--- a/src/HOL/ROOT Mon Oct 03 14:34:32 2016 +0200
+++ b/src/HOL/ROOT Mon Oct 03 14:37:06 2016 +0200
@@ -627,6 +627,7 @@
Code_Timing
Perm_Fragments
Argo_Examples
+ Word_Type
theories [skip_proofs = false]
Meson_Test
document_files "root.bib" "root.tex"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Word_Type.thy Mon Oct 03 14:37:06 2016 +0200
@@ -0,0 +1,354 @@
+(* Author: Florian Haftmann, TUM
+*)
+
+section \<open>Proof of concept for algebraically founded bit word types\<close>
+
+theory Word_Type
+ imports
+ Main
+ "~~/src/HOL/Library/Type_Length"
+begin
+
+subsection \<open>Compact syntax for types with a length\<close>
+
+syntax "_type_length" :: "type \<Rightarrow> nat" ("(1LENGTH/(1'(_')))")
+
+translations "LENGTH('a)" \<rightharpoonup>
+ "CONST len_of (CONST Pure.type :: 'a itself)"
+
+print_translation \<open>
+ let
+ fun len_of_itself_tr' ctxt [Const (@{const_syntax Pure.type}, Type (_, [T]))] =
+ Syntax.const @{syntax_const "_type_length"} $ Syntax_Phases.term_of_typ ctxt T
+ in [(@{const_syntax len_of}, len_of_itself_tr')] end
+\<close>
+
+
+subsection \<open>Truncating bit representations of numeric types\<close>
+
+class semiring_bits = semiring_div_parity +
+ assumes semiring_bits: "(1 + 2 * a) mod of_nat (2 * n) = 1 + 2 * (a mod of_nat n)"
+
+context semiring_bits
+begin
+
+definition bits :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
+ where bits_eq_mod: "bits n a = a mod of_nat (2 ^ n)"
+
+lemma bits_bits [simp]:
+ "bits n (bits n a) = bits n a"
+ by (simp add: bits_eq_mod)
+
+lemma bits_0 [simp]:
+ "bits 0 a = 0"
+ by (simp add: bits_eq_mod)
+
+lemma bits_Suc [simp]:
+ "bits (Suc n) a = bits n (a div 2) * 2 + a mod 2"
+proof -
+ define b and c
+ where "b = a div 2" and "c = a mod 2"
+ then have a: "a = b * 2 + c"
+ and "c = 0 \<or> c = 1"
+ by (simp_all add: mod_div_equality parity)
+ from \<open>c = 0 \<or> c = 1\<close>
+ have "bits (Suc n) (b * 2 + c) = bits n b * 2 + c"
+ proof
+ assume "c = 0"
+ moreover have "(2 * b) mod (2 * 2 ^ n) = 2 * (b mod 2 ^ n)"
+ by (simp add: mod_mult_mult1)
+ ultimately show ?thesis
+ by (simp add: bits_eq_mod ac_simps)
+ next
+ assume "c = 1"
+ with semiring_bits [of b "2 ^ n"] show ?thesis
+ by (simp add: bits_eq_mod ac_simps)
+ qed
+ with a show ?thesis
+ by (simp add: b_def c_def)
+qed
+
+lemma bits_of_0 [simp]:
+ "bits n 0 = 0"
+ by (simp add: bits_eq_mod)
+
+lemma bits_plus:
+ "bits n (bits n a + bits n b) = bits n (a + b)"
+ by (simp add: bits_eq_mod mod_add_eq [symmetric])
+
+lemma bits_of_1_eq_0_iff [simp]:
+ "bits n 1 = 0 \<longleftrightarrow> n = 0"
+ by (induct n) simp_all
+
+end
+
+instance nat :: semiring_bits
+ by standard (simp add: mod_Suc Suc_double_not_eq_double)
+
+instance int :: semiring_bits
+ by standard (simp add: pos_zmod_mult_2)
+
+lemma bits_uminus:
+ fixes k :: int
+ shows "bits n (- (bits n k)) = bits n (- k)"
+ by (simp add: bits_eq_mod mod_minus_eq [symmetric])
+
+lemma bits_minus:
+ fixes k l :: int
+ shows "bits n (bits n k - bits n l) = bits n (k - l)"
+ by (simp add: bits_eq_mod mod_diff_eq [symmetric])
+
+lemma bits_nonnegative [simp]:
+ fixes k :: int
+ shows "bits n k \<ge> 0"
+ by (simp add: bits_eq_mod)
+
+definition signed_bits :: "nat \<Rightarrow> int \<Rightarrow> int"
+ where signed_bits_eq_bits:
+ "signed_bits n k = bits (Suc n) (k + 2 ^ n) - 2 ^ n"
+
+lemma signed_bits_eq_bits':
+ assumes "n > 0"
+ shows "signed_bits (n - Suc 0) k = bits n (k + 2 ^ (n - 1)) - 2 ^ (n - 1)"
+ using assms by (simp add: signed_bits_eq_bits)
+
+lemma signed_bits_0 [simp]:
+ "signed_bits 0 k = - (k mod 2)"
+proof (cases "even k")
+ case True
+ then have "odd (k + 1)"
+ by simp
+ then have "(k + 1) mod 2 = 1"
+ by (simp add: even_iff_mod_2_eq_zero)
+ with True show ?thesis
+ by (simp add: signed_bits_eq_bits)
+next
+ case False
+ then show ?thesis
+ by (simp add: signed_bits_eq_bits odd_iff_mod_2_eq_one)
+qed
+
+lemma signed_bits_Suc [simp]:
+ "signed_bits (Suc n) k = signed_bits n (k div 2) * 2 + k mod 2"
+ using zero_not_eq_two by (simp add: signed_bits_eq_bits algebra_simps)
+
+lemma signed_bits_of_0 [simp]:
+ "signed_bits n 0 = 0"
+ by (simp add: signed_bits_eq_bits bits_eq_mod)
+
+lemma signed_bits_of_minus_1 [simp]:
+ "signed_bits n (- 1) = - 1"
+ by (induct n) simp_all
+
+lemma signed_bits_eq_iff_bits_eq:
+ assumes "n > 0"
+ shows "signed_bits (n - Suc 0) k = signed_bits (n - Suc 0) l \<longleftrightarrow> bits n k = bits n l" (is "?P \<longleftrightarrow> ?Q")
+proof -
+ from assms obtain m where m: "n = Suc m"
+ by (cases n) auto
+ show ?thesis
+ proof
+ assume ?Q
+ have "bits (Suc m) (k + 2 ^ m) =
+ bits (Suc m) (bits (Suc m) k + bits (Suc m) (2 ^ m))"
+ by (simp only: bits_plus)
+ also have "\<dots> =
+ bits (Suc m) (bits (Suc m) l + bits (Suc m) (2 ^ m))"
+ by (simp only: \<open>?Q\<close> m [symmetric])
+ also have "\<dots> = bits (Suc m) (l + 2 ^ m)"
+ by (simp only: bits_plus)
+ finally show ?P
+ by (simp only: signed_bits_eq_bits m) simp
+ next
+ assume ?P
+ with assms have "(k + 2 ^ (n - Suc 0)) mod 2 ^ n = (l + 2 ^ (n - Suc 0)) mod 2 ^ n"
+ by (simp add: signed_bits_eq_bits' bits_eq_mod)
+ then have "(i + (k + 2 ^ (n - Suc 0))) mod 2 ^ n = (i + (l + 2 ^ (n - Suc 0))) mod 2 ^ n" for i
+ by (metis mod_add_eq)
+ then have "k mod 2 ^ n = l mod 2 ^ n"
+ by (metis add_diff_cancel_right' uminus_add_conv_diff)
+ then show ?Q
+ by (simp add: bits_eq_mod)
+ qed
+qed
+
+
+subsection \<open>Bit strings as quotient type\<close>
+
+subsubsection \<open>Basic properties\<close>
+
+quotient_type (overloaded) 'a word = int / "\<lambda>k l. bits LENGTH('a) k = bits LENGTH('a::len0) l"
+ by (auto intro!: equivpI reflpI sympI transpI)
+
+instantiation word :: (len0) "{semiring_numeral, comm_semiring_0, comm_ring}"
+begin
+
+lift_definition zero_word :: "'a word"
+ is 0
+ .
+
+lift_definition one_word :: "'a word"
+ is 1
+ .
+
+lift_definition plus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
+ is plus
+ by (subst bits_plus [symmetric]) (simp add: bits_plus)
+
+lift_definition uminus_word :: "'a word \<Rightarrow> 'a word"
+ is uminus
+ by (subst bits_uminus [symmetric]) (simp add: bits_uminus)
+
+lift_definition minus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
+ is minus
+ by (subst bits_minus [symmetric]) (simp add: bits_minus)
+
+lift_definition times_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
+ is times
+ by (auto simp add: bits_eq_mod intro: mod_mult_cong)
+
+instance
+ by standard (transfer; simp add: algebra_simps)+
+
+end
+
+instance word :: (len) comm_ring_1
+ by standard (transfer; simp)+
+
+
+subsubsection \<open>Conversions\<close>
+
+lemma [transfer_rule]:
+ "rel_fun HOL.eq pcr_word int of_nat"
+proof -
+ note transfer_rule_of_nat [transfer_rule]
+ show ?thesis by transfer_prover
+qed
+
+lemma [transfer_rule]:
+ "rel_fun HOL.eq pcr_word (\<lambda>k. k) of_int"
+proof -
+ note transfer_rule_of_int [transfer_rule]
+ have "rel_fun HOL.eq pcr_word (of_int :: int \<Rightarrow> int) (of_int :: int \<Rightarrow> 'a word)"
+ by transfer_prover
+ then show ?thesis by (simp add: id_def)
+qed
+
+context semiring_1
+begin
+
+lift_definition unsigned :: "'b::len0 word \<Rightarrow> 'a"
+ is "of_nat \<circ> nat \<circ> bits LENGTH('b)"
+ by simp
+
+lemma unsigned_0 [simp]:
+ "unsigned 0 = 0"
+ by transfer simp
+
+end
+
+context semiring_char_0
+begin
+
+lemma word_eq_iff_unsigned:
+ "a = b \<longleftrightarrow> unsigned a = unsigned b"
+ by safe (transfer; simp add: eq_nat_nat_iff)
+
+end
+
+context ring_1
+begin
+
+lift_definition signed :: "'b::len word \<Rightarrow> 'a"
+ is "of_int \<circ> signed_bits (LENGTH('b) - 1)"
+ by (simp add: signed_bits_eq_iff_bits_eq [symmetric])
+
+lemma signed_0 [simp]:
+ "signed 0 = 0"
+ by transfer simp
+
+end
+
+lemma unsigned_of_nat [simp]:
+ "unsigned (of_nat n :: 'a word) = bits LENGTH('a::len) n"
+ by transfer (simp add: nat_eq_iff bits_eq_mod zmod_int)
+
+lemma of_nat_unsigned [simp]:
+ "of_nat (unsigned a) = a"
+ by transfer simp
+
+lemma of_int_unsigned [simp]:
+ "of_int (unsigned a) = a"
+ by transfer simp
+
+context ring_char_0
+begin
+
+lemma word_eq_iff_signed:
+ "a = b \<longleftrightarrow> signed a = signed b"
+ by safe (transfer; auto simp add: signed_bits_eq_iff_bits_eq)
+
+end
+
+lemma signed_of_int [simp]:
+ "signed (of_int k :: 'a word) = signed_bits (LENGTH('a::len) - 1) k"
+ by transfer simp
+
+lemma of_int_signed [simp]:
+ "of_int (signed a) = a"
+ by transfer (simp add: signed_bits_eq_bits bits_eq_mod zdiff_zmod_left)
+
+
+subsubsection \<open>Properties\<close>
+
+
+subsubsection \<open>Division\<close>
+
+instantiation word :: (len0) modulo
+begin
+
+lift_definition divide_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
+ is "\<lambda>a b. bits LENGTH('a) a div bits LENGTH('a) b"
+ by simp
+
+lift_definition modulo_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
+ is "\<lambda>a b. bits LENGTH('a) a mod bits LENGTH('a) b"
+ by simp
+
+instance ..
+
+end
+
+
+subsubsection \<open>Orderings\<close>
+
+instantiation word :: (len0) linorder
+begin
+
+lift_definition less_eq_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool"
+ is "\<lambda>a b. bits LENGTH('a) a \<le> bits LENGTH('a) b"
+ by simp
+
+lift_definition less_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool"
+ is "\<lambda>a b. bits LENGTH('a) a < bits LENGTH('a) b"
+ by simp
+
+instance
+ by standard (transfer; auto)+
+
+end
+
+context linordered_semidom
+begin
+
+lemma word_less_eq_iff_unsigned:
+ "a \<le> b \<longleftrightarrow> unsigned a \<le> unsigned b"
+ by (transfer fixing: less_eq) (simp add: nat_le_eq_zle)
+
+lemma word_less_iff_unsigned:
+ "a < b \<longleftrightarrow> unsigned a < unsigned b"
+ by (transfer fixing: less) (auto dest: preorder_class.le_less_trans [OF bits_nonnegative])
+
+end
+
+end