--- a/src/HOL/Tools/Function/size.ML Wed Apr 23 10:23:26 2014 +0200
+++ b/src/HOL/Tools/Function/size.ML Wed Apr 23 10:23:26 2014 +0200
@@ -59,162 +59,170 @@
val {descr, rec_names, rec_rewrites, induct, ...} = info;
val l = length new_type_names;
val descr' = List.take (descr, l);
- val (rec_names1, rec_names2) = chop l rec_names;
- val recTs = Datatype_Aux.get_rec_types descr;
- val (recTs1, recTs2) = chop l recTs;
- val (_, (_, paramdts, _)) :: _ = descr;
- val paramTs = map (Datatype_Aux.typ_of_dtyp descr) paramdts;
- val ((param_size_fs, param_size_fTs), f_names) = paramTs |>
- map (fn T as TFree (s, _) =>
- let
- val name = "f" ^ unprefix "'" s;
- val U = T --> HOLogic.natT
- in
- (((s, Free (name, U)), U), name)
- end) |> split_list |>> split_list;
- val param_size = AList.lookup op = param_size_fs;
-
- val extra_rewrites = descr |> map (#1 o snd) |> distinct op = |>
- map_filter (Option.map snd o lookup_size thy) |> flat;
- val extra_size = Option.map fst o lookup_size thy;
-
- val (((size_names, size_fns), def_names), def_names') =
- recTs1 |> map (fn T as Type (s, _) =>
- let
- val s' = Long_Name.base_name s ^ "_size";
- val s'' = Sign.full_bname thy s';
- in
- (s'',
- (list_comb (Const (s'', param_size_fTs @ [T] ---> HOLogic.natT),
- map snd param_size_fs),
- (s' ^ "_def", s' ^ "_overloaded_def")))
- end) |> split_list ||>> split_list ||>> split_list;
- val overloaded_size_fns = map HOLogic.size_const recTs1;
-
- (* instantiation for primrec combinator *)
- fun size_of_constr b size_ofp ((_, cargs), (_, cargs')) =
- let
- val Ts = map (Datatype_Aux.typ_of_dtyp descr) cargs;
- val k = length (filter Datatype_Aux.is_rec_type cargs);
- val (ts, _, _) = fold_rev (fn ((dt, dt'), T) => fn (us, i, j) =>
- if Datatype_Aux.is_rec_type dt then (Bound i :: us, i + 1, j + 1)
- else
- (if b andalso is_poly thy dt' then
- case size_of_type (K NONE) extra_size size_ofp T of
- NONE => us | SOME sz => sz $ Bound j :: us
- else us, i, j + 1))
- (cargs ~~ cargs' ~~ Ts) ([], 0, k);
- val t =
- if null ts andalso (not b orelse not (exists (is_poly thy) cargs'))
- then HOLogic.zero
- else foldl1 plus (ts @ [HOLogic.Suc_zero])
- in
- fold_rev (fn T => fn t' => Abs ("x", T, t')) (Ts @ replicate k HOLogic.natT) t
- end;
-
- val fs = maps (fn (_, (name, _, constrs)) =>
- map (size_of_constr true param_size) (constrs ~~ constrs_of thy name)) descr;
- val fs' = maps (fn (n, (name, _, constrs)) =>
- map (size_of_constr (l <= n) (K NONE)) (constrs ~~ constrs_of thy name)) descr;
- val fTs = map fastype_of fs;
-
- val (rec_combs1, rec_combs2) = chop l (map (fn (T, rec_name) =>
- Const (rec_name, fTs @ [T] ---> HOLogic.natT))
- (recTs ~~ rec_names));
-
- fun define_overloaded (def_name, eq) lthy =
- let
- val (Free (c, _), rhs) = (Logic.dest_equals o Syntax.check_term lthy) eq;
- val (thm, lthy') = lthy
- |> Local_Theory.define ((Binding.name c, NoSyn), ((Binding.name def_name, []), rhs))
- |-> (fn (t, (_, thm)) => Spec_Rules.add Spec_Rules.Equational ([t], [thm]) #> pair thm);
- val ctxt_thy = Proof_Context.init_global (Proof_Context.theory_of lthy');
- val thm' = singleton (Proof_Context.export lthy' ctxt_thy) thm;
- in (thm', lthy') end;
-
- val ((size_def_thms, size_def_thms'), thy') =
+ val tycos = map (#1 o snd) descr';
+ in
+ if forall (fn tyco => can (Sign.arity_sorts thy tyco) [HOLogic.class_size]) tycos then
+ (* nothing to do -- the "size" function is already defined *)
thy
- |> Sign.add_consts (map (fn (s, T) =>
- (Binding.name (Long_Name.base_name s), param_size_fTs @ [T] ---> HOLogic.natT, NoSyn))
- (size_names ~~ recTs1))
- |> Global_Theory.add_defs false
- (map (Thm.no_attributes o apsnd (Logic.mk_equals o apsnd (app fs)))
- (map Binding.name def_names ~~ (size_fns ~~ rec_combs1)))
- ||> Class.instantiation
- (map (#1 o snd) descr', map dest_TFree paramTs, [HOLogic.class_size])
- ||>> fold_map define_overloaded
- (def_names' ~~ map Logic.mk_equals (overloaded_size_fns ~~ map (app fs') rec_combs1))
- ||> Class.prove_instantiation_instance (K (Class.intro_classes_tac []))
- ||> Local_Theory.exit_global;
-
- val ctxt = Proof_Context.init_global thy';
-
- val simpset1 =
- put_simpset HOL_basic_ss ctxt addsimps @{thm Nat.add_0} :: @{thm Nat.add_0_right} ::
- size_def_thms @ size_def_thms' @ rec_rewrites @ extra_rewrites;
- val xs = map (fn i => "x" ^ string_of_int i) (1 upto length recTs2);
-
- fun mk_unfolded_size_eq tab size_ofp fs (p as (x, T), r) =
- HOLogic.mk_eq (app fs r $ Free p,
- the (size_of_type tab extra_size size_ofp T) $ Free p);
-
- fun prove_unfolded_size_eqs size_ofp fs =
- if null recTs2 then []
- else Datatype_Aux.split_conj_thm (Goal.prove_sorry ctxt xs []
- (HOLogic.mk_Trueprop (Datatype_Aux.mk_conj (replicate l @{term True} @
- map (mk_unfolded_size_eq (AList.lookup op =
- (new_type_names ~~ map (app fs) rec_combs1)) size_ofp fs)
- (xs ~~ recTs2 ~~ rec_combs2))))
- (fn _ => (Datatype_Aux.ind_tac induct xs THEN_ALL_NEW asm_simp_tac simpset1) 1));
-
- val unfolded_size_eqs1 = prove_unfolded_size_eqs param_size fs;
- val unfolded_size_eqs2 = prove_unfolded_size_eqs (K NONE) fs';
-
- (* characteristic equations for size functions *)
- fun gen_mk_size_eq p size_of size_ofp size_const T (cname, cargs) =
+ else
let
- val Ts = map (Datatype_Aux.typ_of_dtyp descr) cargs;
- val tnames = Name.variant_list f_names (Datatype_Prop.make_tnames Ts);
- val ts = map_filter (fn (sT as (s, T), dt) =>
- Option.map (fn sz => sz $ Free sT)
- (if p dt then size_of_type size_of extra_size size_ofp T
- else NONE)) (tnames ~~ Ts ~~ cargs)
- in
- HOLogic.mk_Trueprop (HOLogic.mk_eq
- (size_const $ list_comb (Const (cname, Ts ---> T),
- map2 (curry Free) tnames Ts),
- if null ts then HOLogic.zero
- else foldl1 plus (ts @ [HOLogic.Suc_zero])))
- end;
+ val (rec_names1, rec_names2) = chop l rec_names;
+ val recTs = Datatype_Aux.get_rec_types descr;
+ val (recTs1, recTs2) = chop l recTs;
+ val (_, (_, paramdts, _)) :: _ = descr;
+ val paramTs = map (Datatype_Aux.typ_of_dtyp descr) paramdts;
+ val ((param_size_fs, param_size_fTs), f_names) = paramTs |>
+ map (fn T as TFree (s, _) =>
+ let
+ val name = "f" ^ unprefix "'" s;
+ val U = T --> HOLogic.natT
+ in
+ (((s, Free (name, U)), U), name)
+ end) |> split_list |>> split_list;
+ val param_size = AList.lookup op = param_size_fs;
+
+ val extra_rewrites = descr |> map (#1 o snd) |> distinct op = |>
+ map_filter (Option.map snd o lookup_size thy) |> flat;
+ val extra_size = Option.map fst o lookup_size thy;
+
+ val (((size_names, size_fns), def_names), def_names') =
+ recTs1 |> map (fn T as Type (s, _) =>
+ let
+ val s' = Long_Name.base_name s ^ "_size";
+ val s'' = Sign.full_bname thy s';
+ in
+ (s'',
+ (list_comb (Const (s'', param_size_fTs @ [T] ---> HOLogic.natT),
+ map snd param_size_fs),
+ (s' ^ "_def", s' ^ "_overloaded_def")))
+ end) |> split_list ||>> split_list ||>> split_list;
+ val overloaded_size_fns = map HOLogic.size_const recTs1;
- val simpset2 =
- put_simpset HOL_basic_ss ctxt
- addsimps (rec_rewrites @ size_def_thms @ unfolded_size_eqs1);
- val simpset3 =
- put_simpset HOL_basic_ss ctxt
- addsimps (rec_rewrites @ size_def_thms' @ unfolded_size_eqs2);
+ (* instantiation for primrec combinator *)
+ fun size_of_constr b size_ofp ((_, cargs), (_, cargs')) =
+ let
+ val Ts = map (Datatype_Aux.typ_of_dtyp descr) cargs;
+ val k = length (filter Datatype_Aux.is_rec_type cargs);
+ val (ts, _, _) = fold_rev (fn ((dt, dt'), T) => fn (us, i, j) =>
+ if Datatype_Aux.is_rec_type dt then (Bound i :: us, i + 1, j + 1)
+ else
+ (if b andalso is_poly thy dt' then
+ case size_of_type (K NONE) extra_size size_ofp T of
+ NONE => us | SOME sz => sz $ Bound j :: us
+ else us, i, j + 1))
+ (cargs ~~ cargs' ~~ Ts) ([], 0, k);
+ val t =
+ if null ts andalso (not b orelse not (exists (is_poly thy) cargs'))
+ then HOLogic.zero
+ else foldl1 plus (ts @ [HOLogic.Suc_zero])
+ in
+ fold_rev (fn T => fn t' => Abs ("x", T, t')) (Ts @ replicate k HOLogic.natT) t
+ end;
+
+ val fs = maps (fn (_, (name, _, constrs)) =>
+ map (size_of_constr true param_size) (constrs ~~ constrs_of thy name)) descr;
+ val fs' = maps (fn (n, (name, _, constrs)) =>
+ map (size_of_constr (l <= n) (K NONE)) (constrs ~~ constrs_of thy name)) descr;
+ val fTs = map fastype_of fs;
+
+ val (rec_combs1, rec_combs2) = chop l (map (fn (T, rec_name) =>
+ Const (rec_name, fTs @ [T] ---> HOLogic.natT))
+ (recTs ~~ rec_names));
+
+ fun define_overloaded (def_name, eq) lthy =
+ let
+ val (Free (c, _), rhs) = (Logic.dest_equals o Syntax.check_term lthy) eq;
+ val (thm, lthy') = lthy
+ |> Local_Theory.define ((Binding.name c, NoSyn), ((Binding.name def_name, []), rhs))
+ |-> (fn (t, (_, thm)) => Spec_Rules.add Spec_Rules.Equational ([t], [thm]) #> pair thm);
+ val ctxt_thy = Proof_Context.init_global (Proof_Context.theory_of lthy');
+ val thm' = singleton (Proof_Context.export lthy' ctxt_thy) thm;
+ in (thm', lthy') end;
- fun prove_size_eqs p size_fns size_ofp simpset =
- maps (fn (((_, (_, _, constrs)), size_const), T) =>
- map (fn constr => Drule.export_without_context (Goal.prove_sorry ctxt [] []
- (gen_mk_size_eq p (AList.lookup op = (new_type_names ~~ size_fns))
- size_ofp size_const T constr)
- (fn _ => simp_tac simpset 1))) constrs)
- (descr' ~~ size_fns ~~ recTs1);
+ val ((size_def_thms, size_def_thms'), thy') =
+ thy
+ |> Sign.add_consts (map (fn (s, T) => (Binding.name (Long_Name.base_name s),
+ param_size_fTs @ [T] ---> HOLogic.natT, NoSyn))
+ (size_names ~~ recTs1))
+ |> Global_Theory.add_defs false
+ (map (Thm.no_attributes o apsnd (Logic.mk_equals o apsnd (app fs)))
+ (map Binding.name def_names ~~ (size_fns ~~ rec_combs1)))
+ ||> Class.instantiation (tycos, map dest_TFree paramTs, [HOLogic.class_size])
+ ||>> fold_map define_overloaded
+ (def_names' ~~ map Logic.mk_equals (overloaded_size_fns ~~ map (app fs') rec_combs1))
+ ||> Class.prove_instantiation_instance (K (Class.intro_classes_tac []))
+ ||> Local_Theory.exit_global;
+
+ val ctxt = Proof_Context.init_global thy';
- val size_eqns = prove_size_eqs (is_poly thy') size_fns param_size simpset2 @
- prove_size_eqs Datatype_Aux.is_rec_type overloaded_size_fns (K NONE) simpset3;
+ val simpset1 =
+ put_simpset HOL_basic_ss ctxt addsimps @{thm Nat.add_0} :: @{thm Nat.add_0_right} ::
+ size_def_thms @ size_def_thms' @ rec_rewrites @ extra_rewrites;
+ val xs = map (fn i => "x" ^ string_of_int i) (1 upto length recTs2);
+
+ fun mk_unfolded_size_eq tab size_ofp fs (p as (x, T), r) =
+ HOLogic.mk_eq (app fs r $ Free p,
+ the (size_of_type tab extra_size size_ofp T) $ Free p);
+
+ fun prove_unfolded_size_eqs size_ofp fs =
+ if null recTs2 then []
+ else Datatype_Aux.split_conj_thm (Goal.prove_sorry ctxt xs []
+ (HOLogic.mk_Trueprop (Datatype_Aux.mk_conj (replicate l @{term True} @
+ map (mk_unfolded_size_eq (AList.lookup op =
+ (new_type_names ~~ map (app fs) rec_combs1)) size_ofp fs)
+ (xs ~~ recTs2 ~~ rec_combs2))))
+ (fn _ => (Datatype_Aux.ind_tac induct xs THEN_ALL_NEW asm_simp_tac simpset1) 1));
+
+ val unfolded_size_eqs1 = prove_unfolded_size_eqs param_size fs;
+ val unfolded_size_eqs2 = prove_unfolded_size_eqs (K NONE) fs';
- val ([(_, size_thms)], thy'') = thy'
- |> Global_Theory.note_thmss ""
- [((Binding.name "size",
- [Simplifier.simp_add, Nitpick_Simps.add,
- Thm.declaration_attribute (fn thm => Context.mapping (Code.add_default_eqn thm) I)]),
- [(size_eqns, [])])];
+ (* characteristic equations for size functions *)
+ fun gen_mk_size_eq p size_of size_ofp size_const T (cname, cargs) =
+ let
+ val Ts = map (Datatype_Aux.typ_of_dtyp descr) cargs;
+ val tnames = Name.variant_list f_names (Datatype_Prop.make_tnames Ts);
+ val ts = map_filter (fn (sT as (s, T), dt) =>
+ Option.map (fn sz => sz $ Free sT)
+ (if p dt then size_of_type size_of extra_size size_ofp T
+ else NONE)) (tnames ~~ Ts ~~ cargs)
+ in
+ HOLogic.mk_Trueprop (HOLogic.mk_eq
+ (size_const $ list_comb (Const (cname, Ts ---> T),
+ map2 (curry Free) tnames Ts),
+ if null ts then HOLogic.zero
+ else foldl1 plus (ts @ [HOLogic.Suc_zero])))
+ end;
+
+ val simpset2 =
+ put_simpset HOL_basic_ss ctxt
+ addsimps (rec_rewrites @ size_def_thms @ unfolded_size_eqs1);
+ val simpset3 =
+ put_simpset HOL_basic_ss ctxt
+ addsimps (rec_rewrites @ size_def_thms' @ unfolded_size_eqs2);
- in
- Data.map (fold (Symtab.update_new o apsnd (rpair size_thms))
- (new_type_names ~~ size_names)) thy''
+ fun prove_size_eqs p size_fns size_ofp simpset =
+ maps (fn (((_, (_, _, constrs)), size_const), T) =>
+ map (fn constr => Drule.export_without_context (Goal.prove_sorry ctxt [] []
+ (gen_mk_size_eq p (AList.lookup op = (new_type_names ~~ size_fns))
+ size_ofp size_const T constr)
+ (fn _ => simp_tac simpset 1))) constrs)
+ (descr' ~~ size_fns ~~ recTs1);
+
+ val size_eqns = prove_size_eqs (is_poly thy') size_fns param_size simpset2 @
+ prove_size_eqs Datatype_Aux.is_rec_type overloaded_size_fns (K NONE) simpset3;
+
+ val ([(_, size_thms)], thy'') = thy'
+ |> Global_Theory.note_thmss ""
+ [((Binding.name "size",
+ [Simplifier.simp_add, Nitpick_Simps.add,
+ Thm.declaration_attribute (fn thm =>
+ Context.mapping (Code.add_default_eqn thm) I)]),
+ [(size_eqns, [])])];
+
+ in
+ Data.map (fold (Symtab.update_new o apsnd (rpair size_thms))
+ (new_type_names ~~ size_names)) thy''
+ end
end;
fun add_size_thms config (new_type_names as name :: _) thy =