combining the relevance filter with res_atp
authorpaulson
Wed, 15 Aug 2007 13:50:47 +0200
changeset 24287 c857dac06da6
parent 24286 7619080e49f0
child 24288 4016baca4973
combining the relevance filter with res_atp
src/HOL/Tools/ATP/reduce_axiomsN.ML
src/HOL/Tools/res_atp.ML
--- a/src/HOL/Tools/ATP/reduce_axiomsN.ML	Wed Aug 15 12:52:56 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,256 +0,0 @@
-(* Authors: Jia Meng, NICTA and Lawrence C Paulson, Cambridge University Computer Laboratory
-   ID: $Id$
-   Filtering strategies *)
-
-(*A surprising number of theorems contain only a few significant constants.
-  These include all induction rules, and other general theorems. Filtering
-  theorems in clause form reveals these complexities in the form of Skolem 
-  functions. If we were instead to filter theorems in their natural form,
-  some other method of measuring theorem complexity would become necessary.*)
-
-structure ReduceAxiomsN =
-struct
-
-val run_relevance_filter = ref true;
-val theory_const = ref true;
-val pass_mark = ref 0.5;
-val convergence = ref 3.2;    (*Higher numbers allow longer inference chains*)
-val max_new = ref 60;         (*Limits how many clauses can be picked up per stage*)
-val follow_defs = ref false;  (*Follow definitions. Makes problems bigger.*)
-
-fun log_weight2 (x:real) = 1.0 + 2.0/Math.ln (x+1.0);
-
-(*The default seems best in practice. A constant function of one ignores
-  the constant frequencies.*)
-val weight_fn = ref log_weight2;
-
-
-(*Including equality in this list might be expected to stop rules like subset_antisym from
-  being chosen, but for some reason filtering works better with them listed. The
-  logical signs All, Ex, &, and --> are omitted because any remaining occurrrences
-  must be within comprehensions.*)
-val standard_consts = ["Trueprop","==>","all","==","op |","Not","op ="];
-
-
-(*** constants with types ***)
-
-(*An abstraction of Isabelle types*)
-datatype const_typ =  CTVar | CType of string * const_typ list
-
-(*Is the second type an instance of the first one?*)
-fun match_type (CType(con1,args1)) (CType(con2,args2)) = 
-      con1=con2 andalso match_types args1 args2
-  | match_type CTVar _ = true
-  | match_type _ CTVar = false
-and match_types [] [] = true
-  | match_types (a1::as1) (a2::as2) = match_type a1 a2 andalso match_types as1 as2;
-
-(*Is there a unifiable constant?*)
-fun uni_mem gctab (c,c_typ) =
-  case Symtab.lookup gctab c of
-      NONE => false
-    | SOME ctyps_list => exists (match_types c_typ) ctyps_list;
-  
-(*Maps a "real" type to a const_typ*)
-fun const_typ_of (Type (c,typs)) = CType (c, map const_typ_of typs) 
-  | const_typ_of (TFree _) = CTVar
-  | const_typ_of (TVar _) = CTVar
-
-(*Pairs a constant with the list of its type instantiations (using const_typ)*)
-fun const_with_typ thy (c,typ) = 
-    let val tvars = Sign.const_typargs thy (c,typ)
-    in (c, map const_typ_of tvars) end
-    handle TYPE _ => (c,[]);   (*Variable (locale constant): monomorphic*)   
-
-(*Add a const/type pair to the table, but a [] entry means a standard connective,
-  which we ignore.*)
-fun add_const_typ_table ((c,ctyps), tab) =
-  Symtab.map_default (c, [ctyps]) (fn [] => [] | ctyps_list => insert (op =) ctyps ctyps_list) 
-    tab;
-
-(*Free variables are included, as well as constants, to handle locales*)
-fun add_term_consts_typs_rm thy (Const(c, typ), tab) =
-      add_const_typ_table (const_with_typ thy (c,typ), tab) 
-  | add_term_consts_typs_rm thy (Free(c, typ), tab) =
-      add_const_typ_table (const_with_typ thy (c,typ), tab) 
-  | add_term_consts_typs_rm thy (t $ u, tab) =
-      add_term_consts_typs_rm thy (t, add_term_consts_typs_rm thy (u, tab))
-  | add_term_consts_typs_rm thy (Abs(_,_,t), tab) = add_term_consts_typs_rm thy (t, tab)
-  | add_term_consts_typs_rm thy (_, tab) = tab;
-
-(*The empty list here indicates that the constant is being ignored*)
-fun add_standard_const (s,tab) = Symtab.update (s,[]) tab;
-
-val null_const_tab : const_typ list list Symtab.table = 
-    foldl add_standard_const Symtab.empty standard_consts;
-
-fun get_goal_consts_typs thy = foldl (add_term_consts_typs_rm thy) null_const_tab;
-
-(*Inserts a dummy "constant" referring to the theory name, so that relevance
-  takes the given theory into account.*)
-fun const_prop_of th =
- if !theory_const then
-  let val name = Context.theory_name (theory_of_thm th)
-      val t = Const (name ^ ". 1", HOLogic.boolT)
-  in  t $ prop_of th  end
- else prop_of th;
-
-(**** Constant / Type Frequencies ****)
-
-(*A two-dimensional symbol table counts frequencies of constants. It's keyed first by
-  constant name and second by its list of type instantiations. For the latter, we need
-  a linear ordering on type const_typ list.*)
-  
-local
-
-fun cons_nr CTVar = 0
-  | cons_nr (CType _) = 1;
-
-in
-
-fun const_typ_ord TU =
-  case TU of
-    (CType (a, Ts), CType (b, Us)) =>
-      (case fast_string_ord(a,b) of EQUAL => dict_ord const_typ_ord (Ts,Us) | ord => ord)
-  | (T, U) => int_ord (cons_nr T, cons_nr U);
-
-end;
-
-structure CTtab = TableFun(type key = const_typ list val ord = dict_ord const_typ_ord);
-
-fun count_axiom_consts thy ((thm,_), tab) = 
-  let fun count_const (a, T, tab) =
-	let val (c, cts) = const_with_typ thy (a,T)
-	in  (*Two-dimensional table update. Constant maps to types maps to count.*)
-	    Symtab.map_default (c, CTtab.empty) 
-	                       (CTtab.map_default (cts,0) (fn n => n+1)) tab
-	end
-      fun count_term_consts (Const(a,T), tab) = count_const(a,T,tab)
-	| count_term_consts (Free(a,T), tab) = count_const(a,T,tab)
-	| count_term_consts (t $ u, tab) =
-	    count_term_consts (t, count_term_consts (u, tab))
-	| count_term_consts (Abs(_,_,t), tab) = count_term_consts (t, tab)
-	| count_term_consts (_, tab) = tab
-  in  count_term_consts (const_prop_of thm, tab)  end;
-
-
-(**** Actual Filtering Code ****)
-
-(*The frequency of a constant is the sum of those of all instances of its type.*)
-fun const_frequency ctab (c, cts) =
-  let val pairs = CTtab.dest (the (Symtab.lookup ctab c))
-      fun add ((cts',m), n) = if match_types cts cts' then m+n else n
-  in  List.foldl add 0 pairs  end;
-
-(*Add in a constant's weight, as determined by its frequency.*)
-fun add_ct_weight ctab ((c,T), w) =
-  w + !weight_fn (real (const_frequency ctab (c,T)));
-
-(*Relevant constants are weighted according to frequency, 
-  but irrelevant constants are simply counted. Otherwise, Skolem functions,
-  which are rare, would harm a clause's chances of being picked.*)
-fun clause_weight ctab gctyps consts_typs =
-    let val rel = filter (uni_mem gctyps) consts_typs
-        val rel_weight = List.foldl (add_ct_weight ctab) 0.0 rel
-    in
-	rel_weight / (rel_weight + real (length consts_typs - length rel))
-    end;
-    
-(*Multiplies out to a list of pairs: 'a * 'b list -> ('a * 'b) list -> ('a * 'b) list*)
-fun add_expand_pairs (x,ys) xys = foldl (fn (y,acc) => (x,y)::acc) xys ys;
-
-fun consts_typs_of_term thy t = 
-  let val tab = add_term_consts_typs_rm thy (t, null_const_tab)
-  in  Symtab.fold add_expand_pairs tab []  end;
-
-fun pair_consts_typs_axiom thy (thm,name) =
-    ((thm,name), (consts_typs_of_term thy (const_prop_of thm)));
-
-exception ConstFree;
-fun dest_ConstFree (Const aT) = aT
-  | dest_ConstFree (Free aT) = aT
-  | dest_ConstFree _ = raise ConstFree;
-
-(*Look for definitions of the form f ?x1 ... ?xn = t, but not reversed.*)
-fun defines thy (thm,(name,n)) gctypes =
-    let val tm = prop_of thm
-	fun defs lhs rhs =
-            let val (rator,args) = strip_comb lhs
-		val ct = const_with_typ thy (dest_ConstFree rator)
-            in  forall is_Var args andalso uni_mem gctypes ct andalso
-                Term.add_vars rhs [] subset Term.add_vars lhs []
-            end
-	    handle ConstFree => false
-    in    
-	case tm of Const ("Trueprop",_) $ (Const("op =",_) $ lhs $ rhs) => 
-		   defs lhs rhs andalso
-		   (Output.debug (fn () => "Definition found: " ^ name ^ "_" ^ Int.toString n); true)
-		 | _ => false
-    end;
-
-type annotd_cls = (thm * (string * int)) * ((string * const_typ list) list);
-       
-(*For a reverse sort, putting the largest values first.*)
-fun compare_pairs ((_,w1),(_,w2)) = Real.compare (w2,w1);
-
-(*Limit the number of new clauses, to prevent runaway acceptance.*)
-fun take_best (newpairs : (annotd_cls*real) list) =
-  let val nnew = length newpairs
-  in
-    if nnew <= !max_new then (map #1 newpairs, [])
-    else 
-      let val cls = sort compare_pairs newpairs
-          val accepted = List.take (cls, !max_new)
-      in
-        Output.debug (fn () => ("Number of candidates, " ^ Int.toString nnew ^ 
-		       ", exceeds the limit of " ^ Int.toString (!max_new)));
-        Output.debug (fn () => ("Effective pass mark: " ^ Real.toString (#2 (List.last accepted))));
-        Output.debug (fn () => "Actually passed: " ^
-          space_implode ", " (map (fn (((_,(name,_)),_),_) => name) accepted));
-
-	(map #1 accepted, map #1 (List.drop (cls, !max_new)))
-      end
-  end;
-
-fun relevant_clauses thy ctab p rel_consts =
-  let fun relevant ([],_) [] = [] : (thm * (string * int)) list  (*Nothing added this iteration*)
-	| relevant (newpairs,rejects) [] =
-	    let val (newrels,more_rejects) = take_best newpairs
-		val new_consts = List.concat (map #2 newrels)
-		val rel_consts' = foldl add_const_typ_table rel_consts new_consts
-		val newp = p + (1.0-p) / !convergence
-	    in
-              Output.debug (fn () => ("relevant this iteration: " ^ Int.toString (length newrels)));
-	       (map #1 newrels) @ 
-	       (relevant_clauses thy ctab newp rel_consts' (more_rejects@rejects))
-	    end
-	| relevant (newrels,rejects) ((ax as (clsthm as (_,(name,n)),consts_typs)) :: axs) =
-	    let val weight = clause_weight ctab rel_consts consts_typs
-	    in
-	      if p <= weight orelse (!follow_defs andalso defines thy clsthm rel_consts)
-	      then (Output.debug (fn () => (name ^ " clause " ^ Int.toString n ^ 
-	                                    " passes: " ^ Real.toString weight));
-	            relevant ((ax,weight)::newrels, rejects) axs)
-	      else relevant (newrels, ax::rejects) axs
-	    end
-    in  Output.debug (fn () => ("relevant_clauses, current pass mark = " ^ Real.toString p));
-        relevant ([],[]) 
-    end;
-	
-fun relevance_filter thy axioms goals = 
- if !run_relevance_filter andalso !pass_mark >= 0.1
- then
-  let val _ = Output.debug (fn () => "Start of relevance filtering");
-      val const_tab = List.foldl (count_axiom_consts thy) Symtab.empty axioms
-      val goal_const_tab = get_goal_consts_typs thy goals
-      val _ = Output.debug (fn () => ("Initial constants: " ^
-                                 space_implode ", " (Symtab.keys goal_const_tab)));
-      val rels = relevant_clauses thy const_tab (!pass_mark) 
-                   goal_const_tab  (map (pair_consts_typs_axiom thy) axioms)
-  in
-      Output.debug (fn () => ("Total relevant: " ^ Int.toString (length rels)));
-      rels
-  end
- else axioms;
-
-end;
--- a/src/HOL/Tools/res_atp.ML	Wed Aug 15 12:52:56 2007 +0200
+++ b/src/HOL/Tools/res_atp.ML	Wed Aug 15 13:50:47 2007 +0200
@@ -23,6 +23,11 @@
   val include_all: bool ref
   val run_relevance_filter: bool ref
   val run_blacklist_filter: bool ref
+  val theory_const : bool ref
+  val pass_mark    : real ref
+  val convergence  : real ref
+  val max_new      : int ref
+  val follow_defs  : bool ref
   val add_all : unit -> unit
   val add_claset : unit -> unit
   val add_simpset : unit -> unit
@@ -50,22 +55,31 @@
 (********************************************************************)
 
 (*** background linkup ***)
+val run_blacklist_filter = ref true;
 val time_limit = ref 60;
 val prover = ref "";
 
+(*** relevance filter parameters ***)
+val run_relevance_filter = ref true;
+val theory_const = ref true;
+val pass_mark = ref 0.5;
+val convergence = ref 3.2;    (*Higher numbers allow longer inference chains*)
+val max_new = ref 60;         (*Limits how many clauses can be picked up per stage*)
+val follow_defs = ref false;  (*Follow definitions. Makes problems bigger.*)
+
 fun set_prover atp =
   case String.map Char.toLower atp of
       "e" =>
-          (ReduceAxiomsN.max_new := 100;
-           ReduceAxiomsN.theory_const := false;
+          (max_new := 100;
+           theory_const := false;
            prover := "E")
     | "spass" =>
-          (ReduceAxiomsN.max_new := 40;
-           ReduceAxiomsN.theory_const := true;
+          (max_new := 40;
+           theory_const := true;
            prover := "spass")
     | "vampire" =>
-          (ReduceAxiomsN.max_new := 60;
-           ReduceAxiomsN.theory_const := false;
+          (max_new := 60;
+           theory_const := false;
            prover := "vampire")
     | _ => error ("No such prover: " ^ atp);
 
@@ -108,7 +122,7 @@
 val include_atpset = ref true;
 
 (*Tests show that follow_defs gives VERY poor results with "include_all"*)
-fun add_all() = (include_all:=true; ReduceAxiomsN.follow_defs := false);
+fun add_all() = (include_all:=true; follow_defs := false);
 fun rm_all() = include_all:=false;
 
 fun add_simpset() = include_simpset:=true;
@@ -124,10 +138,6 @@
 fun rm_atpset() = include_atpset:=false;
 
 
-(**** relevance filter ****)
-val run_relevance_filter = ReduceAxiomsN.run_relevance_filter;
-val run_blacklist_filter = ref true;
-
 (******************************************************************)
 (* detect whether a given problem (clauses) is FOL/HOL/HOLC/HOLCS *)
 (******************************************************************)
@@ -251,6 +261,251 @@
 fun is_fol_thms ths = ((fst(logic_of_clauses (map prop_of ths) (FOL,[]))) = FOL);
 
 (***************************************************************)
+(* Relevance Filtering                                         *)
+(***************************************************************)
+
+(*A surprising number of theorems contain only a few significant constants.
+  These include all induction rules, and other general theorems. Filtering
+  theorems in clause form reveals these complexities in the form of Skolem 
+  functions. If we were instead to filter theorems in their natural form,
+  some other method of measuring theorem complexity would become necessary.*)
+
+fun log_weight2 (x:real) = 1.0 + 2.0/Math.ln (x+1.0);
+
+(*The default seems best in practice. A constant function of one ignores
+  the constant frequencies.*)
+val weight_fn = ref log_weight2;
+
+
+(*Including equality in this list might be expected to stop rules like subset_antisym from
+  being chosen, but for some reason filtering works better with them listed. The
+  logical signs All, Ex, &, and --> are omitted because any remaining occurrrences
+  must be within comprehensions.*)
+val standard_consts = ["Trueprop","==>","all","==","op |","Not","op ="];
+
+
+(*** constants with types ***)
+
+(*An abstraction of Isabelle types*)
+datatype const_typ =  CTVar | CType of string * const_typ list
+
+(*Is the second type an instance of the first one?*)
+fun match_type (CType(con1,args1)) (CType(con2,args2)) = 
+      con1=con2 andalso match_types args1 args2
+  | match_type CTVar _ = true
+  | match_type _ CTVar = false
+and match_types [] [] = true
+  | match_types (a1::as1) (a2::as2) = match_type a1 a2 andalso match_types as1 as2;
+
+(*Is there a unifiable constant?*)
+fun uni_mem gctab (c,c_typ) =
+  case Symtab.lookup gctab c of
+      NONE => false
+    | SOME ctyps_list => exists (match_types c_typ) ctyps_list;
+  
+(*Maps a "real" type to a const_typ*)
+fun const_typ_of (Type (c,typs)) = CType (c, map const_typ_of typs) 
+  | const_typ_of (TFree _) = CTVar
+  | const_typ_of (TVar _) = CTVar
+
+(*Pairs a constant with the list of its type instantiations (using const_typ)*)
+fun const_with_typ thy (c,typ) = 
+    let val tvars = Sign.const_typargs thy (c,typ)
+    in (c, map const_typ_of tvars) end
+    handle TYPE _ => (c,[]);   (*Variable (locale constant): monomorphic*)   
+
+(*Add a const/type pair to the table, but a [] entry means a standard connective,
+  which we ignore.*)
+fun add_const_typ_table ((c,ctyps), tab) =
+  Symtab.map_default (c, [ctyps]) (fn [] => [] | ctyps_list => insert (op =) ctyps ctyps_list) 
+    tab;
+
+(*Free variables are included, as well as constants, to handle locales*)
+fun add_term_consts_typs_rm thy (Const(c, typ), tab) =
+      add_const_typ_table (const_with_typ thy (c,typ), tab) 
+  | add_term_consts_typs_rm thy (Free(c, typ), tab) =
+      add_const_typ_table (const_with_typ thy (c,typ), tab) 
+  | add_term_consts_typs_rm thy (t $ u, tab) =
+      add_term_consts_typs_rm thy (t, add_term_consts_typs_rm thy (u, tab))
+  | add_term_consts_typs_rm thy (Abs(_,_,t), tab) = add_term_consts_typs_rm thy (t, tab)
+  | add_term_consts_typs_rm thy (_, tab) = tab;
+
+(*The empty list here indicates that the constant is being ignored*)
+fun add_standard_const (s,tab) = Symtab.update (s,[]) tab;
+
+val null_const_tab : const_typ list list Symtab.table = 
+    foldl add_standard_const Symtab.empty standard_consts;
+
+fun get_goal_consts_typs thy = foldl (add_term_consts_typs_rm thy) null_const_tab;
+
+(*Inserts a dummy "constant" referring to the theory name, so that relevance
+  takes the given theory into account.*)
+fun const_prop_of th =
+ if !theory_const then
+  let val name = Context.theory_name (theory_of_thm th)
+      val t = Const (name ^ ". 1", HOLogic.boolT)
+  in  t $ prop_of th  end
+ else prop_of th;
+
+(**** Constant / Type Frequencies ****)
+
+(*A two-dimensional symbol table counts frequencies of constants. It's keyed first by
+  constant name and second by its list of type instantiations. For the latter, we need
+  a linear ordering on type const_typ list.*)
+  
+local
+
+fun cons_nr CTVar = 0
+  | cons_nr (CType _) = 1;
+
+in
+
+fun const_typ_ord TU =
+  case TU of
+    (CType (a, Ts), CType (b, Us)) =>
+      (case fast_string_ord(a,b) of EQUAL => dict_ord const_typ_ord (Ts,Us) | ord => ord)
+  | (T, U) => int_ord (cons_nr T, cons_nr U);
+
+end;
+
+structure CTtab = TableFun(type key = const_typ list val ord = dict_ord const_typ_ord);
+
+fun count_axiom_consts thy ((thm,_), tab) = 
+  let fun count_const (a, T, tab) =
+	let val (c, cts) = const_with_typ thy (a,T)
+	in  (*Two-dimensional table update. Constant maps to types maps to count.*)
+	    Symtab.map_default (c, CTtab.empty) 
+	                       (CTtab.map_default (cts,0) (fn n => n+1)) tab
+	end
+      fun count_term_consts (Const(a,T), tab) = count_const(a,T,tab)
+	| count_term_consts (Free(a,T), tab) = count_const(a,T,tab)
+	| count_term_consts (t $ u, tab) =
+	    count_term_consts (t, count_term_consts (u, tab))
+	| count_term_consts (Abs(_,_,t), tab) = count_term_consts (t, tab)
+	| count_term_consts (_, tab) = tab
+  in  count_term_consts (const_prop_of thm, tab)  end;
+
+
+(**** Actual Filtering Code ****)
+
+(*The frequency of a constant is the sum of those of all instances of its type.*)
+fun const_frequency ctab (c, cts) =
+  let val pairs = CTtab.dest (the (Symtab.lookup ctab c))
+      fun add ((cts',m), n) = if match_types cts cts' then m+n else n
+  in  List.foldl add 0 pairs  end;
+
+(*Add in a constant's weight, as determined by its frequency.*)
+fun add_ct_weight ctab ((c,T), w) =
+  w + !weight_fn (real (const_frequency ctab (c,T)));
+
+(*Relevant constants are weighted according to frequency, 
+  but irrelevant constants are simply counted. Otherwise, Skolem functions,
+  which are rare, would harm a clause's chances of being picked.*)
+fun clause_weight ctab gctyps consts_typs =
+    let val rel = filter (uni_mem gctyps) consts_typs
+        val rel_weight = List.foldl (add_ct_weight ctab) 0.0 rel
+    in
+	rel_weight / (rel_weight + real (length consts_typs - length rel))
+    end;
+    
+(*Multiplies out to a list of pairs: 'a * 'b list -> ('a * 'b) list -> ('a * 'b) list*)
+fun add_expand_pairs (x,ys) xys = foldl (fn (y,acc) => (x,y)::acc) xys ys;
+
+fun consts_typs_of_term thy t = 
+  let val tab = add_term_consts_typs_rm thy (t, null_const_tab)
+  in  Symtab.fold add_expand_pairs tab []  end;
+
+fun pair_consts_typs_axiom thy (thm,name) =
+    ((thm,name), (consts_typs_of_term thy (const_prop_of thm)));
+
+exception ConstFree;
+fun dest_ConstFree (Const aT) = aT
+  | dest_ConstFree (Free aT) = aT
+  | dest_ConstFree _ = raise ConstFree;
+
+(*Look for definitions of the form f ?x1 ... ?xn = t, but not reversed.*)
+fun defines thy (thm,(name,n)) gctypes =
+    let val tm = prop_of thm
+	fun defs lhs rhs =
+            let val (rator,args) = strip_comb lhs
+		val ct = const_with_typ thy (dest_ConstFree rator)
+            in  forall is_Var args andalso uni_mem gctypes ct andalso
+                Term.add_vars rhs [] subset Term.add_vars lhs []
+            end
+	    handle ConstFree => false
+    in    
+	case tm of Const ("Trueprop",_) $ (Const("op =",_) $ lhs $ rhs) => 
+		   defs lhs rhs andalso
+		   (Output.debug (fn () => "Definition found: " ^ name ^ "_" ^ Int.toString n); true)
+		 | _ => false
+    end;
+
+type annotd_cls = (thm * (string * int)) * ((string * const_typ list) list);
+       
+(*For a reverse sort, putting the largest values first.*)
+fun compare_pairs ((_,w1),(_,w2)) = Real.compare (w2,w1);
+
+(*Limit the number of new clauses, to prevent runaway acceptance.*)
+fun take_best (newpairs : (annotd_cls*real) list) =
+  let val nnew = length newpairs
+  in
+    if nnew <= !max_new then (map #1 newpairs, [])
+    else 
+      let val cls = sort compare_pairs newpairs
+          val accepted = List.take (cls, !max_new)
+      in
+        Output.debug (fn () => ("Number of candidates, " ^ Int.toString nnew ^ 
+		       ", exceeds the limit of " ^ Int.toString (!max_new)));
+        Output.debug (fn () => ("Effective pass mark: " ^ Real.toString (#2 (List.last accepted))));
+        Output.debug (fn () => "Actually passed: " ^
+          space_implode ", " (map (fn (((_,(name,_)),_),_) => name) accepted));
+
+	(map #1 accepted, map #1 (List.drop (cls, !max_new)))
+      end
+  end;
+
+fun relevant_clauses thy ctab p rel_consts =
+  let fun relevant ([],_) [] = [] : (thm * (string * int)) list  (*Nothing added this iteration*)
+	| relevant (newpairs,rejects) [] =
+	    let val (newrels,more_rejects) = take_best newpairs
+		val new_consts = List.concat (map #2 newrels)
+		val rel_consts' = foldl add_const_typ_table rel_consts new_consts
+		val newp = p + (1.0-p) / !convergence
+	    in
+              Output.debug (fn () => ("relevant this iteration: " ^ Int.toString (length newrels)));
+	       (map #1 newrels) @ 
+	       (relevant_clauses thy ctab newp rel_consts' (more_rejects@rejects))
+	    end
+	| relevant (newrels,rejects) ((ax as (clsthm as (_,(name,n)),consts_typs)) :: axs) =
+	    let val weight = clause_weight ctab rel_consts consts_typs
+	    in
+	      if p <= weight orelse (!follow_defs andalso defines thy clsthm rel_consts)
+	      then (Output.debug (fn () => (name ^ " clause " ^ Int.toString n ^ 
+	                                    " passes: " ^ Real.toString weight));
+	            relevant ((ax,weight)::newrels, rejects) axs)
+	      else relevant (newrels, ax::rejects) axs
+	    end
+    in  Output.debug (fn () => ("relevant_clauses, current pass mark = " ^ Real.toString p));
+        relevant ([],[]) 
+    end;
+	
+fun relevance_filter thy axioms goals = 
+ if !run_relevance_filter andalso !pass_mark >= 0.1
+ then
+  let val _ = Output.debug (fn () => "Start of relevance filtering");
+      val const_tab = List.foldl (count_axiom_consts thy) Symtab.empty axioms
+      val goal_const_tab = get_goal_consts_typs thy goals
+      val _ = Output.debug (fn () => ("Initial constants: " ^
+                                 space_implode ", " (Symtab.keys goal_const_tab)));
+      val rels = relevant_clauses thy const_tab (!pass_mark) 
+                   goal_const_tab  (map (pair_consts_typs_axiom thy) axioms)
+  in
+      Output.debug (fn () => ("Total relevant: " ^ Int.toString (length rels)));
+      rels
+  end
+ else axioms;
+
+(***************************************************************)
 (* Retrieving and filtering lemmas                             *)
 (***************************************************************)
 
@@ -320,11 +575,6 @@
       filter (not o known) c_clauses
   end;
 
-(*Filter axiom clauses, but keep supplied clauses and clauses in whitelist.
-  Duplicates are removed later.*)
-fun get_relevant_clauses thy cls_thms white_cls goals =
-  white_cls @ (ReduceAxiomsN.relevance_filter thy cls_thms goals);
-
 fun all_valid_thms ctxt =
   let
     fun blacklisted s = !run_blacklist_filter andalso is_package_def s
@@ -534,7 +784,7 @@
                                      |> restrict_to_logic thy logic
                                      |> remove_unwanted_clauses
         val user_cls = ResAxioms.cnf_rules_pairs user_rules
-        val axclauses = make_unique (get_relevant_clauses thy cla_simp_atp_clauses user_cls goal_tms)
+        val axclauses = make_unique (user_cls @ relevance_filter thy cla_simp_atp_clauses goal_tms)
         val subs = tfree_classes_of_terms goal_tms
         and axtms = map (prop_of o #1) axclauses
         val supers = tvar_classes_of_terms axtms
@@ -644,7 +894,7 @@
       val _ = Output.debug (fn () => "included clauses = " ^ Int.toString(length included_cls))
       val white_cls = ResAxioms.cnf_rules_pairs white_thms
       (*clauses relevant to goal gl*)
-      val axcls_list = map (fn ngcls => get_relevant_clauses thy included_cls white_cls (map prop_of ngcls)) goal_cls
+      val axcls_list = map (fn ngcls => white_cls @ relevance_filter thy included_cls (map prop_of ngcls)) goal_cls
       val _ = app (fn axcls => Output.debug (fn () => "filtered clauses = " ^ Int.toString(length axcls)))
                   axcls_list
       val writer = if !prover = "spass" then dfg_writer else tptp_writer