tuned theory name
authornipkow
Sat, 01 Jun 2013 12:02:41 +0200
changeset 52282 c79a3e15779e
parent 52281 780b3870319f
child 52283 1ce9feb47535
tuned theory name
src/HOL/IMP/HoareT.thy
src/HOL/IMP/Hoare_Total.thy
src/HOL/ROOT
--- a/src/HOL/IMP/HoareT.thy	Sat Jun 01 11:48:06 2013 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,214 +0,0 @@
-(* Author: Tobias Nipkow *)
-
-theory HoareT imports Hoare_Sound_Complete Hoare_Examples begin
-
-subsection "Hoare Logic for Total Correctness"
-
-text{* Note that this definition of total validity @{text"\<Turnstile>\<^sub>t"} only
-works if execution is deterministic (which it is in our case). *}
-
-definition hoare_tvalid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool"
-  ("\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_)}" 50) where
-"\<Turnstile>\<^sub>t {P}c{Q}  \<longleftrightarrow>  (\<forall>s. P s \<longrightarrow> (\<exists>t. (c,s) \<Rightarrow> t \<and> Q t))"
-
-text{* Provability of Hoare triples in the proof system for total
-correctness is written @{text"\<turnstile>\<^sub>t {P}c{Q}"} and defined
-inductively. The rules for @{text"\<turnstile>\<^sub>t"} differ from those for
-@{text"\<turnstile>"} only in the one place where nontermination can arise: the
-@{term While}-rule. *}
-
-inductive
-  hoaret :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile>\<^sub>t ({(1_)}/ (_)/ {(1_)})" 50)
-where
-
-Skip:  "\<turnstile>\<^sub>t {P} SKIP {P}"  |
-
-Assign:  "\<turnstile>\<^sub>t {\<lambda>s. P(s[a/x])} x::=a {P}"  |
-
-Seq: "\<lbrakk> \<turnstile>\<^sub>t {P\<^isub>1} c\<^isub>1 {P\<^isub>2}; \<turnstile>\<^sub>t {P\<^isub>2} c\<^isub>2 {P\<^isub>3} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P\<^isub>1} c\<^isub>1;;c\<^isub>2 {P\<^isub>3}"  |
-
-If: "\<lbrakk> \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s} c\<^isub>1 {Q}; \<turnstile>\<^sub>t {\<lambda>s. P s \<and> \<not> bval b s} c\<^isub>2 {Q} \<rbrakk>
-  \<Longrightarrow> \<turnstile>\<^sub>t {P} IF b THEN c\<^isub>1 ELSE c\<^isub>2 {Q}"  |
-
-While:
-  "(\<And>n::nat.
-    \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s \<and> T s n} c {\<lambda>s. P s \<and> (\<exists>n'. T s n' \<and> n' < n)})
-   \<Longrightarrow> \<turnstile>\<^sub>t {\<lambda>s. P s \<and> (\<exists>n. T s n)} WHILE b DO c {\<lambda>s. P s \<and> \<not>bval b s}"  |
-
-conseq: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>\<^sub>t {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s  \<rbrakk> \<Longrightarrow>
-           \<turnstile>\<^sub>t {P'}c{Q'}"
-
-text{* The @{term While}-rule is like the one for partial correctness but it
-requires additionally that with every execution of the loop body some measure
-relation @{term[source]"T :: state \<Rightarrow> nat \<Rightarrow> bool"} decreases.
-The following functional version is more intuitive: *}
-
-lemma While_fun:
-  "\<lbrakk> \<And>n::nat. \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s \<and> n = f s} c {\<lambda>s. P s \<and> f s < n}\<rbrakk>
-   \<Longrightarrow> \<turnstile>\<^sub>t {P} WHILE b DO c {\<lambda>s. P s \<and> \<not>bval b s}"
-  by (rule While [where T="\<lambda>s n. n = f s", simplified])
-
-text{* Building in the consequence rule: *}
-
-lemma strengthen_pre:
-  "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s;  \<turnstile>\<^sub>t {P} c {Q} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P'} c {Q}"
-by (metis conseq)
-
-lemma weaken_post:
-  "\<lbrakk> \<turnstile>\<^sub>t {P} c {Q};  \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow>  \<turnstile>\<^sub>t {P} c {Q'}"
-by (metis conseq)
-
-lemma Assign': "\<forall>s. P s \<longrightarrow> Q(s[a/x]) \<Longrightarrow> \<turnstile>\<^sub>t {P} x ::= a {Q}"
-by (simp add: strengthen_pre[OF _ Assign])
-
-lemma While_fun':
-assumes "\<And>n::nat. \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s \<and> n = f s} c {\<lambda>s. P s \<and> f s < n}"
-    and "\<forall>s. P s \<and> \<not> bval b s \<longrightarrow> Q s"
-shows "\<turnstile>\<^sub>t {P} WHILE b DO c {Q}"
-by(blast intro: assms(1) weaken_post[OF While_fun assms(2)])
-
-
-text{* Our standard example: *}
-
-lemma "\<turnstile>\<^sub>t {\<lambda>s. s ''x'' = i} ''y'' ::= N 0;; wsum {\<lambda>s. s ''y'' = sum i}"
-apply(rule Seq)
- prefer 2
- apply(rule While_fun' [where P = "\<lambda>s. (s ''y'' = sum i - sum(s ''x''))"
-    and f = "\<lambda>s. nat(s ''x'')"])
-   apply(rule Seq)
-   prefer 2
-   apply(rule Assign)
-  apply(rule Assign')
-  apply simp
-  apply(simp add: minus_numeral_simps(1)[symmetric] del: minus_numeral_simps)
- apply(simp)
-apply(rule Assign')
-apply simp
-done
-
-
-text{* The soundness theorem: *}
-
-theorem hoaret_sound: "\<turnstile>\<^sub>t {P}c{Q}  \<Longrightarrow>  \<Turnstile>\<^sub>t {P}c{Q}"
-proof(unfold hoare_tvalid_def, induct rule: hoaret.induct)
-  case (While P b T c)
-  {
-    fix s n
-    have "\<lbrakk> P s; T s n \<rbrakk> \<Longrightarrow> \<exists>t. (WHILE b DO c, s) \<Rightarrow> t \<and> P t \<and> \<not> bval b t"
-    proof(induction "n" arbitrary: s rule: less_induct)
-      case (less n)
-      thus ?case by (metis While(2) WhileFalse WhileTrue)
-    qed
-  }
-  thus ?case by auto
-next
-  case If thus ?case by auto blast
-qed fastforce+
-
-
-text{*
-The completeness proof proceeds along the same lines as the one for partial
-correctness. First we have to strengthen our notion of weakest precondition
-to take termination into account: *}
-
-definition wpt :: "com \<Rightarrow> assn \<Rightarrow> assn" ("wp\<^sub>t") where
-"wp\<^sub>t c Q  \<equiv>  \<lambda>s. \<exists>t. (c,s) \<Rightarrow> t \<and> Q t"
-
-lemma [simp]: "wp\<^sub>t SKIP Q = Q"
-by(auto intro!: ext simp: wpt_def)
-
-lemma [simp]: "wp\<^sub>t (x ::= e) Q = (\<lambda>s. Q(s(x := aval e s)))"
-by(auto intro!: ext simp: wpt_def)
-
-lemma [simp]: "wp\<^sub>t (c\<^isub>1;;c\<^isub>2) Q = wp\<^sub>t c\<^isub>1 (wp\<^sub>t c\<^isub>2 Q)"
-unfolding wpt_def
-apply(rule ext)
-apply auto
-done
-
-lemma [simp]:
- "wp\<^sub>t (IF b THEN c\<^isub>1 ELSE c\<^isub>2) Q = (\<lambda>s. wp\<^sub>t (if bval b s then c\<^isub>1 else c\<^isub>2) Q s)"
-apply(unfold wpt_def)
-apply(rule ext)
-apply auto
-done
-
-
-text{* Now we define the number of iterations @{term "WHILE b DO c"} needs to
-terminate when started in state @{text s}. Because this is a truly partial
-function, we define it as an (inductive) relation first: *}
-
-inductive Its :: "bexp \<Rightarrow> com \<Rightarrow> state \<Rightarrow> nat \<Rightarrow> bool" where
-Its_0: "\<not> bval b s \<Longrightarrow> Its b c s 0" |
-Its_Suc: "\<lbrakk> bval b s;  (c,s) \<Rightarrow> s';  Its b c s' n \<rbrakk> \<Longrightarrow> Its b c s (Suc n)"
-
-text{* The relation is in fact a function: *}
-
-lemma Its_fun: "Its b c s n \<Longrightarrow> Its b c s n' \<Longrightarrow> n=n'"
-proof(induction arbitrary: n' rule:Its.induct)
-  case Its_0 thus ?case by(metis Its.cases)
-next
-  case Its_Suc thus ?case by(metis Its.cases big_step_determ)
-qed
-
-text{* For all terminating loops, @{const Its} yields a result: *}
-
-lemma WHILE_Its: "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> \<exists>n. Its b c s n"
-proof(induction "WHILE b DO c" s t rule: big_step_induct)
-  case WhileFalse thus ?case by (metis Its_0)
-next
-  case WhileTrue thus ?case by (metis Its_Suc)
-qed
-
-lemma wpt_is_pre: "\<turnstile>\<^sub>t {wp\<^sub>t c Q} c {Q}"
-proof (induction c arbitrary: Q)
-  case SKIP show ?case by simp (blast intro:hoaret.Skip)
-next
-  case Assign show ?case by simp (blast intro:hoaret.Assign)
-next
-  case Seq thus ?case by simp (blast intro:hoaret.Seq)
-next
-  case If thus ?case by simp (blast intro:hoaret.If hoaret.conseq)
-next
-  case (While b c)
-  let ?w = "WHILE b DO c"
-  let ?T = "Its b c"
-  have "\<forall>s. wp\<^sub>t (WHILE b DO c) Q s \<longrightarrow> wp\<^sub>t (WHILE b DO c) Q s \<and> (\<exists>n. Its b c s n)"
-    unfolding wpt_def by (metis WHILE_Its)
-  moreover
-  { fix n
-    { fix s t
-      assume "bval b s" "?T s n" "(?w, s) \<Rightarrow> t" "Q t"
-      from `bval b s` `(?w, s) \<Rightarrow> t` obtain s' where
-        "(c,s) \<Rightarrow> s'" "(?w,s') \<Rightarrow> t" by auto      
-      from `(?w, s') \<Rightarrow> t` obtain n'' where "?T s' n''" by (blast dest: WHILE_Its)
-      with `bval b s` `(c, s) \<Rightarrow> s'`
-      have "?T s (Suc n'')" by (rule Its_Suc)
-      with `?T s n` have "n = Suc n''" by (rule Its_fun)
-      with `(c,s) \<Rightarrow> s'` `(?w,s') \<Rightarrow> t` `Q t` `?T s' n''`
-      have "wp\<^sub>t c (\<lambda>s'. wp\<^sub>t ?w Q s' \<and> (\<exists>n'. ?T s' n' \<and> n' < n)) s"
-        by (auto simp: wpt_def)
-    } 
-    hence "\<forall>s. wp\<^sub>t ?w Q s \<and> bval b s \<and> ?T s n \<longrightarrow>
-              wp\<^sub>t c (\<lambda>s'. wp\<^sub>t ?w Q s' \<and> (\<exists>n'. ?T s' n' \<and> n' < n)) s"
-      unfolding wpt_def by auto
-      (* by (metis WhileE Its_Suc Its_fun WHILE_Its lessI) *) 
-    note strengthen_pre[OF this While]
-  } note hoaret.While[OF this]
-  moreover have "\<forall>s. wp\<^sub>t ?w Q s \<and> \<not> bval b s \<longrightarrow> Q s" by (auto simp add:wpt_def)
-  ultimately show ?case by (rule conseq) 
-qed
-
-
-text{*\noindent In the @{term While}-case, @{const Its} provides the obvious
-termination argument.
-
-The actual completeness theorem follows directly, in the same manner
-as for partial correctness: *}
-
-theorem hoaret_complete: "\<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<turnstile>\<^sub>t {P}c{Q}"
-apply(rule strengthen_pre[OF _ wpt_is_pre])
-apply(auto simp: hoare_tvalid_def hoare_valid_def wpt_def)
-done
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Hoare_Total.thy	Sat Jun 01 12:02:41 2013 +0200
@@ -0,0 +1,214 @@
+(* Author: Tobias Nipkow *)
+
+theory Hoare_Total imports Hoare_Sound_Complete Hoare_Examples begin
+
+subsection "Hoare Logic for Total Correctness"
+
+text{* Note that this definition of total validity @{text"\<Turnstile>\<^sub>t"} only
+works if execution is deterministic (which it is in our case). *}
+
+definition hoare_tvalid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool"
+  ("\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_)}" 50) where
+"\<Turnstile>\<^sub>t {P}c{Q}  \<longleftrightarrow>  (\<forall>s. P s \<longrightarrow> (\<exists>t. (c,s) \<Rightarrow> t \<and> Q t))"
+
+text{* Provability of Hoare triples in the proof system for total
+correctness is written @{text"\<turnstile>\<^sub>t {P}c{Q}"} and defined
+inductively. The rules for @{text"\<turnstile>\<^sub>t"} differ from those for
+@{text"\<turnstile>"} only in the one place where nontermination can arise: the
+@{term While}-rule. *}
+
+inductive
+  hoaret :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile>\<^sub>t ({(1_)}/ (_)/ {(1_)})" 50)
+where
+
+Skip:  "\<turnstile>\<^sub>t {P} SKIP {P}"  |
+
+Assign:  "\<turnstile>\<^sub>t {\<lambda>s. P(s[a/x])} x::=a {P}"  |
+
+Seq: "\<lbrakk> \<turnstile>\<^sub>t {P\<^isub>1} c\<^isub>1 {P\<^isub>2}; \<turnstile>\<^sub>t {P\<^isub>2} c\<^isub>2 {P\<^isub>3} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P\<^isub>1} c\<^isub>1;;c\<^isub>2 {P\<^isub>3}"  |
+
+If: "\<lbrakk> \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s} c\<^isub>1 {Q}; \<turnstile>\<^sub>t {\<lambda>s. P s \<and> \<not> bval b s} c\<^isub>2 {Q} \<rbrakk>
+  \<Longrightarrow> \<turnstile>\<^sub>t {P} IF b THEN c\<^isub>1 ELSE c\<^isub>2 {Q}"  |
+
+While:
+  "(\<And>n::nat.
+    \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s \<and> T s n} c {\<lambda>s. P s \<and> (\<exists>n'. T s n' \<and> n' < n)})
+   \<Longrightarrow> \<turnstile>\<^sub>t {\<lambda>s. P s \<and> (\<exists>n. T s n)} WHILE b DO c {\<lambda>s. P s \<and> \<not>bval b s}"  |
+
+conseq: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>\<^sub>t {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s  \<rbrakk> \<Longrightarrow>
+           \<turnstile>\<^sub>t {P'}c{Q'}"
+
+text{* The @{term While}-rule is like the one for partial correctness but it
+requires additionally that with every execution of the loop body some measure
+relation @{term[source]"T :: state \<Rightarrow> nat \<Rightarrow> bool"} decreases.
+The following functional version is more intuitive: *}
+
+lemma While_fun:
+  "\<lbrakk> \<And>n::nat. \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s \<and> n = f s} c {\<lambda>s. P s \<and> f s < n}\<rbrakk>
+   \<Longrightarrow> \<turnstile>\<^sub>t {P} WHILE b DO c {\<lambda>s. P s \<and> \<not>bval b s}"
+  by (rule While [where T="\<lambda>s n. n = f s", simplified])
+
+text{* Building in the consequence rule: *}
+
+lemma strengthen_pre:
+  "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s;  \<turnstile>\<^sub>t {P} c {Q} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P'} c {Q}"
+by (metis conseq)
+
+lemma weaken_post:
+  "\<lbrakk> \<turnstile>\<^sub>t {P} c {Q};  \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow>  \<turnstile>\<^sub>t {P} c {Q'}"
+by (metis conseq)
+
+lemma Assign': "\<forall>s. P s \<longrightarrow> Q(s[a/x]) \<Longrightarrow> \<turnstile>\<^sub>t {P} x ::= a {Q}"
+by (simp add: strengthen_pre[OF _ Assign])
+
+lemma While_fun':
+assumes "\<And>n::nat. \<turnstile>\<^sub>t {\<lambda>s. P s \<and> bval b s \<and> n = f s} c {\<lambda>s. P s \<and> f s < n}"
+    and "\<forall>s. P s \<and> \<not> bval b s \<longrightarrow> Q s"
+shows "\<turnstile>\<^sub>t {P} WHILE b DO c {Q}"
+by(blast intro: assms(1) weaken_post[OF While_fun assms(2)])
+
+
+text{* Our standard example: *}
+
+lemma "\<turnstile>\<^sub>t {\<lambda>s. s ''x'' = i} ''y'' ::= N 0;; wsum {\<lambda>s. s ''y'' = sum i}"
+apply(rule Seq)
+ prefer 2
+ apply(rule While_fun' [where P = "\<lambda>s. (s ''y'' = sum i - sum(s ''x''))"
+    and f = "\<lambda>s. nat(s ''x'')"])
+   apply(rule Seq)
+   prefer 2
+   apply(rule Assign)
+  apply(rule Assign')
+  apply simp
+  apply(simp add: minus_numeral_simps(1)[symmetric] del: minus_numeral_simps)
+ apply(simp)
+apply(rule Assign')
+apply simp
+done
+
+
+text{* The soundness theorem: *}
+
+theorem hoaret_sound: "\<turnstile>\<^sub>t {P}c{Q}  \<Longrightarrow>  \<Turnstile>\<^sub>t {P}c{Q}"
+proof(unfold hoare_tvalid_def, induction rule: hoaret.induct)
+  case (While P b T c)
+  {
+    fix s n
+    have "\<lbrakk> P s; T s n \<rbrakk> \<Longrightarrow> \<exists>t. (WHILE b DO c, s) \<Rightarrow> t \<and> P t \<and> \<not> bval b t"
+    proof(induction "n" arbitrary: s rule: less_induct)
+      case (less n)
+      thus ?case by (metis While.IH WhileFalse WhileTrue)
+    qed
+  }
+  thus ?case by auto
+next
+  case If thus ?case by auto blast
+qed fastforce+
+
+
+text{*
+The completeness proof proceeds along the same lines as the one for partial
+correctness. First we have to strengthen our notion of weakest precondition
+to take termination into account: *}
+
+definition wpt :: "com \<Rightarrow> assn \<Rightarrow> assn" ("wp\<^sub>t") where
+"wp\<^sub>t c Q  \<equiv>  \<lambda>s. \<exists>t. (c,s) \<Rightarrow> t \<and> Q t"
+
+lemma [simp]: "wp\<^sub>t SKIP Q = Q"
+by(auto intro!: ext simp: wpt_def)
+
+lemma [simp]: "wp\<^sub>t (x ::= e) Q = (\<lambda>s. Q(s(x := aval e s)))"
+by(auto intro!: ext simp: wpt_def)
+
+lemma [simp]: "wp\<^sub>t (c\<^isub>1;;c\<^isub>2) Q = wp\<^sub>t c\<^isub>1 (wp\<^sub>t c\<^isub>2 Q)"
+unfolding wpt_def
+apply(rule ext)
+apply auto
+done
+
+lemma [simp]:
+ "wp\<^sub>t (IF b THEN c\<^isub>1 ELSE c\<^isub>2) Q = (\<lambda>s. wp\<^sub>t (if bval b s then c\<^isub>1 else c\<^isub>2) Q s)"
+apply(unfold wpt_def)
+apply(rule ext)
+apply auto
+done
+
+
+text{* Now we define the number of iterations @{term "WHILE b DO c"} needs to
+terminate when started in state @{text s}. Because this is a truly partial
+function, we define it as an (inductive) relation first: *}
+
+inductive Its :: "bexp \<Rightarrow> com \<Rightarrow> state \<Rightarrow> nat \<Rightarrow> bool" where
+Its_0: "\<not> bval b s \<Longrightarrow> Its b c s 0" |
+Its_Suc: "\<lbrakk> bval b s;  (c,s) \<Rightarrow> s';  Its b c s' n \<rbrakk> \<Longrightarrow> Its b c s (Suc n)"
+
+text{* The relation is in fact a function: *}
+
+lemma Its_fun: "Its b c s n \<Longrightarrow> Its b c s n' \<Longrightarrow> n=n'"
+proof(induction arbitrary: n' rule:Its.induct)
+  case Its_0 thus ?case by(metis Its.cases)
+next
+  case Its_Suc thus ?case by(metis Its.cases big_step_determ)
+qed
+
+text{* For all terminating loops, @{const Its} yields a result: *}
+
+lemma WHILE_Its: "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> \<exists>n. Its b c s n"
+proof(induction "WHILE b DO c" s t rule: big_step_induct)
+  case WhileFalse thus ?case by (metis Its_0)
+next
+  case WhileTrue thus ?case by (metis Its_Suc)
+qed
+
+lemma wpt_is_pre: "\<turnstile>\<^sub>t {wp\<^sub>t c Q} c {Q}"
+proof (induction c arbitrary: Q)
+  case SKIP show ?case by simp (blast intro:hoaret.Skip)
+next
+  case Assign show ?case by simp (blast intro:hoaret.Assign)
+next
+  case Seq thus ?case by simp (blast intro:hoaret.Seq)
+next
+  case If thus ?case by simp (blast intro:hoaret.If hoaret.conseq)
+next
+  case (While b c)
+  let ?w = "WHILE b DO c"
+  let ?T = "Its b c"
+  have "\<forall>s. wp\<^sub>t (WHILE b DO c) Q s \<longrightarrow> wp\<^sub>t (WHILE b DO c) Q s \<and> (\<exists>n. Its b c s n)"
+    unfolding wpt_def by (metis WHILE_Its)
+  moreover
+  { fix n
+    { fix s t
+      assume "bval b s" "?T s n" "(?w, s) \<Rightarrow> t" "Q t"
+      from `bval b s` `(?w, s) \<Rightarrow> t` obtain s' where
+        "(c,s) \<Rightarrow> s'" "(?w,s') \<Rightarrow> t" by auto      
+      from `(?w, s') \<Rightarrow> t` obtain n'' where "?T s' n''" by (blast dest: WHILE_Its)
+      with `bval b s` `(c, s) \<Rightarrow> s'`
+      have "?T s (Suc n'')" by (rule Its_Suc)
+      with `?T s n` have "n = Suc n''" by (rule Its_fun)
+      with `(c,s) \<Rightarrow> s'` `(?w,s') \<Rightarrow> t` `Q t` `?T s' n''`
+      have "wp\<^sub>t c (\<lambda>s'. wp\<^sub>t ?w Q s' \<and> (\<exists>n'. ?T s' n' \<and> n' < n)) s"
+        by (auto simp: wpt_def)
+    } 
+    hence "\<forall>s. wp\<^sub>t ?w Q s \<and> bval b s \<and> ?T s n \<longrightarrow>
+              wp\<^sub>t c (\<lambda>s'. wp\<^sub>t ?w Q s' \<and> (\<exists>n'. ?T s' n' \<and> n' < n)) s"
+      unfolding wpt_def by auto
+      (* by (metis WhileE Its_Suc Its_fun WHILE_Its lessI) *) 
+    note strengthen_pre[OF this While]
+  } note hoaret.While[OF this]
+  moreover have "\<forall>s. wp\<^sub>t ?w Q s \<and> \<not> bval b s \<longrightarrow> Q s" by (auto simp add:wpt_def)
+  ultimately show ?case by (rule conseq) 
+qed
+
+
+text{*\noindent In the @{term While}-case, @{const Its} provides the obvious
+termination argument.
+
+The actual completeness theorem follows directly, in the same manner
+as for partial correctness: *}
+
+theorem hoaret_complete: "\<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<turnstile>\<^sub>t {P}c{Q}"
+apply(rule strengthen_pre[OF _ wpt_is_pre])
+apply(auto simp: hoare_tvalid_def hoare_valid_def wpt_def)
+done
+
+end
--- a/src/HOL/ROOT	Sat Jun 01 11:48:06 2013 +0200
+++ b/src/HOL/ROOT	Sat Jun 01 12:02:41 2013 +0200
@@ -130,7 +130,7 @@
     Live_True
     Hoare_Examples
     VCG
-    HoareT
+    Hoare_Total
     Collecting1
     Collecting_Examples
     Abs_Int_Tests