--- a/src/HOL/Hyperreal/HyperPow.ML Thu Nov 29 17:39:23 2001 +0100
+++ b/src/HOL/Hyperreal/HyperPow.ML Thu Nov 29 19:03:03 2001 +0100
@@ -283,7 +283,7 @@
by (res_inst_tac [("z","n")] eq_Abs_hypnat 1);
by (res_inst_tac [("z","r")] eq_Abs_hypreal 1);
by (auto_tac (claset(),
- simpset() addsimps [hypreal_hrabs, hyperpow,realpow_abs]));
+ simpset() addsimps [hypreal_hrabs, hyperpow,realpow_abs RS sym]));
qed "hyperpow_hrabs";
Goal "r pow (n + m) = (r pow n) * (r pow m)";
--- a/src/HOL/Hyperreal/MacLaurin.ML Thu Nov 29 17:39:23 2001 +0100
+++ b/src/HOL/Hyperreal/MacLaurin.ML Thu Nov 29 19:03:03 2001 +0100
@@ -492,7 +492,8 @@
by (dtac lemma_odd_mod_4_div_2 1);
by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2, real_divide_def]) 1);
by (auto_tac (claset() addSIs [real_mult_le_lemma,real_mult_le_le_mono2],
- simpset() addsimps [real_divide_def,abs_mult,abs_inverse,realpow_abs]));
+ simpset() addsimps [real_divide_def,abs_mult,abs_inverse,realpow_abs RS
+sym]));
qed "Maclaurin_sin_bound";
Goal "0 < n --> Suc (Suc (2 * n - 2)) = 2*n";
--- a/src/HOL/Hyperreal/SEQ.ML Thu Nov 29 17:39:23 2001 +0100
+++ b/src/HOL/Hyperreal/SEQ.ML Thu Nov 29 19:03:03 2001 +0100
@@ -1222,7 +1222,7 @@
by (res_inst_tac [("x","1")] exI 1);
by (auto_tac (claset() addDs [conjI RS realpow_le]
addIs [order_less_imp_le],
- simpset() addsimps [abs_eqI1, realpow_abs RS sym] ));
+ simpset() addsimps [abs_eqI1, realpow_abs] ));
qed "Bseq_realpow";
Goal "[| 0 <= x; x < 1 |] ==> monoseq (%n. x ^ n)";
@@ -1287,7 +1287,7 @@
Goal "abs(c) < 1 ==> (%n. c ^ n) ----> 0";
by (rtac (LIMSEQ_rabs_zero RS iffD1) 1);
by (auto_tac (claset() addIs [LIMSEQ_rabs_realpow_zero],
- simpset() addsimps [realpow_abs RS sym]));
+ simpset() addsimps [realpow_abs]));
qed "LIMSEQ_rabs_realpow_zero2";
Goal "abs(c) < 1 ==> (%n. c ^ n) ----NS> 0";
--- a/src/HOL/Hyperreal/Transcendental.ML Thu Nov 29 17:39:23 2001 +0100
+++ b/src/HOL/Hyperreal/Transcendental.ML Thu Nov 29 19:03:03 2001 +0100
@@ -315,7 +315,7 @@
summable_comparison_test 1);
by (rtac summable_exp 2);
by (res_inst_tac [("x","0")] exI 1);
-by (auto_tac (claset(), simpset() addsimps [realpow_abs,
+by (auto_tac (claset(), simpset() addsimps [realpow_abs RS sym,
abs_ge_zero,abs_mult,real_0_le_mult_iff]));
by (auto_tac (claset() addIs [real_mult_le_le_mono2],
simpset() addsimps [real_inverse_gt_0,abs_eqI2,abs_ge_zero]));
@@ -329,7 +329,7 @@
summable_comparison_test 1);
by (rtac summable_exp 2);
by (res_inst_tac [("x","0")] exI 1);
-by (auto_tac (claset(), simpset() addsimps [realpow_abs,abs_ge_zero,abs_mult,
+by (auto_tac (claset(), simpset() addsimps [realpow_abs RS sym,abs_ge_zero,abs_mult,
real_0_le_mult_iff]));
by (auto_tac (claset() addSIs [real_mult_le_le_mono2],
simpset() addsimps [real_inverse_gt_0,abs_eqI2,abs_ge_zero]));
@@ -453,27 +453,27 @@
by (res_inst_tac [("z","abs (x ^ n)")] (CLAIM_SIMP
"[| (0::real) <z; x*z<=y*z |] ==> x<=y" [real_mult_le_cancel1]) 1);
by (auto_tac (claset(),
- simpset() addsimps [real_mult_assoc,realpow_abs RS sym]));
+ simpset() addsimps [real_mult_assoc,realpow_abs]));
by (dres_inst_tac [("x","0")] spec 2 THEN Force_tac 2);
by (auto_tac (claset(),simpset() addsimps [abs_ge_zero,
- abs_mult,realpow_abs RS sym] @ real_mult_ac));
+ abs_mult,realpow_abs] @ real_mult_ac));
by (res_inst_tac [("x2","z ^ n")] (abs_ge_zero RS real_le_imp_less_or_eq
RS disjE) 1 THEN dtac sym 2);
by (auto_tac (claset() addSIs [real_mult_le_le_mono2],
simpset() addsimps [real_mult_assoc RS sym,
- realpow_abs RS sym,summable_def]));
+ realpow_abs,summable_def]));
by (res_inst_tac [("x","K * inverse(1 - (abs(z) * inverse(abs x)))")] exI 1);
by (auto_tac (claset() addSIs [sums_mult],simpset() addsimps [real_mult_assoc]));
by (subgoal_tac
"abs(z ^ n) * inverse(abs x ^ n) = (abs(z) * inverse(abs x)) ^ n" 1);
-by (auto_tac (claset(),simpset() addsimps [realpow_abs]));
+by (auto_tac (claset(),simpset() addsimps [realpow_abs RS sym]));
by (subgoal_tac "x ~= 0" 1);
by (subgoal_tac "x ~= 0" 3);
by (auto_tac (claset(),simpset() addsimps
[abs_inverse RS sym,realpow_not_zero,abs_mult
RS sym,realpow_inverse,realpow_mult RS sym]));
by (auto_tac (claset() addSIs [geometric_sums],simpset() addsimps
- [realpow_abs RS sym,real_divide_eq_inverse RS sym]));
+ [realpow_abs,real_divide_eq_inverse RS sym]));
by (res_inst_tac [("z","abs(x)")] (CLAIM_SIMP
"[|(0::real)<z; x*z<y*z |] ==> x<y" [real_mult_less_cancel1]) 1);
by (auto_tac (claset(),simpset() addsimps [abs_ge_zero,
@@ -484,7 +484,7 @@
\ ==> summable (%n. f(n) * (z ^ n))";
by (dres_inst_tac [("z","abs z")] powser_insidea 1);
by (auto_tac (claset() addIs [summable_rabs_cancel],
- simpset() addsimps [realpow_abs,abs_mult RS sym]));
+ simpset() addsimps [realpow_abs RS sym,abs_mult RS sym]));
qed "powser_inside";
(* ------------------------------------------------------------------------ *)
@@ -597,7 +597,7 @@
by (auto_tac (claset() addSIs [real_mult_le_mono],simpset() addsimps
[abs_ge_zero] delsimps [sumr_Suc]));
by (auto_tac (claset() addSIs [realpow_le2],simpset() addsimps
- [realpow_abs RS sym,abs_ge_zero] delsimps [sumr_Suc] ));
+ [realpow_abs,abs_ge_zero] delsimps [sumr_Suc] ));
by (res_inst_tac [("j","real (Suc d) * (K ^ d)")] real_le_trans 1);
by (subgoal_tac "0 <= K" 2);
by (arith_tac 3);
@@ -609,7 +609,7 @@
addSIs [real_mult_le_mono],simpset() addsimps [abs_mult,
realpow_add,abs_ge_zero]));
by (auto_tac (claset() addSIs [realpow_le2,realpow_ge_zero],simpset() addsimps
- [realpow_abs RS sym,abs_ge_zero]));
+ [realpow_abs,abs_ge_zero]));
by (ALLGOALS(arith_tac));
qed "lemma_termdiff3";
--- a/src/HOL/Real/RealPow.ML Thu Nov 29 17:39:23 2001 +0100
+++ b/src/HOL/Real/RealPow.ML Thu Nov 29 19:03:03 2001 +0100
@@ -29,7 +29,7 @@
by (auto_tac (claset(), simpset() addsimps [real_inverse_distrib]));
qed "realpow_inverse";
-Goal "abs (r::real) ^ n = abs (r ^ n)";
+Goal "abs(r ^ n) = abs(r::real) ^ n";
by (induct_tac "n" 1);
by (auto_tac (claset(), simpset() addsimps [abs_mult]));
qed "realpow_abs";
@@ -101,7 +101,7 @@
Addsimps [abs_realpow_two];
Goal "abs(x::real)^Suc (Suc 0) = x^Suc (Suc 0)";
-by (simp_tac (simpset() addsimps [realpow_abs,abs_eqI1]
+by (simp_tac (simpset() addsimps [realpow_abs RS sym,abs_eqI1]
delsimps [realpow_Suc]) 1);
qed "realpow_two_abs";
Addsimps [realpow_two_abs];