--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Archimedean_Field.thy Wed Feb 25 11:26:01 2009 -0800
@@ -0,0 +1,400 @@
+(* Title: Archimedean_Field.thy
+ Author: Brian Huffman
+*)
+
+header {* Archimedean Fields, Floor and Ceiling Functions *}
+
+theory Archimedean_Field
+imports Main
+begin
+
+subsection {* Class of Archimedean fields *}
+
+text {* Archimedean fields have no infinite elements. *}
+
+class archimedean_field = ordered_field + number_ring +
+ assumes ex_le_of_int: "\<exists>z. x \<le> of_int z"
+
+lemma ex_less_of_int:
+ fixes x :: "'a::archimedean_field" shows "\<exists>z. x < of_int z"
+proof -
+ from ex_le_of_int obtain z where "x \<le> of_int z" ..
+ then have "x < of_int (z + 1)" by simp
+ then show ?thesis ..
+qed
+
+lemma ex_of_int_less:
+ fixes x :: "'a::archimedean_field" shows "\<exists>z. of_int z < x"
+proof -
+ from ex_less_of_int obtain z where "- x < of_int z" ..
+ then have "of_int (- z) < x" by simp
+ then show ?thesis ..
+qed
+
+lemma ex_less_of_nat:
+ fixes x :: "'a::archimedean_field" shows "\<exists>n. x < of_nat n"
+proof -
+ obtain z where "x < of_int z" using ex_less_of_int ..
+ also have "\<dots> \<le> of_int (int (nat z))" by simp
+ also have "\<dots> = of_nat (nat z)" by (simp only: of_int_of_nat_eq)
+ finally show ?thesis ..
+qed
+
+lemma ex_le_of_nat:
+ fixes x :: "'a::archimedean_field" shows "\<exists>n. x \<le> of_nat n"
+proof -
+ obtain n where "x < of_nat n" using ex_less_of_nat ..
+ then have "x \<le> of_nat n" by simp
+ then show ?thesis ..
+qed
+
+text {* Archimedean fields have no infinitesimal elements. *}
+
+lemma ex_inverse_of_nat_Suc_less:
+ fixes x :: "'a::archimedean_field"
+ assumes "0 < x" shows "\<exists>n. inverse (of_nat (Suc n)) < x"
+proof -
+ from `0 < x` have "0 < inverse x"
+ by (rule positive_imp_inverse_positive)
+ obtain n where "inverse x < of_nat n"
+ using ex_less_of_nat ..
+ then obtain m where "inverse x < of_nat (Suc m)"
+ using `0 < inverse x` by (cases n) (simp_all del: of_nat_Suc)
+ then have "inverse (of_nat (Suc m)) < inverse (inverse x)"
+ using `0 < inverse x` by (rule less_imp_inverse_less)
+ then have "inverse (of_nat (Suc m)) < x"
+ using `0 < x` by (simp add: nonzero_inverse_inverse_eq)
+ then show ?thesis ..
+qed
+
+lemma ex_inverse_of_nat_less:
+ fixes x :: "'a::archimedean_field"
+ assumes "0 < x" shows "\<exists>n>0. inverse (of_nat n) < x"
+ using ex_inverse_of_nat_Suc_less [OF `0 < x`] by auto
+
+lemma ex_less_of_nat_mult:
+ fixes x :: "'a::archimedean_field"
+ assumes "0 < x" shows "\<exists>n. y < of_nat n * x"
+proof -
+ obtain n where "y / x < of_nat n" using ex_less_of_nat ..
+ with `0 < x` have "y < of_nat n * x" by (simp add: pos_divide_less_eq)
+ then show ?thesis ..
+qed
+
+
+subsection {* Existence and uniqueness of floor function *}
+
+lemma exists_least_lemma:
+ assumes "\<not> P 0" and "\<exists>n. P n"
+ shows "\<exists>n. \<not> P n \<and> P (Suc n)"
+proof -
+ from `\<exists>n. P n` have "P (Least P)" by (rule LeastI_ex)
+ with `\<not> P 0` obtain n where "Least P = Suc n"
+ by (cases "Least P") auto
+ then have "n < Least P" by simp
+ then have "\<not> P n" by (rule not_less_Least)
+ then have "\<not> P n \<and> P (Suc n)"
+ using `P (Least P)` `Least P = Suc n` by simp
+ then show ?thesis ..
+qed
+
+lemma floor_exists:
+ fixes x :: "'a::archimedean_field"
+ shows "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
+proof (cases)
+ assume "0 \<le> x"
+ then have "\<not> x < of_nat 0" by simp
+ then have "\<exists>n. \<not> x < of_nat n \<and> x < of_nat (Suc n)"
+ using ex_less_of_nat by (rule exists_least_lemma)
+ then obtain n where "\<not> x < of_nat n \<and> x < of_nat (Suc n)" ..
+ then have "of_int (int n) \<le> x \<and> x < of_int (int n + 1)" by simp
+ then show ?thesis ..
+next
+ assume "\<not> 0 \<le> x"
+ then have "\<not> - x \<le> of_nat 0" by simp
+ then have "\<exists>n. \<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)"
+ using ex_le_of_nat by (rule exists_least_lemma)
+ then obtain n where "\<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" ..
+ then have "of_int (- int n - 1) \<le> x \<and> x < of_int (- int n - 1 + 1)" by simp
+ then show ?thesis ..
+qed
+
+lemma floor_exists1:
+ fixes x :: "'a::archimedean_field"
+ shows "\<exists>!z. of_int z \<le> x \<and> x < of_int (z + 1)"
+proof (rule ex_ex1I)
+ show "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
+ by (rule floor_exists)
+next
+ fix y z assume
+ "of_int y \<le> x \<and> x < of_int (y + 1)"
+ "of_int z \<le> x \<and> x < of_int (z + 1)"
+ then have
+ "of_int y \<le> x" "x < of_int (y + 1)"
+ "of_int z \<le> x" "x < of_int (z + 1)"
+ by simp_all
+ from le_less_trans [OF `of_int y \<le> x` `x < of_int (z + 1)`]
+ le_less_trans [OF `of_int z \<le> x` `x < of_int (y + 1)`]
+ show "y = z" by (simp del: of_int_add)
+qed
+
+
+subsection {* Floor function *}
+
+definition
+ floor :: "'a::archimedean_field \<Rightarrow> int" where
+ [code del]: "floor x = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
+
+notation (xsymbols)
+ floor ("\<lfloor>_\<rfloor>")
+
+notation (HTML output)
+ floor ("\<lfloor>_\<rfloor>")
+
+lemma floor_correct: "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
+ unfolding floor_def using floor_exists1 by (rule theI')
+
+lemma floor_unique: "\<lbrakk>of_int z \<le> x; x < of_int z + 1\<rbrakk> \<Longrightarrow> floor x = z"
+ using floor_correct [of x] floor_exists1 [of x] by auto
+
+lemma of_int_floor_le: "of_int (floor x) \<le> x"
+ using floor_correct ..
+
+lemma le_floor_iff: "z \<le> floor x \<longleftrightarrow> of_int z \<le> x"
+proof
+ assume "z \<le> floor x"
+ then have "(of_int z :: 'a) \<le> of_int (floor x)" by simp
+ also have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
+ finally show "of_int z \<le> x" .
+next
+ assume "of_int z \<le> x"
+ also have "x < of_int (floor x + 1)" using floor_correct ..
+ finally show "z \<le> floor x" by (simp del: of_int_add)
+qed
+
+lemma floor_less_iff: "floor x < z \<longleftrightarrow> x < of_int z"
+ by (simp add: not_le [symmetric] le_floor_iff)
+
+lemma less_floor_iff: "z < floor x \<longleftrightarrow> of_int z + 1 \<le> x"
+ using le_floor_iff [of "z + 1" x] by auto
+
+lemma floor_le_iff: "floor x \<le> z \<longleftrightarrow> x < of_int z + 1"
+ by (simp add: not_less [symmetric] less_floor_iff)
+
+lemma floor_mono: assumes "x \<le> y" shows "floor x \<le> floor y"
+proof -
+ have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
+ also note `x \<le> y`
+ finally show ?thesis by (simp add: le_floor_iff)
+qed
+
+lemma floor_less_cancel: "floor x < floor y \<Longrightarrow> x < y"
+ by (auto simp add: not_le [symmetric] floor_mono)
+
+lemma floor_of_int [simp]: "floor (of_int z) = z"
+ by (rule floor_unique) simp_all
+
+lemma floor_of_nat [simp]: "floor (of_nat n) = int n"
+ using floor_of_int [of "of_nat n"] by simp
+
+text {* Floor with numerals *}
+
+lemma floor_zero [simp]: "floor 0 = 0"
+ using floor_of_int [of 0] by simp
+
+lemma floor_one [simp]: "floor 1 = 1"
+ using floor_of_int [of 1] by simp
+
+lemma floor_number_of [simp]: "floor (number_of v) = number_of v"
+ using floor_of_int [of "number_of v"] by simp
+
+lemma zero_le_floor [simp]: "0 \<le> floor x \<longleftrightarrow> 0 \<le> x"
+ by (simp add: le_floor_iff)
+
+lemma one_le_floor [simp]: "1 \<le> floor x \<longleftrightarrow> 1 \<le> x"
+ by (simp add: le_floor_iff)
+
+lemma number_of_le_floor [simp]: "number_of v \<le> floor x \<longleftrightarrow> number_of v \<le> x"
+ by (simp add: le_floor_iff)
+
+lemma zero_less_floor [simp]: "0 < floor x \<longleftrightarrow> 1 \<le> x"
+ by (simp add: less_floor_iff)
+
+lemma one_less_floor [simp]: "1 < floor x \<longleftrightarrow> 2 \<le> x"
+ by (simp add: less_floor_iff)
+
+lemma number_of_less_floor [simp]:
+ "number_of v < floor x \<longleftrightarrow> number_of v + 1 \<le> x"
+ by (simp add: less_floor_iff)
+
+lemma floor_le_zero [simp]: "floor x \<le> 0 \<longleftrightarrow> x < 1"
+ by (simp add: floor_le_iff)
+
+lemma floor_le_one [simp]: "floor x \<le> 1 \<longleftrightarrow> x < 2"
+ by (simp add: floor_le_iff)
+
+lemma floor_le_number_of [simp]:
+ "floor x \<le> number_of v \<longleftrightarrow> x < number_of v + 1"
+ by (simp add: floor_le_iff)
+
+lemma floor_less_zero [simp]: "floor x < 0 \<longleftrightarrow> x < 0"
+ by (simp add: floor_less_iff)
+
+lemma floor_less_one [simp]: "floor x < 1 \<longleftrightarrow> x < 1"
+ by (simp add: floor_less_iff)
+
+lemma floor_less_number_of [simp]:
+ "floor x < number_of v \<longleftrightarrow> x < number_of v"
+ by (simp add: floor_less_iff)
+
+text {* Addition and subtraction of integers *}
+
+lemma floor_add_of_int [simp]: "floor (x + of_int z) = floor x + z"
+ using floor_correct [of x] by (simp add: floor_unique)
+
+lemma floor_add_number_of [simp]:
+ "floor (x + number_of v) = floor x + number_of v"
+ using floor_add_of_int [of x "number_of v"] by simp
+
+lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1"
+ using floor_add_of_int [of x 1] by simp
+
+lemma floor_diff_of_int [simp]: "floor (x - of_int z) = floor x - z"
+ using floor_add_of_int [of x "- z"] by (simp add: algebra_simps)
+
+lemma floor_diff_number_of [simp]:
+ "floor (x - number_of v) = floor x - number_of v"
+ using floor_diff_of_int [of x "number_of v"] by simp
+
+lemma floor_diff_one [simp]: "floor (x - 1) = floor x - 1"
+ using floor_diff_of_int [of x 1] by simp
+
+
+subsection {* Ceiling function *}
+
+definition
+ ceiling :: "'a::archimedean_field \<Rightarrow> int" where
+ [code del]: "ceiling x = - floor (- x)"
+
+notation (xsymbols)
+ ceiling ("\<lceil>_\<rceil>")
+
+notation (HTML output)
+ ceiling ("\<lceil>_\<rceil>")
+
+lemma ceiling_correct: "of_int (ceiling x) - 1 < x \<and> x \<le> of_int (ceiling x)"
+ unfolding ceiling_def using floor_correct [of "- x"] by simp
+
+lemma ceiling_unique: "\<lbrakk>of_int z - 1 < x; x \<le> of_int z\<rbrakk> \<Longrightarrow> ceiling x = z"
+ unfolding ceiling_def using floor_unique [of "- z" "- x"] by simp
+
+lemma le_of_int_ceiling: "x \<le> of_int (ceiling x)"
+ using ceiling_correct ..
+
+lemma ceiling_le_iff: "ceiling x \<le> z \<longleftrightarrow> x \<le> of_int z"
+ unfolding ceiling_def using le_floor_iff [of "- z" "- x"] by auto
+
+lemma less_ceiling_iff: "z < ceiling x \<longleftrightarrow> of_int z < x"
+ by (simp add: not_le [symmetric] ceiling_le_iff)
+
+lemma ceiling_less_iff: "ceiling x < z \<longleftrightarrow> x \<le> of_int z - 1"
+ using ceiling_le_iff [of x "z - 1"] by simp
+
+lemma le_ceiling_iff: "z \<le> ceiling x \<longleftrightarrow> of_int z - 1 < x"
+ by (simp add: not_less [symmetric] ceiling_less_iff)
+
+lemma ceiling_mono: "x \<ge> y \<Longrightarrow> ceiling x \<ge> ceiling y"
+ unfolding ceiling_def by (simp add: floor_mono)
+
+lemma ceiling_less_cancel: "ceiling x < ceiling y \<Longrightarrow> x < y"
+ by (auto simp add: not_le [symmetric] ceiling_mono)
+
+lemma ceiling_of_int [simp]: "ceiling (of_int z) = z"
+ by (rule ceiling_unique) simp_all
+
+lemma ceiling_of_nat [simp]: "ceiling (of_nat n) = int n"
+ using ceiling_of_int [of "of_nat n"] by simp
+
+text {* Ceiling with numerals *}
+
+lemma ceiling_zero [simp]: "ceiling 0 = 0"
+ using ceiling_of_int [of 0] by simp
+
+lemma ceiling_one [simp]: "ceiling 1 = 1"
+ using ceiling_of_int [of 1] by simp
+
+lemma ceiling_number_of [simp]: "ceiling (number_of v) = number_of v"
+ using ceiling_of_int [of "number_of v"] by simp
+
+lemma ceiling_le_zero [simp]: "ceiling x \<le> 0 \<longleftrightarrow> x \<le> 0"
+ by (simp add: ceiling_le_iff)
+
+lemma ceiling_le_one [simp]: "ceiling x \<le> 1 \<longleftrightarrow> x \<le> 1"
+ by (simp add: ceiling_le_iff)
+
+lemma ceiling_le_number_of [simp]:
+ "ceiling x \<le> number_of v \<longleftrightarrow> x \<le> number_of v"
+ by (simp add: ceiling_le_iff)
+
+lemma ceiling_less_zero [simp]: "ceiling x < 0 \<longleftrightarrow> x \<le> -1"
+ by (simp add: ceiling_less_iff)
+
+lemma ceiling_less_one [simp]: "ceiling x < 1 \<longleftrightarrow> x \<le> 0"
+ by (simp add: ceiling_less_iff)
+
+lemma ceiling_less_number_of [simp]:
+ "ceiling x < number_of v \<longleftrightarrow> x \<le> number_of v - 1"
+ by (simp add: ceiling_less_iff)
+
+lemma zero_le_ceiling [simp]: "0 \<le> ceiling x \<longleftrightarrow> -1 < x"
+ by (simp add: le_ceiling_iff)
+
+lemma one_le_ceiling [simp]: "1 \<le> ceiling x \<longleftrightarrow> 0 < x"
+ by (simp add: le_ceiling_iff)
+
+lemma number_of_le_ceiling [simp]:
+ "number_of v \<le> ceiling x\<longleftrightarrow> number_of v - 1 < x"
+ by (simp add: le_ceiling_iff)
+
+lemma zero_less_ceiling [simp]: "0 < ceiling x \<longleftrightarrow> 0 < x"
+ by (simp add: less_ceiling_iff)
+
+lemma one_less_ceiling [simp]: "1 < ceiling x \<longleftrightarrow> 1 < x"
+ by (simp add: less_ceiling_iff)
+
+lemma number_of_less_ceiling [simp]:
+ "number_of v < ceiling x \<longleftrightarrow> number_of v < x"
+ by (simp add: less_ceiling_iff)
+
+text {* Addition and subtraction of integers *}
+
+lemma ceiling_add_of_int [simp]: "ceiling (x + of_int z) = ceiling x + z"
+ using ceiling_correct [of x] by (simp add: ceiling_unique)
+
+lemma ceiling_add_number_of [simp]:
+ "ceiling (x + number_of v) = ceiling x + number_of v"
+ using ceiling_add_of_int [of x "number_of v"] by simp
+
+lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1"
+ using ceiling_add_of_int [of x 1] by simp
+
+lemma ceiling_diff_of_int [simp]: "ceiling (x - of_int z) = ceiling x - z"
+ using ceiling_add_of_int [of x "- z"] by (simp add: algebra_simps)
+
+lemma ceiling_diff_number_of [simp]:
+ "ceiling (x - number_of v) = ceiling x - number_of v"
+ using ceiling_diff_of_int [of x "number_of v"] by simp
+
+lemma ceiling_diff_one [simp]: "ceiling (x - 1) = ceiling x - 1"
+ using ceiling_diff_of_int [of x 1] by simp
+
+
+subsection {* Negation *}
+
+lemma floor_minus [simp]: "floor (- x) = - ceiling x"
+ unfolding ceiling_def by simp
+
+lemma ceiling_minus [simp]: "ceiling (- x) = - floor x"
+ unfolding ceiling_def by simp
+
+end
--- a/src/HOL/IsaMakefile Wed Feb 25 09:09:50 2009 -0800
+++ b/src/HOL/IsaMakefile Wed Feb 25 11:26:01 2009 -0800
@@ -267,6 +267,7 @@
@$(ISABELLE_TOOL) usedir -b -f main.ML -g true $(OUT)/Pure HOL-Main
$(OUT)/HOL: ROOT.ML $(MAIN_DEPENDENCIES) \
+ Archimedean_Field.thy \
Complex_Main.thy \
Complex.thy \
Deriv.thy \