--- a/src/HOL/Library/Formal_Power_Series.thy Sat Feb 14 15:30:26 2009 -0800
+++ b/src/HOL/Library/Formal_Power_Series.thy Sat Feb 14 16:51:18 2009 -0800
@@ -691,16 +691,6 @@
by (simp_all add: fps_power_def)
end
-lemma eq_neg_iff_add_eq_0: "(a::'a::ring) = -b \<longleftrightarrow> a + b = 0"
-proof-
- {assume "a = -b" hence "b + a = b + -b" by simp
- hence "a + b = 0" by (simp add: ring_simps)}
- moreover
- {assume "a + b = 0" hence "a + b - b = -b" by simp
- hence "a = -b" by simp}
- ultimately show ?thesis by blast
-qed
-
lemma fps_square_eq_iff: "(a:: 'a::idom fps)^ 2 = b^2 \<longleftrightarrow> (a = b \<or> a = -b)"
proof-
{assume "a = b \<or> a = -b" hence "a^2 = b^2" by auto}
--- a/src/HOL/OrderedGroup.thy Sat Feb 14 15:30:26 2009 -0800
+++ b/src/HOL/OrderedGroup.thy Sat Feb 14 16:51:18 2009 -0800
@@ -254,6 +254,16 @@
declare diff_minus[symmetric, algebra_simps]
+lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0"
+proof
+ assume "a = - b" then show "a + b = 0" by simp
+next
+ assume "a + b = 0"
+ moreover have "a + (b + - b) = (a + b) + - b"
+ by (simp only: add_assoc)
+ ultimately show "a = - b" by simp
+qed
+
end
class ab_group_add = minus + uminus + comm_monoid_add +