--- a/src/HOL/Codatatype/BNF_Comp.thy Wed Sep 12 06:27:36 2012 +0200
+++ b/src/HOL/Codatatype/BNF_Comp.thy Wed Sep 12 06:27:48 2012 +0200
@@ -11,6 +11,77 @@
imports Basic_BNFs
begin
+lemma empty_natural: "(\<lambda>_. {}) o f = image g o (\<lambda>_. {})"
+by (rule ext) simp
+
+lemma Union_natural: "Union o image (image f) = image f o Union"
+by (rule ext) (auto simp only: o_apply)
+
+lemma in_Union_o_assoc: "x \<in> (Union o gset o gmap) A \<Longrightarrow> x \<in> (Union o (gset o gmap)) A"
+by (unfold o_assoc)
+
+lemma comp_single_set_bd:
+ assumes fbd_Card_order: "Card_order fbd" and
+ fset_bd: "\<And>x. |fset x| \<le>o fbd" and
+ gset_bd: "\<And>x. |gset x| \<le>o gbd"
+ shows "|\<Union>fset ` gset x| \<le>o gbd *c fbd"
+apply (subst sym[OF SUP_def])
+apply (rule ordLeq_transitive)
+apply (rule card_of_UNION_Sigma)
+apply (subst SIGMA_CSUM)
+apply (rule ordLeq_transitive)
+apply (rule card_of_Csum_Times')
+apply (rule fbd_Card_order)
+apply (rule ballI)
+apply (rule fset_bd)
+apply (rule ordLeq_transitive)
+apply (rule cprod_mono1)
+apply (rule gset_bd)
+apply (rule ordIso_imp_ordLeq)
+apply (rule ordIso_refl)
+apply (rule Card_order_cprod)
+done
+
+lemma Union_image_insert: "\<Union>f ` insert a B = f a \<union> \<Union>f ` B"
+by simp
+
+lemma Union_image_empty: "A \<union> \<Union>f ` {} = A"
+by simp
+
+lemma image_o_collect: "collect ((\<lambda>f. image g o f) ` F) = image g o collect F"
+by (rule ext) (auto simp add: collect_def)
+
+lemma conj_subset_def: "A \<subseteq> {x. P x \<and> Q x} = (A \<subseteq> {x. P x} \<and> A \<subseteq> {x. Q x})"
+by blast
+
+lemma UN_image_subset: "\<Union>f ` g x \<subseteq> X = (g x \<subseteq> {x. f x \<subseteq> X})"
+by blast
+
+lemma comp_set_bd_Union_o_collect: "|\<Union>\<Union>(\<lambda>f. f x) ` X| \<le>o hbd \<Longrightarrow> |(Union \<circ> collect X) x| \<le>o hbd"
+by (unfold o_apply collect_def SUP_def)
+
+lemma wpull_cong:
+"\<lbrakk>A' = A; B1' = B1; B2' = B2; wpull A B1 B2 f1 f2 p1 p2\<rbrakk> \<Longrightarrow> wpull A' B1' B2' f1 f2 p1 p2"
+by simp
+
+lemma Id_def': "Id = {(a,b). a = b}"
+by auto
+
+lemma Gr_fst_snd: "(Gr R fst)^-1 O Gr R snd = R"
+unfolding Gr_def by auto
+
+lemma subst_rel_def: "A = B \<Longrightarrow> (Gr A f)^-1 O Gr A g = (Gr B f)^-1 O Gr B g"
+by simp
+
+lemma abs_pred_def: "\<lbrakk>\<And>x y. (x, y) \<in> rel = pred x y\<rbrakk> \<Longrightarrow> rel = Collect (split pred)"
+by auto
+
+lemma Collect_split_cong: "Collect (split pred) = Collect (split pred') \<Longrightarrow> pred = pred'"
+by blast
+
+lemma pred_def_abs: "rel = Collect (split pred) \<Longrightarrow> pred = (\<lambda>x y. (x, y) \<in> rel)"
+by auto
+
ML_file "Tools/bnf_comp_tactics.ML"
ML_file "Tools/bnf_comp.ML"
--- a/src/HOL/Codatatype/BNF_Def.thy Wed Sep 12 06:27:36 2012 +0200
+++ b/src/HOL/Codatatype/BNF_Def.thy Wed Sep 12 06:27:48 2012 +0200
@@ -14,6 +14,119 @@
"bnf_def" :: thy_goal
begin
+lemma collect_o: "collect F o g = collect ((\<lambda>f. f o g) ` F)"
+by (rule ext) (auto simp only: o_apply collect_def)
+
+lemma converse_mono:
+"R1 ^-1 \<subseteq> R2 ^-1 \<longleftrightarrow> R1 \<subseteq> R2"
+unfolding converse_def by auto
+
+lemma converse_shift:
+"R1 \<subseteq> R2 ^-1 \<Longrightarrow> R1 ^-1 \<subseteq> R2"
+unfolding converse_def by auto
+
+definition csquare where
+"csquare A f1 f2 p1 p2 \<longleftrightarrow> (\<forall> a \<in> A. f1 (p1 a) = f2 (p2 a))"
+
+(* The pullback of sets *)
+definition thePull where
+"thePull B1 B2 f1 f2 = {(b1,b2). b1 \<in> B1 \<and> b2 \<in> B2 \<and> f1 b1 = f2 b2}"
+
+lemma wpull_thePull:
+"wpull (thePull B1 B2 f1 f2) B1 B2 f1 f2 fst snd"
+unfolding wpull_def thePull_def by auto
+
+lemma wppull_thePull:
+assumes "wppull A B1 B2 f1 f2 e1 e2 p1 p2"
+shows
+"\<exists> j. \<forall> a' \<in> thePull B1 B2 f1 f2.
+ j a' \<in> A \<and>
+ e1 (p1 (j a')) = e1 (fst a') \<and> e2 (p2 (j a')) = e2 (snd a')"
+(is "\<exists> j. \<forall> a' \<in> ?A'. ?phi a' (j a')")
+proof(rule bchoice[of ?A' ?phi], default)
+ fix a' assume a': "a' \<in> ?A'"
+ hence "fst a' \<in> B1" unfolding thePull_def by auto
+ moreover
+ from a' have "snd a' \<in> B2" unfolding thePull_def by auto
+ moreover have "f1 (fst a') = f2 (snd a')"
+ using a' unfolding csquare_def thePull_def by auto
+ ultimately show "\<exists> ja'. ?phi a' ja'"
+ using assms unfolding wppull_def by auto
+qed
+
+lemma wpull_wppull:
+assumes wp: "wpull A' B1 B2 f1 f2 p1' p2'" and
+1: "\<forall> a' \<in> A'. j a' \<in> A \<and> e1 (p1 (j a')) = e1 (p1' a') \<and> e2 (p2 (j a')) = e2 (p2' a')"
+shows "wppull A B1 B2 f1 f2 e1 e2 p1 p2"
+unfolding wppull_def proof safe
+ fix b1 b2
+ assume b1: "b1 \<in> B1" and b2: "b2 \<in> B2" and f: "f1 b1 = f2 b2"
+ then obtain a' where a': "a' \<in> A'" and b1: "b1 = p1' a'" and b2: "b2 = p2' a'"
+ using wp unfolding wpull_def by blast
+ show "\<exists>a\<in>A. e1 (p1 a) = e1 b1 \<and> e2 (p2 a) = e2 b2"
+ apply(rule bexI[of _ "j a'"]) unfolding b1 b2 using a' 1 by auto
+qed
+
+lemma wppull_id: "\<lbrakk>wpull UNIV UNIV UNIV f1 f2 p1 p2; e1 = id; e2 = id\<rbrakk> \<Longrightarrow>
+ wppull UNIV UNIV UNIV f1 f2 e1 e2 p1 p2"
+by (erule wpull_wppull) auto
+
+lemma Id_alt: "Id = Gr UNIV id"
+unfolding Gr_def by auto
+
+lemma Gr_UNIV_id: "f = id \<Longrightarrow> (Gr UNIV f)^-1 O Gr UNIV f = Gr UNIV f"
+unfolding Gr_def by auto
+
+lemma Gr_mono: "A \<subseteq> B \<Longrightarrow> Gr A f \<subseteq> Gr B f"
+unfolding Gr_def by auto
+
+lemma wpull_Gr:
+"wpull (Gr A f) A (f ` A) f id fst snd"
+unfolding wpull_def Gr_def by auto
+
+definition "pick_middle P Q a c = (SOME b. (a,b) \<in> P \<and> (b,c) \<in> Q)"
+
+lemma pick_middle:
+assumes "(a,c) \<in> P O Q"
+shows "(a, pick_middle P Q a c) \<in> P \<and> (pick_middle P Q a c, c) \<in> Q"
+unfolding pick_middle_def apply(rule someI_ex)
+using assms unfolding relcomp_def by auto
+
+definition fstO where "fstO P Q ac = (fst ac, pick_middle P Q (fst ac) (snd ac))"
+definition sndO where "sndO P Q ac = (pick_middle P Q (fst ac) (snd ac), snd ac)"
+
+lemma fstO_in: "ac \<in> P O Q \<Longrightarrow> fstO P Q ac \<in> P"
+by (metis assms fstO_def pick_middle surjective_pairing)
+
+lemma fst_fstO: "fst bc = (fst \<circ> fstO P Q) bc"
+unfolding comp_def fstO_def by simp
+
+lemma snd_sndO: "snd bc = (snd \<circ> sndO P Q) bc"
+unfolding comp_def sndO_def by simp
+
+lemma sndO_in: "ac \<in> P O Q \<Longrightarrow> sndO P Q ac \<in> Q"
+by (metis assms sndO_def pick_middle surjective_pairing)
+
+lemma csquare_fstO_sndO:
+"csquare (P O Q) snd fst (fstO P Q) (sndO P Q)"
+unfolding csquare_def fstO_def sndO_def using pick_middle by auto
+
+lemma wppull_fstO_sndO:
+shows "wppull (P O Q) P Q snd fst fst snd (fstO P Q) (sndO P Q)"
+using pick_middle unfolding wppull_def fstO_def sndO_def relcomp_def by auto
+
+lemma snd_fst_flip: "snd xy = (fst o (%(x, y). (y, x))) xy"
+by (simp split: prod.split)
+
+lemma fst_snd_flip: "fst xy = (snd o (%(x, y). (y, x))) xy"
+by (simp split: prod.split)
+
+lemma flip_rel: "A \<subseteq> (R ^-1) \<Longrightarrow> (%(x, y). (y, x)) ` A \<subseteq> R"
+by auto
+
+lemma pointfreeE: "f o g = f' o g' \<Longrightarrow> f (g x) = f' (g' x)"
+unfolding o_def fun_eq_iff by simp
+
ML_file "Tools/bnf_def_tactics.ML"
ML_file"Tools/bnf_def.ML"
--- a/src/HOL/Codatatype/BNF_FP.thy Wed Sep 12 06:27:36 2012 +0200
+++ b/src/HOL/Codatatype/BNF_FP.thy Wed Sep 12 06:27:48 2012 +0200
@@ -14,6 +14,87 @@
"defaults"
begin
+lemma case_unit: "(case u of () => f) = f"
+by (cases u) (hypsubst, rule unit.cases)
+
+(* FIXME: needed? *)
+lemma all_unit_eq: "(\<And>x. PROP P x) \<equiv> PROP P ()" by simp
+
+(* FIXME: needed? *)
+lemma all_prod_eq: "(\<And>x. PROP P x) \<equiv> (\<And>a b. PROP P (a, b))" by clarsimp
+
+(* FIXME: needed? *)
+lemma False_imp_eq: "(False \<Longrightarrow> P) \<equiv> Trueprop True"
+by presburger
+
+(* FIXME: needed? *)
+lemma all_point_1: "(\<And>z. z = b \<Longrightarrow> phi z) \<equiv> Trueprop (phi b)"
+by presburger
+
+lemma rev_bspec: "a \<in> A \<Longrightarrow> \<forall>z \<in> A. P z \<Longrightarrow> P a"
+by simp
+
+lemma Un_cong: "\<lbrakk>A = B; C = D\<rbrakk> \<Longrightarrow> A \<union> C = B \<union> D"
+by simp
+
+definition convol ("<_ , _>") where
+"<f , g> \<equiv> %a. (f a, g a)"
+
+lemma fst_convol:
+"fst o <f , g> = f"
+apply(rule ext)
+unfolding convol_def by simp
+
+lemma snd_convol:
+"snd o <f , g> = g"
+apply(rule ext)
+unfolding convol_def by simp
+
+lemma pointfree_idE: "f o g = id \<Longrightarrow> f (g x) = x"
+unfolding o_def fun_eq_iff by simp
+
+lemma o_bij:
+ assumes gf: "g o f = id" and fg: "f o g = id"
+ shows "bij f"
+unfolding bij_def inj_on_def surj_def proof safe
+ fix a1 a2 assume "f a1 = f a2"
+ hence "g ( f a1) = g (f a2)" by simp
+ thus "a1 = a2" using gf unfolding fun_eq_iff by simp
+next
+ fix b
+ have "b = f (g b)"
+ using fg unfolding fun_eq_iff by simp
+ thus "EX a. b = f a" by blast
+qed
+
+lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" by simp
+
+lemma sum_case_step:
+ "sum_case (sum_case f' g') g (Inl p) = sum_case f' g' p"
+ "sum_case f (sum_case f' g') (Inr p) = sum_case f' g' p"
+by auto
+
+lemma one_pointE: "\<lbrakk>\<And>x. s = x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
+by simp
+
+lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
+by blast
+
+lemma obj_sumE_f:
+"\<lbrakk>\<forall>x. s = f (Inl x) \<longrightarrow> P; \<forall>x. s = f (Inr x) \<longrightarrow> P\<rbrakk> \<Longrightarrow> \<forall>x. s = f x \<longrightarrow> P"
+by (metis sum.exhaust)
+
+lemma obj_sumE: "\<lbrakk>\<forall>x. s = Inl x \<longrightarrow> P; \<forall>x. s = Inr x \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
+by (cases s) auto
+
+lemma obj_sum_step:
+ "\<lbrakk>\<forall>x. s = f (Inr (Inl x)) \<longrightarrow> P; \<forall>x. s = f (Inr (Inr x)) \<longrightarrow> P\<rbrakk> \<Longrightarrow> \<forall>x. s = f (Inr x) \<longrightarrow> P"
+by (metis obj_sumE)
+
+lemma sum_case_if:
+"sum_case f g (if p then Inl x else Inr y) = (if p then f x else g y)"
+by simp
+
ML_file "Tools/bnf_fp_util.ML"
ML_file "Tools/bnf_fp_sugar_tactics.ML"
ML_file "Tools/bnf_fp_sugar.ML"
--- a/src/HOL/Codatatype/BNF_GFP.thy Wed Sep 12 06:27:36 2012 +0200
+++ b/src/HOL/Codatatype/BNF_GFP.thy Wed Sep 12 06:27:48 2012 +0200
@@ -14,6 +14,321 @@
"codata" :: thy_decl
begin
+lemma sum_case_comp_Inl:
+"sum_case f g \<circ> Inl = f"
+unfolding comp_def by simp
+
+lemma sum_case_expand_Inr: "f o Inl = g \<Longrightarrow> f x = sum_case g (f o Inr) x"
+by (auto split: sum.splits)
+
+lemma converse_Times: "(A \<times> B) ^-1 = B \<times> A"
+by auto
+
+lemma equiv_triv1:
+assumes "equiv A R" and "(a, b) \<in> R" and "(a, c) \<in> R"
+shows "(b, c) \<in> R"
+using assms unfolding equiv_def sym_def trans_def by blast
+
+lemma equiv_triv2:
+assumes "equiv A R" and "(a, b) \<in> R" and "(b, c) \<in> R"
+shows "(a, c) \<in> R"
+using assms unfolding equiv_def trans_def by blast
+
+lemma equiv_proj:
+ assumes e: "equiv A R" and "z \<in> R"
+ shows "(proj R o fst) z = (proj R o snd) z"
+proof -
+ from assms(2) have z: "(fst z, snd z) \<in> R" by auto
+ have P: "\<And>x. (fst z, x) \<in> R \<Longrightarrow> (snd z, x) \<in> R" by (erule equiv_triv1[OF e z])
+ have "\<And>x. (snd z, x) \<in> R \<Longrightarrow> (fst z, x) \<in> R" by (erule equiv_triv2[OF e z])
+ with P show ?thesis unfolding proj_def[abs_def] by auto
+qed
+
+(* Operators: *)
+definition diag where "diag A \<equiv> {(a,a) | a. a \<in> A}"
+definition image2 where "image2 A f g = {(f a, g a) | a. a \<in> A}"
+
+lemma diagI: "x \<in> A \<Longrightarrow> (x, x) \<in> diag A"
+unfolding diag_def by simp
+
+lemma diagE: "(a, b) \<in> diag A \<Longrightarrow> a = b"
+unfolding diag_def by simp
+
+lemma diagE': "x \<in> diag A \<Longrightarrow> fst x = snd x"
+unfolding diag_def by auto
+
+lemma diag_fst: "x \<in> diag A \<Longrightarrow> fst x \<in> A"
+unfolding diag_def by auto
+
+lemma diag_UNIV: "diag UNIV = Id"
+unfolding diag_def by auto
+
+lemma diag_converse: "diag A = (diag A) ^-1"
+unfolding diag_def by auto
+
+lemma diag_Comp: "diag A = diag A O diag A"
+unfolding diag_def by auto
+
+lemma diag_Gr: "diag A = Gr A id"
+unfolding diag_def Gr_def by simp
+
+lemma diag_UNIV_I: "x = y \<Longrightarrow> (x, y) \<in> diag UNIV"
+unfolding diag_def by auto
+
+lemma image2_eqI: "\<lbrakk>b = f x; c = g x; x \<in> A\<rbrakk> \<Longrightarrow> (b, c) \<in> image2 A f g"
+unfolding image2_def by auto
+
+lemma Id_subset: "Id \<subseteq> {(a, b). P a b \<or> a = b}"
+by auto
+
+lemma IdD: "(a, b) \<in> Id \<Longrightarrow> a = b"
+by auto
+
+lemma image2_Gr: "image2 A f g = (Gr A f)^-1 O (Gr A g)"
+unfolding image2_def Gr_def by auto
+
+lemma GrI: "\<lbrakk>x \<in> A; f x = fx\<rbrakk> \<Longrightarrow> (x, fx) \<in> Gr A f"
+unfolding Gr_def by simp
+
+lemma GrE: "(x, fx) \<in> Gr A f \<Longrightarrow> (x \<in> A \<Longrightarrow> f x = fx \<Longrightarrow> P) \<Longrightarrow> P"
+unfolding Gr_def by simp
+
+lemma GrD1: "(x, fx) \<in> Gr A f \<Longrightarrow> x \<in> A"
+unfolding Gr_def by simp
+
+lemma GrD2: "(x, fx) \<in> Gr A f \<Longrightarrow> f x = fx"
+unfolding Gr_def by simp
+
+lemma Gr_incl: "Gr A f \<subseteq> A <*> B \<longleftrightarrow> f ` A \<subseteq> B"
+unfolding Gr_def by auto
+
+definition relImage where
+"relImage R f \<equiv> {(f a1, f a2) | a1 a2. (a1,a2) \<in> R}"
+
+definition relInvImage where
+"relInvImage A R f \<equiv> {(a1, a2) | a1 a2. a1 \<in> A \<and> a2 \<in> A \<and> (f a1, f a2) \<in> R}"
+
+lemma relImage_Gr:
+"\<lbrakk>R \<subseteq> A \<times> A\<rbrakk> \<Longrightarrow> relImage R f = (Gr A f)^-1 O R O Gr A f"
+unfolding relImage_def Gr_def relcomp_def by auto
+
+lemma relInvImage_Gr: "\<lbrakk>R \<subseteq> B \<times> B\<rbrakk> \<Longrightarrow> relInvImage A R f = Gr A f O R O (Gr A f)^-1"
+unfolding Gr_def relcomp_def image_def relInvImage_def by auto
+
+lemma relImage_mono:
+"R1 \<subseteq> R2 \<Longrightarrow> relImage R1 f \<subseteq> relImage R2 f"
+unfolding relImage_def by auto
+
+lemma relInvImage_mono:
+"R1 \<subseteq> R2 \<Longrightarrow> relInvImage A R1 f \<subseteq> relInvImage A R2 f"
+unfolding relInvImage_def by auto
+
+lemma relInvImage_diag:
+"(\<And>a1 a2. f a1 = f a2 \<longleftrightarrow> a1 = a2) \<Longrightarrow> relInvImage A (diag B) f \<subseteq> Id"
+unfolding relInvImage_def diag_def by auto
+
+lemma relInvImage_UNIV_relImage:
+"R \<subseteq> relInvImage UNIV (relImage R f) f"
+unfolding relInvImage_def relImage_def by auto
+
+lemma equiv_Image: "equiv A R \<Longrightarrow> (\<And>a b. (a, b) \<in> R \<Longrightarrow> a \<in> A \<and> b \<in> A \<and> R `` {a} = R `` {b})"
+unfolding equiv_def refl_on_def Image_def by (auto intro: transD symD)
+
+lemma relImage_proj:
+assumes "equiv A R"
+shows "relImage R (proj R) \<subseteq> diag (A//R)"
+unfolding relImage_def diag_def apply safe
+using proj_iff[OF assms]
+by (metis assms equiv_Image proj_def proj_preserves)
+
+lemma relImage_relInvImage:
+assumes "R \<subseteq> f ` A <*> f ` A"
+shows "relImage (relInvImage A R f) f = R"
+using assms unfolding relImage_def relInvImage_def by fastforce
+
+lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)"
+by simp
+
+lemma fst_diag_id: "(fst \<circ> (%x. (x, x))) z = id z"
+by simp
+
+lemma snd_diag_id: "(snd \<circ> (%x. (x, x))) z = id z"
+by simp
+
+lemma Collect_restrict': "{(x, y) | x y. phi x y \<and> P x y} \<subseteq> {(x, y) | x y. phi x y}"
+by auto
+
+lemma image_convolD: "\<lbrakk>(a, b) \<in> <f, g> ` X\<rbrakk> \<Longrightarrow> \<exists>x. x \<in> X \<and> a = f x \<and> b = g x"
+unfolding convol_def by auto
+
+(*Extended Sublist*)
+
+definition prefCl where
+ "prefCl Kl = (\<forall> kl1 kl2. kl1 \<le> kl2 \<and> kl2 \<in> Kl \<longrightarrow> kl1 \<in> Kl)"
+definition PrefCl where
+ "PrefCl A n = (\<forall>kl kl'. kl \<in> A n \<and> kl' \<le> kl \<longrightarrow> (\<exists>m\<le>n. kl' \<in> A m))"
+
+lemma prefCl_UN:
+ "\<lbrakk>\<And>n. PrefCl A n\<rbrakk> \<Longrightarrow> prefCl (\<Union>n. A n)"
+unfolding prefCl_def PrefCl_def by fastforce
+
+definition Succ where "Succ Kl kl = {k . kl @ [k] \<in> Kl}"
+definition Shift where "Shift Kl k = {kl. k # kl \<in> Kl}"
+definition shift where "shift lab k = (\<lambda>kl. lab (k # kl))"
+
+lemma empty_Shift: "\<lbrakk>[] \<in> Kl; k \<in> Succ Kl []\<rbrakk> \<Longrightarrow> [] \<in> Shift Kl k"
+unfolding Shift_def Succ_def by simp
+
+lemma Shift_clists: "Kl \<subseteq> Field (clists r) \<Longrightarrow> Shift Kl k \<subseteq> Field (clists r)"
+unfolding Shift_def clists_def Field_card_of by auto
+
+lemma Shift_prefCl: "prefCl Kl \<Longrightarrow> prefCl (Shift Kl k)"
+unfolding prefCl_def Shift_def
+proof safe
+ fix kl1 kl2
+ assume "\<forall>kl1 kl2. kl1 \<le> kl2 \<and> kl2 \<in> Kl \<longrightarrow> kl1 \<in> Kl"
+ "kl1 \<le> kl2" "k # kl2 \<in> Kl"
+ thus "k # kl1 \<in> Kl" using Cons_prefix_Cons[of k kl1 k kl2] by blast
+qed
+
+lemma not_in_Shift: "kl \<notin> Shift Kl x \<Longrightarrow> x # kl \<notin> Kl"
+unfolding Shift_def by simp
+
+lemma prefCl_Succ: "\<lbrakk>prefCl Kl; k # kl \<in> Kl\<rbrakk> \<Longrightarrow> k \<in> Succ Kl []"
+unfolding Succ_def proof
+ assume "prefCl Kl" "k # kl \<in> Kl"
+ moreover have "k # [] \<le> k # kl" by auto
+ ultimately have "k # [] \<in> Kl" unfolding prefCl_def by blast
+ thus "[] @ [k] \<in> Kl" by simp
+qed
+
+lemma SuccD: "k \<in> Succ Kl kl \<Longrightarrow> kl @ [k] \<in> Kl"
+unfolding Succ_def by simp
+
+lemmas SuccE = SuccD[elim_format]
+
+lemma SuccI: "kl @ [k] \<in> Kl \<Longrightarrow> k \<in> Succ Kl kl"
+unfolding Succ_def by simp
+
+lemma ShiftD: "kl \<in> Shift Kl k \<Longrightarrow> k # kl \<in> Kl"
+unfolding Shift_def by simp
+
+lemma Succ_Shift: "Succ (Shift Kl k) kl = Succ Kl (k # kl)"
+unfolding Succ_def Shift_def by auto
+
+lemma ShiftI: "k # kl \<in> Kl \<Longrightarrow> kl \<in> Shift Kl k"
+unfolding Shift_def by simp
+
+lemma Func_cexp: "|Func A B| =o |B| ^c |A|"
+unfolding cexp_def Field_card_of by (simp only: card_of_refl)
+
+lemma clists_bound: "A \<in> Field (cpow (clists r)) - {{}} \<Longrightarrow> |A| \<le>o clists r"
+unfolding cpow_def clists_def Field_card_of by (auto simp: card_of_mono1)
+
+lemma cpow_clists_czero: "\<lbrakk>A \<in> Field (cpow (clists r)) - {{}}; |A| =o czero\<rbrakk> \<Longrightarrow> False"
+unfolding cpow_def clists_def
+by (auto simp add: card_of_ordIso_czero_iff_empty[symmetric])
+ (erule notE, erule ordIso_transitive, rule czero_ordIso)
+
+lemma incl_UNION_I:
+assumes "i \<in> I" and "A \<subseteq> F i"
+shows "A \<subseteq> UNION I F"
+using assms by auto
+
+lemma Nil_clists: "{[]} \<subseteq> Field (clists r)"
+unfolding clists_def Field_card_of by auto
+
+lemma Cons_clists:
+ "\<lbrakk>x \<in> Field r; xs \<in> Field (clists r)\<rbrakk> \<Longrightarrow> x # xs \<in> Field (clists r)"
+unfolding clists_def Field_card_of by auto
+
+lemma length_Cons: "length (x # xs) = Suc (length xs)"
+by simp
+
+lemma length_append_singleton: "length (xs @ [x]) = Suc (length xs)"
+by simp
+
+(*injection into the field of a cardinal*)
+definition "toCard_pred A r f \<equiv> inj_on f A \<and> f ` A \<subseteq> Field r \<and> Card_order r"
+definition "toCard A r \<equiv> SOME f. toCard_pred A r f"
+
+lemma ex_toCard_pred:
+"\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> \<exists> f. toCard_pred A r f"
+unfolding toCard_pred_def
+using card_of_ordLeq[of A "Field r"]
+ ordLeq_ordIso_trans[OF _ card_of_unique[of "Field r" r], of "|A|"]
+by blast
+
+lemma toCard_pred_toCard:
+ "\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> toCard_pred A r (toCard A r)"
+unfolding toCard_def using someI_ex[OF ex_toCard_pred] .
+
+lemma toCard_inj: "\<lbrakk>|A| \<le>o r; Card_order r; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow>
+ toCard A r x = toCard A r y \<longleftrightarrow> x = y"
+using toCard_pred_toCard unfolding inj_on_def toCard_pred_def by blast
+
+lemma toCard: "\<lbrakk>|A| \<le>o r; Card_order r; b \<in> A\<rbrakk> \<Longrightarrow> toCard A r b \<in> Field r"
+using toCard_pred_toCard unfolding toCard_pred_def by blast
+
+definition "fromCard A r k \<equiv> SOME b. b \<in> A \<and> toCard A r b = k"
+
+lemma fromCard_toCard:
+"\<lbrakk>|A| \<le>o r; Card_order r; b \<in> A\<rbrakk> \<Longrightarrow> fromCard A r (toCard A r b) = b"
+unfolding fromCard_def by (rule some_equality) (auto simp add: toCard_inj)
+
+(* pick according to the weak pullback *)
+definition pickWP_pred where
+"pickWP_pred A p1 p2 b1 b2 a \<equiv>
+ a \<in> A \<and> p1 a = b1 \<and> p2 a = b2"
+
+definition pickWP where
+"pickWP A p1 p2 b1 b2 \<equiv>
+ SOME a. pickWP_pred A p1 p2 b1 b2 a"
+
+lemma pickWP_pred:
+assumes "wpull A B1 B2 f1 f2 p1 p2" and
+"b1 \<in> B1" and "b2 \<in> B2" and "f1 b1 = f2 b2"
+shows "\<exists> a. pickWP_pred A p1 p2 b1 b2 a"
+using assms unfolding wpull_def pickWP_pred_def by blast
+
+lemma pickWP_pred_pickWP:
+assumes "wpull A B1 B2 f1 f2 p1 p2" and
+"b1 \<in> B1" and "b2 \<in> B2" and "f1 b1 = f2 b2"
+shows "pickWP_pred A p1 p2 b1 b2 (pickWP A p1 p2 b1 b2)"
+unfolding pickWP_def using assms by(rule someI_ex[OF pickWP_pred])
+
+lemma pickWP:
+assumes "wpull A B1 B2 f1 f2 p1 p2" and
+"b1 \<in> B1" and "b2 \<in> B2" and "f1 b1 = f2 b2"
+shows "pickWP A p1 p2 b1 b2 \<in> A"
+ "p1 (pickWP A p1 p2 b1 b2) = b1"
+ "p2 (pickWP A p1 p2 b1 b2) = b2"
+using assms pickWP_pred_pickWP unfolding pickWP_pred_def by fastforce+
+
+lemma Inl_Field_csum: "a \<in> Field r \<Longrightarrow> Inl a \<in> Field (r +c s)"
+unfolding Field_card_of csum_def by auto
+
+lemma Inr_Field_csum: "a \<in> Field s \<Longrightarrow> Inr a \<in> Field (r +c s)"
+unfolding Field_card_of csum_def by auto
+
+lemma nat_rec_0: "f = nat_rec f1 (%n rec. f2 n rec) \<Longrightarrow> f 0 = f1"
+by auto
+
+lemma nat_rec_Suc: "f = nat_rec f1 (%n rec. f2 n rec) \<Longrightarrow> f (Suc n) = f2 n (f n)"
+by auto
+
+lemma list_rec_Nil: "f = list_rec f1 (%x xs rec. f2 x xs rec) \<Longrightarrow> f [] = f1"
+by auto
+
+lemma list_rec_Cons: "f = list_rec f1 (%x xs rec. f2 x xs rec) \<Longrightarrow> f (x # xs) = f2 x xs (f xs)"
+by auto
+
+lemma sum_case_cong: "p = q \<Longrightarrow> sum_case f g p = sum_case f g q"
+by simp
+
+lemma not_arg_cong_Inr: "x \<noteq> y \<Longrightarrow> Inr x \<noteq> Inr y"
+by simp
+
ML_file "Tools/bnf_gfp_util.ML"
ML_file "Tools/bnf_gfp_tactics.ML"
ML_file "Tools/bnf_gfp.ML"
--- a/src/HOL/Codatatype/BNF_LFP.thy Wed Sep 12 06:27:36 2012 +0200
+++ b/src/HOL/Codatatype/BNF_LFP.thy Wed Sep 12 06:27:48 2012 +0200
@@ -14,6 +14,201 @@
"data" :: thy_decl
begin
+lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}"
+by blast
+
+lemma image_Collect_subsetI:
+ "(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B"
+by blast
+
+lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X"
+by auto
+
+lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x"
+by auto
+
+lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> rel.underS R j"
+unfolding rel.underS_def by simp
+
+lemma underS_E: "i \<in> rel.underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R"
+unfolding rel.underS_def by simp
+
+lemma underS_Field: "i \<in> rel.underS R j \<Longrightarrow> i \<in> Field R"
+unfolding rel.underS_def Field_def by auto
+
+lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R"
+unfolding Field_def by auto
+
+lemma fst_convol': "fst (<f, g> x) = f x"
+using fst_convol unfolding convol_def by simp
+
+lemma snd_convol': "snd (<f, g> x) = g x"
+using snd_convol unfolding convol_def by simp
+
+lemma convol_expand_snd: "fst o f = g \<Longrightarrow> <g, snd o f> = f"
+unfolding convol_def by auto
+
+definition inver where
+ "inver g f A = (ALL a : A. g (f a) = a)"
+
+lemma bij_betw_iff_ex:
+ "bij_betw f A B = (EX g. g ` B = A \<and> inver g f A \<and> inver f g B)" (is "?L = ?R")
+proof (rule iffI)
+ assume ?L
+ hence f: "f ` A = B" and inj_f: "inj_on f A" unfolding bij_betw_def by auto
+ let ?phi = "% b a. a : A \<and> f a = b"
+ have "ALL b : B. EX a. ?phi b a" using f by blast
+ then obtain g where g: "ALL b : B. g b : A \<and> f (g b) = b"
+ using bchoice[of B ?phi] by blast
+ hence gg: "ALL b : f ` A. g b : A \<and> f (g b) = b" using f by blast
+ have gf: "inver g f A" unfolding inver_def by (metis gg imageI inj_f the_inv_into_f_f)
+ moreover have "g ` B \<le> A \<and> inver f g B" using g unfolding inver_def by blast
+ moreover have "A \<le> g ` B"
+ proof safe
+ fix a assume a: "a : A"
+ hence "f a : B" using f by auto
+ moreover have "a = g (f a)" using a gf unfolding inver_def by auto
+ ultimately show "a : g ` B" by blast
+ qed
+ ultimately show ?R by blast
+next
+ assume ?R
+ then obtain g where g: "g ` B = A \<and> inver g f A \<and> inver f g B" by blast
+ show ?L unfolding bij_betw_def
+ proof safe
+ show "inj_on f A" unfolding inj_on_def
+ proof safe
+ fix a1 a2 assume a: "a1 : A" "a2 : A" and "f a1 = f a2"
+ hence "g (f a1) = g (f a2)" by simp
+ thus "a1 = a2" using a g unfolding inver_def by simp
+ qed
+ next
+ fix a assume "a : A"
+ then obtain b where b: "b : B" and a: "a = g b" using g by blast
+ hence "b = f (g b)" using g unfolding inver_def by auto
+ thus "f a : B" unfolding a using b by simp
+ next
+ fix b assume "b : B"
+ hence "g b : A \<and> b = f (g b)" using g unfolding inver_def by auto
+ thus "b : f ` A" by auto
+ qed
+qed
+
+lemma bij_betw_ex_weakE:
+ "\<lbrakk>bij_betw f A B\<rbrakk> \<Longrightarrow> \<exists>g. g ` B \<subseteq> A \<and> inver g f A \<and> inver f g B"
+by (auto simp only: bij_betw_iff_ex)
+
+lemma inver_surj: "\<lbrakk>g ` B \<subseteq> A; f ` A \<subseteq> B; inver g f A\<rbrakk> \<Longrightarrow> g ` B = A"
+unfolding inver_def by auto (rule rev_image_eqI, auto)
+
+lemma inver_mono: "\<lbrakk>A \<subseteq> B; inver f g B\<rbrakk> \<Longrightarrow> inver f g A"
+unfolding inver_def by auto
+
+lemma inver_pointfree: "inver f g A = (\<forall>a \<in> A. (f o g) a = a)"
+unfolding inver_def by simp
+
+lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B"
+unfolding bij_betw_def by auto
+
+lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B"
+unfolding bij_betw_def by auto
+
+lemma inverE: "\<lbrakk>inver f f' A; x \<in> A\<rbrakk> \<Longrightarrow> f (f' x) = x"
+unfolding inver_def by auto
+
+lemma bij_betw_inver1: "bij_betw f A B \<Longrightarrow> inver (inv_into A f) f A"
+unfolding bij_betw_def inver_def by auto
+
+lemma bij_betw_inver2: "bij_betw f A B \<Longrightarrow> inver f (inv_into A f) B"
+unfolding bij_betw_def inver_def by auto
+
+lemma bij_betwI: "\<lbrakk>bij_betw g B A; inver g f A; inver f g B\<rbrakk> \<Longrightarrow> bij_betw f A B"
+by (metis bij_betw_iff_ex bij_betw_imageE)
+
+lemma bij_betwI':
+ "\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y);
+ \<And>x. x \<in> X \<Longrightarrow> f x \<in> Y;
+ \<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y"
+unfolding bij_betw_def inj_on_def by auto (metis rev_image_eqI)
+
+lemma surj_fun_eq:
+ assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x"
+ shows "g1 = g2"
+proof (rule ext)
+ fix y
+ from surj_on obtain x where "x \<in> X" and "y = f x" by blast
+ thus "g1 y = g2 y" using eq_on by simp
+qed
+
+lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r"
+unfolding wo_rel_def card_order_on_def by blast
+
+lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow>
+ \<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r"
+unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit)
+
+lemma Card_order_trans:
+ "\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r"
+unfolding card_order_on_def well_order_on_def linear_order_on_def
+ partial_order_on_def preorder_on_def trans_def antisym_def by blast
+
+lemma Cinfinite_limit2:
+ assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r"
+ shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)"
+proof -
+ from r have trans: "trans r" and total: "Total r" and antisym: "antisym r"
+ unfolding card_order_on_def well_order_on_def linear_order_on_def
+ partial_order_on_def preorder_on_def by auto
+ obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r"
+ using Cinfinite_limit[OF x1 r] by blast
+ obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r"
+ using Cinfinite_limit[OF x2 r] by blast
+ show ?thesis
+ proof (cases "y1 = y2")
+ case True with y1 y2 show ?thesis by blast
+ next
+ case False
+ with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r"
+ unfolding total_on_def by auto
+ thus ?thesis
+ proof
+ assume *: "(y1, y2) \<in> r"
+ with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast
+ with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def)
+ next
+ assume *: "(y2, y1) \<in> r"
+ with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast
+ with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def)
+ qed
+ qed
+qed
+
+lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk>
+ \<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)"
+proof (induct X rule: finite_induct)
+ case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto
+next
+ case (insert x X)
+ then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast
+ then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r"
+ using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast
+ show ?case by (metis Card_order_trans insert(5) insertE y(2) z)
+qed
+
+lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A"
+by auto
+
+(*helps resolution*)
+lemma well_order_induct_imp:
+ "wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow>
+ x \<in> Field r \<longrightarrow> P x"
+by (erule wo_rel.well_order_induct)
+
+lemma meta_spec2:
+ assumes "(\<And>x y. PROP P x y)"
+ shows "PROP P x y"
+by (rule `(\<And>x y. PROP P x y)`)
+
ML_file "Tools/bnf_lfp_util.ML"
ML_file "Tools/bnf_lfp_tactics.ML"
ML_file "Tools/bnf_lfp.ML"
--- a/src/HOL/Codatatype/BNF_Util.thy Wed Sep 12 06:27:36 2012 +0200
+++ b/src/HOL/Codatatype/BNF_Util.thy Wed Sep 12 06:27:48 2012 +0200
@@ -15,22 +15,6 @@
Equiv_Relations_More
begin
-lemma iffI_np: "\<lbrakk>x \<Longrightarrow> \<not> y; \<not> x \<Longrightarrow> y\<rbrakk> \<Longrightarrow> \<not> x \<longleftrightarrow> y"
-by (erule iffI) (erule contrapos_pn)
-
-lemma all_unit_eq: "(\<And>x. PROP P x) \<equiv> PROP P ()" by simp
-
-lemma all_prod_eq: "(\<And>x. PROP P x) \<equiv> (\<And>a b. PROP P (a, b))" by clarsimp
-
-lemma False_imp_eq: "(False \<Longrightarrow> P) \<equiv> Trueprop True"
-by presburger
-
-lemma case_unit: "(case u of () => f) = f"
-by (cases u) (hypsubst, rule unit.cases)
-
-lemma All_point_1: "(\<And>z. z = b \<Longrightarrow> phi z) \<equiv> Trueprop (phi b)"
-by presburger
-
lemma subset_Collect_iff: "B \<subseteq> A \<Longrightarrow> (B \<subseteq> {x \<in> A. P x}) = (\<forall>x \<in> B. P x)"
by blast
@@ -40,372 +24,20 @@
lemma mem_Collect_eq_split: "{(x, y). (x, y) \<in> X} = X"
by simp
-lemma image_comp: "image (f o g) = image f o image g"
-by (rule ext) (auto simp only: o_apply image_def)
-
-lemma empty_natural: "(\<lambda>_. {}) o f = image g o (\<lambda>_. {})"
-by (rule ext) simp
-
-lemma Union_natural: "Union o image (image f) = image f o Union"
-by (rule ext) (auto simp only: o_apply)
-
-lemma in_Union_o_assoc: "x \<in> (Union o gset o gmap) A \<Longrightarrow> x \<in> (Union o (gset o gmap)) A"
-by (unfold o_assoc)
-
-lemma comp_single_set_bd:
- assumes fbd_Card_order: "Card_order fbd" and
- fset_bd: "\<And>x. |fset x| \<le>o fbd" and
- gset_bd: "\<And>x. |gset x| \<le>o gbd"
- shows "|\<Union>fset ` gset x| \<le>o gbd *c fbd"
-apply (subst sym[OF SUP_def])
-apply (rule ordLeq_transitive)
-apply (rule card_of_UNION_Sigma)
-apply (subst SIGMA_CSUM)
-apply (rule ordLeq_transitive)
-apply (rule card_of_Csum_Times')
-apply (rule fbd_Card_order)
-apply (rule ballI)
-apply (rule fset_bd)
-apply (rule ordLeq_transitive)
-apply (rule cprod_mono1)
-apply (rule gset_bd)
-apply (rule ordIso_imp_ordLeq)
-apply (rule ordIso_refl)
-apply (rule Card_order_cprod)
-done
-
-lemma Union_image_insert: "\<Union>f ` insert a B = f a \<union> \<Union>f ` B"
-by simp
-
-lemma Union_image_empty: "A \<union> \<Union>f ` {} = A"
-by simp
-
definition collect where
"collect F x = (\<Union>f \<in> F. f x)"
-lemma collect_o: "collect F o g = collect ((\<lambda>f. f o g) ` F)"
-by (rule ext) (auto simp only: o_apply collect_def)
-
-lemma image_o_collect: "collect ((\<lambda>f. image g o f) ` F) = image g o collect F"
-by (rule ext) (auto simp add: collect_def)
-
-lemma conj_subset_def: "A \<subseteq> {x. P x \<and> Q x} = (A \<subseteq> {x. P x} \<and> A \<subseteq> {x. Q x})"
-by blast
-
-lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}"
-by blast
-
-lemma rev_bspec: "a \<in> A \<Longrightarrow> \<forall>z \<in> A. P z \<Longrightarrow> P a"
-by simp
-
-lemma Un_cong: "\<lbrakk>A = B; C = D\<rbrakk> \<Longrightarrow> A \<union> C = B \<union> D"
-by simp
-
-lemma UN_image_subset: "\<Union>f ` g x \<subseteq> X = (g x \<subseteq> {x. f x \<subseteq> X})"
-by blast
-
-lemma image_Collect_subsetI:
- "(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B"
-by blast
-
-lemma comp_set_bd_Union_o_collect: "|\<Union>\<Union>(\<lambda>f. f x) ` X| \<le>o hbd \<Longrightarrow> |(Union \<circ> collect X) x| \<le>o hbd"
-by (unfold o_apply collect_def SUP_def)
-
-lemma sum_case_comp_Inl:
-"sum_case f g \<circ> Inl = f"
-unfolding comp_def by simp
-
-lemma sum_case_expand_Inr: "f o Inl = g \<Longrightarrow> f x = sum_case g (f o Inr) x"
-by (auto split: sum.splits)
-
-lemma converse_mono:
-"R1 ^-1 \<subseteq> R2 ^-1 \<longleftrightarrow> R1 \<subseteq> R2"
-unfolding converse_def by auto
-
-lemma converse_shift:
-"R1 \<subseteq> R2 ^-1 \<Longrightarrow> R1 ^-1 \<subseteq> R2"
-unfolding converse_def by auto
-
-lemma converse_Times: "(A \<times> B) ^-1 = B \<times> A"
-by auto
-
-lemma equiv_triv1:
-assumes "equiv A R" and "(a, b) \<in> R" and "(a, c) \<in> R"
-shows "(b, c) \<in> R"
-using assms unfolding equiv_def sym_def trans_def by blast
-
-lemma equiv_triv2:
-assumes "equiv A R" and "(a, b) \<in> R" and "(b, c) \<in> R"
-shows "(a, c) \<in> R"
-using assms unfolding equiv_def trans_def by blast
-
-lemma equiv_proj:
- assumes e: "equiv A R" and "z \<in> R"
- shows "(proj R o fst) z = (proj R o snd) z"
-proof -
- from assms(2) have z: "(fst z, snd z) \<in> R" by auto
- have P: "\<And>x. (fst z, x) \<in> R \<Longrightarrow> (snd z, x) \<in> R" by (erule equiv_triv1[OF e z])
- have "\<And>x. (snd z, x) \<in> R \<Longrightarrow> (fst z, x) \<in> R" by (erule equiv_triv2[OF e z])
- with P show ?thesis unfolding proj_def[abs_def] by auto
-qed
-
-
-section{* Weak pullbacks: *}
-
-definition csquare where
-"csquare A f1 f2 p1 p2 \<longleftrightarrow> (\<forall> a \<in> A. f1 (p1 a) = f2 (p2 a))"
-
+(* Weak pullbacks: *)
definition wpull where
"wpull A B1 B2 f1 f2 p1 p2 \<longleftrightarrow>
(\<forall> b1 b2. b1 \<in> B1 \<and> b2 \<in> B2 \<and> f1 b1 = f2 b2 \<longrightarrow> (\<exists> a \<in> A. p1 a = b1 \<and> p2 a = b2))"
-lemma wpull_cong:
-"\<lbrakk>A' = A; B1' = B1; B2' = B2; wpull A B1 B2 f1 f2 p1 p2\<rbrakk> \<Longrightarrow> wpull A' B1' B2' f1 f2 p1 p2"
-by simp
-
-lemma wpull_id: "wpull UNIV B1 B2 id id id id"
-unfolding wpull_def by simp
-
-
(* Weak pseudo-pullbacks *)
-
definition wppull where
"wppull A B1 B2 f1 f2 e1 e2 p1 p2 \<longleftrightarrow>
(\<forall> b1 b2. b1 \<in> B1 \<and> b2 \<in> B2 \<and> f1 b1 = f2 b2 \<longrightarrow>
(\<exists> a \<in> A. e1 (p1 a) = e1 b1 \<and> e2 (p2 a) = e2 b2))"
-
-(* The pullback of sets *)
-definition thePull where
-"thePull B1 B2 f1 f2 = {(b1,b2). b1 \<in> B1 \<and> b2 \<in> B2 \<and> f1 b1 = f2 b2}"
-
-lemma wpull_thePull:
-"wpull (thePull B1 B2 f1 f2) B1 B2 f1 f2 fst snd"
-unfolding wpull_def thePull_def by auto
-
-lemma wppull_thePull:
-assumes "wppull A B1 B2 f1 f2 e1 e2 p1 p2"
-shows
-"\<exists> j. \<forall> a' \<in> thePull B1 B2 f1 f2.
- j a' \<in> A \<and>
- e1 (p1 (j a')) = e1 (fst a') \<and> e2 (p2 (j a')) = e2 (snd a')"
-(is "\<exists> j. \<forall> a' \<in> ?A'. ?phi a' (j a')")
-proof(rule bchoice[of ?A' ?phi], default)
- fix a' assume a': "a' \<in> ?A'"
- hence "fst a' \<in> B1" unfolding thePull_def by auto
- moreover
- from a' have "snd a' \<in> B2" unfolding thePull_def by auto
- moreover have "f1 (fst a') = f2 (snd a')"
- using a' unfolding csquare_def thePull_def by auto
- ultimately show "\<exists> ja'. ?phi a' ja'"
- using assms unfolding wppull_def by auto
-qed
-
-lemma wpull_wppull:
-assumes wp: "wpull A' B1 B2 f1 f2 p1' p2'" and
-1: "\<forall> a' \<in> A'. j a' \<in> A \<and> e1 (p1 (j a')) = e1 (p1' a') \<and> e2 (p2 (j a')) = e2 (p2' a')"
-shows "wppull A B1 B2 f1 f2 e1 e2 p1 p2"
-unfolding wppull_def proof safe
- fix b1 b2
- assume b1: "b1 \<in> B1" and b2: "b2 \<in> B2" and f: "f1 b1 = f2 b2"
- then obtain a' where a': "a' \<in> A'" and b1: "b1 = p1' a'" and b2: "b2 = p2' a'"
- using wp unfolding wpull_def by blast
- show "\<exists>a\<in>A. e1 (p1 a) = e1 b1 \<and> e2 (p2 a) = e2 b2"
- apply(rule bexI[of _ "j a'"]) unfolding b1 b2 using a' 1 by auto
-qed
-
-lemma wppull_id: "\<lbrakk>wpull UNIV UNIV UNIV f1 f2 p1 p2; e1 = id; e2 = id\<rbrakk> \<Longrightarrow>
- wppull UNIV UNIV UNIV f1 f2 e1 e2 p1 p2"
-by (erule wpull_wppull) auto
-
-
-(* Operators: *)
-definition diag where "diag A \<equiv> {(a,a) | a. a \<in> A}"
-definition "Gr A f = {(a,f a) | a. a \<in> A}"
-definition image2 where "image2 A f g = {(f a, g a) | a. a \<in> A}"
-
-lemma diagI: "x \<in> A \<Longrightarrow> (x, x) \<in> diag A"
-unfolding diag_def by simp
-
-lemma diagE: "(a, b) \<in> diag A \<Longrightarrow> a = b"
-unfolding diag_def by simp
-
-lemma diagE': "x \<in> diag A \<Longrightarrow> fst x = snd x"
-unfolding diag_def by auto
-
-lemma diag_fst: "x \<in> diag A \<Longrightarrow> fst x \<in> A"
-unfolding diag_def by auto
-
-lemma diag_UNIV: "diag UNIV = Id"
-unfolding diag_def by auto
-
-lemma diag_converse: "diag A = (diag A) ^-1"
-unfolding diag_def by auto
-
-lemma diag_Comp: "diag A = diag A O diag A"
-unfolding diag_def by auto
-
-lemma diag_Gr: "diag A = Gr A id"
-unfolding diag_def Gr_def by simp
-
-lemma diag_UNIV_I: "x = y \<Longrightarrow> (x, y) \<in> diag UNIV"
-unfolding diag_def by auto
-
-lemma image2_eqI: "\<lbrakk>b = f x; c = g x; x \<in> A\<rbrakk> \<Longrightarrow> (b, c) \<in> image2 A f g"
-unfolding image2_def by auto
-
-lemma Id_def': "Id = {(a,b). a = b}"
-by auto
-
-lemma Id_alt: "Id = Gr UNIV id"
-unfolding Gr_def by auto
-
-lemma Id_subset: "Id \<subseteq> {(a, b). P a b \<or> a = b}"
-by auto
-
-lemma IdD: "(a, b) \<in> Id \<Longrightarrow> a = b"
-by auto
-
-lemma image2_Gr: "image2 A f g = (Gr A f)^-1 O (Gr A g)"
-unfolding image2_def Gr_def by auto
-
-lemma GrI: "\<lbrakk>x \<in> A; f x = fx\<rbrakk> \<Longrightarrow> (x, fx) \<in> Gr A f"
-unfolding Gr_def by simp
-
-lemma GrE: "(x, fx) \<in> Gr A f \<Longrightarrow> (x \<in> A \<Longrightarrow> f x = fx \<Longrightarrow> P) \<Longrightarrow> P"
-unfolding Gr_def by simp
-
-lemma GrD1: "(x, fx) \<in> Gr A f \<Longrightarrow> x \<in> A"
-unfolding Gr_def by simp
-
-lemma GrD2: "(x, fx) \<in> Gr A f \<Longrightarrow> f x = fx"
-unfolding Gr_def by simp
-
-lemma Gr_UNIV_id: "f = id \<Longrightarrow> (Gr UNIV f)^-1 O Gr UNIV f = Gr UNIV f"
-unfolding Gr_def by auto
-
-lemma Gr_fst_snd: "(Gr R fst)^-1 O Gr R snd = R"
-unfolding Gr_def by auto
-
-lemma Gr_mono: "A \<subseteq> B \<Longrightarrow> Gr A f \<subseteq> Gr B f"
-unfolding Gr_def by auto
-
-lemma subst_rel_def: "A = B \<Longrightarrow> (Gr A f)^-1 O Gr A g = (Gr B f)^-1 O Gr B g"
-by simp
-
-lemma abs_pred_def: "\<lbrakk>\<And>x y. (x, y) \<in> rel = pred x y\<rbrakk> \<Longrightarrow> rel = Collect (split pred)"
-by auto
-
-lemma Collect_split_cong: "Collect (split pred) = Collect (split pred') \<Longrightarrow> pred = pred'"
-by blast
-
-lemma pred_def_abs: "rel = Collect (split pred) \<Longrightarrow> pred = (\<lambda>x y. (x, y) \<in> rel)"
-by auto
-
-lemma wpull_Gr:
-"wpull (Gr A f) A (f ` A) f id fst snd"
-unfolding wpull_def Gr_def by auto
-
-lemma Gr_incl: "Gr A f \<subseteq> A <*> B \<longleftrightarrow> f ` A \<subseteq> B"
-unfolding Gr_def by auto
-
-lemma equiv_Image: "equiv A R \<Longrightarrow> (\<And>a b. (a, b) \<in> R \<Longrightarrow> a \<in> A \<and> b \<in> A \<and> R `` {a} = R `` {b})"
-unfolding equiv_def refl_on_def Image_def by (auto intro: transD symD)
-
-definition relImage where
-"relImage R f \<equiv> {(f a1, f a2) | a1 a2. (a1,a2) \<in> R}"
-
-definition relInvImage where
-"relInvImage A R f \<equiv> {(a1, a2) | a1 a2. a1 \<in> A \<and> a2 \<in> A \<and> (f a1, f a2) \<in> R}"
-
-lemma relImage_Gr:
-"\<lbrakk>R \<subseteq> A \<times> A\<rbrakk> \<Longrightarrow> relImage R f = (Gr A f)^-1 O R O Gr A f"
-unfolding relImage_def Gr_def relcomp_def by auto
-
-lemma relInvImage_Gr: "\<lbrakk>R \<subseteq> B \<times> B\<rbrakk> \<Longrightarrow> relInvImage A R f = Gr A f O R O (Gr A f)^-1"
-unfolding Gr_def relcomp_def image_def relInvImage_def by auto
-
-lemma relImage_mono:
-"R1 \<subseteq> R2 \<Longrightarrow> relImage R1 f \<subseteq> relImage R2 f"
-unfolding relImage_def by auto
-
-lemma relInvImage_mono:
-"R1 \<subseteq> R2 \<Longrightarrow> relInvImage A R1 f \<subseteq> relInvImage A R2 f"
-unfolding relInvImage_def by auto
-
-lemma relInvImage_diag:
-"(\<And>a1 a2. f a1 = f a2 \<longleftrightarrow> a1 = a2) \<Longrightarrow> relInvImage A (diag B) f \<subseteq> Id"
-unfolding relInvImage_def diag_def by auto
-
-lemma relInvImage_UNIV_relImage:
-"R \<subseteq> relInvImage UNIV (relImage R f) f"
-unfolding relInvImage_def relImage_def by auto
-
-lemma relImage_proj:
-assumes "equiv A R"
-shows "relImage R (proj R) \<subseteq> diag (A//R)"
-unfolding relImage_def diag_def apply safe
-using proj_iff[OF assms]
-by (metis assms equiv_Image proj_def proj_preserves)
-
-lemma relImage_relInvImage:
-assumes "R \<subseteq> f ` A <*> f ` A"
-shows "relImage (relInvImage A R f) f = R"
-using assms unfolding relImage_def relInvImage_def by fastforce
-
-
-(* Relation composition as a weak pseudo-pullback *)
-
-(* pick middle *)
-definition "pickM P Q a c = (SOME b. (a,b) \<in> P \<and> (b,c) \<in> Q)"
-
-lemma pickM:
-assumes "(a,c) \<in> P O Q"
-shows "(a, pickM P Q a c) \<in> P \<and> (pickM P Q a c, c) \<in> Q"
-unfolding pickM_def apply(rule someI_ex)
-using assms unfolding relcomp_def by auto
-
-definition fstO where "fstO P Q ac = (fst ac, pickM P Q (fst ac) (snd ac))"
-definition sndO where "sndO P Q ac = (pickM P Q (fst ac) (snd ac), snd ac)"
-
-lemma fstO_in: "ac \<in> P O Q \<Longrightarrow> fstO P Q ac \<in> P"
-by (metis assms fstO_def pickM surjective_pairing)
-
-lemma fst_fstO: "fst bc = (fst \<circ> fstO P Q) bc"
-unfolding comp_def fstO_def by simp
-
-lemma snd_sndO: "snd bc = (snd \<circ> sndO P Q) bc"
-unfolding comp_def sndO_def by simp
-
-lemma sndO_in: "ac \<in> P O Q \<Longrightarrow> sndO P Q ac \<in> Q"
-by (metis assms sndO_def pickM surjective_pairing)
-
-lemma csquare_fstO_sndO:
-"csquare (P O Q) snd fst (fstO P Q) (sndO P Q)"
-unfolding csquare_def fstO_def sndO_def using pickM by auto
-
-lemma wppull_fstO_sndO:
-shows "wppull (P O Q) P Q snd fst fst snd (fstO P Q) (sndO P Q)"
-using pickM unfolding wppull_def fstO_def sndO_def relcomp_def by auto
-
-lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)"
-by simp
-
-lemma snd_fst_flip: "snd xy = (fst o (%(x, y). (y, x))) xy"
-by (simp split: prod.split)
-
-lemma fst_snd_flip: "fst xy = (snd o (%(x, y). (y, x))) xy"
-by (simp split: prod.split)
-
-lemma flip_rel: "A \<subseteq> (R ^-1) \<Longrightarrow> (%(x, y). (y, x)) ` A \<subseteq> R"
-by auto
-
-lemma fst_diag_id: "(fst \<circ> (%x. (x, x))) z = id z"
-by simp
-
-lemma snd_diag_id: "(snd \<circ> (%x. (x, x))) z = id z"
-by simp
-
lemma fst_snd: "\<lbrakk>snd x = (y, z)\<rbrakk> \<Longrightarrow> fst (snd x) = y"
by simp
@@ -418,438 +50,11 @@
lemma sndI: "x = (y, z) \<Longrightarrow> snd x = z"
by simp
-lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X"
-by auto
-
-lemma Collect_restrict': "{(x, y) | x y. phi x y \<and> P x y} \<subseteq> {(x, y) | x y. phi x y}"
-by auto
-
-lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x"
-by auto
-
-lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> rel.underS R j"
-unfolding rel.underS_def by simp
-
-lemma underS_E: "i \<in> rel.underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R"
-unfolding rel.underS_def by simp
-
-lemma underS_Field: "i \<in> rel.underS R j \<Longrightarrow> i \<in> Field R"
-unfolding rel.underS_def Field_def by auto
-
-lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R"
-unfolding Field_def by auto
-
-
-subsection {* Convolution product *}
-
-definition convol ("<_ , _>") where
-"<f , g> \<equiv> %a. (f a, g a)"
-
-lemma fst_convol:
-"fst o <f , g> = f"
-apply(rule ext)
-unfolding convol_def by simp
-
-lemma snd_convol:
-"snd o <f , g> = g"
-apply(rule ext)
-unfolding convol_def by simp
-
-lemma fst_convol': "fst (<f, g> x) = f x"
-using fst_convol unfolding convol_def by simp
-
-lemma snd_convol': "snd (<f, g> x) = g x"
-using snd_convol unfolding convol_def by simp
-
-lemma image_convolD: "\<lbrakk>(a, b) \<in> <f, g> ` X\<rbrakk> \<Longrightarrow> \<exists>x. x \<in> X \<and> a = f x \<and> b = g x"
-unfolding convol_def by auto
-
-lemma convol_expand_snd: "fst o f = g \<Longrightarrow> <g, snd o f> = f"
-unfolding convol_def by auto
-
-subsection{* Facts about functions *}
-
-lemma pointfreeE: "f o g = f' o g' \<Longrightarrow> f (g x) = f' (g' x)"
-unfolding o_def fun_eq_iff by simp
-
-lemma pointfree_idE: "f o g = id \<Longrightarrow> f (g x) = x"
-unfolding o_def fun_eq_iff by simp
-
-definition inver where
- "inver g f A = (ALL a : A. g (f a) = a)"
-
-lemma bij_betw_iff_ex:
- "bij_betw f A B = (EX g. g ` B = A \<and> inver g f A \<and> inver f g B)" (is "?L = ?R")
-proof (rule iffI)
- assume ?L
- hence f: "f ` A = B" and inj_f: "inj_on f A" unfolding bij_betw_def by auto
- let ?phi = "% b a. a : A \<and> f a = b"
- have "ALL b : B. EX a. ?phi b a" using f by blast
- then obtain g where g: "ALL b : B. g b : A \<and> f (g b) = b"
- using bchoice[of B ?phi] by blast
- hence gg: "ALL b : f ` A. g b : A \<and> f (g b) = b" using f by blast
- have gf: "inver g f A" unfolding inver_def by (metis gg imageI inj_f the_inv_into_f_f)
- moreover have "g ` B \<le> A \<and> inver f g B" using g unfolding inver_def by blast
- moreover have "A \<le> g ` B"
- proof safe
- fix a assume a: "a : A"
- hence "f a : B" using f by auto
- moreover have "a = g (f a)" using a gf unfolding inver_def by auto
- ultimately show "a : g ` B" by blast
- qed
- ultimately show ?R by blast
-next
- assume ?R
- then obtain g where g: "g ` B = A \<and> inver g f A \<and> inver f g B" by blast
- show ?L unfolding bij_betw_def
- proof safe
- show "inj_on f A" unfolding inj_on_def
- proof safe
- fix a1 a2 assume a: "a1 : A" "a2 : A" and "f a1 = f a2"
- hence "g (f a1) = g (f a2)" by simp
- thus "a1 = a2" using a g unfolding inver_def by simp
- qed
- next
- fix a assume "a : A"
- then obtain b where b: "b : B" and a: "a = g b" using g by blast
- hence "b = f (g b)" using g unfolding inver_def by auto
- thus "f a : B" unfolding a using b by simp
- next
- fix b assume "b : B"
- hence "g b : A \<and> b = f (g b)" using g unfolding inver_def by auto
- thus "b : f ` A" by auto
- qed
-qed
-
lemma bijI: "\<lbrakk>\<And>x y. (f x = f y) = (x = y); \<And>y. \<exists>x. y = f x\<rbrakk> \<Longrightarrow> bij f"
unfolding bij_def inj_on_def by auto blast
-lemma bij_betw_ex_weakE:
- "\<lbrakk>bij_betw f A B\<rbrakk> \<Longrightarrow> \<exists>g. g ` B \<subseteq> A \<and> inver g f A \<and> inver f g B"
-by (auto simp only: bij_betw_iff_ex)
-
-lemma inver_surj: "\<lbrakk>g ` B \<subseteq> A; f ` A \<subseteq> B; inver g f A\<rbrakk> \<Longrightarrow> g ` B = A"
-unfolding inver_def by auto (rule rev_image_eqI, auto)
-
-lemma inver_mono: "\<lbrakk>A \<subseteq> B; inver f g B\<rbrakk> \<Longrightarrow> inver f g A"
-unfolding inver_def by auto
-
-lemma inver_pointfree: "inver f g A = (\<forall>a \<in> A. (f o g) a = a)"
-unfolding inver_def by simp
-
-lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B"
-unfolding bij_betw_def by auto
-
-lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B"
-unfolding bij_betw_def by auto
-
-lemma inverE: "\<lbrakk>inver f f' A; x \<in> A\<rbrakk> \<Longrightarrow> f (f' x) = x"
-unfolding inver_def by auto
-
-lemma bij_betw_inver1: "bij_betw f A B \<Longrightarrow> inver (inv_into A f) f A"
-unfolding bij_betw_def inver_def by auto
-
-lemma bij_betw_inver2: "bij_betw f A B \<Longrightarrow> inver f (inv_into A f) B"
-unfolding bij_betw_def inver_def by auto
-
-lemma bij_betwI: "\<lbrakk>bij_betw g B A; inver g f A; inver f g B\<rbrakk> \<Longrightarrow> bij_betw f A B"
-by (metis bij_betw_iff_ex bij_betw_imageE)
-
-lemma bij_betwI':
- "\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y);
- \<And>x. x \<in> X \<Longrightarrow> f x \<in> Y;
- \<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y"
-unfolding bij_betw_def inj_on_def by auto (metis rev_image_eqI)
-
-lemma o_bij:
- assumes gf: "g o f = id" and fg: "f o g = id"
- shows "bij f"
-unfolding bij_def inj_on_def surj_def proof safe
- fix a1 a2 assume "f a1 = f a2"
- hence "g ( f a1) = g (f a2)" by simp
- thus "a1 = a2" using gf unfolding fun_eq_iff by simp
-next
- fix b
- have "b = f (g b)"
- using fg unfolding fun_eq_iff by simp
- thus "EX a. b = f a" by blast
-qed
-
-lemma surj_fun_eq:
- assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x"
- shows "g1 = g2"
-proof (rule ext)
- fix y
- from surj_on obtain x where "x \<in> X" and "y = f x" by blast
- thus "g1 y = g2 y" using eq_on by simp
-qed
-
-lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r"
-unfolding wo_rel_def card_order_on_def by blast
-
-lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow>
- \<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r"
-unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit)
-
-lemma Card_order_trans:
- "\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r"
-unfolding card_order_on_def well_order_on_def linear_order_on_def
- partial_order_on_def preorder_on_def trans_def antisym_def by blast
-
-lemma Cinfinite_limit2:
- assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r"
- shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)"
-proof -
- from r have trans: "trans r" and total: "Total r" and antisym: "antisym r"
- unfolding card_order_on_def well_order_on_def linear_order_on_def
- partial_order_on_def preorder_on_def by auto
- obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r"
- using Cinfinite_limit[OF x1 r] by blast
- obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r"
- using Cinfinite_limit[OF x2 r] by blast
- show ?thesis
- proof (cases "y1 = y2")
- case True with y1 y2 show ?thesis by blast
- next
- case False
- with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r"
- unfolding total_on_def by auto
- thus ?thesis
- proof
- assume *: "(y1, y2) \<in> r"
- with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast
- with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def)
- next
- assume *: "(y2, y1) \<in> r"
- with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast
- with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def)
- qed
- qed
-qed
-
-lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk>
- \<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)"
-proof (induct X rule: finite_induct)
- case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto
-next
- case (insert x X)
- then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast
- then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r"
- using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast
- show ?case by (metis Card_order_trans insert(5) insertE y(2) z)
-qed
-
-lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A"
-by auto
-
-(*helps resolution*)
-lemma well_order_induct_imp:
- "wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow>
- x \<in> Field r \<longrightarrow> P x"
-by (erule wo_rel.well_order_induct)
-
-lemma meta_spec2:
- assumes "(\<And>x y. PROP P x y)"
- shows "PROP P x y"
-by (rule `(\<And>x y. PROP P x y)`)
-
-(*Extended Sublist*)
-
-definition prefCl where
- "prefCl Kl = (\<forall> kl1 kl2. kl1 \<le> kl2 \<and> kl2 \<in> Kl \<longrightarrow> kl1 \<in> Kl)"
-definition PrefCl where
- "PrefCl A n = (\<forall>kl kl'. kl \<in> A n \<and> kl' \<le> kl \<longrightarrow> (\<exists>m\<le>n. kl' \<in> A m))"
-
-lemma prefCl_UN:
- "\<lbrakk>\<And>n. PrefCl A n\<rbrakk> \<Longrightarrow> prefCl (\<Union>n. A n)"
-unfolding prefCl_def PrefCl_def by fastforce
-
-definition Succ where "Succ Kl kl = {k . kl @ [k] \<in> Kl}"
-definition Shift where "Shift Kl k = {kl. k # kl \<in> Kl}"
-definition shift where "shift lab k = (\<lambda>kl. lab (k # kl))"
-
-lemmas sh_def = Shift_def shift_def
-
-lemma empty_Shift: "\<lbrakk>[] \<in> Kl; k \<in> Succ Kl []\<rbrakk> \<Longrightarrow> [] \<in> Shift Kl k"
-unfolding Shift_def Succ_def by simp
-
-lemma Shift_clists: "Kl \<subseteq> Field (clists r) \<Longrightarrow> Shift Kl k \<subseteq> Field (clists r)"
-unfolding Shift_def clists_def Field_card_of by auto
-
-lemma Shift_prefCl: "prefCl Kl \<Longrightarrow> prefCl (Shift Kl k)"
-unfolding prefCl_def Shift_def
-proof safe
- fix kl1 kl2
- assume "\<forall>kl1 kl2. kl1 \<le> kl2 \<and> kl2 \<in> Kl \<longrightarrow> kl1 \<in> Kl"
- "kl1 \<le> kl2" "k # kl2 \<in> Kl"
- thus "k # kl1 \<in> Kl" using Cons_prefix_Cons[of k kl1 k kl2] by blast
-qed
-
-lemma not_in_Shift: "kl \<notin> Shift Kl x \<Longrightarrow> x # kl \<notin> Kl"
-unfolding Shift_def by simp
-
-lemma prefCl_Succ: "\<lbrakk>prefCl Kl; k # kl \<in> Kl\<rbrakk> \<Longrightarrow> k \<in> Succ Kl []"
-unfolding Succ_def proof
- assume "prefCl Kl" "k # kl \<in> Kl"
- moreover have "k # [] \<le> k # kl" by auto
- ultimately have "k # [] \<in> Kl" unfolding prefCl_def by blast
- thus "[] @ [k] \<in> Kl" by simp
-qed
-
-lemma SuccD: "k \<in> Succ Kl kl \<Longrightarrow> kl @ [k] \<in> Kl"
-unfolding Succ_def by simp
-
-lemmas SuccE = SuccD[elim_format]
-
-lemma SuccI: "kl @ [k] \<in> Kl \<Longrightarrow> k \<in> Succ Kl kl"
-unfolding Succ_def by simp
-
-lemma ShiftD: "kl \<in> Shift Kl k \<Longrightarrow> k # kl \<in> Kl"
-unfolding Shift_def by simp
-
-lemma Succ_Shift: "Succ (Shift Kl k) kl = Succ Kl (k # kl)"
-unfolding Succ_def Shift_def by auto
-
-lemma ShiftI: "k # kl \<in> Kl \<Longrightarrow> kl \<in> Shift Kl k"
-unfolding Shift_def by simp
-
-lemma Func_cexp: "|Func A B| =o |B| ^c |A|"
-unfolding cexp_def Field_card_of by (simp only: card_of_refl)
-
-lemma clists_bound: "A \<in> Field (cpow (clists r)) - {{}} \<Longrightarrow> |A| \<le>o clists r"
-unfolding cpow_def clists_def Field_card_of by (auto simp: card_of_mono1)
-
-lemma cpow_clists_czero: "\<lbrakk>A \<in> Field (cpow (clists r)) - {{}}; |A| =o czero\<rbrakk> \<Longrightarrow> False"
-unfolding cpow_def clists_def
-by (auto simp add: card_of_ordIso_czero_iff_empty[symmetric])
- (erule notE, erule ordIso_transitive, rule czero_ordIso)
-
-lemma incl_UNION_I:
-assumes "i \<in> I" and "A \<subseteq> F i"
-shows "A \<subseteq> UNION I F"
-using assms by auto
-
-lemma Nil_clists: "{[]} \<subseteq> Field (clists r)"
-unfolding clists_def Field_card_of by auto
-
-lemma Cons_clists:
- "\<lbrakk>x \<in> Field r; xs \<in> Field (clists r)\<rbrakk> \<Longrightarrow> x # xs \<in> Field (clists r)"
-unfolding clists_def Field_card_of by auto
-
-lemma length_Cons: "length (x#xs) = Suc (length xs)"
-by simp
-
-lemma length_append_singleton: "length (xs @ [x]) = Suc (length xs)"
-by simp
-
-(*injection into the field of a cardinal*)
-definition "toCard_pred A r f \<equiv> inj_on f A \<and> f ` A \<subseteq> Field r \<and> Card_order r"
-definition "toCard A r \<equiv> SOME f. toCard_pred A r f"
-
-lemma ex_toCard_pred:
-"\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> \<exists> f. toCard_pred A r f"
-unfolding toCard_pred_def
-using card_of_ordLeq[of A "Field r"]
- ordLeq_ordIso_trans[OF _ card_of_unique[of "Field r" r], of "|A|"]
-by blast
-
-lemma toCard_pred_toCard:
- "\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> toCard_pred A r (toCard A r)"
-unfolding toCard_def using someI_ex[OF ex_toCard_pred] .
-
-lemma toCard_inj: "\<lbrakk>|A| \<le>o r; Card_order r; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow>
- toCard A r x = toCard A r y \<longleftrightarrow> x = y"
-using toCard_pred_toCard unfolding inj_on_def toCard_pred_def by blast
-
-lemma toCard: "\<lbrakk>|A| \<le>o r; Card_order r; b \<in> A\<rbrakk> \<Longrightarrow> toCard A r b \<in> Field r"
-using toCard_pred_toCard unfolding toCard_pred_def by blast
-
-definition "fromCard A r k \<equiv> SOME b. b \<in> A \<and> toCard A r b = k"
-
-lemma fromCard_toCard:
-"\<lbrakk>|A| \<le>o r; Card_order r; b \<in> A\<rbrakk> \<Longrightarrow> fromCard A r (toCard A r b) = b"
-unfolding fromCard_def by (rule some_equality) (auto simp add: toCard_inj)
-
-(* pick according to the weak pullback *)
-definition pickWP_pred where
-"pickWP_pred A p1 p2 b1 b2 a \<equiv>
- a \<in> A \<and> p1 a = b1 \<and> p2 a = b2"
-
-definition pickWP where
-"pickWP A p1 p2 b1 b2 \<equiv>
- SOME a. pickWP_pred A p1 p2 b1 b2 a"
-
-lemma pickWP_pred:
-assumes "wpull A B1 B2 f1 f2 p1 p2" and
-"b1 \<in> B1" and "b2 \<in> B2" and "f1 b1 = f2 b2"
-shows "\<exists> a. pickWP_pred A p1 p2 b1 b2 a"
-using assms unfolding wpull_def pickWP_pred_def by blast
-
-lemma pickWP_pred_pickWP:
-assumes "wpull A B1 B2 f1 f2 p1 p2" and
-"b1 \<in> B1" and "b2 \<in> B2" and "f1 b1 = f2 b2"
-shows "pickWP_pred A p1 p2 b1 b2 (pickWP A p1 p2 b1 b2)"
-unfolding pickWP_def using assms by(rule someI_ex[OF pickWP_pred])
-
-lemma pickWP:
-assumes "wpull A B1 B2 f1 f2 p1 p2" and
-"b1 \<in> B1" and "b2 \<in> B2" and "f1 b1 = f2 b2"
-shows "pickWP A p1 p2 b1 b2 \<in> A"
- "p1 (pickWP A p1 p2 b1 b2) = b1"
- "p2 (pickWP A p1 p2 b1 b2) = b2"
-using assms pickWP_pred_pickWP unfolding pickWP_pred_def by fastforce+
-
-lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" by simp
-
-lemma Inl_Field_csum: "a \<in> Field r \<Longrightarrow> Inl a \<in> Field (r +c s)"
-unfolding Field_card_of csum_def by auto
-
-lemma Inr_Field_csum: "a \<in> Field s \<Longrightarrow> Inr a \<in> Field (r +c s)"
-unfolding Field_card_of csum_def by auto
-
-lemma nat_rec_0: "f = nat_rec f1 (%n rec. f2 n rec) \<Longrightarrow> f 0 = f1"
-by auto
-
-lemma nat_rec_Suc: "f = nat_rec f1 (%n rec. f2 n rec) \<Longrightarrow> f (Suc n) = f2 n (f n)"
-by auto
-
-lemma list_rec_Nil: "f = list_rec f1 (%x xs rec. f2 x xs rec) \<Longrightarrow> f [] = f1"
-by auto
-
-lemma list_rec_Cons: "f = list_rec f1 (%x xs rec. f2 x xs rec) \<Longrightarrow> f (x # xs) = f2 x xs (f xs)"
-by auto
-
-lemma sum_case_cong: "p = q \<Longrightarrow> sum_case f g p = sum_case f g q"
-by simp
-
-lemma sum_case_step:
- "sum_case (sum_case f' g') g (Inl p) = sum_case f' g' p"
- "sum_case f (sum_case f' g') (Inr p) = sum_case f' g' p"
-by auto
-
-lemma one_pointE: "\<lbrakk>\<And>x. s = x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
-by simp
-
-lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
-by blast
-
-lemma obj_sumE_f:
-"\<lbrakk>\<forall>x. s = f (Inl x) \<longrightarrow> P; \<forall>x. s = f (Inr x) \<longrightarrow> P\<rbrakk> \<Longrightarrow> \<forall>x. s = f x \<longrightarrow> P"
-by (metis sum.exhaust)
-
-lemma obj_sumE: "\<lbrakk>\<forall>x. s = Inl x \<longrightarrow> P; \<forall>x. s = Inr x \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
-by (cases s) auto
-
-lemma obj_sum_step:
- "\<lbrakk>\<forall>x. s = f (Inr (Inl x)) \<longrightarrow> P; \<forall>x. s = f (Inr (Inr x)) \<longrightarrow> P\<rbrakk> \<Longrightarrow> \<forall>x. s = f (Inr x) \<longrightarrow> P"
-by (metis obj_sumE)
-
-lemma sum_case_if:
-"sum_case f g (if p then Inl x else Inr y) = (if p then f x else g y)"
-by simp
-
-lemma not_arg_cong_Inr: "x \<noteq> y \<Longrightarrow> Inr x \<noteq> Inr y"
-by simp
+(* Operator: *)
+definition "Gr A f = {(a, f a) | a. a \<in> A}"
ML_file "Tools/bnf_util.ML"
ML_file "Tools/bnf_tactics.ML"
--- a/src/HOL/Codatatype/BNF_Wrap.thy Wed Sep 12 06:27:36 2012 +0200
+++ b/src/HOL/Codatatype/BNF_Wrap.thy Wed Sep 12 06:27:48 2012 +0200
@@ -14,6 +14,9 @@
"no_dests"
begin
+lemma iffI_np: "\<lbrakk>x \<Longrightarrow> \<not> y; \<not> x \<Longrightarrow> y\<rbrakk> \<Longrightarrow> \<not> x \<longleftrightarrow> y"
+by (erule iffI) (erule contrapos_pn)
+
ML_file "Tools/bnf_wrap_tactics.ML"
ML_file "Tools/bnf_wrap.ML"
--- a/src/HOL/Codatatype/Basic_BNFs.thy Wed Sep 12 06:27:36 2012 +0200
+++ b/src/HOL/Codatatype/Basic_BNFs.thy Wed Sep 12 06:27:48 2012 +0200
@@ -13,6 +13,9 @@
imports BNF_Def
begin
+lemma wpull_id: "wpull UNIV B1 B2 id id id id"
+unfolding wpull_def by simp
+
lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq]
lemma ctwo_card_order: "card_order ctwo"