partial conversion to Isar scripts
authorpaulson
Thu, 16 Oct 2003 10:31:40 +0200
changeset 14236 c73d62ce9d1c
parent 14235 281295a1bbaa
child 14237 a486123e24a5
partial conversion to Isar scripts
src/FOL/IFOL.thy
src/FOL/IsaMakefile
src/FOL/ex/Classical.thy
src/FOL/ex/ROOT.ML
src/FOL/ex/cla.ML
--- a/src/FOL/IFOL.thy	Wed Oct 15 11:02:28 2003 +0200
+++ b/src/FOL/IFOL.thy	Thu Oct 16 10:31:40 2003 +0200
@@ -64,6 +64,13 @@
 
 local
 
+finalconsts
+  False All Ex
+  "op ="
+  "op &"
+  "op |"
+  "op -->"
+
 axioms
 
   (* Equality *)
@@ -86,18 +93,6 @@
 
   FalseE:       "False ==> P"
 
-
-  (* Definitions *)
-
-  True_def:     "True  == False-->False"
-  not_def:      "~P    == P-->False"
-  iff_def:      "P<->Q == (P-->Q) & (Q-->P)"
-
-  (* Unique existence *)
-
-  ex1_def:      "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)"
-
-
   (* Quantifiers *)
 
   allI:         "(!!x. P(x)) ==> (ALL x. P(x))"
@@ -112,6 +107,17 @@
   iff_reflection: "(P<->Q) ==> (P==Q)"
 
 
+defs
+  (* Definitions *)
+
+  True_def:     "True  == False-->False"
+  not_def:      "~P    == P-->False"
+  iff_def:      "P<->Q == (P-->Q) & (Q-->P)"
+
+  (* Unique existence *)
+
+  ex1_def:      "Ex1(P) == EX x. P(x) & (ALL y. P(y) --> y=x)"
+
 
 subsection {* Lemmas and proof tools *}
 
--- a/src/FOL/IsaMakefile	Wed Oct 15 11:02:28 2003 +0200
+++ b/src/FOL/IsaMakefile	Thu Oct 16 10:31:40 2003 +0200
@@ -45,8 +45,8 @@
 $(LOG)/FOL-ex.gz: $(OUT)/FOL ex/First_Order_Logic.thy \
   ex/If.thy ex/IffOracle.ML ex/IffOracle.thy ex/List.ML ex/List.thy	\
   ex/Nat.ML ex/Nat.thy ex/Nat2.ML ex/Nat2.thy ex/Natural_Numbers.thy	\
-  ex/Prolog.ML ex/Prolog.thy ex/ROOT.ML ex/cla.ML ex/document/root.tex	\
-  ex/foundn.ML ex/int.ML ex/int.thy ex/intro.ML ex/prop.ML ex/quant.ML
+  ex/Prolog.ML ex/Prolog.thy ex/ROOT.ML ex/Classical.thy ex/document/root.tex\
+  ex/foundn.ML ex/Intuitionistic.thy ex/intro.ML ex/prop.ML ex/quant.ML
 	@$(ISATOOL) usedir $(OUT)/FOL ex
 
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/FOL/ex/Classical.thy	Thu Oct 16 10:31:40 2003 +0200
@@ -0,0 +1,523 @@
+(*  Title:      FOL/ex/Classical
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1994  University of Cambridge
+*)
+
+header{*Classical Predicate Calculus Problems*}
+
+theory Classical = FOL:
+
+lemma "(P --> Q | R) --> (P-->Q) | (P-->R)"
+by blast
+
+text{*If and only if*}
+
+lemma "(P<->Q) <-> (Q<->P)"
+by blast
+
+lemma "~ (P <-> ~P)"
+by blast
+
+
+text{*Sample problems from 
+  F. J. Pelletier, 
+  Seventy-Five Problems for Testing Automatic Theorem Provers,
+  J. Automated Reasoning 2 (1986), 191-216.
+  Errata, JAR 4 (1988), 236-236.
+
+The hardest problems -- judging by experience with several theorem provers,
+including matrix ones -- are 34 and 43.
+*}
+
+subsection{*Pelletier's examples*}
+
+text{*1*}
+lemma "(P-->Q)  <->  (~Q --> ~P)"
+by blast
+
+text{*2*}
+lemma "~ ~ P  <->  P"
+by blast
+
+text{*3*}
+lemma "~(P-->Q) --> (Q-->P)"
+by blast
+
+text{*4*}
+lemma "(~P-->Q)  <->  (~Q --> P)"
+by blast
+
+text{*5*}
+lemma "((P|Q)-->(P|R)) --> (P|(Q-->R))"
+by blast
+
+text{*6*}
+lemma "P | ~ P"
+by blast
+
+text{*7*}
+lemma "P | ~ ~ ~ P"
+by blast
+
+text{*8.  Peirce's law*}
+lemma "((P-->Q) --> P)  -->  P"
+by blast
+
+text{*9*}
+lemma "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
+by blast
+
+text{*10*}
+lemma "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)"
+by blast
+
+text{*11.  Proved in each direction (incorrectly, says Pelletier!!)  *}
+lemma "P<->P"
+by blast
+
+text{*12.  "Dijkstra's law"*}
+lemma "((P <-> Q) <-> R)  <->  (P <-> (Q <-> R))"
+by blast
+
+text{*13.  Distributive law*}
+lemma "P | (Q & R)  <-> (P | Q) & (P | R)"
+by blast
+
+text{*14*}
+lemma "(P <-> Q) <-> ((Q | ~P) & (~Q|P))"
+by blast
+
+text{*15*}
+lemma "(P --> Q) <-> (~P | Q)"
+by blast
+
+text{*16*}
+lemma "(P-->Q) | (Q-->P)"
+by blast
+
+text{*17*}
+lemma "((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"
+by blast
+
+subsection{*Classical Logic: examples with quantifiers*}
+
+lemma "(\<forall>x. P(x) & Q(x)) <-> (\<forall>x. P(x))  &  (\<forall>x. Q(x))"
+by blast
+
+lemma "(\<exists>x. P-->Q(x))  <->  (P --> (\<exists>x. Q(x)))"
+by blast
+
+lemma "(\<exists>x. P(x)-->Q)  <->  (\<forall>x. P(x)) --> Q"
+by blast
+
+lemma "(\<forall>x. P(x)) | Q  <->  (\<forall>x. P(x) | Q)"
+by blast
+
+text{*Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux,
+  JAR 10 (265-281), 1993.  Proof is trivial!*}
+lemma "~((\<exists>x.~P(x)) & ((\<exists>x. P(x)) | (\<exists>x. P(x) & Q(x))) & ~ (\<exists>x. P(x)))"
+by blast
+
+subsection{*Problems requiring quantifier duplication*}
+
+text{*Theorem B of Peter Andrews, Theorem Proving via General Matings, 
+  JACM 28 (1981).*}
+lemma "(\<exists>x. \<forall>y. P(x) <-> P(y)) --> ((\<exists>x. P(x)) <-> (\<forall>y. P(y)))"
+by blast
+
+text{*Needs multiple instantiation of ALL.*}
+lemma "(\<forall>x. P(x)-->P(f(x)))  &  P(d)-->P(f(f(f(d))))"
+by blast
+
+text{*Needs double instantiation of the quantifier*}
+lemma "\<exists>x. P(x) --> P(a) & P(b)"
+by blast
+
+lemma "\<exists>z. P(z) --> (\<forall>x. P(x))"
+by blast
+
+lemma "\<exists>x. (\<exists>y. P(y)) --> P(x)"
+by blast
+
+text{*V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1--23.  NOT PROVED*}
+lemma "\<exists>x x'. \<forall>y. \<exists>z z'.  
+                (~P(y,y) | P(x,x) | ~S(z,x)) &  
+                (S(x,y) | ~S(y,z) | Q(z',z'))  &  
+                (Q(x',y) | ~Q(y,z') | S(x',x'))"
+oops
+
+
+
+subsection{*Hard examples with quantifiers*}
+
+text{*18*}
+lemma "\<exists>y. \<forall>x. P(y)-->P(x)"
+by blast
+
+text{*19*}
+lemma "\<exists>x. \<forall>y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"
+by blast
+
+text{*20*}
+lemma "(\<forall>x y. \<exists>z. \<forall>w. (P(x)&Q(y)-->R(z)&S(w)))      
+    --> (\<exists>x y. P(x) & Q(y)) --> (\<exists>z. R(z))"
+by blast
+
+text{*21*}
+lemma "(\<exists>x. P-->Q(x)) & (\<exists>x. Q(x)-->P) --> (\<exists>x. P<->Q(x))"
+by blast
+
+text{*22*}
+lemma "(\<forall>x. P <-> Q(x))  -->  (P <-> (\<forall>x. Q(x)))"
+by blast
+
+text{*23*}
+lemma "(\<forall>x. P | Q(x))  <->  (P | (\<forall>x. Q(x)))"
+by blast
+
+text{*24*}
+lemma "~(\<exists>x. S(x)&Q(x)) & (\<forall>x. P(x) --> Q(x)|R(x)) &   
+      (~(\<exists>x. P(x)) --> (\<exists>x. Q(x))) & (\<forall>x. Q(x)|R(x) --> S(x))   
+    --> (\<exists>x. P(x)&R(x))"
+by blast
+
+text{*25*}
+lemma "(\<exists>x. P(x)) &   
+      (\<forall>x. L(x) --> ~ (M(x) & R(x))) &   
+      (\<forall>x. P(x) --> (M(x) & L(x))) &    
+      ((\<forall>x. P(x)-->Q(x)) | (\<exists>x. P(x)&R(x)))   
+    --> (\<exists>x. Q(x)&P(x))"
+by blast
+
+text{*26*}
+lemma "((\<exists>x. p(x)) <-> (\<exists>x. q(x))) &  
+      (\<forall>x. \<forall>y. p(x) & q(y) --> (r(x) <-> s(y)))    
+  --> ((\<forall>x. p(x)-->r(x)) <-> (\<forall>x. q(x)-->s(x)))"
+by blast
+
+text{*27*}
+lemma "(\<exists>x. P(x) & ~Q(x)) &    
+      (\<forall>x. P(x) --> R(x)) &    
+      (\<forall>x. M(x) & L(x) --> P(x)) &    
+      ((\<exists>x. R(x) & ~ Q(x)) --> (\<forall>x. L(x) --> ~ R(x)))   
+  --> (\<forall>x. M(x) --> ~L(x))"
+by blast
+
+text{*28.  AMENDED*}
+lemma "(\<forall>x. P(x) --> (\<forall>x. Q(x))) &    
+        ((\<forall>x. Q(x)|R(x)) --> (\<exists>x. Q(x)&S(x))) &   
+        ((\<exists>x. S(x)) --> (\<forall>x. L(x) --> M(x)))   
+    --> (\<forall>x. P(x) & L(x) --> M(x))"
+by blast
+
+text{*29.  Essentially the same as Principia Mathematica *11.71*}
+lemma "(\<exists>x. P(x)) & (\<exists>y. Q(y))   
+    --> ((\<forall>x. P(x)-->R(x)) & (\<forall>y. Q(y)-->S(y))   <->      
+         (\<forall>x y. P(x) & Q(y) --> R(x) & S(y)))"
+by blast
+
+text{*30*}
+lemma "(\<forall>x. P(x) | Q(x) --> ~ R(x)) &  
+      (\<forall>x. (Q(x) --> ~ S(x)) --> P(x) & R(x))   
+    --> (\<forall>x. S(x))"
+by blast
+
+text{*31*}
+lemma "~(\<exists>x. P(x) & (Q(x) | R(x))) &  
+        (\<exists>x. L(x) & P(x)) &  
+        (\<forall>x. ~ R(x) --> M(x))   
+    --> (\<exists>x. L(x) & M(x))"
+by blast
+
+text{*32*}
+lemma "(\<forall>x. P(x) & (Q(x)|R(x))-->S(x)) &  
+      (\<forall>x. S(x) & R(x) --> L(x)) &  
+      (\<forall>x. M(x) --> R(x))   
+      --> (\<forall>x. P(x) & M(x) --> L(x))"
+by blast
+
+text{*33*}
+lemma "(\<forall>x. P(a) & (P(x)-->P(b))-->P(c))  <->     
+      (\<forall>x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"
+by blast
+
+text{*34  AMENDED (TWICE!!).  Andrews's challenge*}
+lemma "((\<exists>x. \<forall>y. p(x) <-> p(y))  <->                 
+       ((\<exists>x. q(x)) <-> (\<forall>y. p(y))))     <->         
+      ((\<exists>x. \<forall>y. q(x) <-> q(y))  <->                 
+       ((\<exists>x. p(x)) <-> (\<forall>y. q(y))))"
+by blast
+
+text{*35*}
+lemma "\<exists>x y. P(x,y) -->  (\<forall>u v. P(u,v))"
+by blast
+
+text{*36*}
+lemma "(\<forall>x. \<exists>y. J(x,y)) &  
+      (\<forall>x. \<exists>y. G(x,y)) &  
+      (\<forall>x y. J(x,y) | G(x,y) --> (\<forall>z. J(y,z) | G(y,z) --> H(x,z)))    
+  --> (\<forall>x. \<exists>y. H(x,y))"
+by blast
+
+text{*37*}
+lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.  
+           (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (\<exists>u. Q(u,w)))) &  
+      (\<forall>x z. ~P(x,z) --> (\<exists>y. Q(y,z))) &  
+      ((\<exists>x y. Q(x,y)) --> (\<forall>x. R(x,x)))   
+      --> (\<forall>x. \<exists>y. R(x,y))"
+by blast
+
+text{*38*}
+lemma "(\<forall>x. p(a) & (p(x) --> (\<exists>y. p(y) & r(x,y))) -->         
+             (\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z)))  <->          
+      (\<forall>x. (~p(a) | p(x) | (\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z))) &     
+              (~p(a) | ~(\<exists>y. p(y) & r(x,y)) |                           
+              (\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z))))"
+by blast
+
+text{*39*}
+lemma "~ (\<exists>x. \<forall>y. F(y,x) <-> ~F(y,y))"
+by blast
+
+text{*40.  AMENDED*}
+lemma "(\<exists>y. \<forall>x. F(x,y) <-> F(x,x)) -->   
+              ~(\<forall>x. \<exists>y. \<forall>z. F(z,y) <-> ~ F(z,x))"
+by blast
+
+text{*41*}
+lemma "(\<forall>z. \<exists>y. \<forall>x. f(x,y) <-> f(x,z) & ~ f(x,x))         
+          --> ~ (\<exists>z. \<forall>x. f(x,z))"
+by blast
+
+text{*42*}
+lemma "~ (\<exists>y. \<forall>x. p(x,y) <-> ~ (\<exists>z. p(x,z) & p(z,x)))"
+by blast
+
+text{*43*}
+lemma "(\<forall>x. \<forall>y. q(x,y) <-> (\<forall>z. p(z,x) <-> p(z,y)))      
+          --> (\<forall>x. \<forall>y. q(x,y) <-> q(y,x))"
+by blast
+
+(*Other proofs: Can use auto, which cheats by using rewriting!  
+  Deepen_tac alone requires 253 secs.  Or
+  by (mini_tac 1 THEN Deepen_tac 5 1) *)
+
+text{*44*}
+lemma "(\<forall>x. f(x) --> (\<exists>y. g(y) & h(x,y) & (\<exists>y. g(y) & ~ h(x,y)))) &  
+      (\<exists>x. j(x) & (\<forall>y. g(y) --> h(x,y)))                    
+      --> (\<exists>x. j(x) & ~f(x))"
+by blast
+
+text{*45*}
+lemma "(\<forall>x. f(x) & (\<forall>y. g(y) & h(x,y) --> j(x,y))   
+                      --> (\<forall>y. g(y) & h(x,y) --> k(y))) &     
+      ~ (\<exists>y. l(y) & k(y)) &                                    
+      (\<exists>x. f(x) & (\<forall>y. h(x,y) --> l(y))                     
+                  & (\<forall>y. g(y) & h(x,y) --> j(x,y)))           
+      --> (\<exists>x. f(x) & ~ (\<exists>y. g(y) & h(x,y)))"
+by blast
+
+
+text{*46*}
+lemma "(\<forall>x. f(x) & (\<forall>y. f(y) & h(y,x) --> g(y)) --> g(x)) &       
+      ((\<exists>x. f(x) & ~g(x)) -->                                     
+       (\<exists>x. f(x) & ~g(x) & (\<forall>y. f(y) & ~g(y) --> j(x,y)))) &     
+      (\<forall>x y. f(x) & f(y) & h(x,y) --> ~j(y,x))                     
+       --> (\<forall>x. f(x) --> g(x))"
+by blast
+
+
+subsection{*Problems (mainly) involving equality or functions*}
+
+text{*48*}
+lemma "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"
+by blast
+
+text{*49  NOT PROVED AUTOMATICALLY.  Hard because it involves substitution
+  for Vars
+  the type constraint ensures that x,y,z have the same type as a,b,u. *}
+lemma "(\<exists>x y::'a. \<forall>z. z=x | z=y) & P(a) & P(b) & a~=b  
+                --> (\<forall>u::'a. P(u))"
+apply safe
+apply (rule_tac x = a in allE, assumption)
+apply (rule_tac x = b in allE, assumption, fast)
+       --{*blast's treatment of equality can't do it*}
+done
+
+text{*50.  (What has this to do with equality?) *}
+lemma "(\<forall>x. P(a,x) | (\<forall>y. P(x,y))) --> (\<exists>x. \<forall>y. P(x,y))"
+by blast
+
+text{*51*}
+lemma "(\<exists>z w. \<forall>x y. P(x,y) <->  (x=z & y=w)) -->   
+      (\<exists>z. \<forall>x. \<exists>w. (\<forall>y. P(x,y) <-> y=w) <-> x=z)"
+by blast
+
+text{*52*}
+text{*Almost the same as 51. *}
+lemma "(\<exists>z w. \<forall>x y. P(x,y) <->  (x=z & y=w)) -->   
+      (\<exists>w. \<forall>y. \<exists>z. (\<forall>x. P(x,y) <-> x=z) <-> y=w)"
+by blast
+
+text{*55*}
+
+(*Original, equational version by Len Schubert, via Pelletier *** NOT PROVED
+Goal "(\<exists>x. lives(x) & killed(x,agatha)) &  
+   lives(agatha) & lives(butler) & lives(charles) &  
+   (\<forall>x. lives(x) --> x=agatha | x=butler | x=charles) &  
+   (\<forall>x y. killed(x,y) --> hates(x,y)) &  
+   (\<forall>x y. killed(x,y) --> ~richer(x,y)) &  
+   (\<forall>x. hates(agatha,x) --> ~hates(charles,x)) &  
+   (\<forall>x. ~ x=butler --> hates(agatha,x)) &  
+   (\<forall>x. ~richer(x,agatha) --> hates(butler,x)) &  
+   (\<forall>x. hates(agatha,x) --> hates(butler,x)) &  
+   (\<forall>x. \<exists>y. ~hates(x,y)) &  
+   ~ agatha=butler -->  
+   killed(?who,agatha)"
+by Safe_tac;
+by (dres_inst_tac [("x1","x")] (spec RS mp) 1);
+by (assume_tac 1);
+by (etac (spec RS exE) 1);
+by (REPEAT (etac allE 1));
+by (Blast_tac 1);
+result();
+****)
+
+text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
+  fast DISCOVERS who killed Agatha. *}
+lemma "lives(agatha) & lives(butler) & lives(charles) &  
+   (killed(agatha,agatha) | killed(butler,agatha) | killed(charles,agatha)) &  
+   (\<forall>x y. killed(x,y) --> hates(x,y) & ~richer(x,y)) &  
+   (\<forall>x. hates(agatha,x) --> ~hates(charles,x)) &  
+   (hates(agatha,agatha) & hates(agatha,charles)) &  
+   (\<forall>x. lives(x) & ~richer(x,agatha) --> hates(butler,x)) &  
+   (\<forall>x. hates(agatha,x) --> hates(butler,x)) &  
+   (\<forall>x. ~hates(x,agatha) | ~hates(x,butler) | ~hates(x,charles)) -->  
+    killed(?who,agatha)"
+by fast --{*MUCH faster than blast*}
+
+
+text{*56*}
+lemma "(\<forall>x. (\<exists>y. P(y) & x=f(y)) --> P(x)) <-> (\<forall>x. P(x) --> P(f(x)))"
+by blast
+
+text{*57*}
+lemma "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) &  
+     (\<forall>x y z. P(x,y) & P(y,z) --> P(x,z))    -->   P(f(a,b), f(a,c))"
+by blast
+
+text{*58  NOT PROVED AUTOMATICALLY*}
+lemma "(\<forall>x y. f(x)=g(y)) --> (\<forall>x y. f(f(x))=f(g(y)))"
+by (slow elim: subst_context)
+
+
+text{*59*}
+lemma "(\<forall>x. P(x) <-> ~P(f(x))) --> (\<exists>x. P(x) & ~P(f(x)))"
+by blast
+
+text{*60*}
+lemma "\<forall>x. P(x,f(x)) <-> (\<exists>y. (\<forall>z. P(z,y) --> P(z,f(x))) & P(x,y))"
+by blast
+
+text{*62 as corrected in JAR 18 (1997), page 135*}
+lemma "(\<forall>x. p(a) & (p(x) --> p(f(x))) --> p(f(f(x))))  <->      
+      (\<forall>x. (~p(a) | p(x) | p(f(f(x)))) &                       
+              (~p(a) | ~p(f(x)) | p(f(f(x)))))"
+by blast
+
+text{*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531
+  fast indeed copes!*}
+lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &  
+              (\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &    
+              (\<forall>x. K(x) --> ~G(x))  -->  (\<exists>x. K(x) & J(x))"
+by fast
+
+text{*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.  
+  It does seem obvious!*}
+lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &         
+      (\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y)))  &         
+      (\<forall>x. K(x) --> ~G(x))   -->   (\<exists>x. K(x) --> ~G(x))"
+by fast
+
+text{*Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
+	author U. Egly*}
+lemma "((\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z)))) -->                
+   (\<exists>w. C(w) & (\<forall>y. C(y) --> (\<forall>z. D(w,y,z)))))                   
+  &                                                                      
+  (\<forall>w. C(w) & (\<forall>u. C(u) --> (\<forall>v. D(w,u,v))) -->                 
+        (\<forall>y z.                                                        
+            (C(y) &  P(y,z) --> Q(w,y,z) & OO(w,g)) &                    
+            (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))                    
+  &                                                                      
+  (\<forall>w. C(w) &                                                         
+    (\<forall>y z.                                                            
+        (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &                         
+        (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))) -->                     
+    (\<exists>v. C(v) &                                                        
+          (\<forall>y. ((C(y) & Q(w,y,y)) & OO(w,g) --> ~P(v,y)) &            
+                  ((C(y) & Q(w,y,y)) & OO(w,b) --> P(v,y) & OO(v,b)))))  
+   -->                   
+   ~ (\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z))))"
+by (tactic{*Blast.depth_tac (claset ()) 12 1*})
+   --{*Needed because the search for depths below 12 is very slow*}
+
+
+text{*Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p.105*}
+lemma "((\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z)))) -->        
+   (\<exists>w. C(w) & (\<forall>y. C(y) --> (\<forall>z. D(w,y,z)))))           
+  &                                                              
+  (\<forall>w. C(w) & (\<forall>u. C(u) --> (\<forall>v. D(w,u,v))) -->         
+        (\<forall>y z.                                                
+            (C(y) &  P(y,z) --> Q(w,y,z) & OO(w,g)) &           
+            (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))          
+  &                                                              
+  ((\<exists>w. C(w) & (\<forall>y. (C(y) &  P(y,y) --> Q(w,y,y) & OO(w,g)) & 
+                         (C(y) & ~P(y,y) --> Q(w,y,y) & OO(w,b))))  
+   -->                                                             
+   (\<exists>v. C(v) & (\<forall>y. (C(y) &  P(y,y) --> P(v,y) & OO(v,g)) &   
+                         (C(y) & ~P(y,y) --> P(v,y) & OO(v,b)))))  
+  -->                                                              
+  ((\<exists>v. C(v) & (\<forall>y. (C(y) &  P(y,y) --> P(v,y) & OO(v,g)) &   
+                         (C(y) & ~P(y,y) --> P(v,y) & OO(v,b))))   
+   -->                                                             
+   (\<exists>u. C(u) & (\<forall>y. (C(y) &  P(y,y) --> ~P(u,y)) &     
+                         (C(y) & ~P(y,y) --> P(u,y) & OO(u,b)))))  
+   -->                                                             
+   ~ (\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z))))"
+by blast
+
+text{* Challenge found on info-hol *}
+lemma "\<forall>x. \<exists>v w. \<forall>y z. P(x) & Q(y) --> (P(v) | R(w)) & (R(z) --> Q(v))"
+by blast
+
+text{*Attributed to Lewis Carroll by S. G. Pulman.  The first or last assumption
+can be deleted.*}
+lemma "(\<forall>x. honest(x) & industrious(x) --> healthy(x)) &  
+      ~ (\<exists>x. grocer(x) & healthy(x)) &  
+      (\<forall>x. industrious(x) & grocer(x) --> honest(x)) &  
+      (\<forall>x. cyclist(x) --> industrious(x)) &  
+      (\<forall>x. ~healthy(x) & cyclist(x) --> ~honest(x))   
+      --> (\<forall>x. grocer(x) --> ~cyclist(x))"
+by blast
+
+
+(*Runtimes for old versions of this file:
+Thu Jul 23 1992: loaded in 467s using iffE [on SPARC2] 
+Mon Nov 14 1994: loaded in 144s [on SPARC10, with deepen_tac] 
+Wed Nov 16 1994: loaded in 138s [after addition of norm_term_skip] 
+Mon Nov 21 1994: loaded in 131s [DEPTH_FIRST suppressing repetitions] 
+
+Further runtimes on a Sun-4
+Tue Mar  4 1997: loaded in 93s (version 94-7) 
+Tue Mar  4 1997: loaded in 89s
+Thu Apr  3 1997: loaded in 44s--using mostly Blast_tac
+Thu Apr  3 1997: loaded in 96s--addition of two Halting Probs
+Thu Apr  3 1997: loaded in 98s--using lim-1 for all haz rules
+Tue Dec  2 1997: loaded in 107s--added 46; new equalSubst
+Fri Dec 12 1997: loaded in 91s--faster proof reconstruction
+Thu Dec 18 1997: loaded in 94s--two new "obvious theorems" (??)
+*)
+
+end
+
--- a/src/FOL/ex/ROOT.ML	Wed Oct 15 11:02:28 2003 +0200
+++ b/src/FOL/ex/ROOT.ML	Thu Oct 16 10:31:40 2003 +0200
@@ -14,7 +14,7 @@
 time_use_thy "Prolog";
 
 writeln"\n** Intuitionistic examples **\n";
-time_use_thy "int";
+time_use_thy "Intuitionistic";
 
 val thy = IFOL.thy  and  tac = IntPr.fast_tac 1;
 time_use     "prop.ML";
@@ -22,7 +22,7 @@
 
 writeln"\n** Classical examples **\n";
 time_use     "mini.ML";
-time_use     "cla.ML";
+time_use_thy "Classical";
 time_use_thy "If";
 
 val thy = FOL.thy  and  tac = Cla.fast_tac FOL_cs 1;
--- a/src/FOL/ex/cla.ML	Wed Oct 15 11:02:28 2003 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,602 +0,0 @@
-(*  Title:      FOL/ex/cla.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Classical First-Order Logic
-*)
-
-writeln"File FOL/ex/cla.ML";
-
-context FOL.thy;
-
-open Cla;    (*in case structure IntPr is open!*)
-
-Goal "(P --> Q | R) --> (P-->Q) | (P-->R)";
-by (Blast_tac 1);
-result();
-
-(*If and only if*)
-
-Goal "(P<->Q) <-> (Q<->P)";
-by (Blast_tac 1);
-result();
-
-Goal "~ (P <-> ~P)";
-by (Blast_tac 1);
-result();
-
-
-(*Sample problems from 
-  F. J. Pelletier, 
-  Seventy-Five Problems for Testing Automatic Theorem Provers,
-  J. Automated Reasoning 2 (1986), 191-216.
-  Errata, JAR 4 (1988), 236-236.
-
-The hardest problems -- judging by experience with several theorem provers,
-including matrix ones -- are 34 and 43.
-*)
-
-writeln"Pelletier's examples";
-(*1*)
-Goal "(P-->Q)  <->  (~Q --> ~P)";
-by (Blast_tac 1);
-result();
-
-(*2*)
-Goal "~ ~ P  <->  P";
-by (Blast_tac 1);
-result();
-
-(*3*)
-Goal "~(P-->Q) --> (Q-->P)";
-by (Blast_tac 1);
-result();
-
-(*4*)
-Goal "(~P-->Q)  <->  (~Q --> P)";
-by (Blast_tac 1);
-result();
-
-(*5*)
-Goal "((P|Q)-->(P|R)) --> (P|(Q-->R))";
-by (Blast_tac 1);
-result();
-
-(*6*)
-Goal "P | ~ P";
-by (Blast_tac 1);
-result();
-
-(*7*)
-Goal "P | ~ ~ ~ P";
-by (Blast_tac 1);
-result();
-
-(*8.  Peirce's law*)
-Goal "((P-->Q) --> P)  -->  P";
-by (Blast_tac 1);
-result();
-
-(*9*)
-Goal "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)";
-by (Blast_tac 1);
-result();
-
-(*10*)
-Goal "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)";
-by (Blast_tac 1);
-result();
-
-(*11.  Proved in each direction (incorrectly, says Pelletier!!)  *)
-Goal "P<->P";
-by (Blast_tac 1);
-result();
-
-(*12.  "Dijkstra's law"*)
-Goal "((P <-> Q) <-> R)  <->  (P <-> (Q <-> R))";
-by (Blast_tac 1);
-result();
-
-(*13.  Distributive law*)
-Goal "P | (Q & R)  <-> (P | Q) & (P | R)";
-by (Blast_tac 1);
-result();
-
-(*14*)
-Goal "(P <-> Q) <-> ((Q | ~P) & (~Q|P))";
-by (Blast_tac 1);
-result();
-
-(*15*)
-Goal "(P --> Q) <-> (~P | Q)";
-by (Blast_tac 1);
-result();
-
-(*16*)
-Goal "(P-->Q) | (Q-->P)";
-by (Blast_tac 1);
-result();
-
-(*17*)
-Goal "((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))";
-by (Blast_tac 1);
-result();
-
-writeln"Classical Logic: examples with quantifiers";
-
-Goal "(ALL x. P(x) & Q(x)) <-> (ALL x. P(x))  &  (ALL x. Q(x))";
-by (Blast_tac 1);
-result(); 
-
-Goal "(EX x. P-->Q(x))  <->  (P --> (EX x. Q(x)))";
-by (Blast_tac 1);
-result(); 
-
-Goal "(EX x. P(x)-->Q)  <->  (ALL x. P(x)) --> Q";
-by (Blast_tac 1);
-result(); 
-
-Goal "(ALL x. P(x)) | Q  <->  (ALL x. P(x) | Q)";
-by (Blast_tac 1);
-result(); 
-
-(*Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux,
-  JAR 10 (265-281), 1993.  Proof is trivial!*)
-Goal "~((EX x.~P(x)) & ((EX x. P(x)) | (EX x. P(x) & Q(x))) & ~ (EX x. P(x)))";
-by (Blast_tac 1);
-result();
-
-writeln"Problems requiring quantifier duplication";
-
-(*Theorem B of Peter Andrews, Theorem Proving via General Matings, 
-  JACM 28 (1981).*)
-Goal "(EX x. ALL y. P(x) <-> P(y)) --> ((EX x. P(x)) <-> (ALL y. P(y)))";
-by (Blast_tac 1);
-result();
-
-(*Needs multiple instantiation of ALL.*)
-Goal "(ALL x. P(x)-->P(f(x)))  &  P(d)-->P(f(f(f(d))))";
-by (Blast_tac 1);
-result();
-
-(*Needs double instantiation of the quantifier*)
-Goal "EX x. P(x) --> P(a) & P(b)";
-by (Blast_tac 1);
-result();
-
-Goal "EX z. P(z) --> (ALL x. P(x))";
-by (Blast_tac 1);
-result();
-
-Goal "EX x. (EX y. P(y)) --> P(x)";
-by (Blast_tac 1);
-result();
-
-(*V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1--23.  NOT PROVED*)
-Goal "EX x x'. ALL y. EX z z'. \
-\               (~P(y,y) | P(x,x) | ~S(z,x)) & \
-\               (S(x,y) | ~S(y,z) | Q(z',z'))  & \
-\               (Q(x',y) | ~Q(y,z') | S(x',x'))";
-
-
-
-writeln"Hard examples with quantifiers";
-
-writeln"Problem 18";
-Goal "EX y. ALL x. P(y)-->P(x)";
-by (Blast_tac 1);
-result(); 
-
-writeln"Problem 19";
-Goal "EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 20";
-Goal "(ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w)))     \
-\   --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))";
-by (Blast_tac 1); 
-result();
-
-writeln"Problem 21";
-Goal "(EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 22";
-Goal "(ALL x. P <-> Q(x))  -->  (P <-> (ALL x. Q(x)))";
-by (Blast_tac 1); 
-result();
-
-writeln"Problem 23";
-Goal "(ALL x. P | Q(x))  <->  (P | (ALL x. Q(x)))";
-by (Blast_tac 1);  
-result();
-
-writeln"Problem 24";
-Goal "~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) &  \
-\     (~(EX x. P(x)) --> (EX x. Q(x))) & (ALL x. Q(x)|R(x) --> S(x))  \
-\   --> (EX x. P(x)&R(x))";
-by (Blast_tac 1); 
-result();
-
-writeln"Problem 25";
-Goal "(EX x. P(x)) &  \
-\     (ALL x. L(x) --> ~ (M(x) & R(x))) &  \
-\     (ALL x. P(x) --> (M(x) & L(x))) &   \
-\     ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x)))  \
-\   --> (EX x. Q(x)&P(x))";
-by (Blast_tac 1); 
-result();
-
-writeln"Problem 26";
-Goal "((EX x. p(x)) <-> (EX x. q(x))) & \
-\     (ALL x. ALL y. p(x) & q(y) --> (r(x) <-> s(y)))   \
-\ --> ((ALL x. p(x)-->r(x)) <-> (ALL x. q(x)-->s(x)))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 27";
-Goal "(EX x. P(x) & ~Q(x)) &   \
-\     (ALL x. P(x) --> R(x)) &   \
-\     (ALL x. M(x) & L(x) --> P(x)) &   \
-\     ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x)))  \
-\ --> (ALL x. M(x) --> ~L(x))";
-by (Blast_tac 1); 
-result();
-
-writeln"Problem 28.  AMENDED";
-Goal "(ALL x. P(x) --> (ALL x. Q(x))) &   \
-\       ((ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) &  \
-\       ((EX x. S(x)) --> (ALL x. L(x) --> M(x)))  \
-\   --> (ALL x. P(x) & L(x) --> M(x))";
-by (Blast_tac 1);  
-result();
-
-writeln"Problem 29.  Essentially the same as Principia Mathematica *11.71";
-Goal "(EX x. P(x)) & (EX y. Q(y))  \
-\   --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y))   <->     \
-\        (ALL x y. P(x) & Q(y) --> R(x) & S(y)))";
-by (Blast_tac 1); 
-result();
-
-writeln"Problem 30";
-Goal "(ALL x. P(x) | Q(x) --> ~ R(x)) & \
-\     (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x))  \
-\   --> (ALL x. S(x))";
-by (Blast_tac 1);  
-result();
-
-writeln"Problem 31";
-Goal "~(EX x. P(x) & (Q(x) | R(x))) & \
-\       (EX x. L(x) & P(x)) & \
-\       (ALL x. ~ R(x) --> M(x))  \
-\   --> (EX x. L(x) & M(x))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 32";
-Goal "(ALL x. P(x) & (Q(x)|R(x))-->S(x)) & \
-\     (ALL x. S(x) & R(x) --> L(x)) & \
-\     (ALL x. M(x) --> R(x))  \
-\     --> (ALL x. P(x) & M(x) --> L(x))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 33";
-Goal "(ALL x. P(a) & (P(x)-->P(b))-->P(c))  <->    \
-\     (ALL x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 34  AMENDED (TWICE!!)";
-(*Andrews's challenge*)
-Goal "((EX x. ALL y. p(x) <-> p(y))  <->                \
-\      ((EX x. q(x)) <-> (ALL y. p(y))))     <->        \
-\     ((EX x. ALL y. q(x) <-> q(y))  <->                \
-\      ((EX x. p(x)) <-> (ALL y. q(y))))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 35";
-Goal "EX x y. P(x,y) -->  (ALL u v. P(u,v))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 36";
-Goal "(ALL x. EX y. J(x,y)) & \
-\     (ALL x. EX y. G(x,y)) & \
-\     (ALL x y. J(x,y) | G(x,y) --> (ALL z. J(y,z) | G(y,z) --> H(x,z)))   \
-\ --> (ALL x. EX y. H(x,y))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 37";
-Goal "(ALL z. EX w. ALL x. EX y. \
-\          (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (EX u. Q(u,w)))) & \
-\     (ALL x z. ~P(x,z) --> (EX y. Q(y,z))) & \
-\     ((EX x y. Q(x,y)) --> (ALL x. R(x,x)))  \
-\     --> (ALL x. EX y. R(x,y))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 38";
-Goal "(ALL x. p(a) & (p(x) --> (EX y. p(y) & r(x,y))) -->        \
-\            (EX z. EX w. p(z) & r(x,w) & r(w,z)))  <->         \
-\     (ALL x. (~p(a) | p(x) | (EX z. EX w. p(z) & r(x,w) & r(w,z))) &    \
-\             (~p(a) | ~(EX y. p(y) & r(x,y)) |                          \
-\             (EX z. EX w. p(z) & r(x,w) & r(w,z))))";
-by (Blast_tac 1);  (*beats fast_tac!*)
-result();
-
-writeln"Problem 39";
-Goal "~ (EX x. ALL y. F(y,x) <-> ~F(y,y))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 40.  AMENDED";
-Goal "(EX y. ALL x. F(x,y) <-> F(x,x)) -->  \
-\             ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 41";
-Goal "(ALL z. EX y. ALL x. f(x,y) <-> f(x,z) & ~ f(x,x))        \
-\         --> ~ (EX z. ALL x. f(x,z))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 42";
-Goal "~ (EX y. ALL x. p(x,y) <-> ~ (EX z. p(x,z) & p(z,x)))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 43";
-Goal "(ALL x. ALL y. q(x,y) <-> (ALL z. p(z,x) <-> p(z,y)))     \
-\         --> (ALL x. ALL y. q(x,y) <-> q(y,x))";
-by (Blast_tac 1);
-(*Other proofs: Can use Auto_tac(), which cheats by using rewriting!  
-  Deepen_tac alone requires 253 secs.  Or
-  by (mini_tac 1 THEN Deepen_tac 5 1);
-*)
-result();
-
-writeln"Problem 44";
-Goal "(ALL x. f(x) --> (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y)))) & \
-\     (EX x. j(x) & (ALL y. g(y) --> h(x,y)))                   \
-\     --> (EX x. j(x) & ~f(x))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 45";
-Goal "(ALL x. f(x) & (ALL y. g(y) & h(x,y) --> j(x,y))  \
-\                     --> (ALL y. g(y) & h(x,y) --> k(y))) &    \
-\     ~ (EX y. l(y) & k(y)) &                                   \
-\     (EX x. f(x) & (ALL y. h(x,y) --> l(y))                    \
-\                 & (ALL y. g(y) & h(x,y) --> j(x,y)))          \
-\     --> (EX x. f(x) & ~ (EX y. g(y) & h(x,y)))";
-by (Blast_tac 1); 
-result();
-
-
-writeln"Problem 46";
-Goal "(ALL x. f(x) & (ALL y. f(y) & h(y,x) --> g(y)) --> g(x)) &      \
-\     ((EX x. f(x) & ~g(x)) -->                                    \
-\      (EX x. f(x) & ~g(x) & (ALL y. f(y) & ~g(y) --> j(x,y)))) &    \
-\     (ALL x y. f(x) & f(y) & h(x,y) --> ~j(y,x))                    \
-\      --> (ALL x. f(x) --> g(x))";
-by (Blast_tac 1); 
-result();
-
-
-writeln"Problems (mainly) involving equality or functions";
-
-writeln"Problem 48";
-Goal "(a=b | c=d) & (a=c | b=d) --> a=d | b=c";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 49  NOT PROVED AUTOMATICALLY";
-(*Hard because it involves substitution for Vars;
-  the type constraint ensures that x,y,z have the same type as a,b,u. *)
-Goal "(EX x y::'a. ALL z. z=x | z=y) & P(a) & P(b) & a~=b \
-\               --> (ALL u::'a. P(u))";
-by Safe_tac;
-by (res_inst_tac [("x","a")] allE 1);
-by (assume_tac 1);
-by (res_inst_tac [("x","b")] allE 1);
-by (assume_tac 1);
-by (Fast_tac 1);    (*Blast_tac's treatment of equality can't do it*)
-result();
-
-writeln"Problem 50";  
-(*What has this to do with equality?*)
-Goal "(ALL x. P(a,x) | (ALL y. P(x,y))) --> (EX x. ALL y. P(x,y))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 51";
-Goal "(EX z w. ALL x y. P(x,y) <->  (x=z & y=w)) -->  \
-\     (EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 52";
-(*Almost the same as 51. *)
-Goal "(EX z w. ALL x y. P(x,y) <->  (x=z & y=w)) -->  \
-\     (EX w. ALL y. EX z. (ALL x. P(x,y) <-> x=z) <-> y=w)";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 55";
-
-(*Original, equational version by Len Schubert, via Pelletier *** NOT PROVED
-Goal "(EX x. lives(x) & killed(x,agatha)) & \
-\  lives(agatha) & lives(butler) & lives(charles) & \
-\  (ALL x. lives(x) --> x=agatha | x=butler | x=charles) & \
-\  (ALL x y. killed(x,y) --> hates(x,y)) & \
-\  (ALL x y. killed(x,y) --> ~richer(x,y)) & \
-\  (ALL x. hates(agatha,x) --> ~hates(charles,x)) & \
-\  (ALL x. ~ x=butler --> hates(agatha,x)) & \
-\  (ALL x. ~richer(x,agatha) --> hates(butler,x)) & \
-\  (ALL x. hates(agatha,x) --> hates(butler,x)) & \
-\  (ALL x. EX y. ~hates(x,y)) & \
-\  ~ agatha=butler --> \
-\  killed(?who,agatha)";
-by Safe_tac;
-by (dres_inst_tac [("x1","x")] (spec RS mp) 1);
-by (assume_tac 1);
-by (etac (spec RS exE) 1);
-by (REPEAT (etac allE 1));
-by (Blast_tac 1);
-result();
-****)
-
-(*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
-  fast_tac DISCOVERS who killed Agatha. *)
-Goal "lives(agatha) & lives(butler) & lives(charles) & \
-\  (killed(agatha,agatha) | killed(butler,agatha) | killed(charles,agatha)) & \
-\  (ALL x y. killed(x,y) --> hates(x,y) & ~richer(x,y)) & \
-\  (ALL x. hates(agatha,x) --> ~hates(charles,x)) & \
-\  (hates(agatha,agatha) & hates(agatha,charles)) & \
-\  (ALL x. lives(x) & ~richer(x,agatha) --> hates(butler,x)) & \
-\  (ALL x. hates(agatha,x) --> hates(butler,x)) & \
-\  (ALL x. ~hates(x,agatha) | ~hates(x,butler) | ~hates(x,charles)) --> \
-\   killed(?who,agatha)";
-by (Fast_tac 1);  
-  (*MUCH faster than Blast_tac: 1.5s against ??s, mostly proof reconstruction*)
-result();
-
-
-writeln"Problem 56";
-Goal "(ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 57";
-Goal "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & \
-\    (ALL x y z. P(x,y) & P(y,z) --> P(x,z))    -->   P(f(a,b), f(a,c))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 58  NOT PROVED AUTOMATICALLY";
-Goal "(ALL x y. f(x)=g(y)) --> (ALL x y. f(f(x))=f(g(y)))";
-by (slow_tac (claset() addEs [subst_context]) 1);
-result();
-
-writeln"Problem 59";
-Goal "(ALL x. P(x) <-> ~P(f(x))) --> (EX x. P(x) & ~P(f(x)))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 60";
-Goal "ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))";
-by (Blast_tac 1);
-result();
-
-writeln"Problem 62 as corrected in JAR 18 (1997), page 135";
-Goal "(ALL x. p(a) & (p(x) --> p(f(x))) --> p(f(f(x))))  <->     \
-\     (ALL x. (~p(a) | p(x) | p(f(f(x)))) &                      \
-\             (~p(a) | ~p(f(x)) | p(f(f(x)))))";
-by (Blast_tac 1);
-result();
-
-(*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531
-  Fast_tac indeed copes!*)
-Goal "(ALL x. F(x) & ~G(x) --> (EX y. H(x,y) & J(y))) & \
-\             (EX x. K(x) & F(x) & (ALL y. H(x,y) --> K(y))) &   \
-\             (ALL x. K(x) --> ~G(x))  -->  (EX x. K(x) & J(x))";
-by (Fast_tac 1);
-result();
-
-(*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.  
-  It does seem obvious!*)
-Goal "(ALL x. F(x) & ~G(x) --> (EX y. H(x,y) & J(y))) &        \
-\     (EX x. K(x) & F(x) & (ALL y. H(x,y) --> K(y)))  &        \
-\     (ALL x. K(x) --> ~G(x))   -->   (EX x. K(x) --> ~G(x))";
-by (Fast_tac 1);
-result();
-
-(*Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
-	author U. Egly*)
-Goal "((EX x. A(x) & (ALL y. C(y) --> (ALL z. D(x,y,z)))) -->               \
-\  (EX w. C(w) & (ALL y. C(y) --> (ALL z. D(w,y,z)))))                  \
-\ &                                                                     \
-\ (ALL w. C(w) & (ALL u. C(u) --> (ALL v. D(w,u,v))) -->                \
-\       (ALL y z.                                                       \
-\           (C(y) &  P(y,z) --> Q(w,y,z) & OO(w,g)) &                   \
-\           (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))                   \
-\ &                                                                     \
-\ (ALL w. C(w) &                                                        \
-\   (ALL y z.                                                           \
-\       (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &                        \
-\       (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))) -->                    \
-\   (EX v. C(v) &                                                       \
-\         (ALL y. ((C(y) & Q(w,y,y)) & OO(w,g) --> ~P(v,y)) &           \
-\                 ((C(y) & Q(w,y,y)) & OO(w,b) --> P(v,y) & OO(v,b))))) \
-\  -->                  \
-\  ~ (EX x. A(x) & (ALL y. C(y) --> (ALL z. D(x,y,z))))";
-by (Blast.depth_tac (claset()) 12 1);
-result();
-
-
-(*Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p.105*)
-Goal "((EX x. A(x) & (ALL y. C(y) --> (ALL z. D(x,y,z)))) -->       \
-\  (EX w. C(w) & (ALL y. C(y) --> (ALL z. D(w,y,z)))))          \
-\ &                                                             \
-\ (ALL w. C(w) & (ALL u. C(u) --> (ALL v. D(w,u,v))) -->        \
-\       (ALL y z.                                               \
-\           (C(y) &  P(y,z) --> Q(w,y,z) & OO(w,g)) &          \
-\           (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))         \
-\ &                                                             \
-\ ((EX w. C(w) & (ALL y. (C(y) &  P(y,y) --> Q(w,y,y) & OO(w,g)) &\
-\                        (C(y) & ~P(y,y) --> Q(w,y,y) & OO(w,b)))) \
-\  -->                                                            \
-\  (EX v. C(v) & (ALL y. (C(y) &  P(y,y) --> P(v,y) & OO(v,g)) &  \
-\                        (C(y) & ~P(y,y) --> P(v,y) & OO(v,b))))) \
-\ -->                                                             \
-\ ((EX v. C(v) & (ALL y. (C(y) &  P(y,y) --> P(v,y) & OO(v,g)) &  \
-\                        (C(y) & ~P(y,y) --> P(v,y) & OO(v,b))))  \
-\  -->                                                            \
-\  (EX u. C(u) & (ALL y. (C(y) &  P(y,y) --> ~P(u,y)) &    \
-\                        (C(y) & ~P(y,y) --> P(u,y) & OO(u,b))))) \
-\  -->                                                            \
-\  ~ (EX x. A(x) & (ALL y. C(y) --> (ALL z. D(x,y,z))))";
-by (Blast.depth_tac(claset()) 7 1);
-result();
-
-(* Challenge found on info-hol *)
-Goal "ALL x. EX v w. ALL y z. P(x) & Q(y) --> (P(v) | R(w)) & (R(z) --> Q(v))";
-by (Blast_tac 1);
-result();
-
-(*Attributed to Lewis Carroll by S. G. Pulman.  The first or last assumption
-can be deleted.*)
-Goal "(ALL x. honest(x) & industrious(x) --> healthy(x)) & \
-\     ~ (EX x. grocer(x) & healthy(x)) & \
-\     (ALL x. industrious(x) & grocer(x) --> honest(x)) & \
-\     (ALL x. cyclist(x) --> industrious(x)) & \
-\     (ALL x. ~healthy(x) & cyclist(x) --> ~honest(x))  \
-\     --> (ALL x. grocer(x) --> ~cyclist(x))";
-by (Blast_tac 1);
-result();
-
-
-writeln"Reached end of file.";
-
-(*Thu Jul 23 1992: loaded in 467s using iffE [on SPARC2] *)
-(*Mon Nov 14 1994: loaded in 144s [on SPARC10, with deepen_tac] *)
-(*Wed Nov 16 1994: loaded in 138s [after addition of norm_term_skip] *)
-(*Mon Nov 21 1994: loaded in 131s [DEPTH_FIRST suppressing repetitions] *)
-
-(*Further runtimes on pochard*)
-(*Tue Mar  4 1997: loaded in 93s (version 94-7) *)
-(*Tue Mar  4 1997: loaded in 89s*)
-(*Thu Apr  3 1997: loaded in 44s--using mostly Blast_tac*)
-(*Thu Apr  3 1997: loaded in 96s--addition of two Halting Probs*)
-(*Thu Apr  3 1997: loaded in 98s--using lim-1 for all haz rules*)
-(*Tue Dec  2 1997: loaded in 107s--added 46; new equalSubst*)
-(*Fri Dec 12 1997: loaded in 91s--faster proof reconstruction*)
-(*Thu Dec 18 1997: loaded in 94s--two new "obvious theorems" (??)*)
-