reorganization of tree lemmas; new lemmas
authornipkow
Fri, 25 Aug 2017 23:09:56 +0200
changeset 66510 ca7a369301f6
parent 66509 65b6d48fc9a9
child 66511 9756684f4d74
reorganization of tree lemmas; new lemmas
src/HOL/Data_Structures/Balance.thy
src/HOL/Library/Library.thy
src/HOL/Library/Tree_Real.thy
src/HOL/Transcendental.thy
--- a/src/HOL/Data_Structures/Balance.thy	Fri Aug 25 13:01:13 2017 +0100
+++ b/src/HOL/Data_Structures/Balance.thy	Fri Aug 25 23:09:56 2017 +0200
@@ -4,67 +4,9 @@
 
 theory Balance
 imports
-  Complex_Main
-  "HOL-Library.Tree"
+  "HOL-Library.Tree_Real"
 begin
 
-(* The following two lemmas should go into theory \<open>Tree\<close>, except that that
-theory would then depend on \<open>Complex_Main\<close>. *)
-
-lemma min_height_balanced: assumes "balanced t"
-shows "min_height t = nat(floor(log 2 (size1 t)))"
-proof cases
-  assume *: "complete t"
-  hence "size1 t = 2 ^ min_height t"
-    by (simp add: complete_iff_height size1_if_complete)
-  hence "size1 t = 2 powr min_height t"
-    using * by (simp add: powr_realpow)
-  hence "min_height t = log 2 (size1 t)"
-    by simp
-  thus ?thesis
-    by linarith
-next
-  assume *: "\<not> complete t"
-  hence "height t = min_height t + 1"
-    using assms min_height_le_height[of t]
-    by(auto simp add: balanced_def complete_iff_height)
-  hence "2 ^ min_height t \<le> size1 t \<and> size1 t < 2 ^ (min_height t + 1)"
-    by (metis * min_height_size1 size1_height_if_incomplete)
-  hence "2 powr min_height t \<le> size1 t \<and> size1 t < 2 powr (min_height t + 1)"
-    by(simp only: powr_realpow)
-      (metis of_nat_less_iff of_nat_le_iff of_nat_numeral of_nat_power)
-  hence "min_height t \<le> log 2 (size1 t) \<and> log 2 (size1 t) < min_height t + 1"
-    by(simp add: log_less_iff le_log_iff)
-  thus ?thesis by linarith
-qed
-
-lemma height_balanced: assumes "balanced t"
-shows "height t = nat(ceiling(log 2 (size1 t)))"
-proof cases
-  assume *: "complete t"
-  hence "size1 t = 2 ^ height t"
-    by (simp add: size1_if_complete)
-  hence "size1 t = 2 powr height t"
-    using * by (simp add: powr_realpow)
-  hence "height t = log 2 (size1 t)"
-    by simp
-  thus ?thesis
-    by linarith
-next
-  assume *: "\<not> complete t"
-  hence **: "height t = min_height t + 1"
-    using assms min_height_le_height[of t]
-    by(auto simp add: balanced_def complete_iff_height)
-  hence 0: "2 ^ min_height t < size1 t \<and> size1 t \<le> 2 ^ (min_height t + 1)"
-    by (metis "*" min_height_size1_if_incomplete size1_height)
-  hence "2 powr min_height t < size1 t \<and> size1 t \<le> 2 powr (min_height t + 1)"
-    by(simp only: powr_realpow)
-      (metis of_nat_less_iff of_nat_le_iff of_nat_numeral of_nat_power)
-  hence "min_height t < log 2 (size1 t) \<and> log 2 (size1 t) \<le> min_height t + 1"
-    by(simp add: log_le_iff less_log_iff)
-  thus ?thesis using ** by linarith
-qed
-
 (* mv *)
 
 text \<open>The lemmas about \<open>floor\<close> and \<open>ceiling\<close> of \<open>log 2\<close> should be generalized
--- a/src/HOL/Library/Library.thy	Fri Aug 25 13:01:13 2017 +0100
+++ b/src/HOL/Library/Library.thy	Fri Aug 25 23:09:56 2017 +0200
@@ -80,6 +80,7 @@
   Sum_of_Squares
   Transitive_Closure_Table
   Tree_Multiset
+  Tree_Real
   Type_Length
   While_Combinator
 begin
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Tree_Real.thy	Fri Aug 25 23:09:56 2017 +0200
@@ -0,0 +1,64 @@
+(* Author: Tobias Nipkow *)
+
+theory Tree_Real
+imports
+  Complex_Main
+  Tree
+begin
+
+text \<open>This theory is separate from @{theory Tree} because the former is discrete and builds on
+@{theory Main} whereas this theory builds on @{theory Complex_Main}.\<close>
+
+
+lemma size1_height_log: "log 2 (size1 t) \<le> height t"
+by (simp add: log2_of_power_le size1_height)
+
+lemma min_height_size1_log: "min_height t \<le> log 2 (size1 t)"
+by (simp add: le_log2_of_power min_height_size1)
+
+lemma size1_log_if_complete: "complete t \<Longrightarrow> height t = log 2 (size1 t)"
+by (simp add: log2_of_power_eq size1_if_complete)
+
+lemma min_height_size1_log_if_incomplete:
+  "\<not> complete t \<Longrightarrow> min_height t < log 2 (size1 t)"
+by (simp add: less_log2_of_power min_height_size1_if_incomplete)
+
+
+lemma min_height_balanced: assumes "balanced t"
+shows "min_height t = nat(floor(log 2 (size1 t)))"
+proof cases
+  assume *: "complete t"
+  hence "size1 t = 2 ^ min_height t"
+    by (simp add: complete_iff_height size1_if_complete)
+  from log2_of_power_eq[OF this] show ?thesis by linarith
+next
+  assume *: "\<not> complete t"
+  hence "height t = min_height t + 1"
+    using assms min_height_le_height[of t]
+    by(auto simp add: balanced_def complete_iff_height)
+  hence "size1 t < 2 ^ (min_height t + 1)"
+    by (metis * size1_height_if_incomplete)
+  hence "log 2 (size1 t) < min_height t + 1"
+    using log2_of_power_less size1_ge0 by blast
+  thus ?thesis using min_height_size1_log[of t] by linarith
+qed
+
+lemma height_balanced: assumes "balanced t"
+shows "height t = nat(ceiling(log 2 (size1 t)))"
+proof cases
+  assume *: "complete t"
+  hence "size1 t = 2 ^ height t"
+    by (simp add: size1_if_complete)
+  from log2_of_power_eq[OF this] show ?thesis
+    by linarith
+next
+  assume *: "\<not> complete t"
+  hence **: "height t = min_height t + 1"
+    using assms min_height_le_height[of t]
+    by(auto simp add: balanced_def complete_iff_height)
+  hence "size1 t \<le> 2 ^ (min_height t + 1)" by (metis size1_height)
+  from  log2_of_power_le[OF this size1_ge0] min_height_size1_log_if_incomplete[OF *] **
+  show ?thesis by linarith
+qed
+
+end
\ No newline at end of file
--- a/src/HOL/Transcendental.thy	Fri Aug 25 13:01:13 2017 +0100
+++ b/src/HOL/Transcendental.thy	Fri Aug 25 23:09:56 2017 +0200
@@ -2772,21 +2772,66 @@
   by (simp add: log_powr powr_realpow [symmetric])
 
 lemma le_log_of_power:
-  assumes "1 < b" "b ^ n \<le> m"
+  assumes "b ^ n \<le> m" "1 < b"
   shows "n \<le> log b m"
 proof -
-   from assms have "0 < m"
-     by (metis less_trans zero_less_power less_le_trans zero_less_one)
-   have "n = log b (b ^ n)"
-     using assms(1) by (simp add: log_nat_power)
-   also have "\<dots> \<le> log b m"
-     using assms \<open>0 < m\<close> by simp
+  from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one)
+  have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
+  also have "\<dots> \<le> log b m" using assms \<open>0 < m\<close> by simp
+  finally show ?thesis .
+qed
+
+lemma le_log2_of_power: "2 ^ n \<le> m \<Longrightarrow> n \<le> log 2 m" for m n :: nat
+using le_log_of_power[of 2] by simp
+
+lemma log_of_power_le:
+  assumes "m \<le> b ^ n" "b > 1" "m > 0"
+  shows "log b (real m) \<le> n"
+proof -
+  have "log b m \<le> log b (b ^ n)" using assms by simp
+  also have "\<dots> = n" using assms(2) by (simp add: log_nat_power)
+  finally show ?thesis .
+qed
+
+lemma log2_of_power_le: "\<lbrakk> m \<le> 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m \<le> n" for m n :: nat
+using log_of_power_le[of _ 2] by simp
+
+lemma log_of_power_less:
+  assumes "m < b ^ n" "b > 1" "m > 0"
+  shows "log b (real m) < n"
+proof -
+  have "log b m < log b (b ^ n)" using assms by simp
+  also have "\<dots> = n" using assms(2) by (simp add: log_nat_power)
+  finally show ?thesis .
+qed
+
+lemma log2_of_power_less: "\<lbrakk> m < 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m < n" for m n :: nat
+using log_of_power_less[of _ 2] by simp
+
+lemma log_of_power_eq:
+  assumes "m = b ^ n" "b > 1"
+  shows "n = log b (real m)"
+proof -
+  have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
+  also have "\<dots> = log b m" using assms by (simp)
+  finally show ?thesis .
+qed
+
+lemma log2_of_power_eq: "m = 2 ^ n \<Longrightarrow> n = log 2 m" for m n :: nat
+using log_of_power_eq[of _ 2] by simp
+
+lemma less_log_of_power:
+  assumes "b ^ n < m" "1 < b"
+  shows "n < log b m"
+proof -
+   have "0 < m" by (metis assms less_trans zero_less_power zero_less_one)
+   have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
+   also have "\<dots> < log b m" using assms \<open>0 < m\<close> by simp
    finally show ?thesis .
 qed
 
-lemma le_log2_of_power: "2 ^ n \<le> m \<Longrightarrow> n \<le> log 2 m"
-  for m n :: nat
-  using le_log_of_power[of 2] by simp
+lemma less_log2_of_power: "2 ^ n < m \<Longrightarrow> n < log 2 m" for m n :: nat
+using less_log_of_power[of 2] by simp
 
 lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
   by (simp add: log_def)