avoid duplicate fact bindings;
authorwenzelm
Tue, 27 Aug 2002 11:09:33 +0200
changeset 13534 ca6debb89d77
parent 13533 70de987e9fe3
child 13535 007559e981c7
avoid duplicate fact bindings;
src/ZF/Ordinal.thy
src/ZF/QPair.thy
src/ZF/Trancl.thy
src/ZF/Univ.thy
src/ZF/WF.thy
--- a/src/ZF/Ordinal.thy	Tue Aug 27 11:07:54 2002 +0200
+++ b/src/ZF/Ordinal.thy	Tue Aug 27 11:09:33 2002 +0200
@@ -328,11 +328,12 @@
 done
 
 (*Induction over an ordinal*)
-lemmas Ord_induct = Transset_induct [OF _ Ord_is_Transset]
+lemmas Ord_induct [consumes 2] = Transset_induct [OF _ Ord_is_Transset]
+lemmas Ord_induct_rule = Ord_induct [rule_format, consumes 2]
 
 (*Induction over the class of ordinals -- a useful corollary of Ord_induct*)
 
-lemma trans_induct:
+lemma trans_induct [consumes 1]:
     "[| Ord(i);  
         !!x.[| Ord(x);  ALL y:x. P(y) |] ==> P(x) |]
      ==>  P(i)"
@@ -340,6 +341,8 @@
 apply (blast intro: Ord_succ [THEN Ord_in_Ord]) 
 done
 
+lemmas trans_induct_rule = trans_induct [rule_format, consumes 1]
+
 
 (*** Fundamental properties of the epsilon ordering (< on ordinals) ***)
 
@@ -684,7 +687,7 @@
      |] ==> P"
 by (drule Ord_cases_disj, blast)  
 
-lemma trans_induct3:
+lemma trans_induct3 [case_names 0 succ limit, consumes 1]:
      "[| Ord(i);                 
          P(0);                   
          !!x. [| Ord(x);  P(x) |] ==> P(succ(x));        
@@ -694,6 +697,8 @@
 apply (erule Ord_cases, blast+)
 done
 
+lemmas trans_induct3_rule = trans_induct3 [rule_format, case_names 0 succ limit, consumes 1]
+
 text{*A set of ordinals is either empty, contains its own union, or its
 union is a limit ordinal.*}
 lemma Ord_set_cases:
@@ -721,14 +726,6 @@
 apply (blast intro!: equalityI)
 done
 
-(*special induction rules for the "induct" method*)
-lemmas Ord_induct = Ord_induct [consumes 2]
-  and Ord_induct_rule = Ord_induct [rule_format, consumes 2]
-  and trans_induct = trans_induct [consumes 1]
-  and trans_induct_rule = trans_induct [rule_format, consumes 1]
-  and trans_induct3 = trans_induct3 [case_names 0 succ limit, consumes 1]
-  and trans_induct3_rule = trans_induct3 [rule_format, case_names 0 succ limit, consumes 1]
-
 ML 
 {*
 val Memrel_def = thm "Memrel_def";
--- a/src/ZF/QPair.thy	Tue Aug 27 11:07:54 2002 +0200
+++ b/src/ZF/QPair.thy	Tue Aug 27 11:09:33 2002 +0200
@@ -93,13 +93,6 @@
 by (simp add: QSigma_def)
 
 
-(*The general elimination rule*)
-lemma QSigmaE:
-    "[| c: QSigma(A,B);   
-        !!x y.[| x:A;  y:B(x);  c=<x;y> |] ==> P  
-     |] ==> P"
-by (simp add: QSigma_def, blast) 
-
 (** Elimination rules for <a;b>:A*B -- introducing no eigenvariables **)
 
 lemma QSigmaE [elim!]:
--- a/src/ZF/Trancl.thy	Tue Aug 27 11:07:54 2002 +0200
+++ b/src/ZF/Trancl.thy	Tue Aug 27 11:09:33 2002 +0200
@@ -49,7 +49,7 @@
     "[| !!x. x:A ==> <x,x> ~: r |] ==> irrefl(A,r)"
 by (simp add: irrefl_def) 
 
-lemma symI: "[| irrefl(A,r);  x:A |] ==>  <x,x> ~: r"
+lemma irreflE: "[| irrefl(A,r);  x:A |] ==>  <x,x> ~: r"
 by (simp add: irrefl_def)
 
 subsubsection{*symmetry*}
@@ -58,7 +58,7 @@
      "[| !!x y.<x,y>: r ==> <y,x>: r |] ==> sym(r)"
 by (unfold sym_def, blast) 
 
-lemma antisymI: "[| sym(r); <x,y>: r |]  ==>  <y,x>: r"
+lemma symE: "[| sym(r); <x,y>: r |]  ==>  <y,x>: r"
 by (unfold sym_def, blast)
 
 subsubsection{*antisymmetry*}
@@ -139,7 +139,7 @@
 
 (** standard induction rule **)
 
-lemma rtrancl_full_induct:
+lemma rtrancl_full_induct [case_names initial step, consumes 1]:
   "[| <a,b> : r^*;  
       !!x. x: field(r) ==> P(<x,x>);  
       !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |]  
@@ -149,7 +149,7 @@
 (*nice induction rule.
   Tried adding the typing hypotheses y,z:field(r), but these
   caused expensive case splits!*)
-lemma rtrancl_induct:
+lemma rtrancl_induct [case_names initial step, induct set: rtrancl]:
   "[| <a,b> : r^*;                                               
       P(a);                                                      
       !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z)        
@@ -228,7 +228,7 @@
 done
 
 (*Nice induction rule for trancl*)
-lemma trancl_induct:
+lemma trancl_induct [case_names initial step, induct set: trancl]:
   "[| <a,b> : r^+;                                       
       !!y.  [| <a,y> : r |] ==> P(y);                    
       !!y z.[| <a,y> : r^+;  <y,z> : r;  P(y) |] ==> P(z)        
@@ -353,7 +353,7 @@
 apply (safe dest!: trancl_converseD intro!: trancl_converseI)
 done
 
-lemma converse_trancl_induct:
+lemma converse_trancl_induct [case_names initial step, consumes 1]:
 "[| <a, b>:r^+; !!y. <y, b> :r ==> P(y);  
       !!y z. [| <y, z> : r; <z, b> : r^+; P(z) |] ==> P(y) |]  
        ==> P(a)"
@@ -363,12 +363,6 @@
 apply (auto simp add: trancl_converse)
 done
 
-lemmas rtrancl_induct = rtrancl_induct [case_names initial step, induct set: rtrancl]
-  and trancl_induct = trancl_induct [case_names initial step, induct set: trancl]
-  and converse_trancl_induct = converse_trancl_induct [case_names initial step, consumes 1]
-  and rtrancl_full_induct = rtrancl_full_induct [case_names initial step, consumes 1]
-
-
 ML
 {*
 val refl_def = thm "refl_def";
--- a/src/ZF/Univ.thy	Tue Aug 27 11:07:54 2002 +0200
+++ b/src/ZF/Univ.thy	Tue Aug 27 11:09:33 2002 +0200
@@ -192,8 +192,6 @@
 apply (blast intro: ltI Limit_is_Ord)
 done
 
-lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard]
-
 lemma singleton_in_VLimit:
     "[| a \<in> Vfrom(A,i);  Limit(i) |] ==> {a} \<in> Vfrom(A,i)"
 apply (erule Limit_VfromE, assumption)
--- a/src/ZF/WF.thy	Tue Aug 27 11:07:54 2002 +0200
+++ b/src/ZF/WF.thy	Tue Aug 27 11:09:33 2002 +0200
@@ -100,7 +100,7 @@
 (** Well-founded Induction **)
 
 (*Consider the least z in domain(r) such that P(z) does not hold...*)
-lemma wf_induct:
+lemma wf_induct [induct set: wf]:
     "[| wf(r);
         !!x.[| ALL y. <y,x>: r --> P(y) |] ==> P(x)
      |]  ==>  P(a)"
@@ -109,9 +109,7 @@
 apply blast 
 done
 
-(*fixed up for induct method*)
-lemmas wf_induct = wf_induct [induct set: wf]
-  and wf_induct_rule = wf_induct [rule_format, induct set: wf]
+lemmas wf_induct_rule = wf_induct [rule_format, induct set: wf]
 
 (*The form of this rule is designed to match wfI*)
 lemma wf_induct2:
@@ -125,7 +123,7 @@
 lemma field_Int_square: "field(r Int A*A) <= A"
 by blast
 
-lemma wf_on_induct:
+lemma wf_on_induct [consumes 2, induct set: wf_on]:
     "[| wf[A](r);  a:A;
         !!x.[| x: A;  ALL y:A. <y,x>: r --> P(y) |] ==> P(x)
      |]  ==>  P(a)"
@@ -134,10 +132,8 @@
 apply (rule field_Int_square, blast)
 done
 
-(*fixed up for induct method*)
-lemmas wf_on_induct = wf_on_induct [consumes 2, induct set: wf_on]
-   and wf_on_induct_rule = 
-	 wf_on_induct [rule_format, consumes 2, induct set: wf_on]
+lemmas wf_on_induct_rule =
+  wf_on_induct [rule_format, consumes 2, induct set: wf_on]
 
 
 (*If r allows well-founded induction then wf(r)*)