--- a/src/Pure/Isar/theory_target.ML Fri Oct 19 20:57:14 2007 +0200
+++ b/src/Pure/Isar/theory_target.ML Fri Oct 19 20:57:16 2007 +0200
@@ -77,6 +77,9 @@
else ProofContext.naming_of (LocalTheory.target_of lthy))
|> NameSpace.qualified_names;
+fun class_target (Target {target, ...}) f =
+ LocalTheory.raw_theory f #>
+ LocalTheory.target (Class.refresh_syntax target);
(* notes *)
@@ -159,11 +162,12 @@
end;
-(* consts *)
+(* declare_const *)
-fun fork_mixfix false _ mx = ((NoSyn, NoSyn), mx)
- | fork_mixfix true false mx = ((NoSyn, mx), NoSyn)
- | fork_mixfix true true mx = ((mx, NoSyn), NoSyn);
+fun fork_mixfix (Target {is_locale, is_class, ...}) mx =
+ if not is_locale then (NoSyn, NoSyn, mx)
+ else if not is_class then (NoSyn, mx, NoSyn)
+ else (mx, NoSyn, NoSyn);
fun locale_const (prmode as (mode, _)) pos ((c, mx), rhs) phi =
let
@@ -181,86 +185,57 @@
Morphism.form (ProofContext.target_notation true prmode [(lhs', mx)])))
end;
-fun declare_consts (ta as Target {target, is_locale, is_class}) depends decls lthy =
+fun declare_const (ta as Target {target, is_locale, is_class}) depends ((c, T), mx) lthy =
let
val pos = ContextPosition.properties_of lthy;
- val thy = ProofContext.theory_of lthy;
val xs = filter depends (#1 (ProofContext.inferred_fixes (LocalTheory.target_of lthy)));
-
- fun const ((c, T), mx) thy =
- let
- val U = map #2 xs ---> T;
- val (mx12, mx3) = fork_mixfix is_locale is_class mx;
- val (const, thy') = Sign.declare_const pos (c, U, mx3) thy;
- val t = Term.list_comb (const, map Free xs);
- in (((c, mx12), t), thy') end;
- fun class_const ((c, _), _) ((_, (mx1, _)), t) =
- LocalTheory.raw_theory_result (Class.add_logical_const target pos ((c, mx1), t))
- #> snd
- #> LocalTheory.target (Class.refresh_syntax target);
-
- val (abbrs, lthy') = lthy
- |> LocalTheory.theory_result (fold_map const decls)
- val abbrs' = (map o apfst o apsnd) snd abbrs;
+ val U = map #2 xs ---> T;
+ val (mx1, mx2, mx3) = fork_mixfix ta mx;
+ val (const, lthy') = lthy |> LocalTheory.theory_result (Sign.declare_const pos (c, U, mx3));
+ val t = Term.list_comb (const, map Free xs);
in
lthy'
- |> is_locale ? fold (term_syntax ta o locale_const Syntax.mode_default pos) abbrs'
- |> is_class ? fold2 class_const decls abbrs
- |> fold_map (apfst (apsnd snd) oo LocalDefs.add_def) abbrs'
+ |> is_locale ? term_syntax ta (locale_const Syntax.mode_default pos ((c, mx2), t))
+ |> is_class ? class_target ta (Class.add_logical_const target pos ((c, mx1), t))
+ |> LocalDefs.add_def ((c, NoSyn), t)
end;
(* abbrev *)
-local
-
-fun context_abbrev pos (c, t) lthy = lthy
- |> ProofContext.add_abbrev Syntax.internalM pos (c, t) |> snd
- |> LocalDefs.add_def ((c, NoSyn), t);
-
-fun class_abbrev target prmode pos ((c, mx), rhs) lthy = lthy
- |> LocalTheory.raw_theory_result
- (Class.add_syntactic_const target prmode pos ((c, mx), rhs))
- |> snd
- |> LocalTheory.target (Class.refresh_syntax target);
-
-in
-
-fun abbrev (ta as Target {target, is_locale, is_class}) prmode ((raw_c, mx), raw_t) lthy =
+fun abbrev (ta as Target {target, is_locale, is_class}) prmode ((c, mx), t) lthy =
let
val pos = ContextPosition.properties_of lthy;
val thy_ctxt = ProofContext.init (ProofContext.theory_of lthy);
val target_ctxt = LocalTheory.target_of lthy;
- val target_morphism = LocalTheory.target_morphism lthy;
- val c = Morphism.name target_morphism raw_c;
- val t = Morphism.term target_morphism raw_t;
+
+ val (mx1, mx2, mx3) = fork_mixfix ta mx;
+ val t' = Assumption.export_term lthy target_ctxt t;
+ val xs = map Free (rev (Variable.add_fixed target_ctxt t' []));
+ val u = fold_rev lambda xs t';
+ val global_rhs =
+ singleton (Variable.export_terms (Variable.declare_term u target_ctxt) thy_ctxt) u;
- val xs = map Free (rev (Variable.add_fixed target_ctxt t []));
- val ((mx1, mx2), mx3) = fork_mixfix is_locale is_class mx;
-
- val global_rhs =
- singleton (Variable.export_terms (Variable.declare_term t target_ctxt) thy_ctxt)
- (fold_rev lambda xs t);
+ val lthy' =
+ if is_locale then
+ lthy
+ |> LocalTheory.theory_result (Sign.add_abbrev Syntax.internalM pos (c, global_rhs))
+ |-> (fn (lhs, _) =>
+ let val lhs' = Term.list_comb (Logic.unvarify lhs, xs) in
+ term_syntax ta (locale_const prmode pos ((c, mx2), lhs')) #>
+ is_class ? class_target ta (Class.add_syntactic_const target prmode pos ((c, mx1), lhs'))
+ end)
+ else
+ lthy
+ |> LocalTheory.theory
+ (Sign.add_abbrev (#1 prmode) pos (c, global_rhs) #-> (fn (lhs, _) =>
+ Sign.notation true prmode [(lhs, mx3)]))
in
- if is_locale then
- lthy
- |> LocalTheory.theory_result (Sign.add_abbrev Syntax.internalM pos (c, global_rhs))
- |-> (fn (lhs, _) =>
- let val lhs' = Term.list_comb (Logic.unvarify lhs, xs) in
- term_syntax ta (locale_const prmode pos ((c, mx2), lhs')) #>
- is_class ? class_abbrev target prmode pos ((c, mx1), lhs')
- end)
- |> context_abbrev pos (c, raw_t)
- else
- lthy
- |> LocalTheory.theory
- (Sign.add_abbrev (#1 prmode) pos (c, global_rhs)
- #-> (fn (lhs, _) => Sign.notation true prmode [(lhs, mx3)]))
- |> context_abbrev pos (c, raw_t)
+ lthy'
+ |> ProofContext.add_abbrev Syntax.internalM pos (c, t) |> snd
+ |> LocalDefs.add_def ((c, NoSyn), t)
end;
-end;
-
(* define *)
@@ -276,9 +251,8 @@
val xs = Variable.add_fixed (LocalTheory.target_of lthy) rhs' [];
val T = Term.fastype_of rhs;
- (*consts*)
- val ([(lhs, local_def)], lthy2) = lthy
- |> declare_consts ta (member (op =) xs) [((c, T), mx)];
+ (*const*)
+ val ((lhs, local_def), lthy2) = lthy |> declare_const ta (member (op =) xs) ((c, T), mx);
val (_, lhs') = Logic.dest_equals (Thm.prop_of local_def);
(*def*)
@@ -289,7 +263,7 @@
(*global.c xs == rhs'*) global_def,
(*rhs' == rhs*) Thm.symmetric rhs_conv];
- (*notes*)
+ (*note*)
val ([(res_name, [res])], lthy4) = lthy3
|> notes ta kind [((name', atts), [([def], [])])];
in ((lhs, (res_name, res)), lthy4) end;
@@ -304,7 +278,7 @@
val xs = fold Term.add_frees expanded_props [];
(*consts*)
- val (consts, lthy') = declare_consts ta (member (op =) xs) vars lthy;
+ val (consts, lthy') = fold_map (declare_const ta (member (op =) xs)) vars lthy;
val global_consts = map (Term.dest_Const o Term.head_of o Thm.term_of o Thm.rhs_of o #2) consts;
(*axioms*)