merged
authornipkow
Thu, 06 Aug 2020 17:51:37 +0200
changeset 72101 c65614b556b2
parent 72098 8c547eac8381 (current diff)
parent 72100 9fa6dde8d959 (diff)
child 72102 0b21b2beadb5
child 72103 7b318273a4aa
merged
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Tree23_of_List.thy	Thu Aug 06 17:51:37 2020 +0200
@@ -0,0 +1,178 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>2-3 Tree from List\<close>
+
+theory Tree23_of_List
+imports Tree23
+begin
+
+text \<open>Linear-time bottom up conversion of a list of items into a complete 2-3 tree
+whose inorder traversal yields the list of items.\<close>
+
+
+subsection "Code"
+
+text \<open>Nonempty lists of 2-3 trees alternating with items, starting and ending with a 2-3 tree:\<close>
+
+datatype 'a tree23s = T "'a tree23" | TTs "'a tree23" "'a" "'a tree23s"
+
+abbreviation "not_T ts == (\<forall>t. ts \<noteq> T t)"
+
+fun len :: "'a tree23s \<Rightarrow> nat" where
+"len (T _) = 1" |
+"len (TTs _ _ ts) = len ts + 1"
+
+fun trees :: "'a tree23s \<Rightarrow> 'a tree23 set" where
+"trees (T t) = {t}" |
+"trees (TTs t a ts) = {t} \<union> trees ts"
+
+text \<open>Join pairs of adjacent trees:\<close>
+
+fun join_adj :: "'a tree23s \<Rightarrow> 'a tree23s" where
+"join_adj (TTs t1 a (T t2)) = T(Node2 t1 a t2)" |
+"join_adj (TTs t1 a (TTs t2 b (T t3))) = T(Node3 t1 a t2 b t3)" |
+"join_adj (TTs t1 a (TTs t2 b tas)) = TTs (Node2 t1 a t2) b (join_adj tas)"
+
+text \<open>Towards termination of \<open>join_all\<close>:\<close>
+
+lemma len_ge2:
+  "not_T ts \<Longrightarrow> len ts \<ge> 2"
+by(cases ts rule: join_adj.cases) auto
+
+lemma [measure_function]: "is_measure len"
+by(rule is_measure_trivial)
+
+lemma len_join_adj_div2:
+  "not_T ts \<Longrightarrow> len(join_adj ts) \<le> len ts div 2"
+by(induction ts rule: join_adj.induct) auto
+
+lemma len_join_adj1: "not_T ts \<Longrightarrow> len(join_adj ts) < len ts"
+using len_join_adj_div2[of ts] len_ge2[of ts] by simp
+
+corollary len_join_adj2[termination_simp]: "len(join_adj (TTs t a ts)) \<le> len ts"
+using len_join_adj1[of "TTs t a ts"] by simp
+
+fun join_all :: "'a tree23s \<Rightarrow> 'a tree23" where
+"join_all (T t) = t" |
+"join_all tas = join_all (join_adj tas)"
+
+fun leaves :: "'a list \<Rightarrow> 'a tree23s" where
+"leaves [] = T Leaf" |
+"leaves (a # as) = TTs Leaf a (leaves as)"
+
+definition tree23_of_list :: "'a list \<Rightarrow> 'a tree23" where
+"tree23_of_list as = join_all(leaves as)"
+
+
+subsection \<open>Functional correctness\<close>
+
+subsubsection \<open>\<open>inorder\<close>:\<close>
+
+fun inorder2 :: "'a tree23s \<Rightarrow> 'a list" where
+"inorder2 (T t) = inorder t" |
+"inorder2 (TTs t a ts) = inorder t @ a # inorder2 ts"
+
+lemma inorder2_join_adj: "not_T ts \<Longrightarrow> inorder2(join_adj ts) = inorder2 ts"
+by (induction ts rule: join_adj.induct) auto
+
+lemma inorder_join_all: "inorder (join_all ts) = inorder2 ts"
+proof (induction ts rule: measure_induct_rule[where f = "len"])
+  case (less ts)
+  show ?case
+  proof (cases ts)
+    case T thus ?thesis by simp
+  next
+    case (TTs t a ts)
+    then show ?thesis using less inorder2_join_adj[of "TTs t a ts"]
+      by (simp add: le_imp_less_Suc len_join_adj2)
+  qed
+qed
+
+lemma inorder2_leaves: "inorder2(leaves as) = as"
+by(induction as) auto
+
+lemma "inorder(tree23_of_list as) = as"
+by(simp add: tree23_of_list_def inorder_join_all inorder2_leaves)
+
+subsubsection \<open>Completeness:\<close>
+
+lemma complete_join_adj:
+  "\<forall>t \<in> trees ts. complete t \<and> height t = n \<Longrightarrow> not_T ts \<Longrightarrow>
+   \<forall>t \<in> trees (join_adj ts). complete t \<and> height t = Suc n"
+by (induction ts rule: join_adj.induct) auto
+
+lemma complete_join_all:
+ "\<forall>t \<in> trees ts. complete t \<and> height t = n \<Longrightarrow> complete (join_all ts)"
+proof (induction ts arbitrary: n rule: measure_induct_rule[where f = "len"])
+  case (less ts)
+  show ?case
+  proof (cases ts)
+    case T thus ?thesis using less.prems by simp
+  next
+    case (TTs t a ts)
+    then show ?thesis
+      using less.prems apply simp
+      using complete_join_adj[of "TTs t a ts" n, simplified] less.IH len_join_adj1 by blast
+  qed
+qed
+
+lemma complete_leaves: "t \<in> trees (leaves as) \<Longrightarrow> complete t \<and> height t = 0"
+by (induction as) auto
+
+corollary complete: "complete(tree23_of_list as)"
+by(simp add: tree23_of_list_def complete_leaves complete_join_all[of _ 0])
+
+
+subsection "Linear running time"
+
+fun t_join_adj :: "'a tree23s \<Rightarrow> nat" where
+"t_join_adj (TTs t1 a (T t2)) = 1" |
+"t_join_adj (TTs t1 a (TTs t2 b (T t3))) = 1" |
+"t_join_adj (TTs t1 a (TTs t2 b ts)) = t_join_adj ts + 1"
+
+fun t_join_all :: "'a tree23s \<Rightarrow> nat" where
+"t_join_all (T t) = 1" |
+"t_join_all ts = t_join_adj ts + t_join_all (join_adj ts)"
+
+fun t_leaves :: "'a list \<Rightarrow> nat" where
+"t_leaves [] = 1" |
+"t_leaves (a # as) = t_leaves as + 1"
+
+definition t_tree23_of_list :: "'a list \<Rightarrow> nat" where
+"t_tree23_of_list as = t_leaves as + t_join_all(leaves as)"
+
+lemma t_join_adj: "not_T ts \<Longrightarrow> t_join_adj ts \<le> len ts div 2"
+by(induction ts rule: t_join_adj.induct) auto
+
+lemma t_join_all: "t_join_all ts \<le> len ts"
+proof(induction ts rule: measure_induct_rule[where f = len])
+  case (less ts)
+  show ?case
+  proof (cases ts)
+    case T thus ?thesis by simp
+  next
+    case TTs
+    have 0: "\<forall>t. ts \<noteq> T t" using TTs by simp
+    have "t_join_all ts = t_join_adj ts + t_join_all (join_adj ts)"
+      using TTs by simp
+    also have "\<dots> \<le> len ts div 2 + t_join_all (join_adj ts)"
+      using t_join_adj[OF 0] by linarith
+    also have "\<dots> \<le> len ts div 2 + len (join_adj ts)"
+      using less.IH[of "join_adj ts"] len_join_adj1[OF 0] by simp
+    also have "\<dots> \<le> len ts div 2 + len ts div 2"
+      using len_join_adj_div2[OF 0] by linarith
+    also have "\<dots> \<le> len ts" by linarith
+    finally show ?thesis .
+  qed
+qed
+
+lemma t_leaves: "t_leaves as = length as + 1"
+by(induction as) auto
+
+lemma len_leaves: "len(leaves as) = length as + 1"
+by(induction as) auto
+
+lemma t_tree23_of_list: "t_tree23_of_list as \<le> 2*(length as + 1)"
+using t_join_all[of "leaves as"] by(simp add: t_tree23_of_list_def t_leaves len_leaves)
+
+end
--- a/src/HOL/Data_Structures/document/root.bib	Thu Aug 06 16:45:35 2020 +0200
+++ b/src/HOL/Data_Structures/document/root.bib	Thu Aug 06 17:51:37 2020 +0200
@@ -41,6 +41,16 @@
 journal={J. Functional Programming},
 volume=19,number={6},pages={633--644},year=2009}
 
+@article{jfp/Hinze18,
+  author    = {Ralf Hinze},
+  title     = {On constructing 2-3 trees},
+  journal   = {J. Funct. Program.},
+  volume    = {28},
+  pages     = {e19},
+  year      = {2018},
+  url       = {https://doi.org/10.1017/S0956796818000187},
+}
+
 @article{HoffmannOD-TOPLAS82,
 author={Christoph M. Hoffmann and Michael J. O'Donnell},
 title={Programming with Equations},journal={{ACM} Trans. Program. Lang. Syst.},
--- a/src/HOL/Data_Structures/document/root.tex	Thu Aug 06 16:45:35 2020 +0200
+++ b/src/HOL/Data_Structures/document/root.tex	Thu Aug 06 17:51:37 2020 +0200
@@ -51,7 +51,7 @@
 O'Donnell~\cite{HoffmannOD-TOPLAS82} (only insertion)
 and Reade \cite{Reade-SCP92}.
 Our formalisation is based on the teaching material by
-Turbak~\cite{Turbak230} .
+Turbak~\cite{Turbak230}  and the article by Hinze~\cite{jfp/Hinze18}.
 
 \paragraph{1-2 brother trees}
 They were invented by Ottmann and Six~\cite{OttmannS76,OttmannW-CJ80}.
--- a/src/HOL/ROOT	Thu Aug 06 16:45:35 2020 +0200
+++ b/src/HOL/ROOT	Thu Aug 06 17:51:37 2020 +0200
@@ -273,6 +273,7 @@
     RBT_Set2
     RBT_Map
     Tree23_Map
+    Tree23_of_List
     Tree234_Map
     Brother12_Map
     AA_Map