merged
authorwenzelm
Fri, 18 Mar 2016 20:29:50 +0100
changeset 62670 006c057814f1
parent 62653 d3a5b127eb81 (diff)
parent 62669 c95b76681e65 (current diff)
child 62671 a9ee1f240b81
merged
NEWS
src/Pure/General/secure.ML
src/Pure/General/sha1_polyml.ML
src/Pure/General/sha1_samples.ML
src/Pure/ML/install_pp_polyml.ML
--- a/CONTRIBUTORS	Fri Mar 18 18:32:35 2016 +0100
+++ b/CONTRIBUTORS	Fri Mar 18 20:29:50 2016 +0100
@@ -13,6 +13,9 @@
 * March 2016: Florian Haftmann
   Abstract factorial rings with unique factorization.
 
+* March 2016: Andreas Lochbihler
+  Reasoning support for monotonicity, continuity and
+  admissibility in chain-complete partial orders.
 
 Contributions to Isabelle2016
 -----------------------------
--- a/NEWS	Fri Mar 18 18:32:35 2016 +0100
+++ b/NEWS	Fri Mar 18 20:29:50 2016 +0100
@@ -113,6 +113,10 @@
 
 * Added topological_monoid
 
+* Library/Complete_Partial_Order2.thy provides reasoning support for
+proofs about monotonicity and continuity in chain-complete partial
+orders and about admissibility conditions for fixpoint inductions.
+
 * Library/Polynomial.thy contains also derivation of polynomials
 but not gcd/lcm on polynomials over fields.  This has been moved
 to a separate theory Library/Polynomial_GCD_euclidean.thy, to
@@ -1095,9 +1099,9 @@
 performance.
 
 * Property values in etc/symbols may contain spaces, if written with the
-replacement character "␣" (Unicode point 0x2324). For example:
-
-    \<star>  code: 0x0022c6  group: operator  font: Deja␣Vu␣Sans␣Mono
+replacement character "?" (Unicode point 0x2324). For example:
+
+    \<star>  code: 0x0022c6  group: operator  font: Deja?Vu?Sans?Mono
 
 * Java runtime environment for x86_64-windows allows to use larger heap
 space.
--- a/src/HOL/Data_Structures/Tree2.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Data_Structures/Tree2.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -14,4 +14,15 @@
 "height Leaf = 0" |
 "height (Node _ l a r) = max (height l) (height r) + 1"
 
+definition size1 :: "('a,'b) tree \<Rightarrow> nat" where
+"size1 t = size t + 1"
+
+lemma size1_simps[simp]:
+  "size1 \<langle>\<rangle> = 1"
+  "size1 \<langle>u, l, x, r\<rangle> = size1 l + size1 r"
+by (simp_all add: size1_def)
+
+lemma size1_ge0[simp]: "0 < size1 t"
+by (simp add: size1_def)
+
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Complete_Partial_Order2.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -0,0 +1,1708 @@
+(*  Title:      src/HOL/Library/Complete_Partial_Order2
+    Author:     Andreas Lochbihler, ETH Zurich
+*)
+
+section {* Formalisation of chain-complete partial orders, continuity and admissibility *}
+
+theory Complete_Partial_Order2 imports 
+  Main
+  "~~/src/HOL/Library/Lattice_Syntax"
+begin
+
+context begin interpretation lifting_syntax .
+
+lemma chain_transfer [transfer_rule]:
+  "((A ===> A ===> op =) ===> rel_set A ===> op =) Complete_Partial_Order.chain Complete_Partial_Order.chain"
+unfolding chain_def[abs_def] by transfer_prover
+
+end
+
+lemma linorder_chain [simp, intro!]:
+  fixes Y :: "_ :: linorder set"
+  shows "Complete_Partial_Order.chain op \<le> Y"
+by(auto intro: chainI)
+
+lemma fun_lub_apply: "\<And>Sup. fun_lub Sup Y x = Sup ((\<lambda>f. f x) ` Y)"
+by(simp add: fun_lub_def image_def)
+
+lemma fun_lub_empty [simp]: "fun_lub lub {} = (\<lambda>_. lub {})"
+by(rule ext)(simp add: fun_lub_apply)
+
+lemma chain_fun_ordD: 
+  assumes "Complete_Partial_Order.chain (fun_ord le) Y"
+  shows "Complete_Partial_Order.chain le ((\<lambda>f. f x) ` Y)"
+by(rule chainI)(auto dest: chainD[OF assms] simp add: fun_ord_def)
+
+lemma chain_Diff:
+  "Complete_Partial_Order.chain ord A
+  \<Longrightarrow> Complete_Partial_Order.chain ord (A - B)"
+by(erule chain_subset) blast
+
+lemma chain_rel_prodD1:
+  "Complete_Partial_Order.chain (rel_prod orda ordb) Y
+  \<Longrightarrow> Complete_Partial_Order.chain orda (fst ` Y)"
+by(auto 4 3 simp add: chain_def)
+
+lemma chain_rel_prodD2:
+  "Complete_Partial_Order.chain (rel_prod orda ordb) Y
+  \<Longrightarrow> Complete_Partial_Order.chain ordb (snd ` Y)"
+by(auto 4 3 simp add: chain_def)
+
+
+context ccpo begin
+
+lemma ccpo_fun: "class.ccpo (fun_lub Sup) (fun_ord op \<le>) (mk_less (fun_ord op \<le>))"
+  by standard (auto 4 3 simp add: mk_less_def fun_ord_def fun_lub_apply
+    intro: order.trans antisym chain_imageI ccpo_Sup_upper ccpo_Sup_least)
+
+lemma ccpo_Sup_below_iff: "Complete_Partial_Order.chain op \<le> Y \<Longrightarrow> Sup Y \<le> x \<longleftrightarrow> (\<forall>y\<in>Y. y \<le> x)"
+by(fast intro: order_trans[OF ccpo_Sup_upper] ccpo_Sup_least)
+
+lemma Sup_minus_bot: 
+  assumes chain: "Complete_Partial_Order.chain op \<le> A"
+  shows "\<Squnion>(A - {\<Squnion>{}}) = \<Squnion>A"
+apply(rule antisym)
+ apply(blast intro: ccpo_Sup_least chain_Diff[OF chain] ccpo_Sup_upper[OF chain])
+apply(rule ccpo_Sup_least[OF chain])
+apply(case_tac "x = \<Squnion>{}")
+by(blast intro: ccpo_Sup_least chain_empty ccpo_Sup_upper[OF chain_Diff[OF chain]])+
+
+lemma mono_lub:
+  fixes le_b (infix "\<sqsubseteq>" 60)
+  assumes chain: "Complete_Partial_Order.chain (fun_ord op \<le>) Y"
+  and mono: "\<And>f. f \<in> Y \<Longrightarrow> monotone le_b op \<le> f"
+  shows "monotone op \<sqsubseteq> op \<le> (fun_lub Sup Y)"
+proof(rule monotoneI)
+  fix x y
+  assume "x \<sqsubseteq> y"
+
+  have chain'': "\<And>x. Complete_Partial_Order.chain op \<le> ((\<lambda>f. f x) ` Y)"
+    using chain by(rule chain_imageI)(simp add: fun_ord_def)
+  then show "fun_lub Sup Y x \<le> fun_lub Sup Y y" unfolding fun_lub_apply
+  proof(rule ccpo_Sup_least)
+    fix x'
+    assume "x' \<in> (\<lambda>f. f x) ` Y"
+    then obtain f where "f \<in> Y" "x' = f x" by blast
+    note `x' = f x` also
+    from `f \<in> Y` `x \<sqsubseteq> y` have "f x \<le> f y" by(blast dest: mono monotoneD)
+    also have "\<dots> \<le> \<Squnion>((\<lambda>f. f y) ` Y)" using chain''
+      by(rule ccpo_Sup_upper)(simp add: `f \<in> Y`)
+    finally show "x' \<le> \<Squnion>((\<lambda>f. f y) ` Y)" .
+  qed
+qed
+
+context
+  fixes le_b (infix "\<sqsubseteq>" 60) and Y f
+  assumes chain: "Complete_Partial_Order.chain le_b Y" 
+  and mono1: "\<And>y. y \<in> Y \<Longrightarrow> monotone le_b op \<le> (\<lambda>x. f x y)"
+  and mono2: "\<And>x a b. \<lbrakk> x \<in> Y; a \<sqsubseteq> b; a \<in> Y; b \<in> Y \<rbrakk> \<Longrightarrow> f x a \<le> f x b"
+begin
+
+lemma Sup_mono: 
+  assumes le: "x \<sqsubseteq> y" and x: "x \<in> Y" and y: "y \<in> Y"
+  shows "\<Squnion>(f x ` Y) \<le> \<Squnion>(f y ` Y)" (is "_ \<le> ?rhs")
+proof(rule ccpo_Sup_least)
+  from chain show chain': "Complete_Partial_Order.chain op \<le> (f x ` Y)" when "x \<in> Y" for x
+    by(rule chain_imageI) (insert that, auto dest: mono2)
+
+  fix x'
+  assume "x' \<in> f x ` Y"
+  then obtain y' where "y' \<in> Y" "x' = f x y'" by blast note this(2)
+  also from mono1[OF `y' \<in> Y`] le have "\<dots> \<le> f y y'" by(rule monotoneD)
+  also have "\<dots> \<le> ?rhs" using chain'[OF y]
+    by (auto intro!: ccpo_Sup_upper simp add: `y' \<in> Y`)
+  finally show "x' \<le> ?rhs" .
+qed(rule x)
+
+lemma diag_Sup: "\<Squnion>((\<lambda>x. \<Squnion>(f x ` Y)) ` Y) = \<Squnion>((\<lambda>x. f x x) ` Y)" (is "?lhs = ?rhs")
+proof(rule antisym)
+  have chain1: "Complete_Partial_Order.chain op \<le> ((\<lambda>x. \<Squnion>(f x ` Y)) ` Y)"
+    using chain by(rule chain_imageI)(rule Sup_mono)
+  have chain2: "\<And>y'. y' \<in> Y \<Longrightarrow> Complete_Partial_Order.chain op \<le> (f y' ` Y)" using chain
+    by(rule chain_imageI)(auto dest: mono2)
+  have chain3: "Complete_Partial_Order.chain op \<le> ((\<lambda>x. f x x) ` Y)"
+    using chain by(rule chain_imageI)(auto intro: monotoneD[OF mono1] mono2 order.trans)
+
+  show "?lhs \<le> ?rhs" using chain1
+  proof(rule ccpo_Sup_least)
+    fix x'
+    assume "x' \<in> (\<lambda>x. \<Squnion>(f x ` Y)) ` Y"
+    then obtain y' where "y' \<in> Y" "x' = \<Squnion>(f y' ` Y)" by blast note this(2)
+    also have "\<dots> \<le> ?rhs" using chain2[OF `y' \<in> Y`]
+    proof(rule ccpo_Sup_least)
+      fix x
+      assume "x \<in> f y' ` Y"
+      then obtain y where "y \<in> Y" and x: "x = f y' y" by blast
+      def y'' \<equiv> "if y \<sqsubseteq> y' then y' else y"
+      from chain `y \<in> Y` `y' \<in> Y` have "y \<sqsubseteq> y' \<or> y' \<sqsubseteq> y" by(rule chainD)
+      hence "f y' y \<le> f y'' y''" using `y \<in> Y` `y' \<in> Y`
+        by(auto simp add: y''_def intro: mono2 monotoneD[OF mono1])
+      also from `y \<in> Y` `y' \<in> Y` have "y'' \<in> Y" by(simp add: y''_def)
+      from chain3 have "f y'' y'' \<le> ?rhs" by(rule ccpo_Sup_upper)(simp add: `y'' \<in> Y`)
+      finally show "x \<le> ?rhs" by(simp add: x)
+    qed
+    finally show "x' \<le> ?rhs" .
+  qed
+
+  show "?rhs \<le> ?lhs" using chain3
+  proof(rule ccpo_Sup_least)
+    fix y
+    assume "y \<in> (\<lambda>x. f x x) ` Y"
+    then obtain x where "x \<in> Y" and "y = f x x" by blast note this(2)
+    also from chain2[OF `x \<in> Y`] have "\<dots> \<le> \<Squnion>(f x ` Y)"
+      by(rule ccpo_Sup_upper)(simp add: `x \<in> Y`)
+    also have "\<dots> \<le> ?lhs" by(rule ccpo_Sup_upper[OF chain1])(simp add: `x \<in> Y`)
+    finally show "y \<le> ?lhs" .
+  qed
+qed
+
+end
+
+lemma Sup_image_mono_le:
+  fixes le_b (infix "\<sqsubseteq>" 60) and Sup_b ("\<Or>_" [900] 900)
+  assumes ccpo: "class.ccpo Sup_b op \<sqsubseteq> lt_b"
+  assumes chain: "Complete_Partial_Order.chain op \<sqsubseteq> Y"
+  and mono: "\<And>x y. \<lbrakk> x \<sqsubseteq> y; x \<in> Y \<rbrakk> \<Longrightarrow> f x \<le> f y"
+  shows "Sup (f ` Y) \<le> f (\<Or>Y)"
+proof(rule ccpo_Sup_least)
+  show "Complete_Partial_Order.chain op \<le> (f ` Y)"
+    using chain by(rule chain_imageI)(rule mono)
+
+  fix x
+  assume "x \<in> f ` Y"
+  then obtain y where "y \<in> Y" and "x = f y" by blast note this(2)
+  also have "y \<sqsubseteq> \<Or>Y" using ccpo chain `y \<in> Y` by(rule ccpo.ccpo_Sup_upper)
+  hence "f y \<le> f (\<Or>Y)" using `y \<in> Y` by(rule mono)
+  finally show "x \<le> \<dots>" .
+qed
+
+lemma swap_Sup:
+  fixes le_b (infix "\<sqsubseteq>" 60)
+  assumes Y: "Complete_Partial_Order.chain op \<sqsubseteq> Y"
+  and Z: "Complete_Partial_Order.chain (fun_ord op \<le>) Z"
+  and mono: "\<And>f. f \<in> Z \<Longrightarrow> monotone op \<sqsubseteq> op \<le> f"
+  shows "\<Squnion>((\<lambda>x. \<Squnion>(x ` Y)) ` Z) = \<Squnion>((\<lambda>x. \<Squnion>((\<lambda>f. f x) ` Z)) ` Y)"
+  (is "?lhs = ?rhs")
+proof(cases "Y = {}")
+  case True
+  then show ?thesis
+    by (simp add: image_constant_conv cong del: strong_SUP_cong)
+next
+  case False
+  have chain1: "\<And>f. f \<in> Z \<Longrightarrow> Complete_Partial_Order.chain op \<le> (f ` Y)"
+    by(rule chain_imageI[OF Y])(rule monotoneD[OF mono])
+  have chain2: "Complete_Partial_Order.chain op \<le> ((\<lambda>x. \<Squnion>(x ` Y)) ` Z)" using Z
+  proof(rule chain_imageI)
+    fix f g
+    assume "f \<in> Z" "g \<in> Z"
+      and "fun_ord op \<le> f g"
+    from chain1[OF `f \<in> Z`] show "\<Squnion>(f ` Y) \<le> \<Squnion>(g ` Y)"
+    proof(rule ccpo_Sup_least)
+      fix x
+      assume "x \<in> f ` Y"
+      then obtain y where "y \<in> Y" "x = f y" by blast note this(2)
+      also have "\<dots> \<le> g y" using `fun_ord op \<le> f g` by(simp add: fun_ord_def)
+      also have "\<dots> \<le> \<Squnion>(g ` Y)" using chain1[OF `g \<in> Z`]
+        by(rule ccpo_Sup_upper)(simp add: `y \<in> Y`)
+      finally show "x \<le> \<Squnion>(g ` Y)" .
+    qed
+  qed
+  have chain3: "\<And>x. Complete_Partial_Order.chain op \<le> ((\<lambda>f. f x) ` Z)"
+    using Z by(rule chain_imageI)(simp add: fun_ord_def)
+  have chain4: "Complete_Partial_Order.chain op \<le> ((\<lambda>x. \<Squnion>((\<lambda>f. f x) ` Z)) ` Y)"
+    using Y
+  proof(rule chain_imageI)
+    fix f x y
+    assume "x \<sqsubseteq> y"
+    show "\<Squnion>((\<lambda>f. f x) ` Z) \<le> \<Squnion>((\<lambda>f. f y) ` Z)" (is "_ \<le> ?rhs") using chain3
+    proof(rule ccpo_Sup_least)
+      fix x'
+      assume "x' \<in> (\<lambda>f. f x) ` Z"
+      then obtain f where "f \<in> Z" "x' = f x" by blast note this(2)
+      also have "f x \<le> f y" using `f \<in> Z` `x \<sqsubseteq> y` by(rule monotoneD[OF mono])
+      also have "f y \<le> ?rhs" using chain3
+        by(rule ccpo_Sup_upper)(simp add: `f \<in> Z`)
+      finally show "x' \<le> ?rhs" .
+    qed
+  qed
+
+  from chain2 have "?lhs \<le> ?rhs"
+  proof(rule ccpo_Sup_least)
+    fix x
+    assume "x \<in> (\<lambda>x. \<Squnion>(x ` Y)) ` Z"
+    then obtain f where "f \<in> Z" "x = \<Squnion>(f ` Y)" by blast note this(2)
+    also have "\<dots> \<le> ?rhs" using chain1[OF `f \<in> Z`]
+    proof(rule ccpo_Sup_least)
+      fix x'
+      assume "x' \<in> f ` Y"
+      then obtain y where "y \<in> Y" "x' = f y" by blast note this(2)
+      also have "f y \<le> \<Squnion>((\<lambda>f. f y) ` Z)" using chain3
+        by(rule ccpo_Sup_upper)(simp add: `f \<in> Z`)
+      also have "\<dots> \<le> ?rhs" using chain4 by(rule ccpo_Sup_upper)(simp add: `y \<in> Y`)
+      finally show "x' \<le> ?rhs" .
+    qed
+    finally show "x \<le> ?rhs" .
+  qed
+  moreover
+  have "?rhs \<le> ?lhs" using chain4
+  proof(rule ccpo_Sup_least)
+    fix x
+    assume "x \<in> (\<lambda>x. \<Squnion>((\<lambda>f. f x) ` Z)) ` Y"
+    then obtain y where "y \<in> Y" "x = \<Squnion>((\<lambda>f. f y) ` Z)" by blast note this(2)
+    also have "\<dots> \<le> ?lhs" using chain3
+    proof(rule ccpo_Sup_least)
+      fix x'
+      assume "x' \<in> (\<lambda>f. f y) ` Z"
+      then obtain f where "f \<in> Z" "x' = f y" by blast note this(2)
+      also have "f y \<le> \<Squnion>(f ` Y)" using chain1[OF `f \<in> Z`]
+        by(rule ccpo_Sup_upper)(simp add: `y \<in> Y`)
+      also have "\<dots> \<le> ?lhs" using chain2
+        by(rule ccpo_Sup_upper)(simp add: `f \<in> Z`)
+      finally show "x' \<le> ?lhs" .
+    qed
+    finally show "x \<le> ?lhs" .
+  qed
+  ultimately show "?lhs = ?rhs" by(rule antisym)
+qed
+
+lemma fixp_mono:
+  assumes fg: "fun_ord op \<le> f g"
+  and f: "monotone op \<le> op \<le> f"
+  and g: "monotone op \<le> op \<le> g"
+  shows "ccpo_class.fixp f \<le> ccpo_class.fixp g"
+unfolding fixp_def
+proof(rule ccpo_Sup_least)
+  fix x
+  assume "x \<in> ccpo_class.iterates f"
+  thus "x \<le> \<Squnion>ccpo_class.iterates g"
+  proof induction
+    case (step x)
+    from f step.IH have "f x \<le> f (\<Squnion>ccpo_class.iterates g)" by(rule monotoneD)
+    also have "\<dots> \<le> g (\<Squnion>ccpo_class.iterates g)" using fg by(simp add: fun_ord_def)
+    also have "\<dots> = \<Squnion>ccpo_class.iterates g" by(fold fixp_def fixp_unfold[OF g]) simp
+    finally show ?case .
+  qed(blast intro: ccpo_Sup_least)
+qed(rule chain_iterates[OF f])
+
+context fixes ordb :: "'b \<Rightarrow> 'b \<Rightarrow> bool" (infix "\<sqsubseteq>" 60) begin
+
+lemma iterates_mono:
+  assumes f: "f \<in> ccpo.iterates (fun_lub Sup) (fun_ord op \<le>) F"
+  and mono: "\<And>f. monotone op \<sqsubseteq> op \<le> f \<Longrightarrow> monotone op \<sqsubseteq> op \<le> (F f)"
+  shows "monotone op \<sqsubseteq> op \<le> f"
+using f
+by(induction rule: ccpo.iterates.induct[OF ccpo_fun, consumes 1, case_names step Sup])(blast intro: mono mono_lub)+
+
+lemma fixp_preserves_mono:
+  assumes mono: "\<And>x. monotone (fun_ord op \<le>) op \<le> (\<lambda>f. F f x)"
+  and mono2: "\<And>f. monotone op \<sqsubseteq> op \<le> f \<Longrightarrow> monotone op \<sqsubseteq> op \<le> (F f)"
+  shows "monotone op \<sqsubseteq> op \<le> (ccpo.fixp (fun_lub Sup) (fun_ord op \<le>) F)"
+  (is "monotone _ _ ?fixp")
+proof(rule monotoneI)
+  have mono: "monotone (fun_ord op \<le>) (fun_ord op \<le>) F"
+    by(rule monotoneI)(auto simp add: fun_ord_def intro: monotoneD[OF mono])
+  let ?iter = "ccpo.iterates (fun_lub Sup) (fun_ord op \<le>) F"
+  have chain: "\<And>x. Complete_Partial_Order.chain op \<le> ((\<lambda>f. f x) ` ?iter)"
+    by(rule chain_imageI[OF ccpo.chain_iterates[OF ccpo_fun mono]])(simp add: fun_ord_def)
+
+  fix x y
+  assume "x \<sqsubseteq> y"
+  show "?fixp x \<le> ?fixp y"
+    unfolding ccpo.fixp_def[OF ccpo_fun] fun_lub_apply using chain
+  proof(rule ccpo_Sup_least)
+    fix x'
+    assume "x' \<in> (\<lambda>f. f x) ` ?iter"
+    then obtain f where "f \<in> ?iter" "x' = f x" by blast note this(2)
+    also have "f x \<le> f y"
+      by(rule monotoneD[OF iterates_mono[OF `f \<in> ?iter` mono2]])(blast intro: `x \<sqsubseteq> y`)+
+    also have "f y \<le> \<Squnion>((\<lambda>f. f y) ` ?iter)" using chain
+      by(rule ccpo_Sup_upper)(simp add: `f \<in> ?iter`)
+    finally show "x' \<le> \<dots>" .
+  qed
+qed
+
+end
+
+end
+
+lemma monotone2monotone:
+  assumes 2: "\<And>x. monotone ordb ordc (\<lambda>y. f x y)"
+  and t: "monotone orda ordb (\<lambda>x. t x)"
+  and 1: "\<And>y. monotone orda ordc (\<lambda>x. f x y)"
+  and trans: "transp ordc"
+  shows "monotone orda ordc (\<lambda>x. f x (t x))"
+by(blast intro: monotoneI transpD[OF trans] monotoneD[OF t] monotoneD[OF 2] monotoneD[OF 1])
+
+subsection {* Continuity *}
+
+definition cont :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b set \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
+where
+  "cont luba orda lubb ordb f \<longleftrightarrow> 
+  (\<forall>Y. Complete_Partial_Order.chain orda Y \<longrightarrow> Y \<noteq> {} \<longrightarrow> f (luba Y) = lubb (f ` Y))"
+
+definition mcont :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b set \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
+where
+  "mcont luba orda lubb ordb f \<longleftrightarrow>
+   monotone orda ordb f \<and> cont luba orda lubb ordb f"
+
+subsubsection {* Theorem collection @{text cont_intro} *}
+
+named_theorems cont_intro "continuity and admissibility intro rules"
+ML {*
+(* apply cont_intro rules as intro and try to solve 
+   the remaining of the emerging subgoals with simp *)
+fun cont_intro_tac ctxt =
+  REPEAT_ALL_NEW (resolve_tac ctxt (rev (Named_Theorems.get ctxt @{named_theorems cont_intro})))
+  THEN_ALL_NEW (SOLVED' (simp_tac ctxt))
+
+fun cont_intro_simproc ctxt ct =
+  let
+    fun mk_stmt t = t
+      |> HOLogic.mk_Trueprop
+      |> Thm.cterm_of ctxt
+      |> Goal.init
+    fun mk_thm t =
+      case SINGLE (cont_intro_tac ctxt 1) (mk_stmt t) of
+        SOME thm => SOME (Goal.finish ctxt thm RS @{thm Eq_TrueI})
+      | NONE => NONE
+  in
+    case Thm.term_of ct of
+      t as Const (@{const_name ccpo.admissible}, _) $ _ $ _ $ _ => mk_thm t
+    | t as Const (@{const_name mcont}, _) $ _ $ _ $ _ $ _ $ _ => mk_thm t
+    | t as Const (@{const_name monotone}, _) $ _ $ _ $ _ => mk_thm t
+    | _ => NONE
+  end
+  handle THM _ => NONE 
+  | TYPE _ => NONE
+*}
+
+simproc_setup "cont_intro"
+  ( "ccpo.admissible lub ord P"
+  | "mcont lub ord lub' ord' f"
+  | "monotone ord ord' f"
+  ) = {* K cont_intro_simproc *}
+
+lemmas [cont_intro] =
+  call_mono
+  let_mono
+  if_mono
+  option.const_mono
+  tailrec.const_mono
+  bind_mono
+
+declare if_mono[simp]
+
+lemma monotone_id' [cont_intro]: "monotone ord ord (\<lambda>x. x)"
+by(simp add: monotone_def)
+
+lemma monotone_applyI:
+  "monotone orda ordb F \<Longrightarrow> monotone (fun_ord orda) ordb (\<lambda>f. F (f x))"
+by(rule monotoneI)(auto simp add: fun_ord_def dest: monotoneD)
+
+lemma monotone_if_fun [partial_function_mono]:
+  "\<lbrakk> monotone (fun_ord orda) (fun_ord ordb) F; monotone (fun_ord orda) (fun_ord ordb) G \<rbrakk>
+  \<Longrightarrow> monotone (fun_ord orda) (fun_ord ordb) (\<lambda>f n. if c n then F f n else G f n)"
+by(simp add: monotone_def fun_ord_def)
+
+lemma monotone_fun_apply_fun [partial_function_mono]: 
+  "monotone (fun_ord (fun_ord ord)) (fun_ord ord) (\<lambda>f n. f t (g n))"
+by(rule monotoneI)(simp add: fun_ord_def)
+
+lemma monotone_fun_ord_apply: 
+  "monotone orda (fun_ord ordb) f \<longleftrightarrow> (\<forall>x. monotone orda ordb (\<lambda>y. f y x))"
+by(auto simp add: monotone_def fun_ord_def)
+
+context preorder begin
+
+lemma transp_le [simp, cont_intro]: "transp op \<le>"
+by(rule transpI)(rule order_trans)
+
+lemma monotone_const [simp, cont_intro]: "monotone ord op \<le> (\<lambda>_. c)"
+by(rule monotoneI) simp
+
+end
+
+lemma transp_le [cont_intro, simp]:
+  "class.preorder ord (mk_less ord) \<Longrightarrow> transp ord"
+by(rule preorder.transp_le)
+
+context partial_function_definitions begin
+
+declare const_mono [cont_intro, simp]
+
+lemma transp_le [cont_intro, simp]: "transp leq"
+by(rule transpI)(rule leq_trans)
+
+lemma preorder [cont_intro, simp]: "class.preorder leq (mk_less leq)"
+by(unfold_locales)(auto simp add: mk_less_def intro: leq_refl leq_trans)
+
+declare ccpo[cont_intro, simp]
+
+end
+
+lemma contI [intro?]:
+  "(\<And>Y. \<lbrakk> Complete_Partial_Order.chain orda Y; Y \<noteq> {} \<rbrakk> \<Longrightarrow> f (luba Y) = lubb (f ` Y)) 
+  \<Longrightarrow> cont luba orda lubb ordb f"
+unfolding cont_def by blast
+
+lemma contD:
+  "\<lbrakk> cont luba orda lubb ordb f; Complete_Partial_Order.chain orda Y; Y \<noteq> {} \<rbrakk> 
+  \<Longrightarrow> f (luba Y) = lubb (f ` Y)"
+unfolding cont_def by blast
+
+lemma cont_id [simp, cont_intro]: "\<And>Sup. cont Sup ord Sup ord id"
+by(rule contI) simp
+
+lemma cont_id' [simp, cont_intro]: "\<And>Sup. cont Sup ord Sup ord (\<lambda>x. x)"
+using cont_id[unfolded id_def] .
+
+lemma cont_applyI [cont_intro]:
+  assumes cont: "cont luba orda lubb ordb g"
+  shows "cont (fun_lub luba) (fun_ord orda) lubb ordb (\<lambda>f. g (f x))"
+by(rule contI)(drule chain_fun_ordD[where x=x], simp add: fun_lub_apply image_image contD[OF cont])
+
+lemma call_cont: "cont (fun_lub lub) (fun_ord ord) lub ord (\<lambda>f. f t)"
+by(simp add: cont_def fun_lub_apply)
+
+lemma cont_if [cont_intro]:
+  "\<lbrakk> cont luba orda lubb ordb f; cont luba orda lubb ordb g \<rbrakk>
+  \<Longrightarrow> cont luba orda lubb ordb (\<lambda>x. if c then f x else g x)"
+by(cases c) simp_all
+
+lemma mcontI [intro?]:
+   "\<lbrakk> monotone orda ordb f; cont luba orda lubb ordb f \<rbrakk> \<Longrightarrow> mcont luba orda lubb ordb f"
+by(simp add: mcont_def)
+
+lemma mcont_mono: "mcont luba orda lubb ordb f \<Longrightarrow> monotone orda ordb f"
+by(simp add: mcont_def)
+
+lemma mcont_cont [simp]: "mcont luba orda lubb ordb f \<Longrightarrow> cont luba orda lubb ordb f"
+by(simp add: mcont_def)
+
+lemma mcont_monoD:
+  "\<lbrakk> mcont luba orda lubb ordb f; orda x y \<rbrakk> \<Longrightarrow> ordb (f x) (f y)"
+by(auto simp add: mcont_def dest: monotoneD)
+
+lemma mcont_contD:
+  "\<lbrakk> mcont luba orda lubb ordb f; Complete_Partial_Order.chain orda Y; Y \<noteq> {} \<rbrakk>
+  \<Longrightarrow> f (luba Y) = lubb (f ` Y)"
+by(auto simp add: mcont_def dest: contD)
+
+lemma mcont_call [cont_intro, simp]:
+  "mcont (fun_lub lub) (fun_ord ord) lub ord (\<lambda>f. f t)"
+by(simp add: mcont_def call_mono call_cont)
+
+lemma mcont_id' [cont_intro, simp]: "mcont lub ord lub ord (\<lambda>x. x)"
+by(simp add: mcont_def monotone_id')
+
+lemma mcont_applyI:
+  "mcont luba orda lubb ordb (\<lambda>x. F x) \<Longrightarrow> mcont (fun_lub luba) (fun_ord orda) lubb ordb (\<lambda>f. F (f x))"
+by(simp add: mcont_def monotone_applyI cont_applyI)
+
+lemma mcont_if [cont_intro, simp]:
+  "\<lbrakk> mcont luba orda lubb ordb (\<lambda>x. f x); mcont luba orda lubb ordb (\<lambda>x. g x) \<rbrakk>
+  \<Longrightarrow> mcont luba orda lubb ordb (\<lambda>x. if c then f x else g x)"
+by(simp add: mcont_def cont_if)
+
+lemma cont_fun_lub_apply: 
+  "cont luba orda (fun_lub lubb) (fun_ord ordb) f \<longleftrightarrow> (\<forall>x. cont luba orda lubb ordb (\<lambda>y. f y x))"
+by(simp add: cont_def fun_lub_def fun_eq_iff)(auto simp add: image_def)
+
+lemma mcont_fun_lub_apply: 
+  "mcont luba orda (fun_lub lubb) (fun_ord ordb) f \<longleftrightarrow> (\<forall>x. mcont luba orda lubb ordb (\<lambda>y. f y x))"
+by(auto simp add: monotone_fun_ord_apply cont_fun_lub_apply mcont_def)
+
+context ccpo begin
+
+lemma cont_const [simp, cont_intro]: "cont luba orda Sup op \<le> (\<lambda>x. c)"
+by (rule contI) (simp add: image_constant_conv cong del: strong_SUP_cong)
+
+lemma mcont_const [cont_intro, simp]:
+  "mcont luba orda Sup op \<le> (\<lambda>x. c)"
+by(simp add: mcont_def)
+
+lemma cont_apply:
+  assumes 2: "\<And>x. cont lubb ordb Sup op \<le> (\<lambda>y. f x y)"
+  and t: "cont luba orda lubb ordb (\<lambda>x. t x)"
+  and 1: "\<And>y. cont luba orda Sup op \<le> (\<lambda>x. f x y)"
+  and mono: "monotone orda ordb (\<lambda>x. t x)"
+  and mono2: "\<And>x. monotone ordb op \<le> (\<lambda>y. f x y)"
+  and mono1: "\<And>y. monotone orda op \<le> (\<lambda>x. f x y)"
+  shows "cont luba orda Sup op \<le> (\<lambda>x. f x (t x))"
+proof
+  fix Y
+  assume chain: "Complete_Partial_Order.chain orda Y" and "Y \<noteq> {}"
+  moreover from chain have chain': "Complete_Partial_Order.chain ordb (t ` Y)"
+    by(rule chain_imageI)(rule monotoneD[OF mono])
+  ultimately show "f (luba Y) (t (luba Y)) = \<Squnion>((\<lambda>x. f x (t x)) ` Y)"
+    by(simp add: contD[OF 1] contD[OF t] contD[OF 2] image_image)
+      (rule diag_Sup[OF chain], auto intro: monotone2monotone[OF mono2 mono monotone_const transpI] monotoneD[OF mono1])
+qed
+
+lemma mcont2mcont':
+  "\<lbrakk> \<And>x. mcont lub' ord' Sup op \<le> (\<lambda>y. f x y);
+     \<And>y. mcont lub ord Sup op \<le> (\<lambda>x. f x y);
+     mcont lub ord lub' ord' (\<lambda>y. t y) \<rbrakk>
+  \<Longrightarrow> mcont lub ord Sup op \<le> (\<lambda>x. f x (t x))"
+unfolding mcont_def by(blast intro: transp_le monotone2monotone cont_apply)
+
+lemma mcont2mcont:
+  "\<lbrakk>mcont lub' ord' Sup op \<le> (\<lambda>x. f x); mcont lub ord lub' ord' (\<lambda>x. t x)\<rbrakk> 
+  \<Longrightarrow> mcont lub ord Sup op \<le> (\<lambda>x. f (t x))"
+by(rule mcont2mcont'[OF _ mcont_const]) 
+
+context
+  fixes ord :: "'b \<Rightarrow> 'b \<Rightarrow> bool" (infix "\<sqsubseteq>" 60) 
+  and lub :: "'b set \<Rightarrow> 'b" ("\<Or>_" [900] 900)
+begin
+
+lemma cont_fun_lub_Sup:
+  assumes chainM: "Complete_Partial_Order.chain (fun_ord op \<le>) M"
+  and mcont [rule_format]: "\<forall>f\<in>M. mcont lub op \<sqsubseteq> Sup op \<le> f"
+  shows "cont lub op \<sqsubseteq> Sup op \<le> (fun_lub Sup M)"
+proof(rule contI)
+  fix Y
+  assume chain: "Complete_Partial_Order.chain op \<sqsubseteq> Y"
+    and Y: "Y \<noteq> {}"
+  from swap_Sup[OF chain chainM mcont[THEN mcont_mono]]
+  show "fun_lub Sup M (\<Or>Y) = \<Squnion>(fun_lub Sup M ` Y)"
+    by(simp add: mcont_contD[OF mcont chain Y] fun_lub_apply cong: image_cong)
+qed
+
+lemma mcont_fun_lub_Sup:
+  "\<lbrakk> Complete_Partial_Order.chain (fun_ord op \<le>) M;
+    \<forall>f\<in>M. mcont lub ord Sup op \<le> f \<rbrakk>
+  \<Longrightarrow> mcont lub op \<sqsubseteq> Sup op \<le> (fun_lub Sup M)"
+by(simp add: mcont_def cont_fun_lub_Sup mono_lub)
+
+lemma iterates_mcont:
+  assumes f: "f \<in> ccpo.iterates (fun_lub Sup) (fun_ord op \<le>) F"
+  and mono: "\<And>f. mcont lub op \<sqsubseteq> Sup op \<le> f \<Longrightarrow> mcont lub op \<sqsubseteq> Sup op \<le> (F f)"
+  shows "mcont lub op \<sqsubseteq> Sup op \<le> f"
+using f
+by(induction rule: ccpo.iterates.induct[OF ccpo_fun, consumes 1, case_names step Sup])(blast intro: mono mcont_fun_lub_Sup)+
+
+lemma fixp_preserves_mcont:
+  assumes mono: "\<And>x. monotone (fun_ord op \<le>) op \<le> (\<lambda>f. F f x)"
+  and mcont: "\<And>f. mcont lub op \<sqsubseteq> Sup op \<le> f \<Longrightarrow> mcont lub op \<sqsubseteq> Sup op \<le> (F f)"
+  shows "mcont lub op \<sqsubseteq> Sup op \<le> (ccpo.fixp (fun_lub Sup) (fun_ord op \<le>) F)"
+  (is "mcont _ _ _ _ ?fixp")
+unfolding mcont_def
+proof(intro conjI monotoneI contI)
+  have mono: "monotone (fun_ord op \<le>) (fun_ord op \<le>) F"
+    by(rule monotoneI)(auto simp add: fun_ord_def intro: monotoneD[OF mono])
+  let ?iter = "ccpo.iterates (fun_lub Sup) (fun_ord op \<le>) F"
+  have chain: "\<And>x. Complete_Partial_Order.chain op \<le> ((\<lambda>f. f x) ` ?iter)"
+    by(rule chain_imageI[OF ccpo.chain_iterates[OF ccpo_fun mono]])(simp add: fun_ord_def)
+
+  {
+    fix x y
+    assume "x \<sqsubseteq> y"
+    show "?fixp x \<le> ?fixp y"
+      unfolding ccpo.fixp_def[OF ccpo_fun] fun_lub_apply using chain
+    proof(rule ccpo_Sup_least)
+      fix x'
+      assume "x' \<in> (\<lambda>f. f x) ` ?iter"
+      then obtain f where "f \<in> ?iter" "x' = f x" by blast note this(2)
+      also from _ `x \<sqsubseteq> y` have "f x \<le> f y"
+        by(rule mcont_monoD[OF iterates_mcont[OF `f \<in> ?iter` mcont]])
+      also have "f y \<le> \<Squnion>((\<lambda>f. f y) ` ?iter)" using chain
+        by(rule ccpo_Sup_upper)(simp add: `f \<in> ?iter`)
+      finally show "x' \<le> \<dots>" .
+    qed
+  next
+    fix Y
+    assume chain: "Complete_Partial_Order.chain op \<sqsubseteq> Y"
+      and Y: "Y \<noteq> {}"
+    { fix f
+      assume "f \<in> ?iter"
+      hence "f (\<Or>Y) = \<Squnion>(f ` Y)"
+        using mcont chain Y by(rule mcont_contD[OF iterates_mcont]) }
+    moreover have "\<Squnion>((\<lambda>f. \<Squnion>(f ` Y)) ` ?iter) = \<Squnion>((\<lambda>x. \<Squnion>((\<lambda>f. f x) ` ?iter)) ` Y)"
+      using chain ccpo.chain_iterates[OF ccpo_fun mono]
+      by(rule swap_Sup)(rule mcont_mono[OF iterates_mcont[OF _ mcont]])
+    ultimately show "?fixp (\<Or>Y) = \<Squnion>(?fixp ` Y)" unfolding ccpo.fixp_def[OF ccpo_fun]
+      by(simp add: fun_lub_apply cong: image_cong)
+  }
+qed
+
+end
+
+context
+  fixes F :: "'c \<Rightarrow> 'c" and U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c" and f
+  assumes mono: "\<And>x. monotone (fun_ord op \<le>) op \<le> (\<lambda>f. U (F (C f)) x)"
+  and eq: "f \<equiv> C (ccpo.fixp (fun_lub Sup) (fun_ord op \<le>) (\<lambda>f. U (F (C f))))"
+  and inverse: "\<And>f. U (C f) = f"
+begin
+
+lemma fixp_preserves_mono_uc:
+  assumes mono2: "\<And>f. monotone ord op \<le> (U f) \<Longrightarrow> monotone ord op \<le> (U (F f))"
+  shows "monotone ord op \<le> (U f)"
+using fixp_preserves_mono[OF mono mono2] by(subst eq)(simp add: inverse)
+
+lemma fixp_preserves_mcont_uc:
+  assumes mcont: "\<And>f. mcont lubb ordb Sup op \<le> (U f) \<Longrightarrow> mcont lubb ordb Sup op \<le> (U (F f))"
+  shows "mcont lubb ordb Sup op \<le> (U f)"
+using fixp_preserves_mcont[OF mono mcont] by(subst eq)(simp add: inverse)
+
+end
+
+lemmas fixp_preserves_mono1 = fixp_preserves_mono_uc[of "\<lambda>x. x" _ "\<lambda>x. x", OF _ _ refl]
+lemmas fixp_preserves_mono2 =
+  fixp_preserves_mono_uc[of "case_prod" _ "curry", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
+lemmas fixp_preserves_mono3 =
+  fixp_preserves_mono_uc[of "\<lambda>f. case_prod (case_prod f)" _ "\<lambda>f. curry (curry f)", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
+lemmas fixp_preserves_mono4 =
+  fixp_preserves_mono_uc[of "\<lambda>f. case_prod (case_prod (case_prod f))" _ "\<lambda>f. curry (curry (curry f))", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
+
+lemmas fixp_preserves_mcont1 = fixp_preserves_mcont_uc[of "\<lambda>x. x" _ "\<lambda>x. x", OF _ _ refl]
+lemmas fixp_preserves_mcont2 =
+  fixp_preserves_mcont_uc[of "case_prod" _ "curry", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
+lemmas fixp_preserves_mcont3 =
+  fixp_preserves_mcont_uc[of "\<lambda>f. case_prod (case_prod f)" _ "\<lambda>f. curry (curry f)", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
+lemmas fixp_preserves_mcont4 =
+  fixp_preserves_mcont_uc[of "\<lambda>f. case_prod (case_prod (case_prod f))" _ "\<lambda>f. curry (curry (curry f))", unfolded case_prod_curry curry_case_prod, OF _ _ refl]
+
+end
+
+lemma (in preorder) monotone_if_bot:
+  fixes bot
+  assumes mono: "\<And>x y. \<lbrakk> x \<le> y; \<not> (x \<le> bound) \<rbrakk> \<Longrightarrow> ord (f x) (f y)"
+  and bot: "\<And>x. \<not> x \<le> bound \<Longrightarrow> ord bot (f x)" "ord bot bot"
+  shows "monotone op \<le> ord (\<lambda>x. if x \<le> bound then bot else f x)"
+by(rule monotoneI)(auto intro: bot intro: mono order_trans)
+
+lemma (in ccpo) mcont_if_bot:
+  fixes bot and lub ("\<Or>_" [900] 900) and ord (infix "\<sqsubseteq>" 60)
+  assumes ccpo: "class.ccpo lub op \<sqsubseteq> lt"
+  and mono: "\<And>x y. \<lbrakk> x \<le> y; \<not> x \<le> bound \<rbrakk> \<Longrightarrow> f x \<sqsubseteq> f y"
+  and cont: "\<And>Y. \<lbrakk> Complete_Partial_Order.chain op \<le> Y; Y \<noteq> {}; \<And>x. x \<in> Y \<Longrightarrow> \<not> x \<le> bound \<rbrakk> \<Longrightarrow> f (\<Squnion>Y) = \<Or>(f ` Y)"
+  and bot: "\<And>x. \<not> x \<le> bound \<Longrightarrow> bot \<sqsubseteq> f x"
+  shows "mcont Sup op \<le> lub op \<sqsubseteq> (\<lambda>x. if x \<le> bound then bot else f x)" (is "mcont _ _ _ _ ?g")
+proof(intro mcontI contI)
+  interpret c: ccpo lub "op \<sqsubseteq>" lt by(fact ccpo)
+  show "monotone op \<le> op \<sqsubseteq> ?g" by(rule monotone_if_bot)(simp_all add: mono bot)
+
+  fix Y
+  assume chain: "Complete_Partial_Order.chain op \<le> Y" and Y: "Y \<noteq> {}"
+  show "?g (\<Squnion>Y) = \<Or>(?g ` Y)"
+  proof(cases "Y \<subseteq> {x. x \<le> bound}")
+    case True
+    hence "\<Squnion>Y \<le> bound" using chain by(auto intro: ccpo_Sup_least)
+    moreover have "Y \<inter> {x. \<not> x \<le> bound} = {}" using True by auto
+    ultimately show ?thesis using True Y
+      by (auto simp add: image_constant_conv cong del: c.strong_SUP_cong)
+  next
+    case False
+    let ?Y = "Y \<inter> {x. \<not> x \<le> bound}"
+    have chain': "Complete_Partial_Order.chain op \<le> ?Y"
+      using chain by(rule chain_subset) simp
+
+    from False obtain y where ybound: "\<not> y \<le> bound" and y: "y \<in> Y" by blast
+    hence "\<not> \<Squnion>Y \<le> bound" by (metis ccpo_Sup_upper chain order.trans)
+    hence "?g (\<Squnion>Y) = f (\<Squnion>Y)" by simp
+    also have "\<Squnion>Y \<le> \<Squnion>?Y" using chain
+    proof(rule ccpo_Sup_least)
+      fix x
+      assume x: "x \<in> Y"
+      show "x \<le> \<Squnion>?Y"
+      proof(cases "x \<le> bound")
+        case True
+        with chainD[OF chain x y] have "x \<le> y" using ybound by(auto intro: order_trans)
+        thus ?thesis by(rule order_trans)(auto intro: ccpo_Sup_upper[OF chain'] simp add: y ybound)
+      qed(auto intro: ccpo_Sup_upper[OF chain'] simp add: x)
+    qed
+    hence "\<Squnion>Y = \<Squnion>?Y" by(rule antisym)(blast intro: ccpo_Sup_least[OF chain'] ccpo_Sup_upper[OF chain])
+    hence "f (\<Squnion>Y) = f (\<Squnion>?Y)" by simp
+    also have "f (\<Squnion>?Y) = \<Or>(f ` ?Y)" using chain' by(rule cont)(insert y ybound, auto)
+    also have "\<Or>(f ` ?Y) = \<Or>(?g ` Y)"
+    proof(cases "Y \<inter> {x. x \<le> bound} = {}")
+      case True
+      hence "f ` ?Y = ?g ` Y" by auto
+      thus ?thesis by(rule arg_cong)
+    next
+      case False
+      have chain'': "Complete_Partial_Order.chain op \<sqsubseteq> (insert bot (f ` ?Y))"
+        using chain by(auto intro!: chainI bot dest: chainD intro: mono)
+      hence chain''': "Complete_Partial_Order.chain op \<sqsubseteq> (f ` ?Y)" by(rule chain_subset) blast
+      have "bot \<sqsubseteq> \<Or>(f ` ?Y)" using y ybound by(blast intro: c.order_trans[OF bot] c.ccpo_Sup_upper[OF chain'''])
+      hence "\<Or>(insert bot (f ` ?Y)) \<sqsubseteq> \<Or>(f ` ?Y)" using chain''
+        by(auto intro: c.ccpo_Sup_least c.ccpo_Sup_upper[OF chain''']) 
+      with _ have "\<dots> = \<Or>(insert bot (f ` ?Y))"
+        by(rule c.antisym)(blast intro: c.ccpo_Sup_least[OF chain'''] c.ccpo_Sup_upper[OF chain''])
+      also have "insert bot (f ` ?Y) = ?g ` Y" using False by auto
+      finally show ?thesis .
+    qed
+    finally show ?thesis .
+  qed
+qed
+
+context partial_function_definitions begin
+
+lemma mcont_const [cont_intro, simp]:
+  "mcont luba orda lub leq (\<lambda>x. c)"
+by(rule ccpo.mcont_const)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])
+
+lemmas [cont_intro, simp] =
+  ccpo.cont_const[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+
+lemma mono2mono:
+  assumes "monotone ordb leq (\<lambda>y. f y)" "monotone orda ordb (\<lambda>x. t x)"
+  shows "monotone orda leq (\<lambda>x. f (t x))"
+using assms by(rule monotone2monotone) simp_all
+
+lemmas mcont2mcont' = ccpo.mcont2mcont'[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+lemmas mcont2mcont = ccpo.mcont2mcont[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+
+lemmas fixp_preserves_mono1 = ccpo.fixp_preserves_mono1[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+lemmas fixp_preserves_mono2 = ccpo.fixp_preserves_mono2[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+lemmas fixp_preserves_mono3 = ccpo.fixp_preserves_mono3[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+lemmas fixp_preserves_mono4 = ccpo.fixp_preserves_mono4[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+lemmas fixp_preserves_mcont1 = ccpo.fixp_preserves_mcont1[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+lemmas fixp_preserves_mcont2 = ccpo.fixp_preserves_mcont2[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+lemmas fixp_preserves_mcont3 = ccpo.fixp_preserves_mcont3[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+lemmas fixp_preserves_mcont4 = ccpo.fixp_preserves_mcont4[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+
+lemma monotone_if_bot:
+  fixes bot
+  assumes g: "\<And>x. g x = (if leq x bound then bot else f x)"
+  and mono: "\<And>x y. \<lbrakk> leq x y; \<not> leq x bound \<rbrakk> \<Longrightarrow> ord (f x) (f y)"
+  and bot: "\<And>x. \<not> leq x bound \<Longrightarrow> ord bot (f x)" "ord bot bot"
+  shows "monotone leq ord g"
+unfolding g[abs_def] using preorder mono bot by(rule preorder.monotone_if_bot)
+
+lemma mcont_if_bot:
+  fixes bot
+  assumes ccpo: "class.ccpo lub' ord (mk_less ord)"
+  and bot: "\<And>x. \<not> leq x bound \<Longrightarrow> ord bot (f x)"
+  and g: "\<And>x. g x = (if leq x bound then bot else f x)"
+  and mono: "\<And>x y. \<lbrakk> leq x y; \<not> leq x bound \<rbrakk> \<Longrightarrow> ord (f x) (f y)"
+  and cont: "\<And>Y. \<lbrakk> Complete_Partial_Order.chain leq Y; Y \<noteq> {}; \<And>x. x \<in> Y \<Longrightarrow> \<not> leq x bound \<rbrakk> \<Longrightarrow> f (lub Y) = lub' (f ` Y)"
+  shows "mcont lub leq lub' ord g"
+unfolding g[abs_def] using ccpo mono cont bot by(rule ccpo.mcont_if_bot[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]])
+
+end
+
+subsection {* Admissibility *}
+
+lemma admissible_subst:
+  assumes adm: "ccpo.admissible luba orda (\<lambda>x. P x)"
+  and mcont: "mcont lubb ordb luba orda f"
+  shows "ccpo.admissible lubb ordb (\<lambda>x. P (f x))"
+apply(rule ccpo.admissibleI)
+apply(frule (1) mcont_contD[OF mcont])
+apply(auto intro: ccpo.admissibleD[OF adm] chain_imageI dest: mcont_monoD[OF mcont])
+done
+
+lemmas [simp, cont_intro] = 
+  admissible_all
+  admissible_ball
+  admissible_const
+  admissible_conj
+
+lemma admissible_disj' [simp, cont_intro]:
+  "\<lbrakk> class.ccpo lub ord (mk_less ord); ccpo.admissible lub ord P; ccpo.admissible lub ord Q \<rbrakk>
+  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x \<or> Q x)"
+by(rule ccpo.admissible_disj)
+
+lemma admissible_imp' [cont_intro]:
+  "\<lbrakk> class.ccpo lub ord (mk_less ord);
+     ccpo.admissible lub ord (\<lambda>x. \<not> P x);
+     ccpo.admissible lub ord (\<lambda>x. Q x) \<rbrakk>
+  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x \<longrightarrow> Q x)"
+unfolding imp_conv_disj by(rule ccpo.admissible_disj)
+
+lemma admissible_imp [cont_intro]:
+  "(Q \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x))
+  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. Q \<longrightarrow> P x)"
+by(rule ccpo.admissibleI)(auto dest: ccpo.admissibleD)
+
+lemma admissible_not_mem' [THEN admissible_subst, cont_intro, simp]:
+  shows admissible_not_mem: "ccpo.admissible Union op \<subseteq> (\<lambda>A. x \<notin> A)"
+by(rule ccpo.admissibleI) auto
+
+lemma admissible_eqI:
+  assumes f: "cont luba orda lub ord (\<lambda>x. f x)"
+  and g: "cont luba orda lub ord (\<lambda>x. g x)"
+  shows "ccpo.admissible luba orda (\<lambda>x. f x = g x)"
+apply(rule ccpo.admissibleI)
+apply(simp_all add: contD[OF f] contD[OF g] cong: image_cong)
+done
+
+corollary admissible_eq_mcontI [cont_intro]:
+  "\<lbrakk> mcont luba orda lub ord (\<lambda>x. f x); 
+    mcont luba orda lub ord (\<lambda>x. g x) \<rbrakk>
+  \<Longrightarrow> ccpo.admissible luba orda (\<lambda>x. f x = g x)"
+by(rule admissible_eqI)(auto simp add: mcont_def)
+
+lemma admissible_iff [cont_intro, simp]:
+  "\<lbrakk> ccpo.admissible lub ord (\<lambda>x. P x \<longrightarrow> Q x); ccpo.admissible lub ord (\<lambda>x. Q x \<longrightarrow> P x) \<rbrakk>
+  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x \<longleftrightarrow> Q x)"
+by(subst iff_conv_conj_imp)(rule admissible_conj)
+
+context ccpo begin
+
+lemma admissible_leI:
+  assumes f: "mcont luba orda Sup op \<le> (\<lambda>x. f x)"
+  and g: "mcont luba orda Sup op \<le> (\<lambda>x. g x)"
+  shows "ccpo.admissible luba orda (\<lambda>x. f x \<le> g x)"
+proof(rule ccpo.admissibleI)
+  fix A
+  assume chain: "Complete_Partial_Order.chain orda A"
+    and le: "\<forall>x\<in>A. f x \<le> g x"
+    and False: "A \<noteq> {}"
+  have "f (luba A) = \<Squnion>(f ` A)" by(simp add: mcont_contD[OF f] chain False)
+  also have "\<dots> \<le> \<Squnion>(g ` A)"
+  proof(rule ccpo_Sup_least)
+    from chain show "Complete_Partial_Order.chain op \<le> (f ` A)"
+      by(rule chain_imageI)(rule mcont_monoD[OF f])
+    
+    fix x
+    assume "x \<in> f ` A"
+    then obtain y where "y \<in> A" "x = f y" by blast note this(2)
+    also have "f y \<le> g y" using le `y \<in> A` by simp
+    also have "Complete_Partial_Order.chain op \<le> (g ` A)"
+      using chain by(rule chain_imageI)(rule mcont_monoD[OF g])
+    hence "g y \<le> \<Squnion>(g ` A)" by(rule ccpo_Sup_upper)(simp add: `y \<in> A`)
+    finally show "x \<le> \<dots>" .
+  qed
+  also have "\<dots> = g (luba A)" by(simp add: mcont_contD[OF g] chain False)
+  finally show "f (luba A) \<le> g (luba A)" .
+qed
+
+end
+
+lemma admissible_leI:
+  fixes ord (infix "\<sqsubseteq>" 60) and lub ("\<Or>_" [900] 900)
+  assumes "class.ccpo lub op \<sqsubseteq> (mk_less op \<sqsubseteq>)"
+  and "mcont luba orda lub op \<sqsubseteq> (\<lambda>x. f x)"
+  and "mcont luba orda lub op \<sqsubseteq> (\<lambda>x. g x)"
+  shows "ccpo.admissible luba orda (\<lambda>x. f x \<sqsubseteq> g x)"
+using assms by(rule ccpo.admissible_leI)
+
+declare ccpo_class.admissible_leI[cont_intro]
+
+context ccpo begin
+
+lemma admissible_not_below: "ccpo.admissible Sup op \<le> (\<lambda>x. \<not> op \<le> x y)"
+by(rule ccpo.admissibleI)(simp add: ccpo_Sup_below_iff)
+
+end
+
+lemma (in preorder) preorder [cont_intro, simp]: "class.preorder op \<le> (mk_less op \<le>)"
+by(unfold_locales)(auto simp add: mk_less_def intro: order_trans)
+
+context partial_function_definitions begin
+
+lemmas [cont_intro, simp] =
+  admissible_leI[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+  ccpo.admissible_not_below[THEN admissible_subst, OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+
+end
+
+
+inductive compact :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool"
+  for lub ord x 
+where compact:
+  "\<lbrakk> ccpo.admissible lub ord (\<lambda>y. \<not> ord x y);
+     ccpo.admissible lub ord (\<lambda>y. x \<noteq> y) \<rbrakk>
+  \<Longrightarrow> compact lub ord x"
+
+hide_fact (open) compact
+
+context ccpo begin
+
+lemma compactI:
+  assumes "ccpo.admissible Sup op \<le> (\<lambda>y. \<not> x \<le> y)"
+  shows "compact Sup op \<le> x"
+using assms
+proof(rule compact.intros)
+  have neq: "(\<lambda>y. x \<noteq> y) = (\<lambda>y. \<not> x \<le> y \<or> \<not> y \<le> x)" by(auto)
+  show "ccpo.admissible Sup op \<le> (\<lambda>y. x \<noteq> y)"
+    by(subst neq)(rule admissible_disj admissible_not_below assms)+
+qed
+
+lemma compact_bot:
+  assumes "x = Sup {}"
+  shows "compact Sup op \<le> x"
+proof(rule compactI)
+  show "ccpo.admissible Sup op \<le> (\<lambda>y. \<not> x \<le> y)" using assms
+    by(auto intro!: ccpo.admissibleI intro: ccpo_Sup_least chain_empty)
+qed
+
+end
+
+lemma admissible_compact_neq' [THEN admissible_subst, cont_intro, simp]:
+  shows admissible_compact_neq: "compact lub ord k \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. k \<noteq> x)"
+by(simp add: compact.simps)
+
+lemma admissible_neq_compact' [THEN admissible_subst, cont_intro, simp]:
+  shows admissible_neq_compact: "compact lub ord k \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. x \<noteq> k)"
+by(subst eq_commute)(rule admissible_compact_neq)
+
+context partial_function_definitions begin
+
+lemmas [cont_intro, simp] = ccpo.compact_bot[OF Partial_Function.ccpo[OF partial_function_definitions_axioms]]
+
+end
+
+context ccpo begin
+
+lemma fixp_strong_induct:
+  assumes [cont_intro]: "ccpo.admissible Sup op \<le> P"
+  and mono: "monotone op \<le> op \<le> f"
+  and bot: "P (\<Squnion>{})"
+  and step: "\<And>x. \<lbrakk> x \<le> ccpo_class.fixp f; P x \<rbrakk> \<Longrightarrow> P (f x)"
+  shows "P (ccpo_class.fixp f)"
+proof(rule fixp_induct[where P="\<lambda>x. x \<le> ccpo_class.fixp f \<and> P x", THEN conjunct2])
+  note [cont_intro] = admissible_leI
+  show "ccpo.admissible Sup op \<le> (\<lambda>x. x \<le> ccpo_class.fixp f \<and> P x)" by simp
+next
+  show "\<Squnion>{} \<le> ccpo_class.fixp f \<and> P (\<Squnion>{})"
+    by(auto simp add: bot intro: ccpo_Sup_least chain_empty)
+next
+  fix x
+  assume "x \<le> ccpo_class.fixp f \<and> P x"
+  thus "f x \<le> ccpo_class.fixp f \<and> P (f x)"
+    by(subst fixp_unfold[OF mono])(auto dest: monotoneD[OF mono] intro: step)
+qed(rule mono)
+
+end
+
+context partial_function_definitions begin
+
+lemma fixp_strong_induct_uc:
+  fixes F :: "'c \<Rightarrow> 'c"
+    and U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a"
+    and C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c"
+    and P :: "('b \<Rightarrow> 'a) \<Rightarrow> bool"
+  assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)"
+    and eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))"
+    and inverse: "\<And>f. U (C f) = f"
+    and adm: "ccpo.admissible lub_fun le_fun P"
+    and bot: "P (\<lambda>_. lub {})"
+    and step: "\<And>f'. \<lbrakk> P (U f'); le_fun (U f') (U f) \<rbrakk> \<Longrightarrow> P (U (F f'))"
+  shows "P (U f)"
+unfolding eq inverse
+apply (rule ccpo.fixp_strong_induct[OF ccpo adm])
+apply (insert mono, auto simp: monotone_def fun_ord_def bot fun_lub_def)[2]
+apply (rule_tac f'5="C x" in step)
+apply (simp_all add: inverse eq)
+done
+
+end
+
+subsection {* @{term "op ="} as order *}
+
+definition lub_singleton :: "('a set \<Rightarrow> 'a) \<Rightarrow> bool"
+where "lub_singleton lub \<longleftrightarrow> (\<forall>a. lub {a} = a)"
+
+definition the_Sup :: "'a set \<Rightarrow> 'a"
+where "the_Sup A = (THE a. a \<in> A)"
+
+lemma lub_singleton_the_Sup [cont_intro, simp]: "lub_singleton the_Sup"
+by(simp add: lub_singleton_def the_Sup_def)
+
+lemma (in ccpo) lub_singleton: "lub_singleton Sup"
+by(simp add: lub_singleton_def)
+
+lemma (in partial_function_definitions) lub_singleton [cont_intro, simp]: "lub_singleton lub"
+by(rule ccpo.lub_singleton)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])
+
+lemma preorder_eq [cont_intro, simp]:
+  "class.preorder op = (mk_less op =)"
+by(unfold_locales)(simp_all add: mk_less_def)
+
+lemma monotone_eqI [cont_intro]:
+  assumes "class.preorder ord (mk_less ord)"
+  shows "monotone op = ord f"
+proof -
+  interpret preorder ord "mk_less ord" by fact
+  show ?thesis by(simp add: monotone_def)
+qed
+
+lemma cont_eqI [cont_intro]: 
+  fixes f :: "'a \<Rightarrow> 'b"
+  assumes "lub_singleton lub"
+  shows "cont the_Sup op = lub ord f"
+proof(rule contI)
+  fix Y :: "'a set"
+  assume "Complete_Partial_Order.chain op = Y" "Y \<noteq> {}"
+  then obtain a where "Y = {a}" by(auto simp add: chain_def)
+  thus "f (the_Sup Y) = lub (f ` Y)" using assms
+    by(simp add: the_Sup_def lub_singleton_def)
+qed
+
+lemma mcont_eqI [cont_intro, simp]:
+  "\<lbrakk> class.preorder ord (mk_less ord); lub_singleton lub \<rbrakk>
+  \<Longrightarrow> mcont the_Sup op = lub ord f"
+by(simp add: mcont_def cont_eqI monotone_eqI)
+
+subsection {* ccpo for products *}
+
+definition prod_lub :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('b set \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'b) set \<Rightarrow> 'a \<times> 'b"
+where "prod_lub Sup_a Sup_b Y = (Sup_a (fst ` Y), Sup_b (snd ` Y))"
+
+lemma lub_singleton_prod_lub [cont_intro, simp]:
+  "\<lbrakk> lub_singleton luba; lub_singleton lubb \<rbrakk> \<Longrightarrow> lub_singleton (prod_lub luba lubb)"
+by(simp add: lub_singleton_def prod_lub_def)
+
+lemma prod_lub_empty [simp]: "prod_lub luba lubb {} = (luba {}, lubb {})"
+by(simp add: prod_lub_def)
+
+lemma preorder_rel_prodI [cont_intro, simp]:
+  assumes "class.preorder orda (mk_less orda)"
+  and "class.preorder ordb (mk_less ordb)"
+  shows "class.preorder (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
+proof -
+  interpret a: preorder orda "mk_less orda" by fact
+  interpret b: preorder ordb "mk_less ordb" by fact
+  show ?thesis by(unfold_locales)(auto simp add: mk_less_def intro: a.order_trans b.order_trans)
+qed
+
+lemma order_rel_prodI:
+  assumes a: "class.order orda (mk_less orda)"
+  and b: "class.order ordb (mk_less ordb)"
+  shows "class.order (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
+  (is "class.order ?ord ?ord'")
+proof(intro class.order.intro class.order_axioms.intro)
+  interpret a: order orda "mk_less orda" by(fact a)
+  interpret b: order ordb "mk_less ordb" by(fact b)
+  show "class.preorder ?ord ?ord'" by(rule preorder_rel_prodI) unfold_locales
+
+  fix x y
+  assume "?ord x y" "?ord y x"
+  thus "x = y" by(cases x y rule: prod.exhaust[case_product prod.exhaust]) auto
+qed
+
+lemma monotone_rel_prodI:
+  assumes mono2: "\<And>a. monotone ordb ordc (\<lambda>b. f (a, b))"
+  and mono1: "\<And>b. monotone orda ordc (\<lambda>a. f (a, b))"
+  and a: "class.preorder orda (mk_less orda)"
+  and b: "class.preorder ordb (mk_less ordb)"
+  and c: "class.preorder ordc (mk_less ordc)"
+  shows "monotone (rel_prod orda ordb) ordc f"
+proof -
+  interpret a: preorder orda "mk_less orda" by(rule a)
+  interpret b: preorder ordb "mk_less ordb" by(rule b)
+  interpret c: preorder ordc "mk_less ordc" by(rule c)
+  show ?thesis using mono2 mono1
+    by(auto 7 2 simp add: monotone_def intro: c.order_trans)
+qed
+
+lemma monotone_rel_prodD1:
+  assumes mono: "monotone (rel_prod orda ordb) ordc f"
+  and preorder: "class.preorder ordb (mk_less ordb)"
+  shows "monotone orda ordc (\<lambda>a. f (a, b))"
+proof -
+  interpret preorder ordb "mk_less ordb" by(rule preorder)
+  show ?thesis using mono by(simp add: monotone_def)
+qed
+
+lemma monotone_rel_prodD2:
+  assumes mono: "monotone (rel_prod orda ordb) ordc f"
+  and preorder: "class.preorder orda (mk_less orda)"
+  shows "monotone ordb ordc (\<lambda>b. f (a, b))"
+proof -
+  interpret preorder orda "mk_less orda" by(rule preorder)
+  show ?thesis using mono by(simp add: monotone_def)
+qed
+
+lemma monotone_case_prodI:
+  "\<lbrakk> \<And>a. monotone ordb ordc (f a); \<And>b. monotone orda ordc (\<lambda>a. f a b);
+    class.preorder orda (mk_less orda); class.preorder ordb (mk_less ordb);
+    class.preorder ordc (mk_less ordc) \<rbrakk>
+  \<Longrightarrow> monotone (rel_prod orda ordb) ordc (case_prod f)"
+by(rule monotone_rel_prodI) simp_all
+
+lemma monotone_case_prodD1:
+  assumes mono: "monotone (rel_prod orda ordb) ordc (case_prod f)"
+  and preorder: "class.preorder ordb (mk_less ordb)"
+  shows "monotone orda ordc (\<lambda>a. f a b)"
+using monotone_rel_prodD1[OF assms] by simp
+
+lemma monotone_case_prodD2:
+  assumes mono: "monotone (rel_prod orda ordb) ordc (case_prod f)"
+  and preorder: "class.preorder orda (mk_less orda)"
+  shows "monotone ordb ordc (f a)"
+using monotone_rel_prodD2[OF assms] by simp
+
+context 
+  fixes orda ordb ordc
+  assumes a: "class.preorder orda (mk_less orda)"
+  and b: "class.preorder ordb (mk_less ordb)"
+  and c: "class.preorder ordc (mk_less ordc)"
+begin
+
+lemma monotone_rel_prod_iff:
+  "monotone (rel_prod orda ordb) ordc f \<longleftrightarrow>
+   (\<forall>a. monotone ordb ordc (\<lambda>b. f (a, b))) \<and> 
+   (\<forall>b. monotone orda ordc (\<lambda>a. f (a, b)))"
+using a b c by(blast intro: monotone_rel_prodI dest: monotone_rel_prodD1 monotone_rel_prodD2)
+
+lemma monotone_case_prod_iff [simp]:
+  "monotone (rel_prod orda ordb) ordc (case_prod f) \<longleftrightarrow>
+   (\<forall>a. monotone ordb ordc (f a)) \<and> (\<forall>b. monotone orda ordc (\<lambda>a. f a b))"
+by(simp add: monotone_rel_prod_iff)
+
+end
+
+lemma monotone_case_prod_apply_iff:
+  "monotone orda ordb (\<lambda>x. (case_prod f x) y) \<longleftrightarrow> monotone orda ordb (case_prod (\<lambda>a b. f a b y))"
+by(simp add: monotone_def)
+
+lemma monotone_case_prod_applyD:
+  "monotone orda ordb (\<lambda>x. (case_prod f x) y)
+  \<Longrightarrow> monotone orda ordb (case_prod (\<lambda>a b. f a b y))"
+by(simp add: monotone_case_prod_apply_iff)
+
+lemma monotone_case_prod_applyI:
+  "monotone orda ordb (case_prod (\<lambda>a b. f a b y))
+  \<Longrightarrow> monotone orda ordb (\<lambda>x. (case_prod f x) y)"
+by(simp add: monotone_case_prod_apply_iff)
+
+
+lemma cont_case_prod_apply_iff:
+  "cont luba orda lubb ordb (\<lambda>x. (case_prod f x) y) \<longleftrightarrow> cont luba orda lubb ordb (case_prod (\<lambda>a b. f a b y))"
+by(simp add: cont_def split_def)
+
+lemma cont_case_prod_applyI:
+  "cont luba orda lubb ordb (case_prod (\<lambda>a b. f a b y))
+  \<Longrightarrow> cont luba orda lubb ordb (\<lambda>x. (case_prod f x) y)"
+by(simp add: cont_case_prod_apply_iff)
+
+lemma cont_case_prod_applyD:
+  "cont luba orda lubb ordb (\<lambda>x. (case_prod f x) y)
+  \<Longrightarrow> cont luba orda lubb ordb (case_prod (\<lambda>a b. f a b y))"
+by(simp add: cont_case_prod_apply_iff)
+
+lemma mcont_case_prod_apply_iff [simp]:
+  "mcont luba orda lubb ordb (\<lambda>x. (case_prod f x) y) \<longleftrightarrow> 
+   mcont luba orda lubb ordb (case_prod (\<lambda>a b. f a b y))"
+by(simp add: mcont_def monotone_case_prod_apply_iff cont_case_prod_apply_iff)
+
+lemma cont_prodD1: 
+  assumes cont: "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc f"
+  and "class.preorder orda (mk_less orda)"
+  and luba: "lub_singleton luba"
+  shows "cont lubb ordb lubc ordc (\<lambda>y. f (x, y))"
+proof(rule contI)
+  interpret preorder orda "mk_less orda" by fact
+
+  fix Y :: "'b set"
+  let ?Y = "{x} \<times> Y"
+  assume "Complete_Partial_Order.chain ordb Y" "Y \<noteq> {}"
+  hence "Complete_Partial_Order.chain (rel_prod orda ordb) ?Y" "?Y \<noteq> {}" 
+    by(simp_all add: chain_def)
+  with cont have "f (prod_lub luba lubb ?Y) = lubc (f ` ?Y)" by(rule contD)
+  moreover have "f ` ?Y = (\<lambda>y. f (x, y)) ` Y" by auto
+  ultimately show "f (x, lubb Y) = lubc ((\<lambda>y. f (x, y)) ` Y)" using luba
+    by(simp add: prod_lub_def `Y \<noteq> {}` lub_singleton_def)
+qed
+
+lemma cont_prodD2: 
+  assumes cont: "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc f"
+  and "class.preorder ordb (mk_less ordb)"
+  and lubb: "lub_singleton lubb"
+  shows "cont luba orda lubc ordc (\<lambda>x. f (x, y))"
+proof(rule contI)
+  interpret preorder ordb "mk_less ordb" by fact
+
+  fix Y
+  assume Y: "Complete_Partial_Order.chain orda Y" "Y \<noteq> {}"
+  let ?Y = "Y \<times> {y}"
+  have "f (luba Y, y) = f (prod_lub luba lubb ?Y)"
+    using lubb by(simp add: prod_lub_def Y lub_singleton_def)
+  also from Y have "Complete_Partial_Order.chain (rel_prod orda ordb) ?Y" "?Y \<noteq> {}"
+    by(simp_all add: chain_def)
+  with cont have "f (prod_lub luba lubb ?Y) = lubc (f ` ?Y)" by(rule contD)
+  also have "f ` ?Y = (\<lambda>x. f (x, y)) ` Y" by auto
+  finally show "f (luba Y, y) = lubc \<dots>" .
+qed
+
+lemma cont_case_prodD1:
+  assumes "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc (case_prod f)"
+  and "class.preorder orda (mk_less orda)"
+  and "lub_singleton luba"
+  shows "cont lubb ordb lubc ordc (f x)"
+using cont_prodD1[OF assms] by simp
+
+lemma cont_case_prodD2:
+  assumes "cont (prod_lub luba lubb) (rel_prod orda ordb) lubc ordc (case_prod f)"
+  and "class.preorder ordb (mk_less ordb)"
+  and "lub_singleton lubb"
+  shows "cont luba orda lubc ordc (\<lambda>x. f x y)"
+using cont_prodD2[OF assms] by simp
+
+context ccpo begin
+
+lemma cont_prodI: 
+  assumes mono: "monotone (rel_prod orda ordb) op \<le> f"
+  and cont1: "\<And>x. cont lubb ordb Sup op \<le> (\<lambda>y. f (x, y))"
+  and cont2: "\<And>y. cont luba orda Sup op \<le> (\<lambda>x. f (x, y))"
+  and "class.preorder orda (mk_less orda)"
+  and "class.preorder ordb (mk_less ordb)"
+  shows "cont (prod_lub luba lubb) (rel_prod orda ordb) Sup op \<le> f"
+proof(rule contI)
+  interpret a: preorder orda "mk_less orda" by fact 
+  interpret b: preorder ordb "mk_less ordb" by fact
+  
+  fix Y
+  assume chain: "Complete_Partial_Order.chain (rel_prod orda ordb) Y"
+    and "Y \<noteq> {}"
+  have "f (prod_lub luba lubb Y) = f (luba (fst ` Y), lubb (snd ` Y))"
+    by(simp add: prod_lub_def)
+  also from cont2 have "f (luba (fst ` Y), lubb (snd ` Y)) = \<Squnion>((\<lambda>x. f (x, lubb (snd ` Y))) ` fst ` Y)"
+    by(rule contD)(simp_all add: chain_rel_prodD1[OF chain] `Y \<noteq> {}`)
+  also from cont1 have "\<And>x. f (x, lubb (snd ` Y)) = \<Squnion>((\<lambda>y. f (x, y)) ` snd ` Y)"
+    by(rule contD)(simp_all add: chain_rel_prodD2[OF chain] `Y \<noteq> {}`)
+  hence "\<Squnion>((\<lambda>x. f (x, lubb (snd ` Y))) ` fst ` Y) = \<Squnion>((\<lambda>x. \<dots> x) ` fst ` Y)" by simp
+  also have "\<dots> = \<Squnion>((\<lambda>x. f (fst x, snd x)) ` Y)"
+    unfolding image_image split_def using chain
+    apply(rule diag_Sup)
+    using monotoneD[OF mono]
+    by(auto intro: monotoneI)
+  finally show "f (prod_lub luba lubb Y) = \<Squnion>(f ` Y)" by simp
+qed
+
+lemma cont_case_prodI:
+  assumes "monotone (rel_prod orda ordb) op \<le> (case_prod f)"
+  and "\<And>x. cont lubb ordb Sup op \<le> (\<lambda>y. f x y)"
+  and "\<And>y. cont luba orda Sup op \<le> (\<lambda>x. f x y)"
+  and "class.preorder orda (mk_less orda)"
+  and "class.preorder ordb (mk_less ordb)"
+  shows "cont (prod_lub luba lubb) (rel_prod orda ordb) Sup op \<le> (case_prod f)"
+by(rule cont_prodI)(simp_all add: assms)
+
+lemma cont_case_prod_iff:
+  "\<lbrakk> monotone (rel_prod orda ordb) op \<le> (case_prod f);
+     class.preorder orda (mk_less orda); lub_singleton luba;
+     class.preorder ordb (mk_less ordb); lub_singleton lubb \<rbrakk>
+  \<Longrightarrow> cont (prod_lub luba lubb) (rel_prod orda ordb) Sup op \<le> (case_prod f) \<longleftrightarrow>
+   (\<forall>x. cont lubb ordb Sup op \<le> (\<lambda>y. f x y)) \<and> (\<forall>y. cont luba orda Sup op \<le> (\<lambda>x. f x y))"
+by(blast dest: cont_case_prodD1 cont_case_prodD2 intro: cont_case_prodI)
+
+end
+
+context partial_function_definitions begin
+
+lemma mono2mono2:
+  assumes f: "monotone (rel_prod ordb ordc) leq (\<lambda>(x, y). f x y)"
+  and t: "monotone orda ordb (\<lambda>x. t x)"
+  and t': "monotone orda ordc (\<lambda>x. t' x)"
+  shows "monotone orda leq (\<lambda>x. f (t x) (t' x))"
+proof(rule monotoneI)
+  fix x y
+  assume "orda x y"
+  hence "rel_prod ordb ordc (t x, t' x) (t y, t' y)"
+    using t t' by(auto dest: monotoneD)
+  from monotoneD[OF f this] show "leq (f (t x) (t' x)) (f (t y) (t' y))" by simp
+qed
+
+lemma cont_case_prodI [cont_intro]:
+  "\<lbrakk> monotone (rel_prod orda ordb) leq (case_prod f);
+    \<And>x. cont lubb ordb lub leq (\<lambda>y. f x y);
+    \<And>y. cont luba orda lub leq (\<lambda>x. f x y);
+    class.preorder orda (mk_less orda);
+    class.preorder ordb (mk_less ordb) \<rbrakk>
+  \<Longrightarrow> cont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f)"
+by(rule ccpo.cont_case_prodI)(rule Partial_Function.ccpo[OF partial_function_definitions_axioms])
+
+lemma cont_case_prod_iff:
+  "\<lbrakk> monotone (rel_prod orda ordb) leq (case_prod f);
+     class.preorder orda (mk_less orda); lub_singleton luba;
+     class.preorder ordb (mk_less ordb); lub_singleton lubb \<rbrakk>
+  \<Longrightarrow> cont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f) \<longleftrightarrow>
+   (\<forall>x. cont lubb ordb lub leq (\<lambda>y. f x y)) \<and> (\<forall>y. cont luba orda lub leq (\<lambda>x. f x y))"
+by(blast dest: cont_case_prodD1 cont_case_prodD2 intro: cont_case_prodI)
+
+lemma mcont_case_prod_iff [simp]:
+  "\<lbrakk> class.preorder orda (mk_less orda); lub_singleton luba;
+     class.preorder ordb (mk_less ordb); lub_singleton lubb \<rbrakk>
+  \<Longrightarrow> mcont (prod_lub luba lubb) (rel_prod orda ordb) lub leq (case_prod f) \<longleftrightarrow>
+   (\<forall>x. mcont lubb ordb lub leq (\<lambda>y. f x y)) \<and> (\<forall>y. mcont luba orda lub leq (\<lambda>x. f x y))"
+unfolding mcont_def by(auto simp add: cont_case_prod_iff)
+
+end
+
+lemma mono2mono_case_prod [cont_intro]:
+  assumes "\<And>x y. monotone orda ordb (\<lambda>f. pair f x y)"
+  shows "monotone orda ordb (\<lambda>f. case_prod (pair f) x)"
+by(rule monotoneI)(auto split: prod.split dest: monotoneD[OF assms])
+
+subsection {* Complete lattices as ccpo *}
+
+context complete_lattice begin
+
+lemma complete_lattice_ccpo: "class.ccpo Sup op \<le> op <"
+by(unfold_locales)(fast intro: Sup_upper Sup_least)+
+
+lemma complete_lattice_ccpo': "class.ccpo Sup op \<le> (mk_less op \<le>)"
+by(unfold_locales)(auto simp add: mk_less_def intro: Sup_upper Sup_least)
+
+lemma complete_lattice_partial_function_definitions: 
+  "partial_function_definitions op \<le> Sup"
+by(unfold_locales)(auto intro: Sup_least Sup_upper)
+
+lemma complete_lattice_partial_function_definitions_dual:
+  "partial_function_definitions op \<ge> Inf"
+by(unfold_locales)(auto intro: Inf_lower Inf_greatest)
+
+lemmas [cont_intro, simp] =
+  Partial_Function.ccpo[OF complete_lattice_partial_function_definitions]
+  Partial_Function.ccpo[OF complete_lattice_partial_function_definitions_dual]
+
+lemma mono2mono_inf:
+  assumes f: "monotone ord op \<le> (\<lambda>x. f x)" 
+  and g: "monotone ord op \<le> (\<lambda>x. g x)"
+  shows "monotone ord op \<le> (\<lambda>x. f x \<sqinter> g x)"
+by(auto 4 3 dest: monotoneD[OF f] monotoneD[OF g] intro: le_infI1 le_infI2 intro!: monotoneI)
+
+lemma mcont_const [simp]: "mcont lub ord Sup op \<le> (\<lambda>_. c)"
+by(rule ccpo.mcont_const[OF complete_lattice_ccpo])
+
+lemma mono2mono_sup:
+  assumes f: "monotone ord op \<le> (\<lambda>x. f x)"
+  and g: "monotone ord op \<le> (\<lambda>x. g x)"
+  shows "monotone ord op \<le> (\<lambda>x. f x \<squnion> g x)"
+by(auto 4 3 intro!: monotoneI intro: sup.coboundedI1 sup.coboundedI2 dest: monotoneD[OF f] monotoneD[OF g])
+
+lemma Sup_image_sup: 
+  assumes "Y \<noteq> {}"
+  shows "\<Squnion>(op \<squnion> x ` Y) = x \<squnion> \<Squnion>Y"
+proof(rule Sup_eqI)
+  fix y
+  assume "y \<in> op \<squnion> x ` Y"
+  then obtain z where "y = x \<squnion> z" and "z \<in> Y" by blast
+  from `z \<in> Y` have "z \<le> \<Squnion>Y" by(rule Sup_upper)
+  with _ show "y \<le> x \<squnion> \<Squnion>Y" unfolding `y = x \<squnion> z` by(rule sup_mono) simp
+next
+  fix y
+  assume upper: "\<And>z. z \<in> op \<squnion> x ` Y \<Longrightarrow> z \<le> y"
+  show "x \<squnion> \<Squnion>Y \<le> y" unfolding Sup_insert[symmetric]
+  proof(rule Sup_least)
+    fix z
+    assume "z \<in> insert x Y"
+    from assms obtain z' where "z' \<in> Y" by blast
+    let ?z = "if z \<in> Y then x \<squnion> z else x \<squnion> z'"
+    have "z \<le> x \<squnion> ?z" using `z' \<in> Y` `z \<in> insert x Y` by auto
+    also have "\<dots> \<le> y" by(rule upper)(auto split: if_split_asm intro: `z' \<in> Y`)
+    finally show "z \<le> y" .
+  qed
+qed
+
+lemma mcont_sup1: "mcont Sup op \<le> Sup op \<le> (\<lambda>y. x \<squnion> y)"
+by(auto 4 3 simp add: mcont_def sup.coboundedI1 sup.coboundedI2 intro!: monotoneI contI intro: Sup_image_sup[symmetric])
+
+lemma mcont_sup2: "mcont Sup op \<le> Sup op \<le> (\<lambda>x. x \<squnion> y)"
+by(subst sup_commute)(rule mcont_sup1)
+
+lemma mcont2mcont_sup [cont_intro, simp]:
+  "\<lbrakk> mcont lub ord Sup op \<le> (\<lambda>x. f x);
+     mcont lub ord Sup op \<le> (\<lambda>x. g x) \<rbrakk>
+  \<Longrightarrow> mcont lub ord Sup op \<le> (\<lambda>x. f x \<squnion> g x)"
+by(best intro: ccpo.mcont2mcont'[OF complete_lattice_ccpo] mcont_sup1 mcont_sup2 ccpo.mcont_const[OF complete_lattice_ccpo])
+
+end
+
+lemmas [cont_intro] = admissible_leI[OF complete_lattice_ccpo']
+
+context complete_distrib_lattice begin
+
+lemma mcont_inf1: "mcont Sup op \<le> Sup op \<le> (\<lambda>y. x \<sqinter> y)"
+by(auto intro: monotoneI contI simp add: le_infI2 inf_Sup mcont_def)
+
+lemma mcont_inf2: "mcont Sup op \<le> Sup op \<le> (\<lambda>x. x \<sqinter> y)"
+by(auto intro: monotoneI contI simp add: le_infI1 Sup_inf mcont_def)
+
+lemma mcont2mcont_inf [cont_intro, simp]:
+  "\<lbrakk> mcont lub ord Sup op \<le> (\<lambda>x. f x);
+    mcont lub ord Sup op \<le> (\<lambda>x. g x) \<rbrakk>
+  \<Longrightarrow> mcont lub ord Sup op \<le> (\<lambda>x. f x \<sqinter> g x)"
+by(best intro: ccpo.mcont2mcont'[OF complete_lattice_ccpo] mcont_inf1 mcont_inf2 ccpo.mcont_const[OF complete_lattice_ccpo])
+
+end
+
+interpretation lfp: partial_function_definitions "op \<le> :: _ :: complete_lattice \<Rightarrow> _" Sup
+by(rule complete_lattice_partial_function_definitions)
+
+declaration {* Partial_Function.init "lfp" @{term lfp.fixp_fun} @{term lfp.mono_body}
+  @{thm lfp.fixp_rule_uc} @{thm lfp.fixp_induct_uc} NONE *}
+
+interpretation gfp: partial_function_definitions "op \<ge> :: _ :: complete_lattice \<Rightarrow> _" Inf
+by(rule complete_lattice_partial_function_definitions_dual)
+
+declaration {* Partial_Function.init "gfp" @{term gfp.fixp_fun} @{term gfp.mono_body}
+  @{thm gfp.fixp_rule_uc} @{thm gfp.fixp_induct_uc} NONE *}
+
+lemma insert_mono [partial_function_mono]:
+   "monotone (fun_ord op \<subseteq>) op \<subseteq> A \<Longrightarrow> monotone (fun_ord op \<subseteq>) op \<subseteq> (\<lambda>y. insert x (A y))"
+by(rule monotoneI)(auto simp add: fun_ord_def dest: monotoneD)
+
+lemma mono2mono_insert [THEN lfp.mono2mono, cont_intro, simp]:
+  shows monotone_insert: "monotone op \<subseteq> op \<subseteq> (insert x)"
+by(rule monotoneI) blast
+
+lemma mcont2mcont_insert[THEN lfp.mcont2mcont, cont_intro, simp]:
+  shows mcont_insert: "mcont Union op \<subseteq> Union op \<subseteq> (insert x)"
+by(blast intro: mcontI contI monotone_insert)
+
+lemma mono2mono_image [THEN lfp.mono2mono, cont_intro, simp]:
+  shows monotone_image: "monotone op \<subseteq> op \<subseteq> (op ` f)"
+by(rule monotoneI) blast
+
+lemma cont_image: "cont Union op \<subseteq> Union op \<subseteq> (op ` f)"
+by(rule contI)(auto)
+
+lemma mcont2mcont_image [THEN lfp.mcont2mcont, cont_intro, simp]:
+  shows mcont_image: "mcont Union op \<subseteq> Union op \<subseteq> (op ` f)"
+by(blast intro: mcontI monotone_image cont_image)
+
+context complete_lattice begin
+
+lemma monotone_Sup [cont_intro, simp]:
+  "monotone ord op \<subseteq> f \<Longrightarrow> monotone ord op \<le> (\<lambda>x. \<Squnion>f x)"
+by(blast intro: monotoneI Sup_least Sup_upper dest: monotoneD)
+
+lemma cont_Sup:
+  assumes "cont lub ord Union op \<subseteq> f"
+  shows "cont lub ord Sup op \<le> (\<lambda>x. \<Squnion>f x)"
+apply(rule contI)
+apply(simp add: contD[OF assms])
+apply(blast intro: Sup_least Sup_upper order_trans antisym)
+done
+
+lemma mcont_Sup: "mcont lub ord Union op \<subseteq> f \<Longrightarrow> mcont lub ord Sup op \<le> (\<lambda>x. \<Squnion>f x)"
+unfolding mcont_def by(blast intro: monotone_Sup cont_Sup)
+
+lemma monotone_SUP:
+  "\<lbrakk> monotone ord op \<subseteq> f; \<And>y. monotone ord op \<le> (\<lambda>x. g x y) \<rbrakk> \<Longrightarrow> monotone ord op \<le> (\<lambda>x. \<Squnion>y\<in>f x. g x y)"
+by(rule monotoneI)(blast dest: monotoneD intro: Sup_upper order_trans intro!: Sup_least)
+
+lemma monotone_SUP2:
+  "(\<And>y. y \<in> A \<Longrightarrow> monotone ord op \<le> (\<lambda>x. g x y)) \<Longrightarrow> monotone ord op \<le> (\<lambda>x. \<Squnion>y\<in>A. g x y)"
+by(rule monotoneI)(blast intro: Sup_upper order_trans dest: monotoneD intro!: Sup_least)
+
+lemma cont_SUP:
+  assumes f: "mcont lub ord Union op \<subseteq> f"
+  and g: "\<And>y. mcont lub ord Sup op \<le> (\<lambda>x. g x y)"
+  shows "cont lub ord Sup op \<le> (\<lambda>x. \<Squnion>y\<in>f x. g x y)"
+proof(rule contI)
+  fix Y
+  assume chain: "Complete_Partial_Order.chain ord Y"
+    and Y: "Y \<noteq> {}"
+  show "\<Squnion>(g (lub Y) ` f (lub Y)) = \<Squnion>((\<lambda>x. \<Squnion>(g x ` f x)) ` Y)" (is "?lhs = ?rhs")
+  proof(rule antisym)
+    show "?lhs \<le> ?rhs"
+    proof(rule Sup_least)
+      fix x
+      assume "x \<in> g (lub Y) ` f (lub Y)"
+      with mcont_contD[OF f chain Y] mcont_contD[OF g chain Y]
+      obtain y z where "y \<in> Y" "z \<in> f y"
+        and x: "x = \<Squnion>((\<lambda>x. g x z) ` Y)" by auto
+      show "x \<le> ?rhs" unfolding x
+      proof(rule Sup_least)
+        fix u
+        assume "u \<in> (\<lambda>x. g x z) ` Y"
+        then obtain y' where "u = g y' z" "y' \<in> Y" by auto
+        from chain `y \<in> Y` `y' \<in> Y` have "ord y y' \<or> ord y' y" by(rule chainD)
+        thus "u \<le> ?rhs"
+        proof
+          note `u = g y' z` also
+          assume "ord y y'"
+          with f have "f y \<subseteq> f y'" by(rule mcont_monoD)
+          with `z \<in> f y`
+          have "g y' z \<le> \<Squnion>(g y' ` f y')" by(auto intro: Sup_upper)
+          also have "\<dots> \<le> ?rhs" using `y' \<in> Y` by(auto intro: Sup_upper)
+          finally show ?thesis .
+        next
+          note `u = g y' z` also
+          assume "ord y' y"
+          with g have "g y' z \<le> g y z" by(rule mcont_monoD)
+          also have "\<dots> \<le> \<Squnion>(g y ` f y)" using `z \<in> f y`
+            by(auto intro: Sup_upper)
+          also have "\<dots> \<le> ?rhs" using `y \<in> Y` by(auto intro: Sup_upper)
+          finally show ?thesis .
+        qed
+      qed
+    qed
+  next
+    show "?rhs \<le> ?lhs"
+    proof(rule Sup_least)
+      fix x
+      assume "x \<in> (\<lambda>x. \<Squnion>(g x ` f x)) ` Y"
+      then obtain y where x: "x = \<Squnion>(g y ` f y)" and "y \<in> Y" by auto
+      show "x \<le> ?lhs" unfolding x
+      proof(rule Sup_least)
+        fix u
+        assume "u \<in> g y ` f y"
+        then obtain z where "u = g y z" "z \<in> f y" by auto
+        note `u = g y z`
+        also have "g y z \<le> \<Squnion>((\<lambda>x. g x z) ` Y)"
+          using `y \<in> Y` by(auto intro: Sup_upper)
+        also have "\<dots> = g (lub Y) z" by(simp add: mcont_contD[OF g chain Y])
+        also have "\<dots> \<le> ?lhs" using `z \<in> f y` `y \<in> Y`
+          by(auto intro: Sup_upper simp add: mcont_contD[OF f chain Y])
+        finally show "u \<le> ?lhs" .
+      qed
+    qed
+  qed
+qed
+
+lemma mcont_SUP [cont_intro, simp]:
+  "\<lbrakk> mcont lub ord Union op \<subseteq> f; \<And>y. mcont lub ord Sup op \<le> (\<lambda>x. g x y) \<rbrakk>
+  \<Longrightarrow> mcont lub ord Sup op \<le> (\<lambda>x. \<Squnion>y\<in>f x. g x y)"
+by(blast intro: mcontI cont_SUP[OF assms] monotone_SUP mcont_mono)
+
+end
+
+lemma admissible_Ball [cont_intro, simp]:
+  "\<lbrakk> \<And>x. ccpo.admissible lub ord (\<lambda>A. P A x);
+     mcont lub ord Union op \<subseteq> f;
+     class.ccpo lub ord (mk_less ord) \<rbrakk>
+  \<Longrightarrow> ccpo.admissible lub ord (\<lambda>A. \<forall>x\<in>f A. P A x)"
+unfolding Ball_def by simp
+
+lemma admissible_Bex'[THEN admissible_subst, cont_intro, simp]:
+  shows admissible_Bex: "ccpo.admissible Union op \<subseteq> (\<lambda>A. \<exists>x\<in>A. P x)"
+by(rule ccpo.admissibleI)(auto)
+
+subsection {* Parallel fixpoint induction *}
+
+context
+  fixes luba :: "'a set \<Rightarrow> 'a"
+  and orda :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+  and lubb :: "'b set \<Rightarrow> 'b"
+  and ordb :: "'b \<Rightarrow> 'b \<Rightarrow> bool"
+  assumes a: "class.ccpo luba orda (mk_less orda)"
+  and b: "class.ccpo lubb ordb (mk_less ordb)"
+begin
+
+interpretation a: ccpo luba orda "mk_less orda" by(rule a)
+interpretation b: ccpo lubb ordb "mk_less ordb" by(rule b)
+
+lemma ccpo_rel_prodI:
+  "class.ccpo (prod_lub luba lubb) (rel_prod orda ordb) (mk_less (rel_prod orda ordb))"
+  (is "class.ccpo ?lub ?ord ?ord'")
+proof(intro class.ccpo.intro class.ccpo_axioms.intro)
+  show "class.order ?ord ?ord'" by(rule order_rel_prodI) intro_locales
+qed(auto 4 4 simp add: prod_lub_def intro: a.ccpo_Sup_upper b.ccpo_Sup_upper a.ccpo_Sup_least b.ccpo_Sup_least rev_image_eqI dest: chain_rel_prodD1 chain_rel_prodD2)
+
+interpretation ab: ccpo "prod_lub luba lubb" "rel_prod orda ordb" "mk_less (rel_prod orda ordb)"
+by(rule ccpo_rel_prodI)
+
+lemma monotone_map_prod [simp]:
+  "monotone (rel_prod orda ordb) (rel_prod ordc ordd) (map_prod f g) \<longleftrightarrow>
+   monotone orda ordc f \<and> monotone ordb ordd g"
+by(auto simp add: monotone_def)
+
+lemma parallel_fixp_induct:
+  assumes adm: "ccpo.admissible (prod_lub luba lubb) (rel_prod orda ordb) (\<lambda>x. P (fst x) (snd x))"
+  and f: "monotone orda orda f"
+  and g: "monotone ordb ordb g"
+  and bot: "P (luba {}) (lubb {})"
+  and step: "\<And>x y. P x y \<Longrightarrow> P (f x) (g y)"
+  shows "P (ccpo.fixp luba orda f) (ccpo.fixp lubb ordb g)"
+proof -
+  let ?lub = "prod_lub luba lubb"
+    and ?ord = "rel_prod orda ordb"
+    and ?P = "\<lambda>(x, y). P x y"
+  from adm have adm': "ccpo.admissible ?lub ?ord ?P" by(simp add: split_def)
+  hence "?P (ccpo.fixp (prod_lub luba lubb) (rel_prod orda ordb) (map_prod f g))"
+    by(rule ab.fixp_induct)(auto simp add: f g step bot)
+  also have "ccpo.fixp (prod_lub luba lubb) (rel_prod orda ordb) (map_prod f g) = 
+            (ccpo.fixp luba orda f, ccpo.fixp lubb ordb g)" (is "?lhs = (?rhs1, ?rhs2)")
+  proof(rule ab.antisym)
+    have "ccpo.admissible ?lub ?ord (\<lambda>xy. ?ord xy (?rhs1, ?rhs2))"
+      by(rule admissible_leI[OF ccpo_rel_prodI])(auto simp add: prod_lub_def chain_empty intro: a.ccpo_Sup_least b.ccpo_Sup_least)
+    thus "?ord ?lhs (?rhs1, ?rhs2)"
+      by(rule ab.fixp_induct)(auto 4 3 dest: monotoneD[OF f] monotoneD[OF g] simp add: b.fixp_unfold[OF g, symmetric] a.fixp_unfold[OF f, symmetric] f g intro: a.ccpo_Sup_least b.ccpo_Sup_least chain_empty)
+  next
+    have "ccpo.admissible luba orda (\<lambda>x. orda x (fst ?lhs))"
+      by(rule admissible_leI[OF a])(auto intro: a.ccpo_Sup_least simp add: chain_empty)
+    hence "orda ?rhs1 (fst ?lhs)" using f
+    proof(rule a.fixp_induct)
+      fix x
+      assume "orda x (fst ?lhs)"
+      thus "orda (f x) (fst ?lhs)"
+        by(subst ab.fixp_unfold)(auto simp add: f g dest: monotoneD[OF f])
+    qed(auto intro: a.ccpo_Sup_least chain_empty)
+    moreover
+    have "ccpo.admissible lubb ordb (\<lambda>y. ordb y (snd ?lhs))"
+      by(rule admissible_leI[OF b])(auto intro: b.ccpo_Sup_least simp add: chain_empty)
+    hence "ordb ?rhs2 (snd ?lhs)" using g
+    proof(rule b.fixp_induct)
+      fix y
+      assume "ordb y (snd ?lhs)"
+      thus "ordb (g y) (snd ?lhs)"
+        by(subst ab.fixp_unfold)(auto simp add: f g dest: monotoneD[OF g])
+    qed(auto intro: b.ccpo_Sup_least chain_empty)
+    ultimately show "?ord (?rhs1, ?rhs2) ?lhs"
+      by(simp add: rel_prod_conv split_beta)
+  qed
+  finally show ?thesis by simp
+qed
+
+end
+
+lemma parallel_fixp_induct_uc:
+  assumes a: "partial_function_definitions orda luba"
+  and b: "partial_function_definitions ordb lubb"
+  and F: "\<And>x. monotone (fun_ord orda) orda (\<lambda>f. U1 (F (C1 f)) x)"
+  and G: "\<And>y. monotone (fun_ord ordb) ordb (\<lambda>g. U2 (G (C2 g)) y)"
+  and eq1: "f \<equiv> C1 (ccpo.fixp (fun_lub luba) (fun_ord orda) (\<lambda>f. U1 (F (C1 f))))"
+  and eq2: "g \<equiv> C2 (ccpo.fixp (fun_lub lubb) (fun_ord ordb) (\<lambda>g. U2 (G (C2 g))))"
+  and inverse: "\<And>f. U1 (C1 f) = f"
+  and inverse2: "\<And>g. U2 (C2 g) = g"
+  and adm: "ccpo.admissible (prod_lub (fun_lub luba) (fun_lub lubb)) (rel_prod (fun_ord orda) (fun_ord ordb)) (\<lambda>x. P (fst x) (snd x))"
+  and bot: "P (\<lambda>_. luba {}) (\<lambda>_. lubb {})"
+  and step: "\<And>f g. P (U1 f) (U2 g) \<Longrightarrow> P (U1 (F f)) (U2 (G g))"
+  shows "P (U1 f) (U2 g)"
+apply(unfold eq1 eq2 inverse inverse2)
+apply(rule parallel_fixp_induct[OF partial_function_definitions.ccpo[OF a] partial_function_definitions.ccpo[OF b] adm])
+using F apply(simp add: monotone_def fun_ord_def)
+using G apply(simp add: monotone_def fun_ord_def)
+apply(simp add: fun_lub_def bot)
+apply(rule step, simp add: inverse inverse2)
+done
+
+lemmas parallel_fixp_induct_1_1 = parallel_fixp_induct_uc[
+  of _ _ _ _ "\<lambda>x. x" _ "\<lambda>x. x" "\<lambda>x. x" _ "\<lambda>x. x",
+  OF _ _ _ _ _ _ refl refl]
+
+lemmas parallel_fixp_induct_2_2 = parallel_fixp_induct_uc[
+  of _ _ _ _ "case_prod" _ "curry" "case_prod" _ "curry",
+  where P="\<lambda>f g. P (curry f) (curry g)",
+  unfolded case_prod_curry curry_case_prod curry_K,
+  OF _ _ _ _ _ _ refl refl]
+  for P
+
+lemma monotone_fst: "monotone (rel_prod orda ordb) orda fst"
+by(auto intro: monotoneI)
+
+lemma mcont_fst: "mcont (prod_lub luba lubb) (rel_prod orda ordb) luba orda fst"
+by(auto intro!: mcontI monotoneI contI simp add: prod_lub_def)
+
+lemma mcont2mcont_fst [cont_intro, simp]:
+  "mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) t
+  \<Longrightarrow> mcont lub ord luba orda (\<lambda>x. fst (t x))"
+by(auto intro!: mcontI monotoneI contI dest: mcont_monoD mcont_contD simp add: rel_prod_sel split_beta prod_lub_def image_image)
+
+lemma monotone_snd: "monotone (rel_prod orda ordb) ordb snd"
+by(auto intro: monotoneI)
+
+lemma mcont_snd: "mcont (prod_lub luba lubb) (rel_prod orda ordb) lubb ordb snd"
+by(auto intro!: mcontI monotoneI contI simp add: prod_lub_def)
+
+lemma mcont2mcont_snd [cont_intro, simp]:
+  "mcont lub ord (prod_lub luba lubb) (rel_prod orda ordb) t
+  \<Longrightarrow> mcont lub ord lubb ordb (\<lambda>x. snd (t x))"
+by(auto intro!: mcontI monotoneI contI dest: mcont_monoD mcont_contD simp add: rel_prod_sel split_beta prod_lub_def image_image)
+
+context partial_function_definitions begin
+text \<open>Specialised versions of @{thm [source] mcont_call} for admissibility proofs for parallel fixpoint inductions\<close>
+lemmas mcont_call_fst [cont_intro] = mcont_call[THEN mcont2mcont, OF mcont_fst]
+lemmas mcont_call_snd [cont_intro] = mcont_call[THEN mcont2mcont, OF mcont_snd]
+end
+
+end
--- a/src/HOL/Library/Countable_Set.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Library/Countable_Set.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -294,6 +294,14 @@
 
 subsection \<open>Misc lemmas\<close>
 
+lemma infinite_countable_subset':
+  assumes X: "infinite X" shows "\<exists>C\<subseteq>X. countable C \<and> infinite C"
+proof -
+  from infinite_countable_subset[OF X] guess f ..
+  then show ?thesis
+    by (intro exI[of _ "range f"]) (auto simp: range_inj_infinite)
+qed
+
 lemma countable_all:
   assumes S: "countable S"
   shows "(\<forall>s\<in>S. P s) \<longleftrightarrow> (\<forall>n::nat. from_nat_into S n \<in> S \<longrightarrow> P (from_nat_into S n))"
--- a/src/HOL/Library/Extended_Nonnegative_Real.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Library/Extended_Nonnegative_Real.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -5,7 +5,7 @@
 subsection \<open>The type of non-negative extended real numbers\<close>
 
 theory Extended_Nonnegative_Real
-  imports Extended_Real
+  imports Extended_Real Indicator_Function
 begin
 
 context linordered_nonzero_semiring
@@ -848,4 +848,309 @@
   shows "(\<And>N. (\<Sum>n<N. f n) + y \<le> x) \<Longrightarrow> suminf f + y \<le> x"
   by transfer (auto intro!: suminf_bound_add)
 
+lemma divide_right_mono_ennreal:
+  fixes a b c :: ennreal
+  shows "a \<le> b \<Longrightarrow> a / c \<le> b / c"
+  unfolding divide_ennreal_def by (intro mult_mono) auto
+
+lemma SUP_mult_left_ennreal: "c * (SUP i:I. f i) = (SUP i:I. c * f i ::ennreal)"
+proof cases
+  assume "I \<noteq> {}" then show ?thesis
+    by transfer (auto simp add: SUP_ereal_mult_left max_absorb2 SUP_upper2)
+qed (simp add: bot_ennreal)
+
+lemma SUP_mult_right_ennreal: "(SUP i:I. f i) * c = (SUP i:I. f i * c ::ennreal)"
+  using SUP_mult_left_ennreal by (simp add: mult.commute)
+
+lemma SUP_divide_ennreal: "(SUP i:I. f i) / c = (SUP i:I. f i / c ::ennreal)"
+  using SUP_mult_right_ennreal by (simp add: divide_ennreal_def)
+
+lemma of_nat_Sup_ennreal:
+  assumes "A \<noteq> {}" "bdd_above A"
+  shows "of_nat (Sup A) = (SUP a:A. of_nat a :: ennreal)"
+proof (intro antisym)
+  show "(SUP a:A. of_nat a::ennreal) \<le> of_nat (Sup A)"
+    by (intro SUP_least of_nat_mono) (auto intro: cSup_upper assms)
+  have "Sup A \<in> A"
+    unfolding Sup_nat_def using assms by (intro Max_in) (auto simp: bdd_above_nat)
+  then show "of_nat (Sup A) \<le> (SUP a:A. of_nat a::ennreal)"
+    by (intro SUP_upper)
+qed
+
+lemma mult_divide_eq_ennreal:
+  fixes a b :: ennreal
+  shows "b \<noteq> 0 \<Longrightarrow> b \<noteq> top \<Longrightarrow> (a * b) / b = a"
+  unfolding divide_ennreal_def
+  apply transfer
+  apply (subst mult.assoc)
+  apply (simp add: top_ereal_def divide_ereal_def[symmetric])
+  done
+
+lemma divide_mult_eq: "a \<noteq> 0 \<Longrightarrow> a \<noteq> \<infinity> \<Longrightarrow> x * a / (b * a) = x / (b::ennreal)"
+  unfolding divide_ennreal_def infinity_ennreal_def
+  apply transfer
+  subgoal for a b c
+    apply (cases a b c rule: ereal3_cases)
+    apply (auto simp: top_ereal_def)
+    done
+  done
+
+lemma ennreal_power: "0 \<le> r \<Longrightarrow> ennreal r ^ n = ennreal (r ^ n)"
+  by (induction n) (auto simp: ennreal_mult)
+
+lemma top_power_ennreal: "top ^ n = (if n = 0 then 1 else top :: ennreal)"
+  by (induction n) (simp_all add: ennreal_mult_eq_top_iff)
+
+lemma power_eq_top_ennreal: "x ^ n = top \<longleftrightarrow> (n \<noteq> 0 \<and> (x::ennreal) = top)"
+  by (cases x rule: ennreal_cases)
+     (auto simp: ennreal_power top_power_ennreal)
+
+lemma ennreal_mult_divide_eq:
+  fixes a b :: ennreal
+  shows "b \<noteq> 0 \<Longrightarrow> b \<noteq> top \<Longrightarrow> (a * b) / b = a"
+  unfolding divide_ennreal_def
+  apply transfer
+  apply (subst mult.assoc)
+  apply (simp add: top_ereal_def divide_ereal_def[symmetric])
+  done
+
+lemma enn2ereal_of_nat[simp]: "enn2ereal (of_nat n) = ereal n"
+  by (induction n) (auto simp: zero_ennreal.rep_eq one_ennreal.rep_eq plus_ennreal.rep_eq)
+
+lemma enn2ereal_numeral[simp]: "enn2ereal (numeral a) = numeral a"
+  apply (subst of_nat_numeral[of a, symmetric])
+  apply (subst enn2ereal_of_nat)
+  apply simp
+  done
+
+lemma transfer_numeral[transfer_rule]: "pcr_ennreal (numeral a) (numeral a)"
+  unfolding cr_ennreal_def pcr_ennreal_def by auto
+
+lemma ennreal_half[simp]: "ennreal (1/2) = inverse 2"
+  by transfer (simp add: max.absorb2)
+
+lemma numeral_eq_of_nat: "(numeral a::ennreal) = of_nat (numeral a)"
+  by simp
+
+lemma of_nat_less_top: "of_nat i < (top::ennreal)"
+  using less_le_trans[of "of_nat i" "of_nat (Suc i)" "top::ennreal"]
+  by simp
+
+lemma top_neq_numeral[simp]: "top \<noteq> ((numeral i)::ennreal)"
+  using of_nat_less_top[of "numeral i"] by simp
+
+lemma sup_continuous_mult_left_ennreal':
+  fixes c :: "ennreal"
+  shows "sup_continuous (\<lambda>x. c * x)"
+  unfolding sup_continuous_def
+  by transfer (auto simp: SUP_ereal_mult_left max.absorb2 SUP_upper2)
+
+lemma sup_continuous_mult_left_ennreal[order_continuous_intros]:
+  "sup_continuous f \<Longrightarrow> sup_continuous (\<lambda>x. c * f x :: ennreal)"
+  by (rule sup_continuous_compose[OF sup_continuous_mult_left_ennreal'])
+
+lemma sup_continuous_mult_right_ennreal[order_continuous_intros]:
+  "sup_continuous f \<Longrightarrow> sup_continuous (\<lambda>x. f x * c :: ennreal)"
+  using sup_continuous_mult_left_ennreal[of f c] by (simp add: mult.commute)
+
+lemma sup_continuous_divide_ennreal[order_continuous_intros]:
+  fixes f g :: "'a::complete_lattice \<Rightarrow> ennreal"
+  shows "sup_continuous f \<Longrightarrow> sup_continuous (\<lambda>x. f x / c)"
+  unfolding divide_ennreal_def by (rule sup_continuous_mult_right_ennreal)
+
+lemma ennreal_add_bot[simp]: "bot + x = (x::ennreal)"
+  by transfer simp
+
+lemma sup_continuous_transfer[transfer_rule]:
+  "(rel_fun (rel_fun (op =) pcr_ennreal) op =) sup_continuous sup_continuous"
+proof (safe intro!: rel_funI dest!: rel_fun_eq_pcr_ennreal[THEN iffD1])
+  show "sup_continuous (enn2ereal \<circ> f) \<Longrightarrow> sup_continuous f" for f :: "'a \<Rightarrow> _"
+    using sup_continuous_e2ennreal[of "enn2ereal \<circ> f"] by simp
+  show "sup_continuous f \<Longrightarrow> sup_continuous (enn2ereal \<circ> f)" for f :: "'a \<Rightarrow> _"
+    using sup_continuous_enn2ereal[of f] by (simp add: comp_def)
+qed
+
+lemma sup_continuous_add_ennreal[order_continuous_intros]:
+  fixes f g :: "'a::complete_lattice \<Rightarrow> ennreal"
+  shows "sup_continuous f \<Longrightarrow> sup_continuous g \<Longrightarrow> sup_continuous (\<lambda>x. f x + g x)"
+  by transfer (auto intro!: sup_continuous_add)
+
+lemmas ennreal2_cases = ennreal_cases[case_product ennreal_cases]
+lemmas ennreal3_cases = ennreal_cases[case_product ennreal2_cases]
+
+lemma ennreal_minus_eq_0:
+  "a - b = 0 \<Longrightarrow> a \<le> (b::ennreal)"
+  apply transfer
+  subgoal for a b
+    apply (cases a b rule: ereal2_cases)
+    apply (auto simp: zero_ereal_def ereal_max[symmetric] max.absorb2 simp del: ereal_max)
+    done
+  done
+
+lemma ennreal_mono_minus_cancel:
+  fixes a b c :: ennreal
+  shows "a - b \<le> a - c \<Longrightarrow> a < top \<Longrightarrow> b \<le> a \<Longrightarrow> c \<le> a \<Longrightarrow> c \<le> b"
+  by transfer
+     (auto simp add: max.absorb2 ereal_diff_positive top_ereal_def dest: ereal_mono_minus_cancel)
+
+lemma ennreal_mono_minus:
+  fixes a b c :: ennreal
+  shows "c \<le> b \<Longrightarrow> a - b \<le> a - c"
+  apply transfer
+  apply (rule max.mono)
+  apply simp
+  subgoal for a b c
+    by (cases a b c rule: ereal3_cases) auto
+  done
+
+lemma ennreal_minus_pos_iff:
+  fixes a b :: ennreal
+  shows "a < top \<or> b < top \<Longrightarrow> 0 < a - b \<Longrightarrow> b < a"
+  apply transfer
+  subgoal for a b
+    by (cases a b rule: ereal2_cases) (auto simp: less_max_iff_disj)
+  done
+
+lemma ennreal_SUP_add:
+  fixes f g :: "nat \<Rightarrow> ennreal"
+  shows "incseq f \<Longrightarrow> incseq g \<Longrightarrow> (SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g"
+  unfolding incseq_def le_fun_def
+  by transfer
+     (simp add: SUP_ereal_add incseq_def le_fun_def max_absorb2 SUP_upper2)
+
+lemma ennreal_top_mult: "top * a = (if a = 0 then 0 else top :: ennreal)"
+  by (simp add: ennreal_mult_eq_top_iff)
+
+lemma ennreal_mult_top: "a * top = (if a = 0 then 0 else top :: ennreal)"
+  by (simp add: ennreal_mult_eq_top_iff)
+
+lemma ennreal_less: "0 \<le> r \<Longrightarrow> ennreal r < ennreal q \<longleftrightarrow> r < q"
+  unfolding not_le[symmetric] by auto
+
+lemma ennreal_numeral_less_top[simp]: "numeral i < (top::ennreal)"
+  using of_nat_less_top[of "numeral i"] by simp
+
+lemma real_of_nat_Sup:
+  assumes "A \<noteq> {}" "bdd_above A"
+  shows "of_nat (Sup A) = (SUP a:A. of_nat a :: real)"
+proof (intro antisym)
+  show "(SUP a:A. of_nat a::real) \<le> of_nat (Sup A)"
+    using assms by (intro cSUP_least of_nat_mono) (auto intro: cSup_upper)
+  have "Sup A \<in> A"
+    unfolding Sup_nat_def using assms by (intro Max_in) (auto simp: bdd_above_nat)
+  then show "of_nat (Sup A) \<le> (SUP a:A. of_nat a::real)"
+    by (intro cSUP_upper bdd_above_image_mono assms) (auto simp: mono_def)
+qed
+
+definition "enn2real x = real_of_ereal (enn2ereal x)"
+
+lemma enn2real_nonneg: "0 \<le> enn2real x"
+  by (auto simp: enn2real_def intro!: real_of_ereal_pos enn2ereal_nonneg)
+
+lemma enn2real_mono: "a \<le> b \<Longrightarrow> b < top \<Longrightarrow> enn2real a \<le> enn2real b"
+  by (auto simp add: enn2real_def less_eq_ennreal.rep_eq intro!: real_of_ereal_positive_mono enn2ereal_nonneg)
+
+lemma enn2real_of_nat[simp]: "enn2real (of_nat n) = n"
+  by (auto simp: enn2real_def)
+
+lemma enn2real_ennreal[simp]: "0 \<le> r \<Longrightarrow> enn2real (ennreal r) = r"
+  by (simp add: enn2real_def)
+
+lemma of_nat_le_ennreal_iff[simp]: "0 \<le> r \<Longrightarrow> of_nat i \<le> ennreal r \<longleftrightarrow> of_nat i \<le> r"
+  by (simp add: ennreal_of_nat_eq_real_of_nat)
+
+lemma min_ennreal: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> min (ennreal x) (ennreal y) = ennreal (min x y)"
+  by (auto split: split_min)
+
+lemma ennreal_approx_unit:
+  "(\<And>a::ennreal. 0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * z \<le> y) \<Longrightarrow> z \<le> y"
+  apply (subst SUP_mult_right_ennreal[of "\<lambda>x. x" "{0 <..< 1}" z, simplified])
+  apply (rule SUP_least)
+  apply auto
+  done
+
+lemma ennreal_mult_strict_right_mono: "(a::ennreal) < c \<Longrightarrow> 0 < b \<Longrightarrow> b < top \<Longrightarrow> a * b < c * b"
+  by transfer (auto intro!: ereal_mult_strict_right_mono)
+
+lemma ennreal_SUP_setsum:
+  fixes f :: "'a \<Rightarrow> nat \<Rightarrow> ennreal"
+  shows "(\<And>i. i \<in> I \<Longrightarrow> incseq (f i)) \<Longrightarrow> (SUP n. \<Sum>i\<in>I. f i n) = (\<Sum>i\<in>I. SUP n. f i n)"
+  unfolding incseq_def
+  by transfer
+     (simp add: SUP_ereal_setsum incseq_def SUP_upper2 max_absorb2 setsum_nonneg)
+
+lemma ennreal_indicator_less[simp]:
+  "indicator A x \<le> (indicator B x::ennreal) \<longleftrightarrow> (x \<in> A \<longrightarrow> x \<in> B)"
+  by (simp add: indicator_def not_le)
+
+lemma rel_fun_liminf[transfer_rule]: "rel_fun (rel_fun op = pcr_ennreal) pcr_ennreal liminf liminf"
+proof -
+  have "rel_fun (rel_fun op = pcr_ennreal) pcr_ennreal (\<lambda>x. sup 0 (liminf x)) liminf"
+    unfolding liminf_SUP_INF[abs_def] by (transfer_prover_start, transfer_step+; simp)
+  then show ?thesis
+    apply (subst (asm) (2) rel_fun_def)
+    apply (subst (2) rel_fun_def)
+    apply (auto simp: comp_def max.absorb2 Liminf_bounded enn2ereal_nonneg rel_fun_eq_pcr_ennreal)
+    done
+qed
+
+lemma rel_fun_limsup[transfer_rule]: "rel_fun (rel_fun op = pcr_ennreal) pcr_ennreal limsup limsup"
+proof -
+  have "rel_fun (rel_fun op = pcr_ennreal) pcr_ennreal (\<lambda>x. INF n. sup 0 (SUP i:{n..}. x i)) limsup"
+    unfolding limsup_INF_SUP[abs_def] by (transfer_prover_start, transfer_step+; simp)
+  then show ?thesis
+    unfolding limsup_INF_SUP[abs_def]
+    apply (subst (asm) (2) rel_fun_def)
+    apply (subst (2) rel_fun_def)
+    apply (auto simp: comp_def max.absorb2 Sup_upper2 enn2ereal_nonneg rel_fun_eq_pcr_ennreal)
+    apply (subst (asm) max.absorb2)
+    apply (rule SUP_upper2)
+    apply (auto simp: enn2ereal_nonneg)
+    done
+qed
+
+lemma ennreal_liminf_minus:
+  fixes f :: "nat \<Rightarrow> ennreal"
+  shows "(\<And>n. f n \<le> c) \<Longrightarrow> liminf (\<lambda>n. c - f n) = c - limsup f"
+  apply transfer
+  apply (simp add: ereal_diff_positive max.absorb2 liminf_ereal_cminus)
+  apply (subst max.absorb2)
+  apply (rule ereal_diff_positive)
+  apply (rule Limsup_bounded)
+  apply auto
+  done
+
+lemma inverse_ennreal: "0 < r \<Longrightarrow> inverse (ennreal r) = ennreal (inverse r)"
+  by transfer (simp add: max.absorb2)
+
+lemma divide_ennreal: "0 \<le> r \<Longrightarrow> 0 < q \<Longrightarrow> ennreal r / ennreal q = ennreal (r / q)"
+  by (simp add: divide_ennreal_def inverse_ennreal ennreal_mult[symmetric] inverse_eq_divide)
+
+lemma ennreal_inverse_top[simp]: "inverse top = (0::ennreal)"
+  by transfer (simp add: top_ereal_def ereal_inverse_eq_0)
+
+lemma ennreal_inverse_zero[simp]: "inverse 0 = (top::ennreal)"
+  by transfer (simp add: top_ereal_def ereal_inverse_eq_0)
+
+lemma ennreal_top_divide: "top / (x::ennreal) = (if x = top then 0 else top)"
+  unfolding divide_ennreal_def
+  by transfer (simp add: top_ereal_def ereal_inverse_eq_0 ereal_0_gt_inverse)
+
+lemma ennreal_zero_divide[simp]: "0 / (x::ennreal) = 0"
+  by (simp add: divide_ennreal_def)
+
+lemma ennreal_divide_zero[simp]: "x / (0::ennreal) = (if x = 0 then 0 else top)"
+  by (simp add: divide_ennreal_def ennreal_mult_top)
+
+lemma ennreal_divide_top[simp]: "x / (top::ennreal) = 0"
+  by (simp add: divide_ennreal_def ennreal_top_mult)
+
+lemma ennreal_times_divide: "a * (b / c) = a * b / (c::ennreal)"
+  unfolding divide_ennreal_def
+  by transfer (simp add: divide_ereal_def[symmetric] ereal_times_divide_eq)
+
+lemma ennreal_zero_less_divide: "0 < a / b \<longleftrightarrow> (0 < a \<and> b < (top::ennreal))"
+  unfolding divide_ennreal_def
+  by transfer (auto simp: ereal_zero_less_0_iff top_ereal_def ereal_0_gt_inverse)
+
 end
--- a/src/HOL/Library/Extended_Real.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Library/Extended_Real.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -560,6 +560,9 @@
     by (cases rule: ereal3_cases[of a b c]) auto
 qed
 
+lemma ereal_one_not_less_zero_ereal[simp]: "\<not> 1 < (0::ereal)"
+  by (simp add: zero_ereal_def)
+
 lemma real_of_ereal_positive_mono:
   fixes x y :: ereal
   shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real_of_ereal x \<le> real_of_ereal y"
@@ -1396,6 +1399,11 @@
   using assms
   by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all
 
+lemma ereal_mono_minus_cancel:
+  fixes a b c :: ereal
+  shows "c - a \<le> c - b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> b \<le> a"
+  by (cases a b c rule: ereal3_cases) auto
+
 lemma real_of_ereal_minus:
   fixes a b :: ereal
   shows "real_of_ereal (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real_of_ereal a - real_of_ereal b)"
--- a/src/HOL/Library/Indicator_Function.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Library/Indicator_Function.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -88,7 +88,7 @@
   assume "\<exists>i. x \<in> A i"
   then obtain i where "x \<in> A i"
     by auto
-  then have 
+  then have
     "\<And>n. (indicator (A (n + i)) x :: 'a) = 1"
     "(indicator (\<Union>i. A i) x :: 'a) = 1"
     using incseqD[OF \<open>incseq A\<close>, of i "n + i" for n] \<open>x \<in> A i\<close> by (auto simp: indicator_def)
@@ -113,7 +113,7 @@
   assume "\<exists>i. x \<notin> A i"
   then obtain i where "x \<notin> A i"
     by auto
-  then have 
+  then have
     "\<And>n. (indicator (A (n + i)) x :: 'a) = 0"
     "(indicator (\<Inter>i. A i) x :: 'a) = 0"
     using decseqD[OF \<open>decseq A\<close>, of i "n + i" for n] \<open>x \<notin> A i\<close> by (auto simp: indicator_def)
@@ -148,7 +148,7 @@
   "A \<subseteq> B \<Longrightarrow> indicator A x * indicator B x = (indicator A x :: 'a::{comm_semiring_1})"
   by (auto split: split_indicator simp: fun_eq_iff)
 
-lemma indicator_sums: 
+lemma indicator_sums:
   assumes "\<And>i j. i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
   shows "(\<lambda>i. indicator (A i) x::real) sums indicator (\<Union>i. A i) x"
 proof cases
--- a/src/HOL/Library/Library.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Library/Library.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -11,6 +11,7 @@
   Code_Test
   ContNotDenum
   Convex
+  Complete_Partial_Order2
   Countable
   Countable_Complete_Lattices
   Countable_Set_Type
--- a/src/HOL/Library/Multiset.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Library/Multiset.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -2062,7 +2062,7 @@
 done
 
 lemma one_step_implies_mult:
-  "trans r \<Longrightarrow> J \<noteq> {#} \<Longrightarrow> \<forall>k \<in> set_mset K. \<exists>j \<in> set_mset J. (k, j) \<in> r
+  "J \<noteq> {#} \<Longrightarrow> \<forall>k \<in> set_mset K. \<exists>j \<in> set_mset J. (k, j) \<in> r
     \<Longrightarrow> (I + K, I + J) \<in> mult r"
 using one_step_implies_mult_aux by blast
 
--- a/src/HOL/Library/Tree.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Library/Tree.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -24,6 +24,9 @@
   "size1 \<langle>l, x, r\<rangle> = size1 l + size1 r"
 by (simp_all add: size1_def)
 
+lemma size1_ge0[simp]: "0 < size1 t"
+by (simp add: size1_def)
+
 lemma size_0_iff_Leaf: "size t = 0 \<longleftrightarrow> t = Leaf"
 by(cases t) auto
 
--- a/src/HOL/Tools/BNF/bnf_fp_n2m.ML	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/Tools/BNF/bnf_fp_n2m.ML	Fri Mar 18 20:29:50 2016 +0100
@@ -165,7 +165,7 @@
 
     val rel_unfolds = maps (no_refl o single o rel_def_of_bnf) pre_bnfs;
     val rel_xtor_co_inducts = of_fp_res (split_conj_thm o #xtor_rel_co_induct)
-      |> map (unfold_thms lthy (id_apply :: rel_unfolds));
+      |> map (zero_var_indexes o unfold_thms lthy (id_apply :: rel_unfolds));
 
     val rel_defs = map rel_def_of_bnf bnfs;
     val rel_monos = map rel_mono_of_bnf bnfs;
--- a/src/HOL/ZF/LProd.thy	Fri Mar 18 18:32:35 2016 +0100
+++ b/src/HOL/ZF/LProd.thy	Fri Mar 18 20:29:50 2016 +0100
@@ -59,7 +59,7 @@
   proof (cases "a = b")
     case True    
     have "((I + {#b#}) + K, (I + {#b#}) + J) \<in> mult R"
-      apply (rule one_step_implies_mult[OF transR])
+      apply (rule one_step_implies_mult)
       apply (auto simp add: decomposed)
       done
     then show ?thesis
@@ -71,7 +71,7 @@
     case False
     from False lprod_list have False: "(a, b) \<in> R" by blast
     have "(I + (K + {#a#}), I + (J + {#b#})) \<in> mult R"
-      apply (rule one_step_implies_mult[OF transR])
+      apply (rule one_step_implies_mult)
       apply (auto simp add: False decomposed)
       done
     then show ?thesis