replaced by a rule that simulates
+  @{text "(\<or>R)"}: @{text [display] "(\<not> Q \<Longrightarrow> P) \<Longrightarrow> P \<or> Q"}
+
+  The destruction rule @{text "(\<longrightarrow>E)"} is replaced by @{text [display]
+  "(P \<longrightarrow> Q) \<Longrightarrow> (\<not> P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"}
+
+  Quantifier replication also requires special rules.  In classical
+  logic, @{text "\<exists>x. P x"} is equivalent to @{text "\<not> (\<forall>x. \<not> P x)"};
+  the rules @{text "(\<exists>R)"} and @{text "(\<forall>L)"} are dual:
+  \[
+  \infer[@{text "(\<exists>R)"}]{@{text "\<Gamma> \<turnstile> \<Delta>, \<exists>x. P x"}}{@{text "\<Gamma> \<turnstile> \<Delta>, \<exists>x. P x, P t"}}
+  \qquad
+  \infer[@{text "(\<forall>L)"}]{@{text "\<forall>x. P x, \<Gamma> \<turnstile> \<Delta>"}}{@{text "P t, \<forall>x. P x, \<Gamma> \<turnstile> \<Delta>"}}
+  \]
+  Thus both kinds of quantifier may be replicated.  Theorems requiring
+  multiple uses of a universal formula are easy to invent; consider
+  @{text [display] "(\<forall>x. P x \<longrightarrow> P (f x)) \<and> P a \<longrightarrow> P (f\<^sup>n a)"} for any
+  @{text "n > 1"}.  Natural examples of the multiple use of an
+  existential formula are rare; a standard one is @{text "\<exists>x. \<forall>y. P x
+  \<longrightarrow> P y"}.
+
+  Forgoing quantifier replication loses completeness, but gains
+  decidability, since the search space becomes finite.  Many useful
+  theorems can be proved without replication, and the search generally
+  delivers its verdict in a reasonable time.  To adopt this approach,
+  represent the sequent rules @{text "(\<exists>R)"}, @{text "(\<exists>L)"} and
+  @{text "(\<forall>R)"} by @{text "(\<exists>I)"}, @{text "(\<exists>E)"} and @{text "(\<forall>I)"},
+  respectively, and put @{text "(\<forall>E)"} into elimination form: @{text
+  [display] "\<forall>x. P x \<Longrightarrow> (P t \<Longrightarrow> Q) \<Longrightarrow> Q"}
+
+  Elim-resolution with this rule will delete the universal formula
+  after a single use.  To replicate universal quantifiers, replace the
+  rule by @{text [display] "\<forall>x. P x \<Longrightarrow> (P t \<Longrightarrow> \<forall>x. P x \<Longrightarrow> Q) \<Longrightarrow> Q"}
+
+  To replicate existential quantifiers, replace @{text "(\<exists>I)"} by
+  @{text [display] "(\<not> (\<exists>x. P x) \<Longrightarrow> P t) \<Longrightarrow> \<exists>x. P x"}
+
+  All introduction rules mentioned above are also useful in swapped
+  form.
+
+  Replication makes the search space infinite; we must apply the rules
+  with care.  The classical reasoner distinguishes between safe and
+  unsafe rules, applying the latter only when there is no alternative.
+  Depth-first search may well go down a blind alley; best-first search
+  is better behaved in an infinite search space.  However, quantifier
+  replication is too expensive to prove any but the simplest theorems.
+*}
+
+
 subsection {* Basic methods *}
 
 text {*
--- a/doc-src/IsarRef/Thy/document/Generic.tex	Sat Jun 04 19:39:45 2011 +0200
+++ b/doc-src/IsarRef/Thy/document/Generic.tex	Sat Jun 04 22:09:42 2011 +0200
@@ -924,6 +924,254 @@
 }
 \isamarkuptrue%
 %
+\isamarkupsubsection{Introduction%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Although Isabelle is generic, many users will be working in
+  some extension of classical first-order logic.  Isabelle/ZF is built
+  upon theory FOL, while Isabelle/HOL conceptually contains
+  first-order logic as a fragment.  Theorem-proving in predicate logic
+  is undecidable, but many automated strategies have been developed to
+  assist in this task.
+
+  Isabelle's classical reasoner is a generic package that accepts
+  certain information about a logic and delivers a suite of automatic
+  proof tools, based on rules that are classified and declared in the
+  context.  These proof procedures are slow and simplistic compared
+  with high-end automated theorem provers, but they can save
+  considerable time and effort in practice.  They can prove theorems
+  such as Pelletier's \cite{pelletier86} problems 40 and 41 in a few
+  milliseconds (including full proof reconstruction):%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{lemma}\isamarkupfalse%
+\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}y{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ F\ x\ y\ {\isaliteral{5C3C6C6F6E676C65667472696768746172726F773E}{\isasymlongleftrightarrow}}\ F\ x\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}y{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}z{\isaliteral{2E}{\isachardot}}\ F\ z\ y\ {\isaliteral{5C3C6C6F6E676C65667472696768746172726F773E}{\isasymlongleftrightarrow}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ F\ z\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+%
+\isadelimproof
+\ \ %
+\endisadelimproof
+%
+\isatagproof
+\isacommand{by}\isamarkupfalse%
+\ blast%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+\isanewline
+%
+\endisadelimproof
+\isanewline
+\isacommand{lemma}\isamarkupfalse%
+\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}z{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}y{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ f\ x\ y\ {\isaliteral{5C3C6C6F6E676C65667472696768746172726F773E}{\isasymlongleftrightarrow}}\ f\ x\ z\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ f\ x\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}z{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ f\ x\ z{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+%
+\isadelimproof
+\ \ %
+\endisadelimproof
+%
+\isatagproof
+\isacommand{by}\isamarkupfalse%
+\ blast%
+\endisatagproof
+{\isafoldproof}%
+%
+\isadelimproof
+%
+\endisadelimproof
+%
+\begin{isamarkuptext}%
+The proof tools are generic.  They are not restricted to
+  first-order logic, and have been heavily used in the development of
+  the Isabelle/HOL library and applications.  The tactics can be
+  traced, and their components can be called directly; in this manner,
+  any proof can be viewed interactively.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsubsection{The sequent calculus%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Isabelle supports natural deduction, which is easy to use for
+  interactive proof.  But natural deduction does not easily lend
+  itself to automation, and has a bias towards intuitionism.  For
+  certain proofs in classical logic, it can not be called natural.
+  The \emph{sequent calculus}, a generalization of natural deduction,
+  is easier to automate.
+
+  A \textbf{sequent} has the form \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{22}{\isachardoublequote}}}, where \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}{\isaliteral{22}{\isachardoublequote}}}
+  and \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{22}{\isachardoublequote}}} are sets of formulae.\footnote{For first-order
+  logic, sequents can equivalently be made from lists or multisets of
+  formulae.} The sequent \isa{{\isaliteral{22}{\isachardoublequote}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ P\isaliteral{5C3C5E7375623E}{}\isactrlsub m\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub n{\isaliteral{22}{\isachardoublequote}}} is
+  \textbf{valid} if \isa{{\isaliteral{22}{\isachardoublequote}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ P\isaliteral{5C3C5E7375623E}{}\isactrlsub m{\isaliteral{22}{\isachardoublequote}}} implies \isa{{\isaliteral{22}{\isachardoublequote}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C6F723E}{\isasymor}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C6F723E}{\isasymor}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub n{\isaliteral{22}{\isachardoublequote}}}.  Thus \isa{{\isaliteral{22}{\isachardoublequote}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ P\isaliteral{5C3C5E7375623E}{}\isactrlsub m{\isaliteral{22}{\isachardoublequote}}} represent assumptions, each of which
+  is true, while \isa{{\isaliteral{22}{\isachardoublequote}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub n{\isaliteral{22}{\isachardoublequote}}} represent alternative goals.  A
+  sequent is \textbf{basic} if its left and right sides have a common
+  formula, as in \isa{{\isaliteral{22}{\isachardoublequote}}P{\isaliteral{2C}{\isacharcomma}}\ Q\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ Q{\isaliteral{2C}{\isacharcomma}}\ R{\isaliteral{22}{\isachardoublequote}}}; basic sequents are trivially
+  valid.
+
+  Sequent rules are classified as \textbf{right} or \textbf{left},
+  indicating which side of the \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}{\isaliteral{22}{\isachardoublequote}}} symbol they operate on.
+  Rules that operate on the right side are analogous to natural
+  deduction's introduction rules, and left rules are analogous to
+  elimination rules.  The sequent calculus analogue of \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}I{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}
+  is the rule
+  \[
+  \infer[\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}]{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{2C}{\isacharcomma}}\ P\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ Q{\isaliteral{22}{\isachardoublequote}}}}{\isa{{\isaliteral{22}{\isachardoublequote}}P{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{2C}{\isacharcomma}}\ Q{\isaliteral{22}{\isachardoublequote}}}}
+  \]
+  Applying the rule backwards, this breaks down some implication on
+  the right side of a sequent; \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}{\isaliteral{22}{\isachardoublequote}}} and \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{22}{\isachardoublequote}}} stand for
+  the sets of formulae that are unaffected by the inference.  The
+  analogue of the pair \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6F723E}{\isasymor}}I{\isadigit{1}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} and \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6F723E}{\isasymor}}I{\isadigit{2}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} is the
+  single rule
+  \[
+  \infer[\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6F723E}{\isasymor}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}]{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{2C}{\isacharcomma}}\ P\ {\isaliteral{5C3C6F723E}{\isasymor}}\ Q{\isaliteral{22}{\isachardoublequote}}}}{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{2C}{\isacharcomma}}\ P{\isaliteral{2C}{\isacharcomma}}\ Q{\isaliteral{22}{\isachardoublequote}}}}
+  \]
+  This breaks down some disjunction on the right side, replacing it by
+  both disjuncts.  Thus, the sequent calculus is a kind of
+  multiple-conclusion logic.
+
+  To illustrate the use of multiple formulae on the right, let us
+  prove the classical theorem \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}P\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6F723E}{\isasymor}}\ {\isaliteral{28}{\isacharparenleft}}Q\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ P{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}.  Working
+  backwards, we reduce this formula to a basic sequent:
+  \[
+  \infer[\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6F723E}{\isasymor}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}]{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{28}{\isacharparenleft}}P\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C6F723E}{\isasymor}}\ {\isaliteral{28}{\isacharparenleft}}Q\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ P{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}}
+    {\infer[\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}]{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{28}{\isacharparenleft}}P\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{28}{\isacharparenleft}}Q\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ P{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}}
+      {\infer[\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}]{\isa{{\isaliteral{22}{\isachardoublequote}}P\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ Q{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{28}{\isacharparenleft}}Q\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ P{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}}
+        {\isa{{\isaliteral{22}{\isachardoublequote}}P{\isaliteral{2C}{\isacharcomma}}\ Q\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ Q{\isaliteral{2C}{\isacharcomma}}\ P{\isaliteral{22}{\isachardoublequote}}}}}}
+  \]
+
+  This example is typical of the sequent calculus: start with the
+  desired theorem and apply rules backwards in a fairly arbitrary
+  manner.  This yields a surprisingly effective proof procedure.
+  Quantifiers add only few complications, since Isabelle handles
+  parameters and schematic variables.  See \cite[Chapter
+  10]{paulson-ml2} for further discussion.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsubsection{Simulating sequents by natural deduction%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Isabelle can represent sequents directly, as in the
+  object-logic LK.  But natural deduction is easier to work with, and
+  most object-logics employ it.  Fortunately, we can simulate the
+  sequent \isa{{\isaliteral{22}{\isachardoublequote}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ P\isaliteral{5C3C5E7375623E}{}\isactrlsub m\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub n{\isaliteral{22}{\isachardoublequote}}} by the Isabelle formula
+  \isa{{\isaliteral{22}{\isachardoublequote}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\isaliteral{5C3C5E7375623E}{}\isactrlsub m\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{2E}{\isachardot}}{\isaliteral{2E}{\isachardot}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub n\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{22}{\isachardoublequote}}} where the order of
+  the assumptions and the choice of \isa{{\isaliteral{22}{\isachardoublequote}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{22}{\isachardoublequote}}} are arbitrary.
+  Elim-resolution plays a key role in simulating sequent proofs.
+
+  We can easily handle reasoning on the left.  Elim-resolution with
+  the rules \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6F723E}{\isasymor}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}, \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C626F74746F6D3E}{\isasymbottom}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} and \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} achieves
+  a similar effect as the corresponding sequent rules.  For the other
+  connectives, we use sequent-style elimination rules instead of
+  destruction rules such as \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C616E643E}{\isasymand}}E{\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} and \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}.
+  But note that the rule \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}L{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} has no effect under our
+  representation of sequents!
+  \[
+  \infer[\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}L{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}]{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ P{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{22}{\isachardoublequote}}}}{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{2C}{\isacharcomma}}\ P{\isaliteral{22}{\isachardoublequote}}}}
+  \]
+
+  What about reasoning on the right?  Introduction rules can only
+  affect the formula in the conclusion, namely \isa{{\isaliteral{22}{\isachardoublequote}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{22}{\isachardoublequote}}}.  The
+  other right-side formulae are represented as negated assumptions,
+  \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{2}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub n{\isaliteral{22}{\isachardoublequote}}}.  In order to operate on one of these, it
+  must first be exchanged with \isa{{\isaliteral{22}{\isachardoublequote}}Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}{\isaliteral{22}{\isachardoublequote}}}.  Elim-resolution with the
+  \isa{swap} rule has this effect: \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ P\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ R\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ R{\isaliteral{22}{\isachardoublequote}}}
+
+  To ensure that swaps occur only when necessary, each introduction
+  rule is converted into a swapped form: it is resolved with the
+  second premise of \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}swap{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}.  The swapped form of \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C616E643E}{\isasymand}}I{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}, which might be called \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}{\isaliteral{5C3C616E643E}{\isasymand}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}, is
+  \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}P\ {\isaliteral{5C3C616E643E}{\isasymand}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ R\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ R\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ R{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  Similarly, the swapped form of \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}I{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} is
+  \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}P\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ R\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ R{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  Swapped introduction rules are applied using elim-resolution, which
+  deletes the negated formula.  Our representation of sequents also
+  requires the use of ordinary introduction rules.  If we had no
+  regard for readability of intermediate goal states, we could treat
+  the right side more uniformly by representing sequents as \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}P\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\isaliteral{5C3C5E7375623E}{}\isactrlsub m\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub {\isadigit{1}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ Q\isaliteral{5C3C5E7375623E}{}\isactrlsub n\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C626F74746F6D3E}{\isasymbottom}}{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsubsection{Extra rules for the sequent calculus%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+As mentioned, destruction rules such as \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C616E643E}{\isasymand}}E{\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} and
+  \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} must be replaced by sequent-style elimination rules.
+  In addition, we need rules to embody the classical equivalence
+  between \isa{{\isaliteral{22}{\isachardoublequote}}P\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ Q{\isaliteral{22}{\isachardoublequote}}} and \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ P\ {\isaliteral{5C3C6F723E}{\isasymor}}\ Q{\isaliteral{22}{\isachardoublequote}}}.  The introduction
+  rules \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6F723E}{\isasymor}}I{\isadigit{1}}{\isaliteral{2C}{\isacharcomma}}\ {\isadigit{2}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} are replaced by a rule that simulates
+  \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6F723E}{\isasymor}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}: \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ Q\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ {\isaliteral{5C3C6F723E}{\isasymor}}\ Q{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  The destruction rule \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} is replaced by \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}P\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ P\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ R{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}Q\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ R{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ R{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  Quantifier replication also requires special rules.  In classical
+  logic, \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{22}{\isachardoublequote}}} is equivalent to \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ P\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}};
+  the rules \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} and \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}L{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} are dual:
+  \[
+  \infer[\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}]{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{22}{\isachardoublequote}}}}{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{2C}{\isacharcomma}}\ P\ t{\isaliteral{22}{\isachardoublequote}}}}
+  \qquad
+  \infer[\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}L{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}]{\isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{22}{\isachardoublequote}}}}{\isa{{\isaliteral{22}{\isachardoublequote}}P\ t{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{2C}{\isacharcomma}}\ {\isaliteral{5C3C47616D6D613E}{\isasymGamma}}\ {\isaliteral{5C3C7475726E7374696C653E}{\isasymturnstile}}\ {\isaliteral{5C3C44656C74613E}{\isasymDelta}}{\isaliteral{22}{\isachardoublequote}}}}
+  \]
+  Thus both kinds of quantifier may be replicated.  Theorems requiring
+  multiple uses of a universal formula are easy to invent; consider
+  \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ P\ x\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ P\ {\isaliteral{28}{\isacharparenleft}}f\ x{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ P\ a\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ P\ {\isaliteral{28}{\isacharparenleft}}f\isaliteral{5C3C5E7375703E}{}\isactrlsup n\ a{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle} for any
+  \isa{{\isaliteral{22}{\isachardoublequote}}n\ {\isaliteral{3E}{\isachargreater}}\ {\isadigit{1}}{\isaliteral{22}{\isachardoublequote}}}.  Natural examples of the multiple use of an
+  existential formula are rare; a standard one is \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}y{\isaliteral{2E}{\isachardot}}\ P\ x\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ P\ y{\isaliteral{22}{\isachardoublequote}}}.
+
+  Forgoing quantifier replication loses completeness, but gains
+  decidability, since the search space becomes finite.  Many useful
+  theorems can be proved without replication, and the search generally
+  delivers its verdict in a reasonable time.  To adopt this approach,
+  represent the sequent rules \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}, \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}L{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} and
+  \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}R{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} by \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}I{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}}, \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} and \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}I{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}},
+  respectively, and put \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}E{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} into elimination form: \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ P\ x\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}P\ t\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Q{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  Elim-resolution with this rule will delete the universal formula
+  after a single use.  To replicate universal quantifiers, replace the
+  rule by \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ P\ x\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{28}{\isacharparenleft}}P\ t\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}x{\isaliteral{2E}{\isachardot}}\ P\ x\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Q{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Q{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  To replicate existential quantifiers, replace \isa{{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}I{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequote}}} by
+  \begin{isabelle}%
+{\isaliteral{22}{\isachardoublequote}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}x{\isaliteral{2E}{\isachardot}}\ P\ x{\isaliteral{22}{\isachardoublequote}}%
+\end{isabelle}
+
+  All introduction rules mentioned above are also useful in swapped
+  form.
+
+  Replication makes the search space infinite; we must apply the rules
+  with care.  The classical reasoner distinguishes between safe and
+  unsafe rules, applying the latter only when there is no alternative.
+  Depth-first search may well go down a blind alley; best-first search
+  is better behaved in an infinite search space.  However, quantifier
+  replication is too expensive to prove any but the simplest theorems.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
 \isamarkupsubsection{Basic methods%
 }
 \isamarkuptrue%
--- a/doc-src/Ref/classical.tex	Sat Jun 04 19:39:45 2011 +0200
+++ b/doc-src/Ref/classical.tex	Sat Jun 04 22:09:42 2011 +0200
@@ -3,186 +3,6 @@
 \index{classical reasoner|(}
 \newcommand\ainfer[2]{\begin{array}{r@{\,}l}#2\\ \hline#1\end{array}}
 
-Although Isabelle is generic, many users will be working in some extension of
-classical first-order logic.  Isabelle's set theory~ZF is built upon
-theory~FOL, while HOL conceptually contains first-order logic as a fragment.
-Theorem-proving in predicate logic is undecidable, but many researchers have
-developed strategies to assist in this task.
-
-Isabelle's classical reasoner is an \ML{} functor that accepts certain
-information about a logic and delivers a suite of automatic tactics.  Each
-tactic takes a collection of rules and executes a simple, non-clausal proof
-procedure.  They are slow and simplistic compared with resolution theorem
-provers, but they can save considerable time and effort.  They can prove
-theorems such as Pelletier's~\cite{pelletier86} problems~40 and~41 in
-seconds:
-\[ (\exists y. \forall x. J(y,x) \bimp \neg J(x,x))  
-   \imp  \neg (\forall x. \exists y. \forall z. J(z,y) \bimp \neg J(z,x)) \]
-\[ (\forall z. \exists y. \forall x. F(x,y) \bimp F(x,z) \conj \neg F(x,x))
-   \imp \neg (\exists z. \forall x. F(x,z))  
-\]
-%
-The tactics are generic.  They are not restricted to first-order logic, and
-have been heavily used in the development of Isabelle's set theory.  Few
-interactive proof assistants provide this much automation.  The tactics can
-be traced, and their components can be called directly; in this manner,
-any proof can be viewed interactively.
-
-We shall first discuss the underlying principles, then present the classical
-reasoner.  Finally, we shall see how to instantiate it for new logics.  The
-logics FOL, ZF, HOL and HOLCF have it already installed.
-
-
-\section{The sequent calculus}
-\index{sequent calculus}
-Isabelle supports natural deduction, which is easy to use for interactive
-proof.  But natural deduction does not easily lend itself to automation,
-and has a bias towards intuitionism.  For certain proofs in classical
-logic, it can not be called natural.  The {\bf sequent calculus}, a
-generalization of natural deduction, is easier to automate.
-
-A {\bf sequent} has the form $\Gamma\turn\Delta$, where $\Gamma$
-and~$\Delta$ are sets of formulae.%
-\footnote{For first-order logic, sequents can equivalently be made from
-  lists or multisets of formulae.} The sequent
-\[ P@1,\ldots,P@m\turn Q@1,\ldots,Q@n \]
-is {\bf valid} if $P@1\conj\ldots\conj P@m$ implies $Q@1\disj\ldots\disj
-Q@n$.  Thus $P@1,\ldots,P@m$ represent assumptions, each of which is true,
-while $Q@1,\ldots,Q@n$ represent alternative goals.  A sequent is {\bf
-basic} if its left and right sides have a common formula, as in $P,Q\turn
-Q,R$; basic sequents are trivially valid.
-
-Sequent rules are classified as {\bf right} or {\bf left}, indicating which
-side of the $\turn$~symbol they operate on.  Rules that operate on the
-right side are analogous to natural deduction's introduction rules, and
-left rules are analogous to elimination rules.  
-Recall the natural deduction rules for
-  first-order logic, 
-\iflabelundefined{fol-fig}{from {\it Introduction to Isabelle}}%
-                          {Fig.\ts\ref{fol-fig}}.
-The sequent calculus analogue of~$({\imp}I)$ is the rule
-$$
-\ainfer{\Gamma &\turn \Delta, P\imp Q}{P,\Gamma &\turn \Delta,Q}
-\eqno({\imp}R)
-$$
-This breaks down some implication on the right side of a sequent; $\Gamma$
-and $\Delta$ stand for the sets of formulae that are unaffected by the
-inference.  The analogue of the pair~$({\disj}I1)$ and~$({\disj}I2)$ is the
-single rule 
-$$
-\ainfer{\Gamma &\turn \Delta, P\disj Q}{\Gamma &\turn \Delta,P,Q}
-\eqno({\disj}R)
-$$
-This breaks down some disjunction on the right side, replacing it by both
-disjuncts.  Thus, the sequent calculus is a kind of multiple-conclusion logic.
-
-To illustrate the use of multiple formulae on the right, let us prove
-the classical theorem $(P\imp Q)\disj(Q\imp P)$.  Working backwards, we
-reduce this formula to a basic sequent:
-\[ \infer[(\disj)R]{\turn(P\imp Q)\disj(Q\imp P)}
-   {\infer[(\imp)R]{\turn(P\imp Q), (Q\imp P)\;}
-    {\infer[(\imp)R]{P \turn Q, (Q\imp P)\qquad}
-                    {P, Q \turn Q, P\qquad\qquad}}}
-\]
-This example is typical of the sequent calculus: start with the desired
-theorem and apply rules backwards in a fairly arbitrary manner.  This yields a
-surprisingly effective proof procedure.  Quantifiers add few complications,
-since Isabelle handles parameters and schematic variables.  See Chapter~10
-of {\em ML for the Working Programmer}~\cite{paulson-ml2} for further
-discussion.
-
-
-\section{Simulating sequents by natural deduction}
-Isabelle can represent sequents directly, as in the object-logic~\texttt{LK}\@.
-But natural deduction is easier to work with, and most object-logics employ
-it.  Fortunately, we can simulate the sequent $P@1,\ldots,P@m\turn
-Q@1,\ldots,Q@n$ by the Isabelle formula
-\[ \List{P@1;\ldots;P@m; \neg Q@2;\ldots; \neg Q@n}\Imp Q@1, \]
-where the order of the assumptions and the choice of~$Q@1$ are arbitrary.
-Elim-resolution plays a key role in simulating sequent proofs.
-
-We can easily handle reasoning on the left.
-As discussed in
-\iflabelundefined{destruct}{{\it Introduction to Isabelle}}{{\S}\ref{destruct}}, 
-elim-resolution with the rules $(\disj E)$, $(\bot E)$ and $(\exists E)$
-achieves a similar effect as the corresponding sequent rules.  For the
-other connectives, we use sequent-style elimination rules instead of
-destruction rules such as $({\conj}E1,2)$ and $(\forall E)$.  But note that
-the rule $(\neg L)$ has no effect under our representation of sequents!
-$$
-\ainfer{\neg P,\Gamma &\turn \Delta}{\Gamma &\turn \Delta,P}\eqno({\neg}L)
-$$
-What about reasoning on the right?  Introduction rules can only affect the
-formula in the conclusion, namely~$Q@1$.  The other right-side formulae are
-represented as negated assumptions, $\neg Q@2$, \ldots,~$\neg Q@n$.  
-\index{assumptions!negated}
-In order to operate on one of these, it must first be exchanged with~$Q@1$.
-Elim-resolution with the {\bf swap} rule has this effect:
-$$ \List{\neg P; \; \neg R\Imp P} \Imp R   \eqno(swap)  $$
-To ensure that swaps occur only when necessary, each introduction rule is
-converted into a swapped form: it is resolved with the second premise
-of~$(swap)$.  The swapped form of~$({\conj}I)$, which might be
-called~$({\neg\conj}E)$, is
-\[ \List{\neg(P\conj Q); \; \neg R\Imp P; \; \neg R\Imp Q} \Imp R. \]
-Similarly, the swapped form of~$({\imp}I)$ is
-\[ \List{\neg(P\imp Q); \; \List{\neg R;P}\Imp Q} \Imp R  \]
-Swapped introduction rules are applied using elim-resolution, which deletes
-the negated formula.  Our representation of sequents also requires the use
-of ordinary introduction rules.  If we had no regard for readability, we
-could treat the right side more uniformly by representing sequents as
-\[ \List{P@1;\ldots;P@m; \neg Q@1;\ldots; \neg Q@n}\Imp \bot. \]
-
-
-\section{Extra rules for the sequent calculus}
-As mentioned, destruction rules such as $({\conj}E1,2)$ and $(\forall E)$
-must be replaced by sequent-style elimination rules.  In addition, we need
-rules to embody the classical equivalence between $P\imp Q$ and $\neg P\disj
-Q$.  The introduction rules~$({\disj}I1,2)$ are replaced by a rule that
-simulates $({\disj}R)$:
-\[ (\neg Q\Imp P) \Imp P\disj Q \]
-The destruction rule $({\imp}E)$ is replaced by
-\[ \List{P\imp Q;\; \neg P\Imp R;\; Q\Imp R} \Imp R. \]
-Quantifier replication also requires special rules.  In classical logic,
-$\exists x{.}P$ is equivalent to $\neg\forall x{.}\neg P$; the rules
-$(\exists R)$ and $(\forall L)$ are dual:
-\[ \ainfer{\Gamma &\turn \Delta, \exists x{.}P}
-          {\Gamma &\turn \Delta, \exists x{.}P, P[t/x]} \; (\exists R)
-   \qquad
-   \ainfer{\forall x{.}P, \Gamma &\turn \Delta}
-          {P[t/x], \forall x{.}P, \Gamma &\turn \Delta} \; (\forall L)
-\]
-Thus both kinds of quantifier may be replicated.  Theorems requiring
-multiple uses of a universal formula are easy to invent; consider 
-\[ (\forall x.P(x)\imp P(f(x))) \conj P(a) \imp P(f^n(a)), \]
-for any~$n>1$.  Natural examples of the multiple use of an existential
-formula are rare; a standard one is $\exists x.\forall y. P(x)\imp P(y)$.
-
-Forgoing quantifier replication loses completeness, but gains decidability,
-since the search space becomes finite.  Many useful theorems can be proved
-without replication, and the search generally delivers its verdict in a
-reasonable time.  To adopt this approach, represent the sequent rules
-$(\exists R)$, $(\exists L)$ and $(\forall R)$ by $(\exists I)$, $(\exists
-E)$ and $(\forall I)$, respectively, and put $(\forall E)$ into elimination
-form:
-$$ \List{\forall x{.}P(x); P(t)\Imp Q} \Imp Q    \eqno(\forall E@2) $$
-Elim-resolution with this rule will delete the universal formula after a
-single use.  To replicate universal quantifiers, replace the rule by
-$$
-\List{\forall x{.}P(x);\; \List{P(t); \forall x{.}P(x)}\Imp Q} \Imp Q.
-\eqno(\forall E@3)
-$$
-To replicate existential quantifiers, replace $(\exists I)$ by
-\[ \List{\neg(\exists x{.}P(x)) \Imp P(t)} \Imp \exists x{.}P(x). \]
-All introduction rules mentioned above are also useful in swapped form.
-
-Replication makes the search space infinite; we must apply the rules with
-care.  The classical reasoner distinguishes between safe and unsafe
-rules, applying the latter only when there is no alternative.  Depth-first
-search may well go down a blind alley; best-first search is better behaved
-in an infinite search space.  However, quantifier replication is too
-expensive to prove any but the simplest theorems.
-
-
 \section{Classical rule sets}
 \index{classical sets}
 Each automatic tactic takes a {\bf classical set} --- a collection of