--- a/NEWS Wed Feb 24 14:19:54 2010 +0100
+++ b/NEWS Wed Feb 24 14:34:40 2010 +0100
@@ -52,6 +52,9 @@
*** HOL ***
+* Theory "Rational" renamed to "Rat", for consistency with "Nat", "Int" etc.
+INCOMPATIBILITY.
+
* New set of rules "ac_simps" provides combined assoc / commute rewrites
for all interpretations of the appropriate generic locales.
--- a/src/HOL/IsaMakefile Wed Feb 24 14:19:54 2010 +0100
+++ b/src/HOL/IsaMakefile Wed Feb 24 14:34:40 2010 +0100
@@ -352,7 +352,7 @@
PReal.thy \
Parity.thy \
RComplete.thy \
- Rational.thy \
+ Rat.thy \
Real.thy \
RealDef.thy \
RealPow.thy \
--- a/src/HOL/Library/Binomial.thy Wed Feb 24 14:19:54 2010 +0100
+++ b/src/HOL/Library/Binomial.thy Wed Feb 24 14:34:40 2010 +0100
@@ -1,4 +1,4 @@
-(* Title: HOL/Binomial.thy
+(* Title: HOL/Library/Binomial.thy
Author: Lawrence C Paulson, Amine Chaieb
Copyright 1997 University of Cambridge
*)
@@ -6,7 +6,7 @@
header {* Binomial Coefficients *}
theory Binomial
-imports Fact SetInterval Presburger Main Rational
+imports Complex_Main
begin
text {* This development is based on the work of Andy Gordon and
--- a/src/HOL/Library/Fraction_Field.thy Wed Feb 24 14:19:54 2010 +0100
+++ b/src/HOL/Library/Fraction_Field.thy Wed Feb 24 14:34:40 2010 +0100
@@ -1,12 +1,12 @@
-(* Title: Fraction_Field.thy
+(* Title: HOL/Library/Fraction_Field.thy
Author: Amine Chaieb, University of Cambridge
*)
header{* A formalization of the fraction field of any integral domain
- A generalization of Rational.thy from int to any integral domain *}
+ A generalization of Rat.thy from int to any integral domain *}
theory Fraction_Field
-imports Main (* Equiv_Relations Plain *)
+imports Main
begin
subsection {* General fractions construction *}
--- a/src/HOL/Nitpick_Examples/Typedef_Nits.thy Wed Feb 24 14:19:54 2010 +0100
+++ b/src/HOL/Nitpick_Examples/Typedef_Nits.thy Wed Feb 24 14:34:40 2010 +0100
@@ -8,7 +8,7 @@
header {* Examples Featuring Nitpick Applied to Typedefs *}
theory Typedef_Nits
-imports Main Rational
+imports Complex_Main
begin
nitpick_params [card = 1\<midarrow>4, sat_solver = MiniSat_JNI, max_threads = 1,
--- a/src/HOL/PReal.thy Wed Feb 24 14:19:54 2010 +0100
+++ b/src/HOL/PReal.thy Wed Feb 24 14:34:40 2010 +0100
@@ -9,7 +9,7 @@
header {* Positive real numbers *}
theory PReal
-imports Rational
+imports Rat
begin
text{*Could be generalized and moved to @{text Groups}*}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Rat.thy Wed Feb 24 14:34:40 2010 +0100
@@ -0,0 +1,1194 @@
+(* Title: HOL/Rat.thy
+ Author: Markus Wenzel, TU Muenchen
+*)
+
+header {* Rational numbers *}
+
+theory Rat
+imports GCD Archimedean_Field
+begin
+
+subsection {* Rational numbers as quotient *}
+
+subsubsection {* Construction of the type of rational numbers *}
+
+definition
+ ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
+ "ratrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
+
+lemma ratrel_iff [simp]:
+ "(x, y) \<in> ratrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
+ by (simp add: ratrel_def)
+
+lemma refl_on_ratrel: "refl_on {x. snd x \<noteq> 0} ratrel"
+ by (auto simp add: refl_on_def ratrel_def)
+
+lemma sym_ratrel: "sym ratrel"
+ by (simp add: ratrel_def sym_def)
+
+lemma trans_ratrel: "trans ratrel"
+proof (rule transI, unfold split_paired_all)
+ fix a b a' b' a'' b'' :: int
+ assume A: "((a, b), (a', b')) \<in> ratrel"
+ assume B: "((a', b'), (a'', b'')) \<in> ratrel"
+ have "b' * (a * b'') = b'' * (a * b')" by simp
+ also from A have "a * b' = a' * b" by auto
+ also have "b'' * (a' * b) = b * (a' * b'')" by simp
+ also from B have "a' * b'' = a'' * b'" by auto
+ also have "b * (a'' * b') = b' * (a'' * b)" by simp
+ finally have "b' * (a * b'') = b' * (a'' * b)" .
+ moreover from B have "b' \<noteq> 0" by auto
+ ultimately have "a * b'' = a'' * b" by simp
+ with A B show "((a, b), (a'', b'')) \<in> ratrel" by auto
+qed
+
+lemma equiv_ratrel: "equiv {x. snd x \<noteq> 0} ratrel"
+ by (rule equiv.intro [OF refl_on_ratrel sym_ratrel trans_ratrel])
+
+lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
+lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
+
+lemma equiv_ratrel_iff [iff]:
+ assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
+ shows "ratrel `` {x} = ratrel `` {y} \<longleftrightarrow> (x, y) \<in> ratrel"
+ by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms)
+
+typedef (Rat) rat = "{x. snd x \<noteq> 0} // ratrel"
+proof
+ have "(0::int, 1::int) \<in> {x. snd x \<noteq> 0}" by simp
+ then show "ratrel `` {(0, 1)} \<in> {x. snd x \<noteq> 0} // ratrel" by (rule quotientI)
+qed
+
+lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel `` {x} \<in> Rat"
+ by (simp add: Rat_def quotientI)
+
+declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp]
+
+
+subsubsection {* Representation and basic operations *}
+
+definition
+ Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
+ "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})"
+
+lemma eq_rat:
+ shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
+ and "\<And>a. Fract a 0 = Fract 0 1"
+ and "\<And>a c. Fract 0 a = Fract 0 c"
+ by (simp_all add: Fract_def)
+
+lemma Rat_cases [case_names Fract, cases type: rat]:
+ assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
+ shows C
+proof -
+ obtain a b :: int where "q = Fract a b" and "b \<noteq> 0"
+ by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def)
+ let ?a = "a div gcd a b"
+ let ?b = "b div gcd a b"
+ from `b \<noteq> 0` have "?b * gcd a b = b"
+ by (simp add: dvd_div_mult_self)
+ with `b \<noteq> 0` have "?b \<noteq> 0" by auto
+ from `q = Fract a b` `b \<noteq> 0` `?b \<noteq> 0` have q: "q = Fract ?a ?b"
+ by (simp add: eq_rat dvd_div_mult mult_commute [of a])
+ from `b \<noteq> 0` have coprime: "coprime ?a ?b"
+ by (auto intro: div_gcd_coprime_int)
+ show C proof (cases "b > 0")
+ case True
+ note assms
+ moreover note q
+ moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff)
+ moreover note coprime
+ ultimately show C .
+ next
+ case False
+ note assms
+ moreover from q have "q = Fract (- ?a) (- ?b)" by (simp add: Fract_def)
+ moreover from False `b \<noteq> 0` have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff)
+ moreover from coprime have "coprime (- ?a) (- ?b)" by simp
+ ultimately show C .
+ qed
+qed
+
+lemma Rat_induct [case_names Fract, induct type: rat]:
+ assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)"
+ shows "P q"
+ using assms by (cases q) simp
+
+instantiation rat :: comm_ring_1
+begin
+
+definition
+ Zero_rat_def: "0 = Fract 0 1"
+
+definition
+ One_rat_def: "1 = Fract 1 1"
+
+definition
+ add_rat_def:
+ "q + r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+ ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
+
+lemma add_rat [simp]:
+ assumes "b \<noteq> 0" and "d \<noteq> 0"
+ shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
+proof -
+ have "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
+ respects2 ratrel"
+ by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib)
+ with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2)
+qed
+
+definition
+ minus_rat_def:
+ "- q = Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel `` {(- fst x, snd x)})"
+
+lemma minus_rat [simp]: "- Fract a b = Fract (- a) b"
+proof -
+ have "(\<lambda>x. ratrel `` {(- fst x, snd x)}) respects ratrel"
+ by (simp add: congruent_def)
+ then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel)
+qed
+
+lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
+ by (cases "b = 0") (simp_all add: eq_rat)
+
+definition
+ diff_rat_def: "q - r = q + - (r::rat)"
+
+lemma diff_rat [simp]:
+ assumes "b \<noteq> 0" and "d \<noteq> 0"
+ shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
+ using assms by (simp add: diff_rat_def)
+
+definition
+ mult_rat_def:
+ "q * r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+ ratrel``{(fst x * fst y, snd x * snd y)})"
+
+lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
+proof -
+ have "(\<lambda>x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel"
+ by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all
+ then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2)
+qed
+
+lemma mult_rat_cancel:
+ assumes "c \<noteq> 0"
+ shows "Fract (c * a) (c * b) = Fract a b"
+proof -
+ from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
+ then show ?thesis by (simp add: mult_rat [symmetric])
+qed
+
+instance proof
+ fix q r s :: rat show "(q * r) * s = q * (r * s)"
+ by (cases q, cases r, cases s) (simp add: eq_rat)
+next
+ fix q r :: rat show "q * r = r * q"
+ by (cases q, cases r) (simp add: eq_rat)
+next
+ fix q :: rat show "1 * q = q"
+ by (cases q) (simp add: One_rat_def eq_rat)
+next
+ fix q r s :: rat show "(q + r) + s = q + (r + s)"
+ by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
+next
+ fix q r :: rat show "q + r = r + q"
+ by (cases q, cases r) (simp add: eq_rat)
+next
+ fix q :: rat show "0 + q = q"
+ by (cases q) (simp add: Zero_rat_def eq_rat)
+next
+ fix q :: rat show "- q + q = 0"
+ by (cases q) (simp add: Zero_rat_def eq_rat)
+next
+ fix q r :: rat show "q - r = q + - r"
+ by (cases q, cases r) (simp add: eq_rat)
+next
+ fix q r s :: rat show "(q + r) * s = q * s + r * s"
+ by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
+next
+ show "(0::rat) \<noteq> 1" by (simp add: Zero_rat_def One_rat_def eq_rat)
+qed
+
+end
+
+lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
+ by (induct k) (simp_all add: Zero_rat_def One_rat_def)
+
+lemma of_int_rat: "of_int k = Fract k 1"
+ by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
+
+lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
+ by (rule of_nat_rat [symmetric])
+
+lemma Fract_of_int_eq: "Fract k 1 = of_int k"
+ by (rule of_int_rat [symmetric])
+
+instantiation rat :: number_ring
+begin
+
+definition
+ rat_number_of_def: "number_of w = Fract w 1"
+
+instance proof
+qed (simp add: rat_number_of_def of_int_rat)
+
+end
+
+lemma rat_number_collapse:
+ "Fract 0 k = 0"
+ "Fract 1 1 = 1"
+ "Fract (number_of k) 1 = number_of k"
+ "Fract k 0 = 0"
+ by (cases "k = 0")
+ (simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def)
+
+lemma rat_number_expand [code_unfold]:
+ "0 = Fract 0 1"
+ "1 = Fract 1 1"
+ "number_of k = Fract (number_of k) 1"
+ by (simp_all add: rat_number_collapse)
+
+lemma iszero_rat [simp]:
+ "iszero (number_of k :: rat) \<longleftrightarrow> iszero (number_of k :: int)"
+ by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat)
+
+lemma Rat_cases_nonzero [case_names Fract 0]:
+ assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
+ assumes 0: "q = 0 \<Longrightarrow> C"
+ shows C
+proof (cases "q = 0")
+ case True then show C using 0 by auto
+next
+ case False
+ then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto
+ moreover with False have "0 \<noteq> Fract a b" by simp
+ with `b > 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
+ with Fract `q = Fract a b` `b > 0` `coprime a b` show C by blast
+qed
+
+subsubsection {* Function @{text normalize} *}
+
+lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
+proof (cases "b = 0")
+ case True then show ?thesis by (simp add: eq_rat)
+next
+ case False
+ moreover have "b div gcd a b * gcd a b = b"
+ by (rule dvd_div_mult_self) simp
+ ultimately have "b div gcd a b \<noteq> 0" by auto
+ with False show ?thesis by (simp add: eq_rat dvd_div_mult mult_commute [of a])
+qed
+
+definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where
+ "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a))
+ else if snd p = 0 then (0, 1)
+ else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))"
+
+lemma normalize_crossproduct:
+ assumes "q \<noteq> 0" "s \<noteq> 0"
+ assumes "normalize (p, q) = normalize (r, s)"
+ shows "p * s = r * q"
+proof -
+ have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r"
+ proof -
+ assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q"
+ then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp
+ with assms show "p * s = q * r" by (auto simp add: mult_ac sgn_times sgn_0_0)
+ qed
+ from assms show ?thesis
+ by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult_commute sgn_times split: if_splits intro: aux)
+qed
+
+lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
+ by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse
+ split:split_if_asm)
+
+lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0"
+ by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
+ split:split_if_asm)
+
+lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q"
+ by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int
+ split:split_if_asm)
+
+lemma normalize_stable [simp]:
+ "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)"
+ by (simp add: normalize_def)
+
+lemma normalize_denom_zero [simp]:
+ "normalize (p, 0) = (0, 1)"
+ by (simp add: normalize_def)
+
+lemma normalize_negative [simp]:
+ "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)"
+ by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div)
+
+text{*
+ Decompose a fraction into normalized, i.e. coprime numerator and denominator:
+*}
+
+definition quotient_of :: "rat \<Rightarrow> int \<times> int" where
+ "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) &
+ snd pair > 0 & coprime (fst pair) (snd pair))"
+
+lemma quotient_of_unique:
+ "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
+proof (cases r)
+ case (Fract a b)
+ then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto
+ then show ?thesis proof (rule ex1I)
+ fix p
+ obtain c d :: int where p: "p = (c, d)" by (cases p)
+ assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
+ with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all
+ have "c = a \<and> d = b"
+ proof (cases "a = 0")
+ case True with Fract Fract' show ?thesis by (simp add: eq_rat)
+ next
+ case False
+ with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat)
+ then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto
+ with `b > 0` `d > 0` have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff)
+ with `a \<noteq> 0` `c \<noteq> 0` have sgn: "sgn a = sgn c" by (auto simp add: not_less)
+ from `coprime a b` `coprime c d` have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>"
+ by (simp add: coprime_crossproduct_int)
+ with `b > 0` `d > 0` have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp
+ then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn)
+ with sgn * show ?thesis by (auto simp add: sgn_0_0)
+ qed
+ with p show "p = (a, b)" by simp
+ qed
+qed
+
+lemma quotient_of_Fract [code]:
+ "quotient_of (Fract a b) = normalize (a, b)"
+proof -
+ have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract)
+ by (rule sym) (auto intro: normalize_eq)
+ moreover have "0 < snd (normalize (a, b))" (is ?denom_pos)
+ by (cases "normalize (a, b)") (rule normalize_denom_pos, simp)
+ moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime)
+ by (rule normalize_coprime) simp
+ ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast
+ with quotient_of_unique have
+ "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)"
+ by (rule the1_equality)
+ then show ?thesis by (simp add: quotient_of_def)
+qed
+
+lemma quotient_of_number [simp]:
+ "quotient_of 0 = (0, 1)"
+ "quotient_of 1 = (1, 1)"
+ "quotient_of (number_of k) = (number_of k, 1)"
+ by (simp_all add: rat_number_expand quotient_of_Fract)
+
+lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
+ by (simp add: quotient_of_Fract normalize_eq)
+
+lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0"
+ by (cases r) (simp add: quotient_of_Fract normalize_denom_pos)
+
+lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q"
+ by (cases r) (simp add: quotient_of_Fract normalize_coprime)
+
+lemma quotient_of_inject:
+ assumes "quotient_of a = quotient_of b"
+ shows "a = b"
+proof -
+ obtain p q r s where a: "a = Fract p q"
+ and b: "b = Fract r s"
+ and "q > 0" and "s > 0" by (cases a, cases b)
+ with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct)
+qed
+
+lemma quotient_of_inject_eq:
+ "quotient_of a = quotient_of b \<longleftrightarrow> a = b"
+ by (auto simp add: quotient_of_inject)
+
+
+subsubsection {* The field of rational numbers *}
+
+instantiation rat :: "{field, division_by_zero}"
+begin
+
+definition
+ inverse_rat_def:
+ "inverse q = Abs_Rat (\<Union>x \<in> Rep_Rat q.
+ ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
+
+lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
+proof -
+ have "(\<lambda>x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel"
+ by (auto simp add: congruent_def mult_commute)
+ then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel)
+qed
+
+definition
+ divide_rat_def: "q / r = q * inverse (r::rat)"
+
+lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
+ by (simp add: divide_rat_def)
+
+instance proof
+ show "inverse 0 = (0::rat)" by (simp add: rat_number_expand)
+ (simp add: rat_number_collapse)
+next
+ fix q :: rat
+ assume "q \<noteq> 0"
+ then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero)
+ (simp_all add: rat_number_expand eq_rat)
+next
+ fix q r :: rat
+ show "q / r = q * inverse r" by (simp add: divide_rat_def)
+qed
+
+end
+
+
+subsubsection {* Various *}
+
+lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
+ by (simp add: rat_number_expand)
+
+lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
+ by (simp add: Fract_of_int_eq [symmetric])
+
+lemma Fract_number_of_quotient:
+ "Fract (number_of k) (number_of l) = number_of k / number_of l"
+ unfolding Fract_of_int_quotient number_of_is_id number_of_eq ..
+
+lemma Fract_1_number_of:
+ "Fract 1 (number_of k) = 1 / number_of k"
+ unfolding Fract_of_int_quotient number_of_eq by simp
+
+subsubsection {* The ordered field of rational numbers *}
+
+instantiation rat :: linorder
+begin
+
+definition
+ le_rat_def:
+ "q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+ {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
+
+lemma le_rat [simp]:
+ assumes "b \<noteq> 0" and "d \<noteq> 0"
+ shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
+proof -
+ have "(\<lambda>x y. {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})
+ respects2 ratrel"
+ proof (clarsimp simp add: congruent2_def)
+ fix a b a' b' c d c' d'::int
+ assume neq: "b \<noteq> 0" "b' \<noteq> 0" "d \<noteq> 0" "d' \<noteq> 0"
+ assume eq1: "a * b' = a' * b"
+ assume eq2: "c * d' = c' * d"
+
+ let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
+ {
+ fix a b c d x :: int assume x: "x \<noteq> 0"
+ have "?le a b c d = ?le (a * x) (b * x) c d"
+ proof -
+ from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
+ hence "?le a b c d =
+ ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
+ by (simp add: mult_le_cancel_right)
+ also have "... = ?le (a * x) (b * x) c d"
+ by (simp add: mult_ac)
+ finally show ?thesis .
+ qed
+ } note le_factor = this
+
+ let ?D = "b * d" and ?D' = "b' * d'"
+ from neq have D: "?D \<noteq> 0" by simp
+ from neq have "?D' \<noteq> 0" by simp
+ hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
+ by (rule le_factor)
+ also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')"
+ by (simp add: mult_ac)
+ also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
+ by (simp only: eq1 eq2)
+ also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
+ by (simp add: mult_ac)
+ also from D have "... = ?le a' b' c' d'"
+ by (rule le_factor [symmetric])
+ finally show "?le a b c d = ?le a' b' c' d'" .
+ qed
+ with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2)
+qed
+
+definition
+ less_rat_def: "z < (w::rat) \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
+
+lemma less_rat [simp]:
+ assumes "b \<noteq> 0" and "d \<noteq> 0"
+ shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
+ using assms by (simp add: less_rat_def eq_rat order_less_le)
+
+instance proof
+ fix q r s :: rat
+ {
+ assume "q \<le> r" and "r \<le> s"
+ then show "q \<le> s"
+ proof (induct q, induct r, induct s)
+ fix a b c d e f :: int
+ assume neq: "b > 0" "d > 0" "f > 0"
+ assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
+ show "Fract a b \<le> Fract e f"
+ proof -
+ from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
+ by (auto simp add: zero_less_mult_iff linorder_neq_iff)
+ have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
+ proof -
+ from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+ by simp
+ with ff show ?thesis by (simp add: mult_le_cancel_right)
+ qed
+ also have "... = (c * f) * (d * f) * (b * b)" by algebra
+ also have "... \<le> (e * d) * (d * f) * (b * b)"
+ proof -
+ from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
+ by simp
+ with bb show ?thesis by (simp add: mult_le_cancel_right)
+ qed
+ finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
+ by (simp only: mult_ac)
+ with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
+ by (simp add: mult_le_cancel_right)
+ with neq show ?thesis by simp
+ qed
+ qed
+ next
+ assume "q \<le> r" and "r \<le> q"
+ then show "q = r"
+ proof (induct q, induct r)
+ fix a b c d :: int
+ assume neq: "b > 0" "d > 0"
+ assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
+ show "Fract a b = Fract c d"
+ proof -
+ from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+ by simp
+ also have "... \<le> (a * d) * (b * d)"
+ proof -
+ from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
+ by simp
+ thus ?thesis by (simp only: mult_ac)
+ qed
+ finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
+ moreover from neq have "b * d \<noteq> 0" by simp
+ ultimately have "a * d = c * b" by simp
+ with neq show ?thesis by (simp add: eq_rat)
+ qed
+ qed
+ next
+ show "q \<le> q"
+ by (induct q) simp
+ show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
+ by (induct q, induct r) (auto simp add: le_less mult_commute)
+ show "q \<le> r \<or> r \<le> q"
+ by (induct q, induct r)
+ (simp add: mult_commute, rule linorder_linear)
+ }
+qed
+
+end
+
+instantiation rat :: "{distrib_lattice, abs_if, sgn_if}"
+begin
+
+definition
+ abs_rat_def: "\<bar>q\<bar> = (if q < 0 then -q else (q::rat))"
+
+lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
+ by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
+
+definition
+ sgn_rat_def: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
+
+lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
+ unfolding Fract_of_int_eq
+ by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
+ (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
+
+definition
+ "(inf \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = min"
+
+definition
+ "(sup \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = max"
+
+instance by intro_classes
+ (auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
+
+end
+
+instance rat :: linordered_field
+proof
+ fix q r s :: rat
+ show "q \<le> r ==> s + q \<le> s + r"
+ proof (induct q, induct r, induct s)
+ fix a b c d e f :: int
+ assume neq: "b > 0" "d > 0" "f > 0"
+ assume le: "Fract a b \<le> Fract c d"
+ show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
+ proof -
+ let ?F = "f * f" from neq have F: "0 < ?F"
+ by (auto simp add: zero_less_mult_iff)
+ from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+ by simp
+ with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
+ by (simp add: mult_le_cancel_right)
+ with neq show ?thesis by (simp add: mult_ac int_distrib)
+ qed
+ qed
+ show "q < r ==> 0 < s ==> s * q < s * r"
+ proof (induct q, induct r, induct s)
+ fix a b c d e f :: int
+ assume neq: "b > 0" "d > 0" "f > 0"
+ assume le: "Fract a b < Fract c d"
+ assume gt: "0 < Fract e f"
+ show "Fract e f * Fract a b < Fract e f * Fract c d"
+ proof -
+ let ?E = "e * f" and ?F = "f * f"
+ from neq gt have "0 < ?E"
+ by (auto simp add: Zero_rat_def order_less_le eq_rat)
+ moreover from neq have "0 < ?F"
+ by (auto simp add: zero_less_mult_iff)
+ moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
+ by simp
+ ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
+ by (simp add: mult_less_cancel_right)
+ with neq show ?thesis
+ by (simp add: mult_ac)
+ qed
+ qed
+qed auto
+
+lemma Rat_induct_pos [case_names Fract, induct type: rat]:
+ assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
+ shows "P q"
+proof (cases q)
+ have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
+ proof -
+ fix a::int and b::int
+ assume b: "b < 0"
+ hence "0 < -b" by simp
+ hence "P (Fract (-a) (-b))" by (rule step)
+ thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
+ qed
+ case (Fract a b)
+ thus "P q" by (force simp add: linorder_neq_iff step step')
+qed
+
+lemma zero_less_Fract_iff:
+ "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
+ by (simp add: Zero_rat_def zero_less_mult_iff)
+
+lemma Fract_less_zero_iff:
+ "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
+ by (simp add: Zero_rat_def mult_less_0_iff)
+
+lemma zero_le_Fract_iff:
+ "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
+ by (simp add: Zero_rat_def zero_le_mult_iff)
+
+lemma Fract_le_zero_iff:
+ "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
+ by (simp add: Zero_rat_def mult_le_0_iff)
+
+lemma one_less_Fract_iff:
+ "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
+ by (simp add: One_rat_def mult_less_cancel_right_disj)
+
+lemma Fract_less_one_iff:
+ "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
+ by (simp add: One_rat_def mult_less_cancel_right_disj)
+
+lemma one_le_Fract_iff:
+ "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
+ by (simp add: One_rat_def mult_le_cancel_right)
+
+lemma Fract_le_one_iff:
+ "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
+ by (simp add: One_rat_def mult_le_cancel_right)
+
+
+subsubsection {* Rationals are an Archimedean field *}
+
+lemma rat_floor_lemma:
+ shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
+proof -
+ have "Fract a b = of_int (a div b) + Fract (a mod b) b"
+ by (cases "b = 0", simp, simp add: of_int_rat)
+ moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
+ unfolding Fract_of_int_quotient
+ by (rule linorder_cases [of b 0])
+ (simp add: divide_nonpos_neg, simp, simp add: divide_nonneg_pos)
+ ultimately show ?thesis by simp
+qed
+
+instance rat :: archimedean_field
+proof
+ fix r :: rat
+ show "\<exists>z. r \<le> of_int z"
+ proof (induct r)
+ case (Fract a b)
+ have "Fract a b \<le> of_int (a div b + 1)"
+ using rat_floor_lemma [of a b] by simp
+ then show "\<exists>z. Fract a b \<le> of_int z" ..
+ qed
+qed
+
+lemma floor_Fract: "floor (Fract a b) = a div b"
+ using rat_floor_lemma [of a b]
+ by (simp add: floor_unique)
+
+
+subsection {* Linear arithmetic setup *}
+
+declaration {*
+ K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
+ (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
+ #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
+ (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
+ #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
+ @{thm True_implies_equals},
+ read_instantiate @{context} [(("a", 0), "(number_of ?v)")] @{thm right_distrib},
+ @{thm divide_1}, @{thm divide_zero_left},
+ @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
+ @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
+ @{thm of_int_minus}, @{thm of_int_diff},
+ @{thm of_int_of_nat_eq}]
+ #> Lin_Arith.add_simprocs Numeral_Simprocs.field_cancel_numeral_factors
+ #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
+ #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
+*}
+
+
+subsection {* Embedding from Rationals to other Fields *}
+
+class field_char_0 = field + ring_char_0
+
+subclass (in linordered_field) field_char_0 ..
+
+context field_char_0
+begin
+
+definition of_rat :: "rat \<Rightarrow> 'a" where
+ "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
+
+end
+
+lemma of_rat_congruent:
+ "(\<lambda>(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel"
+apply (rule congruent.intro)
+apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
+apply (simp only: of_int_mult [symmetric])
+done
+
+lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
+ unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent)
+
+lemma of_rat_0 [simp]: "of_rat 0 = 0"
+by (simp add: Zero_rat_def of_rat_rat)
+
+lemma of_rat_1 [simp]: "of_rat 1 = 1"
+by (simp add: One_rat_def of_rat_rat)
+
+lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
+by (induct a, induct b, simp add: of_rat_rat add_frac_eq)
+
+lemma of_rat_minus: "of_rat (- a) = - of_rat a"
+by (induct a, simp add: of_rat_rat)
+
+lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
+by (simp only: diff_minus of_rat_add of_rat_minus)
+
+lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
+apply (induct a, induct b, simp add: of_rat_rat)
+apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
+done
+
+lemma nonzero_of_rat_inverse:
+ "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
+apply (rule inverse_unique [symmetric])
+apply (simp add: of_rat_mult [symmetric])
+done
+
+lemma of_rat_inverse:
+ "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
+ inverse (of_rat a)"
+by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
+
+lemma nonzero_of_rat_divide:
+ "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
+by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
+
+lemma of_rat_divide:
+ "(of_rat (a / b)::'a::{field_char_0,division_by_zero})
+ = of_rat a / of_rat b"
+by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
+
+lemma of_rat_power:
+ "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
+by (induct n) (simp_all add: of_rat_mult)
+
+lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
+apply (induct a, induct b)
+apply (simp add: of_rat_rat eq_rat)
+apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
+apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
+done
+
+lemma of_rat_less:
+ "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
+proof (induct r, induct s)
+ fix a b c d :: int
+ assume not_zero: "b > 0" "d > 0"
+ then have "b * d > 0" by (rule mult_pos_pos)
+ have of_int_divide_less_eq:
+ "(of_int a :: 'a) / of_int b < of_int c / of_int d
+ \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
+ using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
+ show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d)
+ \<longleftrightarrow> Fract a b < Fract c d"
+ using not_zero `b * d > 0`
+ by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
+qed
+
+lemma of_rat_less_eq:
+ "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
+ unfolding le_less by (auto simp add: of_rat_less)
+
+lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
+
+lemma of_rat_eq_id [simp]: "of_rat = id"
+proof
+ fix a
+ show "of_rat a = id a"
+ by (induct a)
+ (simp add: of_rat_rat Fract_of_int_eq [symmetric])
+qed
+
+text{*Collapse nested embeddings*}
+lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
+by (induct n) (simp_all add: of_rat_add)
+
+lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
+by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
+
+lemma of_rat_number_of_eq [simp]:
+ "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
+by (simp add: number_of_eq)
+
+lemmas zero_rat = Zero_rat_def
+lemmas one_rat = One_rat_def
+
+abbreviation
+ rat_of_nat :: "nat \<Rightarrow> rat"
+where
+ "rat_of_nat \<equiv> of_nat"
+
+abbreviation
+ rat_of_int :: "int \<Rightarrow> rat"
+where
+ "rat_of_int \<equiv> of_int"
+
+subsection {* The Set of Rational Numbers *}
+
+context field_char_0
+begin
+
+definition
+ Rats :: "'a set" where
+ "Rats = range of_rat"
+
+notation (xsymbols)
+ Rats ("\<rat>")
+
+end
+
+lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
+by (simp add: Rats_def)
+
+lemma Rats_of_int [simp]: "of_int z \<in> Rats"
+by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
+by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_number_of [simp]:
+ "(number_of w::'a::{number_ring,field_char_0}) \<in> Rats"
+by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_0 [simp]: "0 \<in> Rats"
+apply (unfold Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_0 [symmetric])
+done
+
+lemma Rats_1 [simp]: "1 \<in> Rats"
+apply (unfold Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_1 [symmetric])
+done
+
+lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_add [symmetric])
+done
+
+lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_minus [symmetric])
+done
+
+lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_diff [symmetric])
+done
+
+lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_mult [symmetric])
+done
+
+lemma nonzero_Rats_inverse:
+ fixes a :: "'a::field_char_0"
+ shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (erule nonzero_of_rat_inverse [symmetric])
+done
+
+lemma Rats_inverse [simp]:
+ fixes a :: "'a::{field_char_0,division_by_zero}"
+ shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_inverse [symmetric])
+done
+
+lemma nonzero_Rats_divide:
+ fixes a b :: "'a::field_char_0"
+ shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (erule nonzero_of_rat_divide [symmetric])
+done
+
+lemma Rats_divide [simp]:
+ fixes a b :: "'a::{field_char_0,division_by_zero}"
+ shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_divide [symmetric])
+done
+
+lemma Rats_power [simp]:
+ fixes a :: "'a::field_char_0"
+ shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_power [symmetric])
+done
+
+lemma Rats_cases [cases set: Rats]:
+ assumes "q \<in> \<rat>"
+ obtains (of_rat) r where "q = of_rat r"
+ unfolding Rats_def
+proof -
+ from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
+ then obtain r where "q = of_rat r" ..
+ then show thesis ..
+qed
+
+lemma Rats_induct [case_names of_rat, induct set: Rats]:
+ "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
+ by (rule Rats_cases) auto
+
+
+subsection {* Implementation of rational numbers as pairs of integers *}
+
+definition Frct :: "int \<times> int \<Rightarrow> rat" where
+ [simp]: "Frct p = Fract (fst p) (snd p)"
+
+code_abstype Frct quotient_of
+proof (rule eq_reflection)
+ show "Frct (quotient_of x) = x" by (cases x) (auto intro: quotient_of_eq)
+qed
+
+lemma Frct_code_post [code_post]:
+ "Frct (0, k) = 0"
+ "Frct (k, 0) = 0"
+ "Frct (1, 1) = 1"
+ "Frct (number_of k, 1) = number_of k"
+ "Frct (1, number_of k) = 1 / number_of k"
+ "Frct (number_of k, number_of l) = number_of k / number_of l"
+ by (simp_all add: rat_number_collapse Fract_number_of_quotient Fract_1_number_of)
+
+declare quotient_of_Fract [code abstract]
+
+lemma rat_zero_code [code abstract]:
+ "quotient_of 0 = (0, 1)"
+ by (simp add: Zero_rat_def quotient_of_Fract normalize_def)
+
+lemma rat_one_code [code abstract]:
+ "quotient_of 1 = (1, 1)"
+ by (simp add: One_rat_def quotient_of_Fract normalize_def)
+
+lemma rat_plus_code [code abstract]:
+ "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+ in normalize (a * d + b * c, c * d))"
+ by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_uminus_code [code abstract]:
+ "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))"
+ by (cases p) (simp add: quotient_of_Fract)
+
+lemma rat_minus_code [code abstract]:
+ "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+ in normalize (a * d - b * c, c * d))"
+ by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_times_code [code abstract]:
+ "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+ in normalize (a * b, c * d))"
+ by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_inverse_code [code abstract]:
+ "quotient_of (inverse p) = (let (a, b) = quotient_of p
+ in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))"
+proof (cases p)
+ case (Fract a b) then show ?thesis
+ by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd_int.commute)
+qed
+
+lemma rat_divide_code [code abstract]:
+ "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+ in normalize (a * d, c * b))"
+ by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_abs_code [code abstract]:
+ "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))"
+ by (cases p) (simp add: quotient_of_Fract)
+
+lemma rat_sgn_code [code abstract]:
+ "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)"
+proof (cases p)
+ case (Fract a b) then show ?thesis
+ by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract)
+qed
+
+instantiation rat :: eq
+begin
+
+definition [code]:
+ "eq_class.eq a b \<longleftrightarrow> quotient_of a = quotient_of b"
+
+instance proof
+qed (simp add: eq_rat_def quotient_of_inject_eq)
+
+lemma rat_eq_refl [code nbe]:
+ "eq_class.eq (r::rat) r \<longleftrightarrow> True"
+ by (rule HOL.eq_refl)
+
+end
+
+lemma rat_less_eq_code [code]:
+ "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
+ by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
+
+lemma rat_less_code [code]:
+ "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
+ by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
+
+lemma [code]:
+ "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
+ by (cases p) (simp add: quotient_of_Fract of_rat_rat)
+
+definition (in term_syntax)
+ valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
+ [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
+
+notation fcomp (infixl "o>" 60)
+notation scomp (infixl "o\<rightarrow>" 60)
+
+instantiation rat :: random
+begin
+
+definition
+ "Quickcheck.random i = Quickcheck.random i o\<rightarrow> (\<lambda>num. Random.range i o\<rightarrow> (\<lambda>denom. Pair (
+ let j = Code_Numeral.int_of (denom + 1)
+ in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
+
+instance ..
+
+end
+
+no_notation fcomp (infixl "o>" 60)
+no_notation scomp (infixl "o\<rightarrow>" 60)
+
+text {* Setup for SML code generator *}
+
+types_code
+ rat ("(int */ int)")
+attach (term_of) {*
+fun term_of_rat (p, q) =
+ let
+ val rT = Type ("Rat.rat", [])
+ in
+ if q = 1 orelse p = 0 then HOLogic.mk_number rT p
+ else @{term "op / \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat"} $
+ HOLogic.mk_number rT p $ HOLogic.mk_number rT q
+ end;
+*}
+attach (test) {*
+fun gen_rat i =
+ let
+ val p = random_range 0 i;
+ val q = random_range 1 (i + 1);
+ val g = Integer.gcd p q;
+ val p' = p div g;
+ val q' = q div g;
+ val r = (if one_of [true, false] then p' else ~ p',
+ if p' = 0 then 1 else q')
+ in
+ (r, fn () => term_of_rat r)
+ end;
+*}
+
+consts_code
+ Fract ("(_,/ _)")
+
+consts_code
+ "of_int :: int \<Rightarrow> rat" ("\<module>rat'_of'_int")
+attach {*
+fun rat_of_int i = (i, 1);
+*}
+
+setup {*
+ Nitpick.register_frac_type @{type_name rat}
+ [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
+ (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
+ (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
+ (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
+ (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
+ (@{const_name number_rat_inst.number_of_rat}, @{const_name Nitpick.number_of_frac}),
+ (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
+ (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
+ (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac}),
+ (@{const_name field_char_0_class.Rats}, @{const_name UNIV})]
+*}
+
+lemmas [nitpick_def] = inverse_rat_inst.inverse_rat
+ number_rat_inst.number_of_rat one_rat_inst.one_rat ord_rat_inst.less_eq_rat
+ plus_rat_inst.plus_rat times_rat_inst.times_rat uminus_rat_inst.uminus_rat
+ zero_rat_inst.zero_rat
+
+end
--- a/src/HOL/Rational.thy Wed Feb 24 14:19:54 2010 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1194 +0,0 @@
-(* Title: HOL/Rational.thy
- Author: Markus Wenzel, TU Muenchen
-*)
-
-header {* Rational numbers *}
-
-theory Rational
-imports GCD Archimedean_Field
-begin
-
-subsection {* Rational numbers as quotient *}
-
-subsubsection {* Construction of the type of rational numbers *}
-
-definition
- ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
- "ratrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
-
-lemma ratrel_iff [simp]:
- "(x, y) \<in> ratrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
- by (simp add: ratrel_def)
-
-lemma refl_on_ratrel: "refl_on {x. snd x \<noteq> 0} ratrel"
- by (auto simp add: refl_on_def ratrel_def)
-
-lemma sym_ratrel: "sym ratrel"
- by (simp add: ratrel_def sym_def)
-
-lemma trans_ratrel: "trans ratrel"
-proof (rule transI, unfold split_paired_all)
- fix a b a' b' a'' b'' :: int
- assume A: "((a, b), (a', b')) \<in> ratrel"
- assume B: "((a', b'), (a'', b'')) \<in> ratrel"
- have "b' * (a * b'') = b'' * (a * b')" by simp
- also from A have "a * b' = a' * b" by auto
- also have "b'' * (a' * b) = b * (a' * b'')" by simp
- also from B have "a' * b'' = a'' * b'" by auto
- also have "b * (a'' * b') = b' * (a'' * b)" by simp
- finally have "b' * (a * b'') = b' * (a'' * b)" .
- moreover from B have "b' \<noteq> 0" by auto
- ultimately have "a * b'' = a'' * b" by simp
- with A B show "((a, b), (a'', b'')) \<in> ratrel" by auto
-qed
-
-lemma equiv_ratrel: "equiv {x. snd x \<noteq> 0} ratrel"
- by (rule equiv.intro [OF refl_on_ratrel sym_ratrel trans_ratrel])
-
-lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
-lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
-
-lemma equiv_ratrel_iff [iff]:
- assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
- shows "ratrel `` {x} = ratrel `` {y} \<longleftrightarrow> (x, y) \<in> ratrel"
- by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms)
-
-typedef (Rat) rat = "{x. snd x \<noteq> 0} // ratrel"
-proof
- have "(0::int, 1::int) \<in> {x. snd x \<noteq> 0}" by simp
- then show "ratrel `` {(0, 1)} \<in> {x. snd x \<noteq> 0} // ratrel" by (rule quotientI)
-qed
-
-lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel `` {x} \<in> Rat"
- by (simp add: Rat_def quotientI)
-
-declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp]
-
-
-subsubsection {* Representation and basic operations *}
-
-definition
- Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
- "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})"
-
-lemma eq_rat:
- shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
- and "\<And>a. Fract a 0 = Fract 0 1"
- and "\<And>a c. Fract 0 a = Fract 0 c"
- by (simp_all add: Fract_def)
-
-lemma Rat_cases [case_names Fract, cases type: rat]:
- assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
- shows C
-proof -
- obtain a b :: int where "q = Fract a b" and "b \<noteq> 0"
- by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def)
- let ?a = "a div gcd a b"
- let ?b = "b div gcd a b"
- from `b \<noteq> 0` have "?b * gcd a b = b"
- by (simp add: dvd_div_mult_self)
- with `b \<noteq> 0` have "?b \<noteq> 0" by auto
- from `q = Fract a b` `b \<noteq> 0` `?b \<noteq> 0` have q: "q = Fract ?a ?b"
- by (simp add: eq_rat dvd_div_mult mult_commute [of a])
- from `b \<noteq> 0` have coprime: "coprime ?a ?b"
- by (auto intro: div_gcd_coprime_int)
- show C proof (cases "b > 0")
- case True
- note assms
- moreover note q
- moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff)
- moreover note coprime
- ultimately show C .
- next
- case False
- note assms
- moreover from q have "q = Fract (- ?a) (- ?b)" by (simp add: Fract_def)
- moreover from False `b \<noteq> 0` have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff)
- moreover from coprime have "coprime (- ?a) (- ?b)" by simp
- ultimately show C .
- qed
-qed
-
-lemma Rat_induct [case_names Fract, induct type: rat]:
- assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)"
- shows "P q"
- using assms by (cases q) simp
-
-instantiation rat :: comm_ring_1
-begin
-
-definition
- Zero_rat_def: "0 = Fract 0 1"
-
-definition
- One_rat_def: "1 = Fract 1 1"
-
-definition
- add_rat_def:
- "q + r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
- ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
-
-lemma add_rat [simp]:
- assumes "b \<noteq> 0" and "d \<noteq> 0"
- shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
-proof -
- have "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
- respects2 ratrel"
- by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib)
- with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2)
-qed
-
-definition
- minus_rat_def:
- "- q = Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel `` {(- fst x, snd x)})"
-
-lemma minus_rat [simp]: "- Fract a b = Fract (- a) b"
-proof -
- have "(\<lambda>x. ratrel `` {(- fst x, snd x)}) respects ratrel"
- by (simp add: congruent_def)
- then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel)
-qed
-
-lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
- by (cases "b = 0") (simp_all add: eq_rat)
-
-definition
- diff_rat_def: "q - r = q + - (r::rat)"
-
-lemma diff_rat [simp]:
- assumes "b \<noteq> 0" and "d \<noteq> 0"
- shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
- using assms by (simp add: diff_rat_def)
-
-definition
- mult_rat_def:
- "q * r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
- ratrel``{(fst x * fst y, snd x * snd y)})"
-
-lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
-proof -
- have "(\<lambda>x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel"
- by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all
- then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2)
-qed
-
-lemma mult_rat_cancel:
- assumes "c \<noteq> 0"
- shows "Fract (c * a) (c * b) = Fract a b"
-proof -
- from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
- then show ?thesis by (simp add: mult_rat [symmetric])
-qed
-
-instance proof
- fix q r s :: rat show "(q * r) * s = q * (r * s)"
- by (cases q, cases r, cases s) (simp add: eq_rat)
-next
- fix q r :: rat show "q * r = r * q"
- by (cases q, cases r) (simp add: eq_rat)
-next
- fix q :: rat show "1 * q = q"
- by (cases q) (simp add: One_rat_def eq_rat)
-next
- fix q r s :: rat show "(q + r) + s = q + (r + s)"
- by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
-next
- fix q r :: rat show "q + r = r + q"
- by (cases q, cases r) (simp add: eq_rat)
-next
- fix q :: rat show "0 + q = q"
- by (cases q) (simp add: Zero_rat_def eq_rat)
-next
- fix q :: rat show "- q + q = 0"
- by (cases q) (simp add: Zero_rat_def eq_rat)
-next
- fix q r :: rat show "q - r = q + - r"
- by (cases q, cases r) (simp add: eq_rat)
-next
- fix q r s :: rat show "(q + r) * s = q * s + r * s"
- by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
-next
- show "(0::rat) \<noteq> 1" by (simp add: Zero_rat_def One_rat_def eq_rat)
-qed
-
-end
-
-lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
- by (induct k) (simp_all add: Zero_rat_def One_rat_def)
-
-lemma of_int_rat: "of_int k = Fract k 1"
- by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
-
-lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
- by (rule of_nat_rat [symmetric])
-
-lemma Fract_of_int_eq: "Fract k 1 = of_int k"
- by (rule of_int_rat [symmetric])
-
-instantiation rat :: number_ring
-begin
-
-definition
- rat_number_of_def: "number_of w = Fract w 1"
-
-instance proof
-qed (simp add: rat_number_of_def of_int_rat)
-
-end
-
-lemma rat_number_collapse:
- "Fract 0 k = 0"
- "Fract 1 1 = 1"
- "Fract (number_of k) 1 = number_of k"
- "Fract k 0 = 0"
- by (cases "k = 0")
- (simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def)
-
-lemma rat_number_expand [code_unfold]:
- "0 = Fract 0 1"
- "1 = Fract 1 1"
- "number_of k = Fract (number_of k) 1"
- by (simp_all add: rat_number_collapse)
-
-lemma iszero_rat [simp]:
- "iszero (number_of k :: rat) \<longleftrightarrow> iszero (number_of k :: int)"
- by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat)
-
-lemma Rat_cases_nonzero [case_names Fract 0]:
- assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
- assumes 0: "q = 0 \<Longrightarrow> C"
- shows C
-proof (cases "q = 0")
- case True then show C using 0 by auto
-next
- case False
- then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto
- moreover with False have "0 \<noteq> Fract a b" by simp
- with `b > 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
- with Fract `q = Fract a b` `b > 0` `coprime a b` show C by blast
-qed
-
-subsubsection {* Function @{text normalize} *}
-
-lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
-proof (cases "b = 0")
- case True then show ?thesis by (simp add: eq_rat)
-next
- case False
- moreover have "b div gcd a b * gcd a b = b"
- by (rule dvd_div_mult_self) simp
- ultimately have "b div gcd a b \<noteq> 0" by auto
- with False show ?thesis by (simp add: eq_rat dvd_div_mult mult_commute [of a])
-qed
-
-definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where
- "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a))
- else if snd p = 0 then (0, 1)
- else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))"
-
-lemma normalize_crossproduct:
- assumes "q \<noteq> 0" "s \<noteq> 0"
- assumes "normalize (p, q) = normalize (r, s)"
- shows "p * s = r * q"
-proof -
- have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r"
- proof -
- assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q"
- then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp
- with assms show "p * s = q * r" by (auto simp add: mult_ac sgn_times sgn_0_0)
- qed
- from assms show ?thesis
- by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult_commute sgn_times split: if_splits intro: aux)
-qed
-
-lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
- by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse
- split:split_if_asm)
-
-lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0"
- by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
- split:split_if_asm)
-
-lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q"
- by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int
- split:split_if_asm)
-
-lemma normalize_stable [simp]:
- "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)"
- by (simp add: normalize_def)
-
-lemma normalize_denom_zero [simp]:
- "normalize (p, 0) = (0, 1)"
- by (simp add: normalize_def)
-
-lemma normalize_negative [simp]:
- "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)"
- by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div)
-
-text{*
- Decompose a fraction into normalized, i.e. coprime numerator and denominator:
-*}
-
-definition quotient_of :: "rat \<Rightarrow> int \<times> int" where
- "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) &
- snd pair > 0 & coprime (fst pair) (snd pair))"
-
-lemma quotient_of_unique:
- "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
-proof (cases r)
- case (Fract a b)
- then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto
- then show ?thesis proof (rule ex1I)
- fix p
- obtain c d :: int where p: "p = (c, d)" by (cases p)
- assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
- with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all
- have "c = a \<and> d = b"
- proof (cases "a = 0")
- case True with Fract Fract' show ?thesis by (simp add: eq_rat)
- next
- case False
- with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat)
- then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto
- with `b > 0` `d > 0` have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff)
- with `a \<noteq> 0` `c \<noteq> 0` have sgn: "sgn a = sgn c" by (auto simp add: not_less)
- from `coprime a b` `coprime c d` have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>"
- by (simp add: coprime_crossproduct_int)
- with `b > 0` `d > 0` have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp
- then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn)
- with sgn * show ?thesis by (auto simp add: sgn_0_0)
- qed
- with p show "p = (a, b)" by simp
- qed
-qed
-
-lemma quotient_of_Fract [code]:
- "quotient_of (Fract a b) = normalize (a, b)"
-proof -
- have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract)
- by (rule sym) (auto intro: normalize_eq)
- moreover have "0 < snd (normalize (a, b))" (is ?denom_pos)
- by (cases "normalize (a, b)") (rule normalize_denom_pos, simp)
- moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime)
- by (rule normalize_coprime) simp
- ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast
- with quotient_of_unique have
- "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)"
- by (rule the1_equality)
- then show ?thesis by (simp add: quotient_of_def)
-qed
-
-lemma quotient_of_number [simp]:
- "quotient_of 0 = (0, 1)"
- "quotient_of 1 = (1, 1)"
- "quotient_of (number_of k) = (number_of k, 1)"
- by (simp_all add: rat_number_expand quotient_of_Fract)
-
-lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
- by (simp add: quotient_of_Fract normalize_eq)
-
-lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0"
- by (cases r) (simp add: quotient_of_Fract normalize_denom_pos)
-
-lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q"
- by (cases r) (simp add: quotient_of_Fract normalize_coprime)
-
-lemma quotient_of_inject:
- assumes "quotient_of a = quotient_of b"
- shows "a = b"
-proof -
- obtain p q r s where a: "a = Fract p q"
- and b: "b = Fract r s"
- and "q > 0" and "s > 0" by (cases a, cases b)
- with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct)
-qed
-
-lemma quotient_of_inject_eq:
- "quotient_of a = quotient_of b \<longleftrightarrow> a = b"
- by (auto simp add: quotient_of_inject)
-
-
-subsubsection {* The field of rational numbers *}
-
-instantiation rat :: "{field, division_by_zero}"
-begin
-
-definition
- inverse_rat_def:
- "inverse q = Abs_Rat (\<Union>x \<in> Rep_Rat q.
- ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
-
-lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
-proof -
- have "(\<lambda>x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel"
- by (auto simp add: congruent_def mult_commute)
- then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel)
-qed
-
-definition
- divide_rat_def: "q / r = q * inverse (r::rat)"
-
-lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
- by (simp add: divide_rat_def)
-
-instance proof
- show "inverse 0 = (0::rat)" by (simp add: rat_number_expand)
- (simp add: rat_number_collapse)
-next
- fix q :: rat
- assume "q \<noteq> 0"
- then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero)
- (simp_all add: rat_number_expand eq_rat)
-next
- fix q r :: rat
- show "q / r = q * inverse r" by (simp add: divide_rat_def)
-qed
-
-end
-
-
-subsubsection {* Various *}
-
-lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
- by (simp add: rat_number_expand)
-
-lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
- by (simp add: Fract_of_int_eq [symmetric])
-
-lemma Fract_number_of_quotient:
- "Fract (number_of k) (number_of l) = number_of k / number_of l"
- unfolding Fract_of_int_quotient number_of_is_id number_of_eq ..
-
-lemma Fract_1_number_of:
- "Fract 1 (number_of k) = 1 / number_of k"
- unfolding Fract_of_int_quotient number_of_eq by simp
-
-subsubsection {* The ordered field of rational numbers *}
-
-instantiation rat :: linorder
-begin
-
-definition
- le_rat_def:
- "q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
- {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
-
-lemma le_rat [simp]:
- assumes "b \<noteq> 0" and "d \<noteq> 0"
- shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
-proof -
- have "(\<lambda>x y. {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})
- respects2 ratrel"
- proof (clarsimp simp add: congruent2_def)
- fix a b a' b' c d c' d'::int
- assume neq: "b \<noteq> 0" "b' \<noteq> 0" "d \<noteq> 0" "d' \<noteq> 0"
- assume eq1: "a * b' = a' * b"
- assume eq2: "c * d' = c' * d"
-
- let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
- {
- fix a b c d x :: int assume x: "x \<noteq> 0"
- have "?le a b c d = ?le (a * x) (b * x) c d"
- proof -
- from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
- hence "?le a b c d =
- ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
- by (simp add: mult_le_cancel_right)
- also have "... = ?le (a * x) (b * x) c d"
- by (simp add: mult_ac)
- finally show ?thesis .
- qed
- } note le_factor = this
-
- let ?D = "b * d" and ?D' = "b' * d'"
- from neq have D: "?D \<noteq> 0" by simp
- from neq have "?D' \<noteq> 0" by simp
- hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
- by (rule le_factor)
- also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')"
- by (simp add: mult_ac)
- also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
- by (simp only: eq1 eq2)
- also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
- by (simp add: mult_ac)
- also from D have "... = ?le a' b' c' d'"
- by (rule le_factor [symmetric])
- finally show "?le a b c d = ?le a' b' c' d'" .
- qed
- with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2)
-qed
-
-definition
- less_rat_def: "z < (w::rat) \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
-
-lemma less_rat [simp]:
- assumes "b \<noteq> 0" and "d \<noteq> 0"
- shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
- using assms by (simp add: less_rat_def eq_rat order_less_le)
-
-instance proof
- fix q r s :: rat
- {
- assume "q \<le> r" and "r \<le> s"
- then show "q \<le> s"
- proof (induct q, induct r, induct s)
- fix a b c d e f :: int
- assume neq: "b > 0" "d > 0" "f > 0"
- assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
- show "Fract a b \<le> Fract e f"
- proof -
- from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
- by (auto simp add: zero_less_mult_iff linorder_neq_iff)
- have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
- proof -
- from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
- by simp
- with ff show ?thesis by (simp add: mult_le_cancel_right)
- qed
- also have "... = (c * f) * (d * f) * (b * b)" by algebra
- also have "... \<le> (e * d) * (d * f) * (b * b)"
- proof -
- from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
- by simp
- with bb show ?thesis by (simp add: mult_le_cancel_right)
- qed
- finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
- by (simp only: mult_ac)
- with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
- by (simp add: mult_le_cancel_right)
- with neq show ?thesis by simp
- qed
- qed
- next
- assume "q \<le> r" and "r \<le> q"
- then show "q = r"
- proof (induct q, induct r)
- fix a b c d :: int
- assume neq: "b > 0" "d > 0"
- assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
- show "Fract a b = Fract c d"
- proof -
- from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
- by simp
- also have "... \<le> (a * d) * (b * d)"
- proof -
- from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
- by simp
- thus ?thesis by (simp only: mult_ac)
- qed
- finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
- moreover from neq have "b * d \<noteq> 0" by simp
- ultimately have "a * d = c * b" by simp
- with neq show ?thesis by (simp add: eq_rat)
- qed
- qed
- next
- show "q \<le> q"
- by (induct q) simp
- show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
- by (induct q, induct r) (auto simp add: le_less mult_commute)
- show "q \<le> r \<or> r \<le> q"
- by (induct q, induct r)
- (simp add: mult_commute, rule linorder_linear)
- }
-qed
-
-end
-
-instantiation rat :: "{distrib_lattice, abs_if, sgn_if}"
-begin
-
-definition
- abs_rat_def: "\<bar>q\<bar> = (if q < 0 then -q else (q::rat))"
-
-lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
- by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
-
-definition
- sgn_rat_def: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
-
-lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
- unfolding Fract_of_int_eq
- by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
- (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
-
-definition
- "(inf \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = min"
-
-definition
- "(sup \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = max"
-
-instance by intro_classes
- (auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
-
-end
-
-instance rat :: linordered_field
-proof
- fix q r s :: rat
- show "q \<le> r ==> s + q \<le> s + r"
- proof (induct q, induct r, induct s)
- fix a b c d e f :: int
- assume neq: "b > 0" "d > 0" "f > 0"
- assume le: "Fract a b \<le> Fract c d"
- show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
- proof -
- let ?F = "f * f" from neq have F: "0 < ?F"
- by (auto simp add: zero_less_mult_iff)
- from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
- by simp
- with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
- by (simp add: mult_le_cancel_right)
- with neq show ?thesis by (simp add: mult_ac int_distrib)
- qed
- qed
- show "q < r ==> 0 < s ==> s * q < s * r"
- proof (induct q, induct r, induct s)
- fix a b c d e f :: int
- assume neq: "b > 0" "d > 0" "f > 0"
- assume le: "Fract a b < Fract c d"
- assume gt: "0 < Fract e f"
- show "Fract e f * Fract a b < Fract e f * Fract c d"
- proof -
- let ?E = "e * f" and ?F = "f * f"
- from neq gt have "0 < ?E"
- by (auto simp add: Zero_rat_def order_less_le eq_rat)
- moreover from neq have "0 < ?F"
- by (auto simp add: zero_less_mult_iff)
- moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
- by simp
- ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
- by (simp add: mult_less_cancel_right)
- with neq show ?thesis
- by (simp add: mult_ac)
- qed
- qed
-qed auto
-
-lemma Rat_induct_pos [case_names Fract, induct type: rat]:
- assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
- shows "P q"
-proof (cases q)
- have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
- proof -
- fix a::int and b::int
- assume b: "b < 0"
- hence "0 < -b" by simp
- hence "P (Fract (-a) (-b))" by (rule step)
- thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
- qed
- case (Fract a b)
- thus "P q" by (force simp add: linorder_neq_iff step step')
-qed
-
-lemma zero_less_Fract_iff:
- "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
- by (simp add: Zero_rat_def zero_less_mult_iff)
-
-lemma Fract_less_zero_iff:
- "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
- by (simp add: Zero_rat_def mult_less_0_iff)
-
-lemma zero_le_Fract_iff:
- "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
- by (simp add: Zero_rat_def zero_le_mult_iff)
-
-lemma Fract_le_zero_iff:
- "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
- by (simp add: Zero_rat_def mult_le_0_iff)
-
-lemma one_less_Fract_iff:
- "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
- by (simp add: One_rat_def mult_less_cancel_right_disj)
-
-lemma Fract_less_one_iff:
- "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
- by (simp add: One_rat_def mult_less_cancel_right_disj)
-
-lemma one_le_Fract_iff:
- "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
- by (simp add: One_rat_def mult_le_cancel_right)
-
-lemma Fract_le_one_iff:
- "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
- by (simp add: One_rat_def mult_le_cancel_right)
-
-
-subsubsection {* Rationals are an Archimedean field *}
-
-lemma rat_floor_lemma:
- shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
-proof -
- have "Fract a b = of_int (a div b) + Fract (a mod b) b"
- by (cases "b = 0", simp, simp add: of_int_rat)
- moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
- unfolding Fract_of_int_quotient
- by (rule linorder_cases [of b 0])
- (simp add: divide_nonpos_neg, simp, simp add: divide_nonneg_pos)
- ultimately show ?thesis by simp
-qed
-
-instance rat :: archimedean_field
-proof
- fix r :: rat
- show "\<exists>z. r \<le> of_int z"
- proof (induct r)
- case (Fract a b)
- have "Fract a b \<le> of_int (a div b + 1)"
- using rat_floor_lemma [of a b] by simp
- then show "\<exists>z. Fract a b \<le> of_int z" ..
- qed
-qed
-
-lemma floor_Fract: "floor (Fract a b) = a div b"
- using rat_floor_lemma [of a b]
- by (simp add: floor_unique)
-
-
-subsection {* Linear arithmetic setup *}
-
-declaration {*
- K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
- (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
- #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
- (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
- #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
- @{thm True_implies_equals},
- read_instantiate @{context} [(("a", 0), "(number_of ?v)")] @{thm right_distrib},
- @{thm divide_1}, @{thm divide_zero_left},
- @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
- @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
- @{thm of_int_minus}, @{thm of_int_diff},
- @{thm of_int_of_nat_eq}]
- #> Lin_Arith.add_simprocs Numeral_Simprocs.field_cancel_numeral_factors
- #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
- #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
-*}
-
-
-subsection {* Embedding from Rationals to other Fields *}
-
-class field_char_0 = field + ring_char_0
-
-subclass (in linordered_field) field_char_0 ..
-
-context field_char_0
-begin
-
-definition of_rat :: "rat \<Rightarrow> 'a" where
- "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
-
-end
-
-lemma of_rat_congruent:
- "(\<lambda>(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel"
-apply (rule congruent.intro)
-apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
-apply (simp only: of_int_mult [symmetric])
-done
-
-lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
- unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent)
-
-lemma of_rat_0 [simp]: "of_rat 0 = 0"
-by (simp add: Zero_rat_def of_rat_rat)
-
-lemma of_rat_1 [simp]: "of_rat 1 = 1"
-by (simp add: One_rat_def of_rat_rat)
-
-lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
-by (induct a, induct b, simp add: of_rat_rat add_frac_eq)
-
-lemma of_rat_minus: "of_rat (- a) = - of_rat a"
-by (induct a, simp add: of_rat_rat)
-
-lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
-by (simp only: diff_minus of_rat_add of_rat_minus)
-
-lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
-apply (induct a, induct b, simp add: of_rat_rat)
-apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
-done
-
-lemma nonzero_of_rat_inverse:
- "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
-apply (rule inverse_unique [symmetric])
-apply (simp add: of_rat_mult [symmetric])
-done
-
-lemma of_rat_inverse:
- "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
- inverse (of_rat a)"
-by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
-
-lemma nonzero_of_rat_divide:
- "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
-by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
-
-lemma of_rat_divide:
- "(of_rat (a / b)::'a::{field_char_0,division_by_zero})
- = of_rat a / of_rat b"
-by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
-
-lemma of_rat_power:
- "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
-by (induct n) (simp_all add: of_rat_mult)
-
-lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
-apply (induct a, induct b)
-apply (simp add: of_rat_rat eq_rat)
-apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
-apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
-done
-
-lemma of_rat_less:
- "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
-proof (induct r, induct s)
- fix a b c d :: int
- assume not_zero: "b > 0" "d > 0"
- then have "b * d > 0" by (rule mult_pos_pos)
- have of_int_divide_less_eq:
- "(of_int a :: 'a) / of_int b < of_int c / of_int d
- \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
- using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
- show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d)
- \<longleftrightarrow> Fract a b < Fract c d"
- using not_zero `b * d > 0`
- by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
-qed
-
-lemma of_rat_less_eq:
- "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
- unfolding le_less by (auto simp add: of_rat_less)
-
-lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
-
-lemma of_rat_eq_id [simp]: "of_rat = id"
-proof
- fix a
- show "of_rat a = id a"
- by (induct a)
- (simp add: of_rat_rat Fract_of_int_eq [symmetric])
-qed
-
-text{*Collapse nested embeddings*}
-lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
-by (induct n) (simp_all add: of_rat_add)
-
-lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
-by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
-
-lemma of_rat_number_of_eq [simp]:
- "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
-by (simp add: number_of_eq)
-
-lemmas zero_rat = Zero_rat_def
-lemmas one_rat = One_rat_def
-
-abbreviation
- rat_of_nat :: "nat \<Rightarrow> rat"
-where
- "rat_of_nat \<equiv> of_nat"
-
-abbreviation
- rat_of_int :: "int \<Rightarrow> rat"
-where
- "rat_of_int \<equiv> of_int"
-
-subsection {* The Set of Rational Numbers *}
-
-context field_char_0
-begin
-
-definition
- Rats :: "'a set" where
- "Rats = range of_rat"
-
-notation (xsymbols)
- Rats ("\<rat>")
-
-end
-
-lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
-by (simp add: Rats_def)
-
-lemma Rats_of_int [simp]: "of_int z \<in> Rats"
-by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
-
-lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
-by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
-
-lemma Rats_number_of [simp]:
- "(number_of w::'a::{number_ring,field_char_0}) \<in> Rats"
-by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat)
-
-lemma Rats_0 [simp]: "0 \<in> Rats"
-apply (unfold Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_0 [symmetric])
-done
-
-lemma Rats_1 [simp]: "1 \<in> Rats"
-apply (unfold Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_1 [symmetric])
-done
-
-lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_add [symmetric])
-done
-
-lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_minus [symmetric])
-done
-
-lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_diff [symmetric])
-done
-
-lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_mult [symmetric])
-done
-
-lemma nonzero_Rats_inverse:
- fixes a :: "'a::field_char_0"
- shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (erule nonzero_of_rat_inverse [symmetric])
-done
-
-lemma Rats_inverse [simp]:
- fixes a :: "'a::{field_char_0,division_by_zero}"
- shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_inverse [symmetric])
-done
-
-lemma nonzero_Rats_divide:
- fixes a b :: "'a::field_char_0"
- shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (erule nonzero_of_rat_divide [symmetric])
-done
-
-lemma Rats_divide [simp]:
- fixes a b :: "'a::{field_char_0,division_by_zero}"
- shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_divide [symmetric])
-done
-
-lemma Rats_power [simp]:
- fixes a :: "'a::field_char_0"
- shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_power [symmetric])
-done
-
-lemma Rats_cases [cases set: Rats]:
- assumes "q \<in> \<rat>"
- obtains (of_rat) r where "q = of_rat r"
- unfolding Rats_def
-proof -
- from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
- then obtain r where "q = of_rat r" ..
- then show thesis ..
-qed
-
-lemma Rats_induct [case_names of_rat, induct set: Rats]:
- "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
- by (rule Rats_cases) auto
-
-
-subsection {* Implementation of rational numbers as pairs of integers *}
-
-definition Frct :: "int \<times> int \<Rightarrow> rat" where
- [simp]: "Frct p = Fract (fst p) (snd p)"
-
-code_abstype Frct quotient_of
-proof (rule eq_reflection)
- show "Frct (quotient_of x) = x" by (cases x) (auto intro: quotient_of_eq)
-qed
-
-lemma Frct_code_post [code_post]:
- "Frct (0, k) = 0"
- "Frct (k, 0) = 0"
- "Frct (1, 1) = 1"
- "Frct (number_of k, 1) = number_of k"
- "Frct (1, number_of k) = 1 / number_of k"
- "Frct (number_of k, number_of l) = number_of k / number_of l"
- by (simp_all add: rat_number_collapse Fract_number_of_quotient Fract_1_number_of)
-
-declare quotient_of_Fract [code abstract]
-
-lemma rat_zero_code [code abstract]:
- "quotient_of 0 = (0, 1)"
- by (simp add: Zero_rat_def quotient_of_Fract normalize_def)
-
-lemma rat_one_code [code abstract]:
- "quotient_of 1 = (1, 1)"
- by (simp add: One_rat_def quotient_of_Fract normalize_def)
-
-lemma rat_plus_code [code abstract]:
- "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
- in normalize (a * d + b * c, c * d))"
- by (cases p, cases q) (simp add: quotient_of_Fract)
-
-lemma rat_uminus_code [code abstract]:
- "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))"
- by (cases p) (simp add: quotient_of_Fract)
-
-lemma rat_minus_code [code abstract]:
- "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
- in normalize (a * d - b * c, c * d))"
- by (cases p, cases q) (simp add: quotient_of_Fract)
-
-lemma rat_times_code [code abstract]:
- "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
- in normalize (a * b, c * d))"
- by (cases p, cases q) (simp add: quotient_of_Fract)
-
-lemma rat_inverse_code [code abstract]:
- "quotient_of (inverse p) = (let (a, b) = quotient_of p
- in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))"
-proof (cases p)
- case (Fract a b) then show ?thesis
- by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd_int.commute)
-qed
-
-lemma rat_divide_code [code abstract]:
- "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
- in normalize (a * d, c * b))"
- by (cases p, cases q) (simp add: quotient_of_Fract)
-
-lemma rat_abs_code [code abstract]:
- "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))"
- by (cases p) (simp add: quotient_of_Fract)
-
-lemma rat_sgn_code [code abstract]:
- "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)"
-proof (cases p)
- case (Fract a b) then show ?thesis
- by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract)
-qed
-
-instantiation rat :: eq
-begin
-
-definition [code]:
- "eq_class.eq a b \<longleftrightarrow> quotient_of a = quotient_of b"
-
-instance proof
-qed (simp add: eq_rat_def quotient_of_inject_eq)
-
-lemma rat_eq_refl [code nbe]:
- "eq_class.eq (r::rat) r \<longleftrightarrow> True"
- by (rule HOL.eq_refl)
-
-end
-
-lemma rat_less_eq_code [code]:
- "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
- by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
-
-lemma rat_less_code [code]:
- "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
- by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
-
-lemma [code]:
- "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
- by (cases p) (simp add: quotient_of_Fract of_rat_rat)
-
-definition (in term_syntax)
- valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
- [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
-
-notation fcomp (infixl "o>" 60)
-notation scomp (infixl "o\<rightarrow>" 60)
-
-instantiation rat :: random
-begin
-
-definition
- "Quickcheck.random i = Quickcheck.random i o\<rightarrow> (\<lambda>num. Random.range i o\<rightarrow> (\<lambda>denom. Pair (
- let j = Code_Numeral.int_of (denom + 1)
- in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
-
-instance ..
-
-end
-
-no_notation fcomp (infixl "o>" 60)
-no_notation scomp (infixl "o\<rightarrow>" 60)
-
-text {* Setup for SML code generator *}
-
-types_code
- rat ("(int */ int)")
-attach (term_of) {*
-fun term_of_rat (p, q) =
- let
- val rT = Type ("Rational.rat", [])
- in
- if q = 1 orelse p = 0 then HOLogic.mk_number rT p
- else @{term "op / \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat"} $
- HOLogic.mk_number rT p $ HOLogic.mk_number rT q
- end;
-*}
-attach (test) {*
-fun gen_rat i =
- let
- val p = random_range 0 i;
- val q = random_range 1 (i + 1);
- val g = Integer.gcd p q;
- val p' = p div g;
- val q' = q div g;
- val r = (if one_of [true, false] then p' else ~ p',
- if p' = 0 then 1 else q')
- in
- (r, fn () => term_of_rat r)
- end;
-*}
-
-consts_code
- Fract ("(_,/ _)")
-
-consts_code
- "of_int :: int \<Rightarrow> rat" ("\<module>rat'_of'_int")
-attach {*
-fun rat_of_int i = (i, 1);
-*}
-
-setup {*
- Nitpick.register_frac_type @{type_name rat}
- [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
- (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
- (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
- (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
- (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
- (@{const_name number_rat_inst.number_of_rat}, @{const_name Nitpick.number_of_frac}),
- (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
- (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
- (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac}),
- (@{const_name field_char_0_class.Rats}, @{const_name UNIV})]
-*}
-
-lemmas [nitpick_def] = inverse_rat_inst.inverse_rat
- number_rat_inst.number_of_rat one_rat_inst.one_rat ord_rat_inst.less_eq_rat
- plus_rat_inst.plus_rat times_rat_inst.times_rat uminus_rat_inst.uminus_rat
- zero_rat_inst.zero_rat
-
-end
--- a/src/HOL/ex/NormalForm.thy Wed Feb 24 14:19:54 2010 +0100
+++ b/src/HOL/ex/NormalForm.thy Wed Feb 24 14:34:40 2010 +0100
@@ -3,7 +3,7 @@
header {* Testing implementation of normalization by evaluation *}
theory NormalForm
-imports Main Rational
+imports Complex_Main
begin
lemma "True" by normalization