--- a/src/HOL/Lim.thy Thu Mar 21 16:58:14 2013 +0100
+++ b/src/HOL/Lim.thy Fri Mar 22 10:41:42 2013 +0100
@@ -10,28 +10,12 @@
imports SEQ
begin
-text{*Standard Definitions*}
-
-abbreviation
- LIM :: "['a::topological_space \<Rightarrow> 'b::topological_space, 'a, 'b] \<Rightarrow> bool"
- ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
- "f -- a --> L \<equiv> (f ---> L) (at a)"
-
-definition
- isCont :: "['a::topological_space \<Rightarrow> 'b::topological_space, 'a] \<Rightarrow> bool" where
- "isCont f a = (f -- a --> (f a))"
-
definition
isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool" where
"isUCont f = (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)"
subsection {* Limits of Functions *}
-lemma LIM_def: "f -- a --> L =
- (\<forall>r > 0. \<exists>s > 0. \<forall>x. x \<noteq> a & dist x a < s
- --> dist (f x) L < r)"
-unfolding tendsto_iff eventually_at ..
-
lemma metric_LIM_I:
"(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r)
\<Longrightarrow> f -- a --> L"
@@ -81,8 +65,6 @@
shows "(\<lambda>h. f (a + h)) -- 0 --> L \<Longrightarrow> f -- a --> L"
by (drule_tac k="- a" in LIM_offset, simp)
-lemma LIM_cong_limit: "\<lbrakk> f -- x --> L ; K = L \<rbrakk> \<Longrightarrow> f -- x --> K" by simp
-
lemma LIM_zero:
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. f x - l) ---> 0) F"
@@ -114,36 +96,6 @@
by (rule metric_LIM_imp_LIM [OF f],
simp add: dist_norm le)
-lemma LIM_const_not_eq:
- fixes a :: "'a::perfect_space"
- fixes k L :: "'b::t2_space"
- shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --> L"
- by (simp add: tendsto_const_iff)
-
-lemmas LIM_not_zero = LIM_const_not_eq [where L = 0]
-
-lemma LIM_const_eq:
- fixes a :: "'a::perfect_space"
- fixes k L :: "'b::t2_space"
- shows "(\<lambda>x. k) -- a --> L \<Longrightarrow> k = L"
- by (simp add: tendsto_const_iff)
-
-lemma LIM_unique:
- fixes a :: "'a::perfect_space"
- fixes L M :: "'b::t2_space"
- shows "\<lbrakk>f -- a --> L; f -- a --> M\<rbrakk> \<Longrightarrow> L = M"
- using at_neq_bot by (rule tendsto_unique)
-
-text{*Limits are equal for functions equal except at limit point*}
-lemma LIM_equal:
- "[| \<forall>x. x \<noteq> a --> (f x = g x) |] ==> (f -- a --> l) = (g -- a --> l)"
-unfolding tendsto_def eventually_at_topological by simp
-
-lemma LIM_cong:
- "\<lbrakk>a = b; \<And>x. x \<noteq> b \<Longrightarrow> f x = g x; l = m\<rbrakk>
- \<Longrightarrow> ((\<lambda>x. f x) -- a --> l) = ((\<lambda>x. g x) -- b --> m)"
-by (simp add: LIM_equal)
-
lemma metric_LIM_equal2:
assumes 1: "0 < R"
assumes 2: "\<And>x. \<lbrakk>x \<noteq> a; dist x a < R\<rbrakk> \<Longrightarrow> f x = g x"
@@ -163,13 +115,6 @@
shows "g -- a --> l \<Longrightarrow> f -- a --> l"
by (rule metric_LIM_equal2 [OF 1 2], simp_all add: dist_norm)
-lemma LIM_compose_eventually:
- assumes f: "f -- a --> b"
- assumes g: "g -- b --> c"
- assumes inj: "eventually (\<lambda>x. f x \<noteq> b) (at a)"
- shows "(\<lambda>x. g (f x)) -- a --> c"
- using g f inj by (rule tendsto_compose_eventually)
-
lemma metric_LIM_compose2:
assumes f: "f -- a --> b"
assumes g: "g -- b --> c"
@@ -186,16 +131,13 @@
shows "(\<lambda>x. g (f x)) -- a --> c"
by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])
-lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l"
- unfolding o_def by (rule tendsto_compose)
-
lemma real_LIM_sandwich_zero:
fixes f g :: "'a::topological_space \<Rightarrow> real"
assumes f: "f -- a --> 0"
assumes 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
assumes 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
shows "g -- a --> 0"
-proof (rule LIM_imp_LIM [OF f])
+proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
fix x assume x: "x \<noteq> a"
have "norm (g x - 0) = g x" by (simp add: 1 x)
also have "g x \<le> f x" by (rule 2 [OF x])
@@ -217,12 +159,6 @@
shows "isCont f x = (\<lambda>h. f (x + h)) -- 0 --> f x"
by (simp add: isCont_def LIM_isCont_iff)
-lemma isCont_ident [simp]: "isCont (\<lambda>x. x) a"
- unfolding isCont_def by (rule tendsto_ident_at)
-
-lemma isCont_const [simp]: "isCont (\<lambda>x. k) a"
- unfolding isCont_def by (rule tendsto_const)
-
lemma isCont_norm [simp]:
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a"
@@ -263,10 +199,6 @@
shows "\<lbrakk>isCont f a; isCont g a; g a \<noteq> 0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x / g x) a"
unfolding isCont_def by (rule tendsto_divide)
-lemma isCont_tendsto_compose:
- "\<lbrakk>isCont g l; (f ---> l) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
- unfolding isCont_def by (rule tendsto_compose)
-
lemma metric_isCont_LIM_compose2:
assumes f [unfolded isCont_def]: "isCont f a"
assumes g: "g -- f a --> l"
@@ -282,12 +214,6 @@
shows "(\<lambda>x. g (f x)) -- a --> l"
by (rule LIM_compose2 [OF f g inj])
-lemma isCont_o2: "\<lbrakk>isCont f a; isCont g (f a)\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"
- unfolding isCont_def by (rule tendsto_compose)
-
-lemma isCont_o: "\<lbrakk>isCont f a; isCont g (f a)\<rbrakk> \<Longrightarrow> isCont (g o f) a"
- unfolding o_def by (rule isCont_o2)
-
lemma (in bounded_linear) isCont:
"isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a"
unfolding isCont_def by (rule tendsto)
@@ -372,7 +298,7 @@
def F \<equiv> "\<lambda>n::nat. SOME x. x \<in> s \<and> x \<noteq> a \<and> dist x a < ?I n \<and> \<not> P x"
assume "\<not> eventually P (at a within s)"
hence P: "\<forall>d>0. \<exists>x. x \<in> s \<and> x \<noteq> a \<and> dist x a < d \<and> \<not> P x"
- unfolding Limits.eventually_within Limits.eventually_at by fast
+ unfolding eventually_within eventually_at by fast
hence "\<And>n. \<exists>x. x \<in> s \<and> x \<noteq> a \<and> dist x a < ?I n \<and> \<not> P x" by simp
hence F: "\<And>n. F n \<in> s \<and> F n \<noteq> a \<and> dist (F n) a < ?I n \<and> \<not> P (F n)"
unfolding F_def by (rule someI_ex)
--- a/src/HOL/Limits.thy Thu Mar 21 16:58:14 2013 +0100
+++ b/src/HOL/Limits.thy Fri Mar 22 10:41:42 2013 +0100
@@ -8,457 +8,9 @@
imports RealVector
begin
-subsection {* Filters *}
-
-text {*
- This definition also allows non-proper filters.
-*}
-
-locale is_filter =
- fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
- assumes True: "F (\<lambda>x. True)"
- assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)"
- assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)"
-
-typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
-proof
- show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro)
-qed
-
-lemma is_filter_Rep_filter: "is_filter (Rep_filter F)"
- using Rep_filter [of F] by simp
-
-lemma Abs_filter_inverse':
- assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F"
- using assms by (simp add: Abs_filter_inverse)
-
-
-subsection {* Eventually *}
-
-definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
- where "eventually P F \<longleftrightarrow> Rep_filter F P"
-
-lemma eventually_Abs_filter:
- assumes "is_filter F" shows "eventually P (Abs_filter F) = F P"
- unfolding eventually_def using assms by (simp add: Abs_filter_inverse)
-
-lemma filter_eq_iff:
- shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')"
- unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def ..
-
-lemma eventually_True [simp]: "eventually (\<lambda>x. True) F"
- unfolding eventually_def
- by (rule is_filter.True [OF is_filter_Rep_filter])
-
-lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F"
-proof -
- assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext)
- thus "eventually P F" by simp
-qed
-
-lemma eventually_mono:
- "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P F \<Longrightarrow> eventually Q F"
- unfolding eventually_def
- by (rule is_filter.mono [OF is_filter_Rep_filter])
-
-lemma eventually_conj:
- assumes P: "eventually (\<lambda>x. P x) F"
- assumes Q: "eventually (\<lambda>x. Q x) F"
- shows "eventually (\<lambda>x. P x \<and> Q x) F"
- using assms unfolding eventually_def
- by (rule is_filter.conj [OF is_filter_Rep_filter])
-
-lemma eventually_Ball_finite:
- assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net"
- shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net"
-using assms by (induct set: finite, simp, simp add: eventually_conj)
-
-lemma eventually_all_finite:
- fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool"
- assumes "\<And>y. eventually (\<lambda>x. P x y) net"
- shows "eventually (\<lambda>x. \<forall>y. P x y) net"
-using eventually_Ball_finite [of UNIV P] assms by simp
-
-lemma eventually_mp:
- assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
- assumes "eventually (\<lambda>x. P x) F"
- shows "eventually (\<lambda>x. Q x) F"
-proof (rule eventually_mono)
- show "\<forall>x. (P x \<longrightarrow> Q x) \<and> P x \<longrightarrow> Q x" by simp
- show "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F"
- using assms by (rule eventually_conj)
-qed
-
-lemma eventually_rev_mp:
- assumes "eventually (\<lambda>x. P x) F"
- assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
- shows "eventually (\<lambda>x. Q x) F"
-using assms(2) assms(1) by (rule eventually_mp)
-
-lemma eventually_conj_iff:
- "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F"
- by (auto intro: eventually_conj elim: eventually_rev_mp)
-
-lemma eventually_elim1:
- assumes "eventually (\<lambda>i. P i) F"
- assumes "\<And>i. P i \<Longrightarrow> Q i"
- shows "eventually (\<lambda>i. Q i) F"
- using assms by (auto elim!: eventually_rev_mp)
-
-lemma eventually_elim2:
- assumes "eventually (\<lambda>i. P i) F"
- assumes "eventually (\<lambda>i. Q i) F"
- assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i"
- shows "eventually (\<lambda>i. R i) F"
- using assms by (auto elim!: eventually_rev_mp)
-
-lemma eventually_subst:
- assumes "eventually (\<lambda>n. P n = Q n) F"
- shows "eventually P F = eventually Q F" (is "?L = ?R")
-proof -
- from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
- and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F"
- by (auto elim: eventually_elim1)
- then show ?thesis by (auto elim: eventually_elim2)
-qed
-
-ML {*
- fun eventually_elim_tac ctxt thms thm =
- let
- val thy = Proof_Context.theory_of ctxt
- val mp_thms = thms RL [@{thm eventually_rev_mp}]
- val raw_elim_thm =
- (@{thm allI} RS @{thm always_eventually})
- |> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms
- |> fold (fn _ => fn thm => @{thm impI} RS thm) thms
- val cases_prop = prop_of (raw_elim_thm RS thm)
- val cases = (Rule_Cases.make_common (thy, cases_prop) [(("elim", []), [])])
- in
- CASES cases (rtac raw_elim_thm 1) thm
- end
-*}
-
-method_setup eventually_elim = {*
- Scan.succeed (fn ctxt => METHOD_CASES (eventually_elim_tac ctxt))
-*} "elimination of eventually quantifiers"
-
-
-subsection {* Finer-than relation *}
-
-text {* @{term "F \<le> F'"} means that filter @{term F} is finer than
-filter @{term F'}. *}
-
-instantiation filter :: (type) complete_lattice
-begin
-
-definition le_filter_def:
- "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)"
-
-definition
- "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
-
-definition
- "top = Abs_filter (\<lambda>P. \<forall>x. P x)"
-
-definition
- "bot = Abs_filter (\<lambda>P. True)"
-
-definition
- "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')"
-
-definition
- "inf F F' = Abs_filter
- (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
-
-definition
- "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)"
-
-definition
- "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
-
-lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)"
- unfolding top_filter_def
- by (rule eventually_Abs_filter, rule is_filter.intro, auto)
-
-lemma eventually_bot [simp]: "eventually P bot"
- unfolding bot_filter_def
- by (subst eventually_Abs_filter, rule is_filter.intro, auto)
-
-lemma eventually_sup:
- "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'"
- unfolding sup_filter_def
- by (rule eventually_Abs_filter, rule is_filter.intro)
- (auto elim!: eventually_rev_mp)
-
-lemma eventually_inf:
- "eventually P (inf F F') \<longleftrightarrow>
- (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
- unfolding inf_filter_def
- apply (rule eventually_Abs_filter, rule is_filter.intro)
- apply (fast intro: eventually_True)
- apply clarify
- apply (intro exI conjI)
- apply (erule (1) eventually_conj)
- apply (erule (1) eventually_conj)
- apply simp
- apply auto
- done
-
-lemma eventually_Sup:
- "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)"
- unfolding Sup_filter_def
- apply (rule eventually_Abs_filter, rule is_filter.intro)
- apply (auto intro: eventually_conj elim!: eventually_rev_mp)
- done
-
-instance proof
- fix F F' F'' :: "'a filter" and S :: "'a filter set"
- { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
- by (rule less_filter_def) }
- { show "F \<le> F"
- unfolding le_filter_def by simp }
- { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
- unfolding le_filter_def by simp }
- { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
- unfolding le_filter_def filter_eq_iff by fast }
- { show "F \<le> top"
- unfolding le_filter_def eventually_top by (simp add: always_eventually) }
- { show "bot \<le> F"
- unfolding le_filter_def by simp }
- { show "F \<le> sup F F'" and "F' \<le> sup F F'"
- unfolding le_filter_def eventually_sup by simp_all }
- { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
- unfolding le_filter_def eventually_sup by simp }
- { show "inf F F' \<le> F" and "inf F F' \<le> F'"
- unfolding le_filter_def eventually_inf by (auto intro: eventually_True) }
- { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
- unfolding le_filter_def eventually_inf
- by (auto elim!: eventually_mono intro: eventually_conj) }
- { assume "F \<in> S" thus "F \<le> Sup S"
- unfolding le_filter_def eventually_Sup by simp }
- { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
- unfolding le_filter_def eventually_Sup by simp }
- { assume "F'' \<in> S" thus "Inf S \<le> F''"
- unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
- { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
- unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
-qed
-
-end
-
-lemma filter_leD:
- "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F"
- unfolding le_filter_def by simp
-
-lemma filter_leI:
- "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'"
- unfolding le_filter_def by simp
-
-lemma eventually_False:
- "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot"
- unfolding filter_eq_iff by (auto elim: eventually_rev_mp)
-
-abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool"
- where "trivial_limit F \<equiv> F = bot"
-
-lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F"
- by (rule eventually_False [symmetric])
-
-lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P"
- by (cases P) (simp_all add: eventually_False)
-
-
-subsection {* Map function for filters *}
-
-definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
- where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)"
-
-lemma eventually_filtermap:
- "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F"
- unfolding filtermap_def
- apply (rule eventually_Abs_filter)
- apply (rule is_filter.intro)
- apply (auto elim!: eventually_rev_mp)
- done
-
-lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F"
- by (simp add: filter_eq_iff eventually_filtermap)
-
-lemma filtermap_filtermap:
- "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F"
- by (simp add: filter_eq_iff eventually_filtermap)
-
-lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'"
- unfolding le_filter_def eventually_filtermap by simp
-
-lemma filtermap_bot [simp]: "filtermap f bot = bot"
- by (simp add: filter_eq_iff eventually_filtermap)
-
-lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)"
- by (auto simp: filter_eq_iff eventually_filtermap eventually_sup)
-
-subsection {* Order filters *}
-
-definition at_top :: "('a::order) filter"
- where "at_top = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<ge>k. P n)"
-
-lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)"
- unfolding at_top_def
-proof (rule eventually_Abs_filter, rule is_filter.intro)
- fix P Q :: "'a \<Rightarrow> bool"
- assume "\<exists>i. \<forall>n\<ge>i. P n" and "\<exists>j. \<forall>n\<ge>j. Q n"
- then obtain i j where "\<forall>n\<ge>i. P n" and "\<forall>n\<ge>j. Q n" by auto
- then have "\<forall>n\<ge>max i j. P n \<and> Q n" by simp
- then show "\<exists>k. \<forall>n\<ge>k. P n \<and> Q n" ..
-qed auto
-
-lemma eventually_ge_at_top:
- "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top"
- unfolding eventually_at_top_linorder by auto
-
-lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::dense_linorder. \<forall>n>N. P n)"
- unfolding eventually_at_top_linorder
-proof safe
- fix N assume "\<forall>n\<ge>N. P n" then show "\<exists>N. \<forall>n>N. P n" by (auto intro!: exI[of _ N])
-next
- fix N assume "\<forall>n>N. P n"
- moreover from gt_ex[of N] guess y ..
- ultimately show "\<exists>N. \<forall>n\<ge>N. P n" by (auto intro!: exI[of _ y])
-qed
-
-lemma eventually_gt_at_top:
- "eventually (\<lambda>x. (c::_::dense_linorder) < x) at_top"
- unfolding eventually_at_top_dense by auto
-
-definition at_bot :: "('a::order) filter"
- where "at_bot = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<le>k. P n)"
-
-lemma eventually_at_bot_linorder:
- fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)"
- unfolding at_bot_def
-proof (rule eventually_Abs_filter, rule is_filter.intro)
- fix P Q :: "'a \<Rightarrow> bool"
- assume "\<exists>i. \<forall>n\<le>i. P n" and "\<exists>j. \<forall>n\<le>j. Q n"
- then obtain i j where "\<forall>n\<le>i. P n" and "\<forall>n\<le>j. Q n" by auto
- then have "\<forall>n\<le>min i j. P n \<and> Q n" by simp
- then show "\<exists>k. \<forall>n\<le>k. P n \<and> Q n" ..
-qed auto
-
-lemma eventually_le_at_bot:
- "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot"
- unfolding eventually_at_bot_linorder by auto
-
-lemma eventually_at_bot_dense:
- fixes P :: "'a::dense_linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n<N. P n)"
- unfolding eventually_at_bot_linorder
-proof safe
- fix N assume "\<forall>n\<le>N. P n" then show "\<exists>N. \<forall>n<N. P n" by (auto intro!: exI[of _ N])
-next
- fix N assume "\<forall>n<N. P n"
- moreover from lt_ex[of N] guess y ..
- ultimately show "\<exists>N. \<forall>n\<le>N. P n" by (auto intro!: exI[of _ y])
-qed
-
-lemma eventually_gt_at_bot:
- "eventually (\<lambda>x. x < (c::_::dense_linorder)) at_bot"
- unfolding eventually_at_bot_dense by auto
-
-subsection {* Sequentially *}
-
-abbreviation sequentially :: "nat filter"
- where "sequentially == at_top"
-
-lemma sequentially_def: "sequentially = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<ge>k. P n)"
- unfolding at_top_def by simp
-
-lemma eventually_sequentially:
- "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)"
- by (rule eventually_at_top_linorder)
-
-lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot"
- unfolding filter_eq_iff eventually_sequentially by auto
-
-lemmas trivial_limit_sequentially = sequentially_bot
-
-lemma eventually_False_sequentially [simp]:
- "\<not> eventually (\<lambda>n. False) sequentially"
- by (simp add: eventually_False)
-
-lemma le_sequentially:
- "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)"
- unfolding le_filter_def eventually_sequentially
- by (safe, fast, drule_tac x=N in spec, auto elim: eventually_rev_mp)
-
-lemma eventually_sequentiallyI:
- assumes "\<And>x. c \<le> x \<Longrightarrow> P x"
- shows "eventually P sequentially"
-using assms by (auto simp: eventually_sequentially)
-
-
-subsection {* Standard filters *}
-
-definition within :: "'a filter \<Rightarrow> 'a set \<Rightarrow> 'a filter" (infixr "within" 70)
- where "F within S = Abs_filter (\<lambda>P. eventually (\<lambda>x. x \<in> S \<longrightarrow> P x) F)"
-
-definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter"
- where "nhds a = Abs_filter (\<lambda>P. \<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
-
-definition (in topological_space) at :: "'a \<Rightarrow> 'a filter"
- where "at a = nhds a within - {a}"
-
-abbreviation at_right :: "'a\<Colon>{topological_space, order} \<Rightarrow> 'a filter" where
- "at_right x \<equiv> at x within {x <..}"
-
-abbreviation at_left :: "'a\<Colon>{topological_space, order} \<Rightarrow> 'a filter" where
- "at_left x \<equiv> at x within {..< x}"
-
definition at_infinity :: "'a::real_normed_vector filter" where
"at_infinity = Abs_filter (\<lambda>P. \<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x)"
-lemma eventually_within:
- "eventually P (F within S) = eventually (\<lambda>x. x \<in> S \<longrightarrow> P x) F"
- unfolding within_def
- by (rule eventually_Abs_filter, rule is_filter.intro)
- (auto elim!: eventually_rev_mp)
-
-lemma within_UNIV [simp]: "F within UNIV = F"
- unfolding filter_eq_iff eventually_within by simp
-
-lemma within_empty [simp]: "F within {} = bot"
- unfolding filter_eq_iff eventually_within by simp
-
-lemma within_within_eq: "(F within S) within T = F within (S \<inter> T)"
- by (auto simp: filter_eq_iff eventually_within elim: eventually_elim1)
-
-lemma at_within_eq: "at x within T = nhds x within (T - {x})"
- unfolding at_def within_within_eq by (simp add: ac_simps Diff_eq)
-
-lemma within_le: "F within S \<le> F"
- unfolding le_filter_def eventually_within by (auto elim: eventually_elim1)
-
-lemma le_withinI: "F \<le> F' \<Longrightarrow> eventually (\<lambda>x. x \<in> S) F \<Longrightarrow> F \<le> F' within S"
- unfolding le_filter_def eventually_within by (auto elim: eventually_elim2)
-
-lemma le_within_iff: "eventually (\<lambda>x. x \<in> S) F \<Longrightarrow> F \<le> F' within S \<longleftrightarrow> F \<le> F'"
- by (blast intro: within_le le_withinI order_trans)
-
-lemma eventually_nhds:
- "eventually P (nhds a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
-unfolding nhds_def
-proof (rule eventually_Abs_filter, rule is_filter.intro)
- have "open UNIV \<and> a \<in> UNIV \<and> (\<forall>x\<in>UNIV. True)" by simp
- thus "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. True)" ..
-next
- fix P Q
- assume "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x)"
- and "\<exists>T. open T \<and> a \<in> T \<and> (\<forall>x\<in>T. Q x)"
- then obtain S T where
- "open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x)"
- "open T \<and> a \<in> T \<and> (\<forall>x\<in>T. Q x)" by auto
- hence "open (S \<inter> T) \<and> a \<in> S \<inter> T \<and> (\<forall>x\<in>(S \<inter> T). P x \<and> Q x)"
- by (simp add: open_Int)
- thus "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x \<and> Q x)" ..
-qed auto
lemma eventually_nhds_metric:
"eventually P (nhds a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. dist x a < d \<longrightarrow> P x)"
@@ -472,18 +24,10 @@
apply (erule le_less_trans [OF dist_triangle])
done
-lemma nhds_neq_bot [simp]: "nhds a \<noteq> bot"
- unfolding trivial_limit_def eventually_nhds by simp
-
-lemma eventually_at_topological:
- "eventually P (at a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. x \<noteq> a \<longrightarrow> P x))"
-unfolding at_def eventually_within eventually_nhds by simp
-
lemma eventually_at:
fixes a :: "'a::metric_space"
shows "eventually P (at a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> P x)"
unfolding at_def eventually_within eventually_nhds_metric by auto
-
lemma eventually_within_less: (* COPY FROM Topo/eventually_within *)
"eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)"
unfolding eventually_within eventually_at dist_nz by auto
@@ -492,29 +36,6 @@
"eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a <= d \<longrightarrow> P x)"
unfolding eventually_within_less by auto (metis dense order_le_less_trans)
-lemma at_eq_bot_iff: "at a = bot \<longleftrightarrow> open {a}"
- unfolding trivial_limit_def eventually_at_topological
- by (safe, case_tac "S = {a}", simp, fast, fast)
-
-lemma at_neq_bot [simp]: "at (a::'a::perfect_space) \<noteq> bot"
- by (simp add: at_eq_bot_iff not_open_singleton)
-
-lemma trivial_limit_at_left_real [simp]: (* maybe generalize type *)
- "\<not> trivial_limit (at_left (x::real))"
- unfolding trivial_limit_def eventually_within_le
- apply clarsimp
- apply (rule_tac x="x - d/2" in bexI)
- apply (auto simp: dist_real_def)
- done
-
-lemma trivial_limit_at_right_real [simp]: (* maybe generalize type *)
- "\<not> trivial_limit (at_right (x::real))"
- unfolding trivial_limit_def eventually_within_le
- apply clarsimp
- apply (rule_tac x="x + d/2" in bexI)
- apply (auto simp: dist_real_def)
- done
-
lemma eventually_at_infinity:
"eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)"
unfolding at_infinity_def
@@ -722,214 +243,9 @@
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]
-
-subsection {* Limits *}
-
-definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
- "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2"
-
-syntax
- "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
-
-translations
- "LIM x F1. f :> F2" == "CONST filterlim (%x. f) F2 F1"
-
-lemma filterlim_iff:
- "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)"
- unfolding filterlim_def le_filter_def eventually_filtermap ..
-
-lemma filterlim_compose:
- "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1"
- unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans)
-
-lemma filterlim_mono:
- "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'"
- unfolding filterlim_def by (metis filtermap_mono order_trans)
-
-lemma filterlim_ident: "LIM x F. x :> F"
- by (simp add: filterlim_def filtermap_ident)
-
-lemma filterlim_cong:
- "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'"
- by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2)
-
-lemma filterlim_within:
- "(LIM x F1. f x :> F2 within S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F1 \<and> (LIM x F1. f x :> F2))"
- unfolding filterlim_def
-proof safe
- assume "filtermap f F1 \<le> F2 within S" then show "eventually (\<lambda>x. f x \<in> S) F1"
- by (auto simp: le_filter_def eventually_filtermap eventually_within elim!: allE[of _ "\<lambda>x. x \<in> S"])
-qed (auto intro: within_le order_trans simp: le_within_iff eventually_filtermap)
-
-lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2"
- unfolding filterlim_def filtermap_filtermap ..
-
-lemma filterlim_sup:
- "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)"
- unfolding filterlim_def filtermap_sup by auto
-
-lemma filterlim_Suc: "filterlim Suc sequentially sequentially"
- by (simp add: filterlim_iff eventually_sequentially) (metis le_Suc_eq)
-
-abbreviation (in topological_space)
- tendsto :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool" (infixr "--->" 55) where
- "(f ---> l) F \<equiv> filterlim f (nhds l) F"
-
-lemma tendsto_eq_rhs: "(f ---> x) F \<Longrightarrow> x = y \<Longrightarrow> (f ---> y) F"
- by simp
-
-ML {*
-
-structure Tendsto_Intros = Named_Thms
-(
- val name = @{binding tendsto_intros}
- val description = "introduction rules for tendsto"
-)
-
-*}
-
-setup {*
- Tendsto_Intros.setup #>
- Global_Theory.add_thms_dynamic (@{binding tendsto_eq_intros},
- map (fn thm => @{thm tendsto_eq_rhs} OF [thm]) o Tendsto_Intros.get o Context.proof_of);
-*}
-
-lemma tendsto_def: "(f ---> l) F \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F)"
- unfolding filterlim_def
-proof safe
- fix S assume "open S" "l \<in> S" "filtermap f F \<le> nhds l"
- then show "eventually (\<lambda>x. f x \<in> S) F"
- unfolding eventually_nhds eventually_filtermap le_filter_def
- by (auto elim!: allE[of _ "\<lambda>x. x \<in> S"] eventually_rev_mp)
-qed (auto elim!: eventually_rev_mp simp: eventually_nhds eventually_filtermap le_filter_def)
-
-lemma filterlim_at:
- "(LIM x F. f x :> at b) \<longleftrightarrow> (eventually (\<lambda>x. f x \<noteq> b) F \<and> (f ---> b) F)"
- by (simp add: at_def filterlim_within)
-
-lemma tendsto_mono: "F \<le> F' \<Longrightarrow> (f ---> l) F' \<Longrightarrow> (f ---> l) F"
- unfolding tendsto_def le_filter_def by fast
-
-lemma topological_tendstoI:
- "(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F)
- \<Longrightarrow> (f ---> l) F"
- unfolding tendsto_def by auto
-
-lemma topological_tendstoD:
- "(f ---> l) F \<Longrightarrow> open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
- unfolding tendsto_def by auto
-
-lemma tendstoI:
- assumes "\<And>e. 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F"
- shows "(f ---> l) F"
- apply (rule topological_tendstoI)
- apply (simp add: open_dist)
- apply (drule (1) bspec, clarify)
- apply (drule assms)
- apply (erule eventually_elim1, simp)
- done
-
-lemma tendstoD:
- "(f ---> l) F \<Longrightarrow> 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F"
- apply (drule_tac S="{x. dist x l < e}" in topological_tendstoD)
- apply (clarsimp simp add: open_dist)
- apply (rule_tac x="e - dist x l" in exI, clarsimp)
- apply (simp only: less_diff_eq)
- apply (erule le_less_trans [OF dist_triangle])
- apply simp
- apply simp
- done
-
-lemma tendsto_iff:
- "(f ---> l) F \<longleftrightarrow> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) F)"
- using tendstoI tendstoD by fast
-
-lemma order_tendstoI:
- fixes y :: "_ :: order_topology"
- assumes "\<And>a. a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F"
- assumes "\<And>a. y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F"
- shows "(f ---> y) F"
-proof (rule topological_tendstoI)
- fix S assume "open S" "y \<in> S"
- then show "eventually (\<lambda>x. f x \<in> S) F"
- unfolding open_generated_order
- proof induct
- case (UN K)
- then obtain k where "y \<in> k" "k \<in> K" by auto
- with UN(2)[of k] show ?case
- by (auto elim: eventually_elim1)
- qed (insert assms, auto elim: eventually_elim2)
-qed
-
-lemma order_tendstoD:
- fixes y :: "_ :: order_topology"
- assumes y: "(f ---> y) F"
- shows "a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F"
- and "y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F"
- using topological_tendstoD[OF y, of "{..< a}"] topological_tendstoD[OF y, of "{a <..}"] by auto
-
-lemma order_tendsto_iff:
- fixes f :: "_ \<Rightarrow> 'a :: order_topology"
- shows "(f ---> x) F \<longleftrightarrow>(\<forall>l<x. eventually (\<lambda>x. l < f x) F) \<and> (\<forall>u>x. eventually (\<lambda>x. f x < u) F)"
- by (metis order_tendstoI order_tendstoD)
-
lemma tendsto_Zfun_iff: "(f ---> a) F = Zfun (\<lambda>x. f x - a) F"
by (simp only: tendsto_iff Zfun_def dist_norm)
-lemma tendsto_bot [simp]: "(f ---> a) bot"
- unfolding tendsto_def by simp
-
-lemma tendsto_ident_at [tendsto_intros]: "((\<lambda>x. x) ---> a) (at a)"
- unfolding tendsto_def eventually_at_topological by auto
-
-lemma tendsto_ident_at_within [tendsto_intros]:
- "((\<lambda>x. x) ---> a) (at a within S)"
- unfolding tendsto_def eventually_within eventually_at_topological by auto
-
-lemma tendsto_const [tendsto_intros]: "((\<lambda>x. k) ---> k) F"
- by (simp add: tendsto_def)
-
-lemma tendsto_unique:
- fixes f :: "'a \<Rightarrow> 'b::t2_space"
- assumes "\<not> trivial_limit F" and "(f ---> a) F" and "(f ---> b) F"
- shows "a = b"
-proof (rule ccontr)
- assume "a \<noteq> b"
- obtain U V where "open U" "open V" "a \<in> U" "b \<in> V" "U \<inter> V = {}"
- using hausdorff [OF `a \<noteq> b`] by fast
- have "eventually (\<lambda>x. f x \<in> U) F"
- using `(f ---> a) F` `open U` `a \<in> U` by (rule topological_tendstoD)
- moreover
- have "eventually (\<lambda>x. f x \<in> V) F"
- using `(f ---> b) F` `open V` `b \<in> V` by (rule topological_tendstoD)
- ultimately
- have "eventually (\<lambda>x. False) F"
- proof eventually_elim
- case (elim x)
- hence "f x \<in> U \<inter> V" by simp
- with `U \<inter> V = {}` show ?case by simp
- qed
- with `\<not> trivial_limit F` show "False"
- by (simp add: trivial_limit_def)
-qed
-
-lemma tendsto_const_iff:
- fixes a b :: "'a::t2_space"
- assumes "\<not> trivial_limit F" shows "((\<lambda>x. a) ---> b) F \<longleftrightarrow> a = b"
- by (safe intro!: tendsto_const tendsto_unique [OF assms tendsto_const])
-
-lemma tendsto_at_iff_tendsto_nhds:
- "(g ---> g l) (at l) \<longleftrightarrow> (g ---> g l) (nhds l)"
- unfolding tendsto_def at_def eventually_within
- by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1)
-
-lemma tendsto_compose:
- "(g ---> g l) (at l) \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
- unfolding tendsto_at_iff_tendsto_nhds by (rule filterlim_compose[of g])
-
-lemma tendsto_compose_eventually:
- "(g ---> m) (at l) \<Longrightarrow> (f ---> l) F \<Longrightarrow> eventually (\<lambda>x. f x \<noteq> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> m) F"
- by (rule filterlim_compose[of g _ "at l"]) (auto simp add: filterlim_at)
lemma metric_tendsto_imp_tendsto:
assumes f: "(f ---> a) F"
@@ -941,21 +257,6 @@
with le show "eventually (\<lambda>x. dist (g x) b < e) F"
using le_less_trans by (rule eventually_elim2)
qed
-
-lemma increasing_tendsto:
- fixes f :: "_ \<Rightarrow> 'a::order_topology"
- assumes bdd: "eventually (\<lambda>n. f n \<le> l) F"
- and en: "\<And>x. x < l \<Longrightarrow> eventually (\<lambda>n. x < f n) F"
- shows "(f ---> l) F"
- using assms by (intro order_tendstoI) (auto elim!: eventually_elim1)
-
-lemma decreasing_tendsto:
- fixes f :: "_ \<Rightarrow> 'a::order_topology"
- assumes bdd: "eventually (\<lambda>n. l \<le> f n) F"
- and en: "\<And>x. l < x \<Longrightarrow> eventually (\<lambda>n. f n < x) F"
- shows "(f ---> l) F"
- using assms by (intro order_tendstoI) (auto elim!: eventually_elim1)
-
subsubsection {* Distance and norms *}
lemma tendsto_dist [tendsto_intros]:
@@ -1057,19 +358,6 @@
by (simp add: tendsto_const)
qed
-lemma tendsto_sandwich:
- fixes f g h :: "'a \<Rightarrow> 'b::order_topology"
- assumes ev: "eventually (\<lambda>n. f n \<le> g n) net" "eventually (\<lambda>n. g n \<le> h n) net"
- assumes lim: "(f ---> c) net" "(h ---> c) net"
- shows "(g ---> c) net"
-proof (rule order_tendstoI)
- fix a show "a < c \<Longrightarrow> eventually (\<lambda>x. a < g x) net"
- using order_tendstoD[OF lim(1), of a] ev by (auto elim: eventually_elim2)
-next
- fix a show "c < a \<Longrightarrow> eventually (\<lambda>x. g x < a) net"
- using order_tendstoD[OF lim(2), of a] ev by (auto elim: eventually_elim2)
-qed
-
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'b=real]
subsubsection {* Linear operators and multiplication *}
@@ -1136,31 +424,6 @@
by (simp add: tendsto_const)
qed
-lemma tendsto_le:
- fixes f g :: "'a \<Rightarrow> 'b::linorder_topology"
- assumes F: "\<not> trivial_limit F"
- assumes x: "(f ---> x) F" and y: "(g ---> y) F"
- assumes ev: "eventually (\<lambda>x. g x \<le> f x) F"
- shows "y \<le> x"
-proof (rule ccontr)
- assume "\<not> y \<le> x"
- with less_separate[of x y] obtain a b where xy: "x < a" "b < y" "{..<a} \<inter> {b<..} = {}"
- by (auto simp: not_le)
- then have "eventually (\<lambda>x. f x < a) F" "eventually (\<lambda>x. b < g x) F"
- using x y by (auto intro: order_tendstoD)
- with ev have "eventually (\<lambda>x. False) F"
- by eventually_elim (insert xy, fastforce)
- with F show False
- by (simp add: eventually_False)
-qed
-
-lemma tendsto_le_const:
- fixes f :: "'a \<Rightarrow> 'b::linorder_topology"
- assumes F: "\<not> trivial_limit F"
- assumes x: "(f ---> x) F" and a: "eventually (\<lambda>x. a \<le> f x) F"
- shows "a \<le> x"
- using F x tendsto_const a by (rule tendsto_le)
-
subsubsection {* Inverse and division *}
lemma (in bounded_bilinear) Zfun_prod_Bfun:
@@ -1281,75 +544,6 @@
shows "\<lbrakk>(f ---> l) F; l \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. sgn (f x)) ---> sgn l) F"
unfolding sgn_div_norm by (simp add: tendsto_intros)
-subsection {* Limits to @{const at_top} and @{const at_bot} *}
-
-lemma filterlim_at_top:
- fixes f :: "'a \<Rightarrow> ('b::linorder)"
- shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)"
- by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1)
-
-lemma filterlim_at_top_dense:
- fixes f :: "'a \<Rightarrow> ('b::dense_linorder)"
- shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)"
- by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le
- filterlim_at_top[of f F] filterlim_iff[of f at_top F])
-
-lemma filterlim_at_top_ge:
- fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
- shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)"
- unfolding filterlim_at_top
-proof safe
- fix Z assume *: "\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F"
- with *[THEN spec, of "max Z c"] show "eventually (\<lambda>x. Z \<le> f x) F"
- by (auto elim!: eventually_elim1)
-qed simp
-
-lemma filterlim_at_top_at_top:
- fixes f :: "'a::linorder \<Rightarrow> 'b::linorder"
- assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
- assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
- assumes Q: "eventually Q at_top"
- assumes P: "eventually P at_top"
- shows "filterlim f at_top at_top"
-proof -
- from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
- unfolding eventually_at_top_linorder by auto
- show ?thesis
- proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
- fix z assume "x \<le> z"
- with x have "P z" by auto
- have "eventually (\<lambda>x. g z \<le> x) at_top"
- by (rule eventually_ge_at_top)
- with Q show "eventually (\<lambda>x. z \<le> f x) at_top"
- by eventually_elim (metis mono bij `P z`)
- qed
-qed
-
-lemma filterlim_at_top_gt:
- fixes f :: "'a \<Rightarrow> ('b::dense_linorder)" and c :: "'b"
- shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)"
- by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge)
-
-lemma filterlim_at_bot:
- fixes f :: "'a \<Rightarrow> ('b::linorder)"
- shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)"
- by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_elim1)
-
-lemma filterlim_at_bot_le:
- fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
- shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)"
- unfolding filterlim_at_bot
-proof safe
- fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F"
- with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F"
- by (auto elim!: eventually_elim1)
-qed simp
-
-lemma filterlim_at_bot_lt:
- fixes f :: "'a \<Rightarrow> ('b::dense_linorder)" and c :: "'b"
- shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
- by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
-
lemma filterlim_at_bot_at_right:
fixes f :: "real \<Rightarrow> 'b::linorder"
assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
@@ -1429,13 +623,7 @@
*}
-lemma at_eq_sup_left_right: "at (x::real) = sup (at_left x) (at_right x)"
- by (auto simp: eventually_within at_def filter_eq_iff eventually_sup
- elim: eventually_elim2 eventually_elim1)
-
-lemma filterlim_split_at_real:
- "filterlim f F (at_left x) \<Longrightarrow> filterlim f F (at_right x) \<Longrightarrow> filterlim f F (at (x::real))"
- by (subst at_eq_sup_left_right) (rule filterlim_sup)
+lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]
lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d::real)"
unfolding filter_eq_iff eventually_filtermap eventually_nhds_metric
@@ -1486,14 +674,6 @@
"eventually P (at_left (a::real)) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))"
unfolding at_left_minus[of a] by (simp add: eventually_filtermap)
-lemma filterlim_at_split:
- "filterlim f F (at (x::real)) \<longleftrightarrow> filterlim f F (at_left x) \<and> filterlim f F (at_right x)"
- by (subst at_eq_sup_left_right) (simp add: filterlim_def filtermap_sup)
-
-lemma eventually_at_split:
- "eventually P (at (x::real)) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)"
- by (subst at_eq_sup_left_right) (simp add: eventually_sup)
-
lemma at_top_mirror: "at_top = filtermap uminus (at_bot :: real filter)"
unfolding filter_eq_iff eventually_filtermap eventually_at_top_linorder eventually_at_bot_linorder
by (metis le_minus_iff minus_minus)
@@ -1765,5 +945,10 @@
by (auto simp: norm_power)
qed simp
+
+(* Unfortunately eventually_within was overwritten by Multivariate_Analysis.
+ Hence it was references as Limits.within, but now it is Basic_Topology.eventually_within *)
+lemmas eventually_within = eventually_within
+
end
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Thu Mar 21 16:58:14 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Fri Mar 22 10:41:42 2013 +0100
@@ -1340,11 +1340,11 @@
text {* Some property holds "sufficiently close" to the limit point. *}
-lemma eventually_at: (* FIXME: this replaces Limits.eventually_at *)
+lemma eventually_at: (* FIXME: this replaces Metric_Spaces.eventually_at *)
"eventually P (at a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)"
unfolding eventually_at dist_nz by auto
-lemma eventually_within: (* FIXME: this replaces Limits.eventually_within *)
+lemma eventually_within: (* FIXME: this replaces Topological_Spaces.eventually_within *)
"eventually P (at a within S) \<longleftrightarrow>
(\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)"
by (rule eventually_within_less)
@@ -1448,12 +1448,12 @@
from assms obtain T where T: "open T" "x \<in> T" "T \<subseteq> S" ..
{ assume "?lhs"
then obtain A where "open A" "x \<in> A" "\<forall>y\<in>A. y \<noteq> x \<longrightarrow> y \<in> S \<longrightarrow> P y"
- unfolding Limits.eventually_within Limits.eventually_at_topological
+ unfolding Limits.eventually_within eventually_at_topological
by auto
with T have "open (A \<inter> T)" "x \<in> A \<inter> T" "\<forall>y\<in>(A \<inter> T). y \<noteq> x \<longrightarrow> P y"
by auto
then have "?rhs"
- unfolding Limits.eventually_at_topological by auto
+ unfolding eventually_at_topological by auto
} moreover
{ assume "?rhs" hence "?lhs"
unfolding Limits.eventually_within
--- a/src/HOL/RealVector.thy Thu Mar 21 16:58:14 2013 +0100
+++ b/src/HOL/RealVector.thy Fri Mar 22 10:41:42 2013 +0100
@@ -434,131 +434,6 @@
by (rule Reals_cases) auto
-subsection {* Topological spaces *}
-
-class "open" =
- fixes "open" :: "'a set \<Rightarrow> bool"
-
-class topological_space = "open" +
- assumes open_UNIV [simp, intro]: "open UNIV"
- assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)"
- assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)"
-begin
-
-definition
- closed :: "'a set \<Rightarrow> bool" where
- "closed S \<longleftrightarrow> open (- S)"
-
-lemma open_empty [intro, simp]: "open {}"
- using open_Union [of "{}"] by simp
-
-lemma open_Un [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)"
- using open_Union [of "{S, T}"] by simp
-
-lemma open_UN [intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)"
- unfolding SUP_def by (rule open_Union) auto
-
-lemma open_Inter [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)"
- by (induct set: finite) auto
-
-lemma open_INT [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)"
- unfolding INF_def by (rule open_Inter) auto
-
-lemma closed_empty [intro, simp]: "closed {}"
- unfolding closed_def by simp
-
-lemma closed_Un [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)"
- unfolding closed_def by auto
-
-lemma closed_UNIV [intro, simp]: "closed UNIV"
- unfolding closed_def by simp
-
-lemma closed_Int [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)"
- unfolding closed_def by auto
-
-lemma closed_INT [intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)"
- unfolding closed_def by auto
-
-lemma closed_Inter [intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)"
- unfolding closed_def uminus_Inf by auto
-
-lemma closed_Union [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)"
- by (induct set: finite) auto
-
-lemma closed_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)"
- unfolding SUP_def by (rule closed_Union) auto
-
-lemma open_closed: "open S \<longleftrightarrow> closed (- S)"
- unfolding closed_def by simp
-
-lemma closed_open: "closed S \<longleftrightarrow> open (- S)"
- unfolding closed_def by simp
-
-lemma open_Diff [intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)"
- unfolding closed_open Diff_eq by (rule open_Int)
-
-lemma closed_Diff [intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)"
- unfolding open_closed Diff_eq by (rule closed_Int)
-
-lemma open_Compl [intro]: "closed S \<Longrightarrow> open (- S)"
- unfolding closed_open .
-
-lemma closed_Compl [intro]: "open S \<Longrightarrow> closed (- S)"
- unfolding open_closed .
-
-end
-
-inductive generate_topology for S where
- UNIV: "generate_topology S UNIV"
-| Int: "generate_topology S a \<Longrightarrow> generate_topology S b \<Longrightarrow> generate_topology S (a \<inter> b)"
-| UN: "(\<And>k. k \<in> K \<Longrightarrow> generate_topology S k) \<Longrightarrow> generate_topology S (\<Union>K)"
-| Basis: "s \<in> S \<Longrightarrow> generate_topology S s"
-
-hide_fact (open) UNIV Int UN Basis
-
-lemma generate_topology_Union:
- "(\<And>k. k \<in> I \<Longrightarrow> generate_topology S (K k)) \<Longrightarrow> generate_topology S (\<Union>k\<in>I. K k)"
- unfolding SUP_def by (intro generate_topology.UN) auto
-
-lemma topological_space_generate_topology:
- "class.topological_space (generate_topology S)"
- by default (auto intro: generate_topology.intros)
-
-class order_topology = order + "open" +
- assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
-begin
-
-subclass topological_space
- unfolding open_generated_order
- by (rule topological_space_generate_topology)
-
-lemma open_greaterThan [simp]: "open {a <..}"
- unfolding open_generated_order by (auto intro: generate_topology.Basis)
-
-lemma open_lessThan [simp]: "open {..< a}"
- unfolding open_generated_order by (auto intro: generate_topology.Basis)
-
-lemma open_greaterThanLessThan [simp]: "open {a <..< b}"
- unfolding greaterThanLessThan_eq by (simp add: open_Int)
-
-end
-
-class linorder_topology = linorder + order_topology
-
-lemma closed_atMost [simp]: "closed {.. a::'a::linorder_topology}"
- by (simp add: closed_open)
-
-lemma closed_atLeast [simp]: "closed {a::'a::linorder_topology ..}"
- by (simp add: closed_open)
-
-lemma closed_atLeastAtMost [simp]: "closed {a::'a::linorder_topology .. b}"
-proof -
- have "{a .. b} = {a ..} \<inter> {.. b}"
- by auto
- then show ?thesis
- by (simp add: closed_Int)
-qed
-
subsection {* Metric spaces *}
class dist =
@@ -1182,78 +1057,6 @@
lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)"
unfolding of_real_def by (rule bounded_linear_scaleR_left)
-subsection{* Hausdorff and other separation properties *}
-
-class t0_space = topological_space +
- assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)"
-
-class t1_space = topological_space +
- assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U"
-
-instance t1_space \<subseteq> t0_space
-proof qed (fast dest: t1_space)
-
-lemma separation_t1:
- fixes x y :: "'a::t1_space"
- shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)"
- using t1_space[of x y] by blast
-
-lemma closed_singleton:
- fixes a :: "'a::t1_space"
- shows "closed {a}"
-proof -
- let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
- have "open ?T" by (simp add: open_Union)
- also have "?T = - {a}"
- by (simp add: set_eq_iff separation_t1, auto)
- finally show "closed {a}" unfolding closed_def .
-qed
-
-lemma closed_insert [simp]:
- fixes a :: "'a::t1_space"
- assumes "closed S" shows "closed (insert a S)"
-proof -
- from closed_singleton assms
- have "closed ({a} \<union> S)" by (rule closed_Un)
- thus "closed (insert a S)" by simp
-qed
-
-lemma finite_imp_closed:
- fixes S :: "'a::t1_space set"
- shows "finite S \<Longrightarrow> closed S"
-by (induct set: finite, simp_all)
-
-text {* T2 spaces are also known as Hausdorff spaces. *}
-
-class t2_space = topological_space +
- assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
-
-instance t2_space \<subseteq> t1_space
-proof qed (fast dest: hausdorff)
-
-lemma (in linorder) less_separate:
- assumes "x < y"
- shows "\<exists>a b. x \<in> {..< a} \<and> y \<in> {b <..} \<and> {..< a} \<inter> {b <..} = {}"
-proof cases
- assume "\<exists>z. x < z \<and> z < y"
- then guess z ..
- then have "x \<in> {..< z} \<and> y \<in> {z <..} \<and> {z <..} \<inter> {..< z} = {}"
- by auto
- then show ?thesis by blast
-next
- assume "\<not> (\<exists>z. x < z \<and> z < y)"
- with `x < y` have "x \<in> {..< y} \<and> y \<in> {x <..} \<and> {x <..} \<inter> {..< y} = {}"
- by auto
- then show ?thesis by blast
-qed
-
-instance linorder_topology \<subseteq> t2_space
-proof
- fix x y :: 'a
- from less_separate[of x y] less_separate[of y x]
- show "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
- by (elim neqE) (metis open_lessThan open_greaterThan Int_commute)+
-qed
instance metric_space \<subseteq> t2_space
proof
@@ -1269,22 +1072,6 @@
then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
by blast
qed
-
-lemma separation_t2:
- fixes x y :: "'a::t2_space"
- shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
- using hausdorff[of x y] by blast
-
-lemma separation_t0:
- fixes x y :: "'a::t0_space"
- shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))"
- using t0_space[of x y] by blast
-
-text {* A perfect space is a topological space with no isolated points. *}
-
-class perfect_space = topological_space +
- assumes not_open_singleton: "\<not> open {x}"
-
instance real_normed_algebra_1 \<subseteq> perfect_space
proof
fix x::'a
--- a/src/HOL/SEQ.thy Thu Mar 21 16:58:14 2013 +0100
+++ b/src/HOL/SEQ.thy Fri Mar 22 10:41:42 2013 +0100
@@ -10,219 +10,11 @@
header {* Sequences and Convergence *}
theory SEQ
-imports Limits RComplete
+imports Limits
begin
-subsection {* Monotone sequences and subsequences *}
-
-definition
- monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
- --{*Definition of monotonicity.
- The use of disjunction here complicates proofs considerably.
- One alternative is to add a Boolean argument to indicate the direction.
- Another is to develop the notions of increasing and decreasing first.*}
- "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) | (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"
-
-definition
- incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
- --{*Increasing sequence*}
- "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X m \<le> X n)"
-
-definition
- decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
- --{*Decreasing sequence*}
- "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)"
-
-definition
- subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" where
- --{*Definition of subsequence*}
- "subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)"
-
-lemma incseq_mono: "mono f \<longleftrightarrow> incseq f"
- unfolding mono_def incseq_def by auto
-
-lemma incseq_SucI:
- "(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X"
- using lift_Suc_mono_le[of X]
- by (auto simp: incseq_def)
-
-lemma incseqD: "\<And>i j. incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j"
- by (auto simp: incseq_def)
-
-lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)"
- using incseqD[of A i "Suc i"] by auto
-
-lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
- by (auto intro: incseq_SucI dest: incseq_SucD)
-
-lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)"
- unfolding incseq_def by auto
-
-lemma decseq_SucI:
- "(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X"
- using order.lift_Suc_mono_le[OF dual_order, of X]
- by (auto simp: decseq_def)
-
-lemma decseqD: "\<And>i j. decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i"
- by (auto simp: decseq_def)
-
-lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i"
- using decseqD[of A i "Suc i"] by auto
-
-lemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)"
- by (auto intro: decseq_SucI dest: decseq_SucD)
-
-lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)"
- unfolding decseq_def by auto
-
-lemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X"
- unfolding monoseq_def incseq_def decseq_def ..
-
-lemma monoseq_Suc:
- "monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)"
- unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff ..
-
-lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X"
-by (simp add: monoseq_def)
-
-lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X"
-by (simp add: monoseq_def)
-
-lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X"
-by (simp add: monoseq_Suc)
-
-lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X"
-by (simp add: monoseq_Suc)
-
-lemma monoseq_minus:
- fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add"
- assumes "monoseq a"
- shows "monoseq (\<lambda> n. - a n)"
-proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n")
- case True
- hence "\<forall> m. \<forall> n \<ge> m. - a n \<le> - a m" by auto
- thus ?thesis by (rule monoI2)
-next
- case False
- hence "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" using `monoseq a`[unfolded monoseq_def] by auto
- thus ?thesis by (rule monoI1)
-qed
-
-text{*Subsequence (alternative definition, (e.g. Hoskins)*}
-
-lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))"
-apply (simp add: subseq_def)
-apply (auto dest!: less_imp_Suc_add)
-apply (induct_tac k)
-apply (auto intro: less_trans)
-done
-
-text{* for any sequence, there is a monotonic subsequence *}
-lemma seq_monosub:
- fixes s :: "nat => 'a::linorder"
- shows "\<exists>f. subseq f \<and> monoseq (\<lambda> n. (s (f n)))"
-proof cases
- let "?P p n" = "p > n \<and> (\<forall>m\<ge>p. s m \<le> s p)"
- assume *: "\<forall>n. \<exists>p. ?P p n"
- def f \<equiv> "nat_rec (SOME p. ?P p 0) (\<lambda>_ n. SOME p. ?P p n)"
- have f_0: "f 0 = (SOME p. ?P p 0)" unfolding f_def by simp
- have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat_rec_Suc ..
- have P_0: "?P (f 0) 0" unfolding f_0 using *[rule_format] by (rule someI2_ex) auto
- have P_Suc: "\<And>i. ?P (f (Suc i)) (f i)" unfolding f_Suc using *[rule_format] by (rule someI2_ex) auto
- then have "subseq f" unfolding subseq_Suc_iff by auto
- moreover have "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc
- proof (intro disjI2 allI)
- fix n show "s (f (Suc n)) \<le> s (f n)"
- proof (cases n)
- case 0 with P_Suc[of 0] P_0 show ?thesis by auto
- next
- case (Suc m)
- from P_Suc[of n] Suc have "f (Suc m) \<le> f (Suc (Suc m))" by simp
- with P_Suc Suc show ?thesis by simp
- qed
- qed
- ultimately show ?thesis by auto
-next
- let "?P p m" = "m < p \<and> s m < s p"
- assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. s m \<le> s p))"
- then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. s p < s m" by (force simp: not_le le_less)
- def f \<equiv> "nat_rec (SOME p. ?P p (Suc N)) (\<lambda>_ n. SOME p. ?P p n)"
- have f_0: "f 0 = (SOME p. ?P p (Suc N))" unfolding f_def by simp
- have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat_rec_Suc ..
- have P_0: "?P (f 0) (Suc N)"
- unfolding f_0 some_eq_ex[of "\<lambda>p. ?P p (Suc N)"] using N[of "Suc N"] by auto
- { fix i have "N < f i \<Longrightarrow> ?P (f (Suc i)) (f i)"
- unfolding f_Suc some_eq_ex[of "\<lambda>p. ?P p (f i)"] using N[of "f i"] . }
- note P' = this
- { fix i have "N < f i \<and> ?P (f (Suc i)) (f i)"
- by (induct i) (insert P_0 P', auto) }
- then have "subseq f" "monoseq (\<lambda>x. s (f x))"
- unfolding subseq_Suc_iff monoseq_Suc by (auto simp: not_le intro: less_imp_le)
- then show ?thesis by auto
-qed
-
-lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"
-proof(induct n)
- case 0 thus ?case by simp
-next
- case (Suc n)
- from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps
- have "n < f (Suc n)" by arith
- thus ?case by arith
-qed
-
-lemma eventually_subseq:
- "subseq r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially"
- unfolding eventually_sequentially by (metis seq_suble le_trans)
-
-lemma filterlim_subseq: "subseq f \<Longrightarrow> filterlim f sequentially sequentially"
- unfolding filterlim_iff by (metis eventually_subseq)
-
-lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)"
- unfolding subseq_def by simp
-
-lemma subseq_mono: assumes "subseq r" "m < n" shows "r m < r n"
- using assms by (auto simp: subseq_def)
-
-lemma incseq_imp_monoseq: "incseq X \<Longrightarrow> monoseq X"
- by (simp add: incseq_def monoseq_def)
-
-lemma decseq_imp_monoseq: "decseq X \<Longrightarrow> monoseq X"
- by (simp add: decseq_def monoseq_def)
-
-lemma decseq_eq_incseq:
- fixes X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" shows "decseq X = incseq (\<lambda>n. - X n)"
- by (simp add: decseq_def incseq_def)
-
-lemma INT_decseq_offset:
- assumes "decseq F"
- shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
-proof safe
- fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
- show "x \<in> F i"
- proof cases
- from x have "x \<in> F n" by auto
- also assume "i \<le> n" with `decseq F` have "F n \<subseteq> F i"
- unfolding decseq_def by simp
- finally show ?thesis .
- qed (insert x, simp)
-qed auto
-
subsection {* Defintions of limits *}
-abbreviation (in topological_space)
- LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool"
- ("((_)/ ----> (_))" [60, 60] 60) where
- "X ----> L \<equiv> (X ---> L) sequentially"
-
-definition
- lim :: "(nat \<Rightarrow> 'a::t2_space) \<Rightarrow> 'a" where
- --{*Standard definition of limit using choice operator*}
- "lim X = (THE L. X ----> L)"
-
-definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where
- "convergent X = (\<exists>L. X ----> L)"
-
definition
Bseq :: "(nat => 'a::real_normed_vector) => bool" where
--{*Standard definition for bounded sequence*}
@@ -317,78 +109,10 @@
shows "\<lbrakk>X ----> L; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
by (simp add: LIMSEQ_iff)
-lemma LIMSEQ_const_iff:
- fixes k l :: "'a::t2_space"
- shows "(\<lambda>n. k) ----> l \<longleftrightarrow> k = l"
- using trivial_limit_sequentially by (rule tendsto_const_iff)
-
-lemma LIMSEQ_SUP:
- "incseq X \<Longrightarrow> X ----> (SUP i. X i :: 'a :: {complete_linorder, linorder_topology})"
- by (intro increasing_tendsto)
- (auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans)
-
-lemma LIMSEQ_INF:
- "decseq X \<Longrightarrow> X ----> (INF i. X i :: 'a :: {complete_linorder, linorder_topology})"
- by (intro decreasing_tendsto)
- (auto simp: INF_lower INF_less_iff decseq_def eventually_sequentially intro: le_less_trans)
-
-lemma LIMSEQ_ignore_initial_segment:
- "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a"
-apply (rule topological_tendstoI)
-apply (drule (2) topological_tendstoD)
-apply (simp only: eventually_sequentially)
-apply (erule exE, rename_tac N)
-apply (rule_tac x=N in exI)
-apply simp
-done
-
-lemma LIMSEQ_offset:
- "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a"
-apply (rule topological_tendstoI)
-apply (drule (2) topological_tendstoD)
-apply (simp only: eventually_sequentially)
-apply (erule exE, rename_tac N)
-apply (rule_tac x="N + k" in exI)
-apply clarify
-apply (drule_tac x="n - k" in spec)
-apply (simp add: le_diff_conv2)
-done
-
-lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l"
-by (drule_tac k="Suc 0" in LIMSEQ_ignore_initial_segment, simp)
-
-lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l"
-by (rule_tac k="Suc 0" in LIMSEQ_offset, simp)
-
-lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l"
-by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc)
-
lemma LIMSEQ_linear: "\<lbrakk> X ----> x ; l > 0 \<rbrakk> \<Longrightarrow> (\<lambda> n. X (n * l)) ----> x"
unfolding tendsto_def eventually_sequentially
by (metis div_le_dividend div_mult_self1_is_m le_trans nat_mult_commute)
-lemma LIMSEQ_unique:
- fixes a b :: "'a::t2_space"
- shows "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b"
- using trivial_limit_sequentially by (rule tendsto_unique)
-
-lemma increasing_LIMSEQ:
- fixes f :: "nat \<Rightarrow> real"
- assumes inc: "\<And>n. f n \<le> f (Suc n)"
- and bdd: "\<And>n. f n \<le> l"
- and en: "\<And>e. 0 < e \<Longrightarrow> \<exists>n. l \<le> f n + e"
- shows "f ----> l"
-proof (rule increasing_tendsto)
- fix x assume "x < l"
- with dense[of 0 "l - x"] obtain e where "0 < e" "e < l - x"
- by auto
- from en[OF `0 < e`] obtain n where "l - e \<le> f n"
- by (auto simp: field_simps)
- with `e < l - x` `0 < e` have "x < f n" by simp
- with incseq_SucI[of f, OF inc] show "eventually (\<lambda>n. x < f n) sequentially"
- by (auto simp: eventually_sequentially incseq_def intro: less_le_trans)
-qed (insert bdd, auto)
-
lemma Bseq_inverse_lemma:
fixes x :: "'a::real_normed_div_algebra"
shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
@@ -443,37 +167,8 @@
using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
by auto
-lemma LIMSEQ_le_const:
- "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x"
- using tendsto_le_const[of sequentially X x a] by (simp add: eventually_sequentially)
-
-lemma LIMSEQ_le:
- "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::'a::linorder_topology)"
- using tendsto_le[of sequentially Y y X x] by (simp add: eventually_sequentially)
-
-lemma LIMSEQ_le_const2:
- "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a"
- by (rule LIMSEQ_le[of X x "\<lambda>n. a"]) (auto simp: tendsto_const)
-
subsection {* Convergence *}
-lemma limI: "X ----> L ==> lim X = L"
-apply (simp add: lim_def)
-apply (blast intro: LIMSEQ_unique)
-done
-
-lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)"
-by (simp add: convergent_def)
-
-lemma convergentI: "(X ----> L) ==> convergent X"
-by (auto simp add: convergent_def)
-
-lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)"
-by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def)
-
-lemma convergent_const: "convergent (\<lambda>n. c)"
- by (rule convergentI, rule tendsto_const)
-
lemma convergent_add:
fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector"
assumes "convergent (\<lambda>n. X n)"
@@ -508,22 +203,6 @@
apply (drule tendsto_minus, auto)
done
-lemma lim_le: "convergent f \<Longrightarrow> (\<And>n. f n \<le> (x::real)) \<Longrightarrow> lim f \<le> x"
- using LIMSEQ_le_const2[of f "lim f" x] by (simp add: convergent_LIMSEQ_iff)
-
-lemma monoseq_le:
- "monoseq a \<Longrightarrow> a ----> (x::real) \<Longrightarrow>
- ((\<forall> n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)) \<or> ((\<forall> n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m))"
- by (metis LIMSEQ_le_const LIMSEQ_le_const2 decseq_def incseq_def monoseq_iff)
-
-lemma LIMSEQ_subseq_LIMSEQ:
- "\<lbrakk> X ----> L; subseq f \<rbrakk> \<Longrightarrow> (X o f) ----> L"
- unfolding comp_def by (rule filterlim_compose[of X, OF _ filterlim_subseq])
-
-lemma convergent_subseq_convergent:
- "\<lbrakk>convergent X; subseq f\<rbrakk> \<Longrightarrow> convergent (X o f)"
- unfolding convergent_def by (auto intro: LIMSEQ_subseq_LIMSEQ)
-
subsection {* Bounded Monotonic Sequences *}
@@ -665,14 +344,6 @@
by (metis monoseq_iff incseq_def decseq_eq_incseq convergent_minus_iff Bseq_minus_iff
Bseq_mono_convergent)
-subsubsection{*Increasing and Decreasing Series*}
-
-lemma incseq_le: "incseq X \<Longrightarrow> X ----> L \<Longrightarrow> X n \<le> (L::real)"
- by (metis incseq_def LIMSEQ_le_const)
-
-lemma decseq_le: "decseq X \<Longrightarrow> X ----> L \<Longrightarrow> (L::real) \<le> X n"
- by (metis decseq_def LIMSEQ_le_const2)
-
subsection {* Cauchy Sequences *}
lemma metric_CauchyI:
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Topological_Spaces.thy Fri Mar 22 10:41:42 2013 +0100
@@ -0,0 +1,1511 @@
+(* Title: HOL/Basic_Topology.thy
+ Author: Brian Huffman
+ Author: Johannes Hölzl
+*)
+
+header {* Topological Spaces *}
+
+theory Topological_Spaces
+imports Main
+begin
+
+subsection {* Topological space *}
+
+class "open" =
+ fixes "open" :: "'a set \<Rightarrow> bool"
+
+class topological_space = "open" +
+ assumes open_UNIV [simp, intro]: "open UNIV"
+ assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)"
+ assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)"
+begin
+
+definition
+ closed :: "'a set \<Rightarrow> bool" where
+ "closed S \<longleftrightarrow> open (- S)"
+
+lemma open_empty [intro, simp]: "open {}"
+ using open_Union [of "{}"] by simp
+
+lemma open_Un [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)"
+ using open_Union [of "{S, T}"] by simp
+
+lemma open_UN [intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)"
+ unfolding SUP_def by (rule open_Union) auto
+
+lemma open_Inter [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)"
+ by (induct set: finite) auto
+
+lemma open_INT [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)"
+ unfolding INF_def by (rule open_Inter) auto
+
+lemma closed_empty [intro, simp]: "closed {}"
+ unfolding closed_def by simp
+
+lemma closed_Un [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)"
+ unfolding closed_def by auto
+
+lemma closed_UNIV [intro, simp]: "closed UNIV"
+ unfolding closed_def by simp
+
+lemma closed_Int [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)"
+ unfolding closed_def by auto
+
+lemma closed_INT [intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)"
+ unfolding closed_def by auto
+
+lemma closed_Inter [intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)"
+ unfolding closed_def uminus_Inf by auto
+
+lemma closed_Union [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)"
+ by (induct set: finite) auto
+
+lemma closed_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)"
+ unfolding SUP_def by (rule closed_Union) auto
+
+lemma open_closed: "open S \<longleftrightarrow> closed (- S)"
+ unfolding closed_def by simp
+
+lemma closed_open: "closed S \<longleftrightarrow> open (- S)"
+ unfolding closed_def by simp
+
+lemma open_Diff [intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)"
+ unfolding closed_open Diff_eq by (rule open_Int)
+
+lemma closed_Diff [intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)"
+ unfolding open_closed Diff_eq by (rule closed_Int)
+
+lemma open_Compl [intro]: "closed S \<Longrightarrow> open (- S)"
+ unfolding closed_open .
+
+lemma closed_Compl [intro]: "open S \<Longrightarrow> closed (- S)"
+ unfolding open_closed .
+
+end
+
+subsection{* Hausdorff and other separation properties *}
+
+class t0_space = topological_space +
+ assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)"
+
+class t1_space = topological_space +
+ assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U"
+
+instance t1_space \<subseteq> t0_space
+proof qed (fast dest: t1_space)
+
+lemma separation_t1:
+ fixes x y :: "'a::t1_space"
+ shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)"
+ using t1_space[of x y] by blast
+
+lemma closed_singleton:
+ fixes a :: "'a::t1_space"
+ shows "closed {a}"
+proof -
+ let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
+ have "open ?T" by (simp add: open_Union)
+ also have "?T = - {a}"
+ by (simp add: set_eq_iff separation_t1, auto)
+ finally show "closed {a}" unfolding closed_def .
+qed
+
+lemma closed_insert [simp]:
+ fixes a :: "'a::t1_space"
+ assumes "closed S" shows "closed (insert a S)"
+proof -
+ from closed_singleton assms
+ have "closed ({a} \<union> S)" by (rule closed_Un)
+ thus "closed (insert a S)" by simp
+qed
+
+lemma finite_imp_closed:
+ fixes S :: "'a::t1_space set"
+ shows "finite S \<Longrightarrow> closed S"
+by (induct set: finite, simp_all)
+
+text {* T2 spaces are also known as Hausdorff spaces. *}
+
+class t2_space = topological_space +
+ assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
+
+instance t2_space \<subseteq> t1_space
+proof qed (fast dest: hausdorff)
+
+lemma separation_t2:
+ fixes x y :: "'a::t2_space"
+ shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
+ using hausdorff[of x y] by blast
+
+lemma separation_t0:
+ fixes x y :: "'a::t0_space"
+ shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))"
+ using t0_space[of x y] by blast
+
+text {* A perfect space is a topological space with no isolated points. *}
+
+class perfect_space = topological_space +
+ assumes not_open_singleton: "\<not> open {x}"
+
+
+subsection {* Generators for toplogies *}
+
+inductive generate_topology for S where
+ UNIV: "generate_topology S UNIV"
+| Int: "generate_topology S a \<Longrightarrow> generate_topology S b \<Longrightarrow> generate_topology S (a \<inter> b)"
+| UN: "(\<And>k. k \<in> K \<Longrightarrow> generate_topology S k) \<Longrightarrow> generate_topology S (\<Union>K)"
+| Basis: "s \<in> S \<Longrightarrow> generate_topology S s"
+
+hide_fact (open) UNIV Int UN Basis
+
+lemma generate_topology_Union:
+ "(\<And>k. k \<in> I \<Longrightarrow> generate_topology S (K k)) \<Longrightarrow> generate_topology S (\<Union>k\<in>I. K k)"
+ unfolding SUP_def by (intro generate_topology.UN) auto
+
+lemma topological_space_generate_topology:
+ "class.topological_space (generate_topology S)"
+ by default (auto intro: generate_topology.intros)
+
+subsection {* Order topologies *}
+
+class order_topology = order + "open" +
+ assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
+begin
+
+subclass topological_space
+ unfolding open_generated_order
+ by (rule topological_space_generate_topology)
+
+lemma open_greaterThan [simp]: "open {a <..}"
+ unfolding open_generated_order by (auto intro: generate_topology.Basis)
+
+lemma open_lessThan [simp]: "open {..< a}"
+ unfolding open_generated_order by (auto intro: generate_topology.Basis)
+
+lemma open_greaterThanLessThan [simp]: "open {a <..< b}"
+ unfolding greaterThanLessThan_eq by (simp add: open_Int)
+
+end
+
+class linorder_topology = linorder + order_topology
+
+lemma closed_atMost [simp]: "closed {.. a::'a::linorder_topology}"
+ by (simp add: closed_open)
+
+lemma closed_atLeast [simp]: "closed {a::'a::linorder_topology ..}"
+ by (simp add: closed_open)
+
+lemma closed_atLeastAtMost [simp]: "closed {a::'a::linorder_topology .. b}"
+proof -
+ have "{a .. b} = {a ..} \<inter> {.. b}"
+ by auto
+ then show ?thesis
+ by (simp add: closed_Int)
+qed
+
+lemma (in linorder) less_separate:
+ assumes "x < y"
+ shows "\<exists>a b. x \<in> {..< a} \<and> y \<in> {b <..} \<and> {..< a} \<inter> {b <..} = {}"
+proof cases
+ assume "\<exists>z. x < z \<and> z < y"
+ then guess z ..
+ then have "x \<in> {..< z} \<and> y \<in> {z <..} \<and> {z <..} \<inter> {..< z} = {}"
+ by auto
+ then show ?thesis by blast
+next
+ assume "\<not> (\<exists>z. x < z \<and> z < y)"
+ with `x < y` have "x \<in> {..< y} \<and> y \<in> {x <..} \<and> {x <..} \<inter> {..< y} = {}"
+ by auto
+ then show ?thesis by blast
+qed
+
+instance linorder_topology \<subseteq> t2_space
+proof
+ fix x y :: 'a
+ from less_separate[of x y] less_separate[of y x]
+ show "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
+ by (elim neqE) (metis open_lessThan open_greaterThan Int_commute)+
+qed
+
+lemma open_right:
+ fixes S :: "'a :: {no_top, linorder_topology} set"
+ assumes "open S" "x \<in> S" shows "\<exists>b>x. {x ..< b} \<subseteq> S"
+ using assms unfolding open_generated_order
+proof induction
+ case (Int A B)
+ then obtain a b where "a > x" "{x ..< a} \<subseteq> A" "b > x" "{x ..< b} \<subseteq> B" by auto
+ then show ?case by (auto intro!: exI[of _ "min a b"])
+next
+ case (Basis S)
+ moreover from gt_ex[of x] guess b ..
+ ultimately show ?case by (fastforce intro: exI[of _ b])
+qed (fastforce intro: gt_ex)+
+
+lemma open_left:
+ fixes S :: "'a :: {no_bot, linorder_topology} set"
+ assumes "open S" "x \<in> S" shows "\<exists>b<x. {b <.. x} \<subseteq> S"
+ using assms unfolding open_generated_order
+proof induction
+ case (Int A B)
+ then obtain a b where "a < x" "{a <.. x} \<subseteq> A" "b < x" "{b <.. x} \<subseteq> B" by auto
+ then show ?case by (auto intro!: exI[of _ "max a b"])
+next
+ case (Basis S)
+ moreover from lt_ex[of x] guess b ..
+ ultimately show ?case by (fastforce intro: exI[of _ b])
+next
+ case UN then show ?case by blast
+qed (fastforce intro: lt_ex)
+
+subsection {* Filters *}
+
+text {*
+ This definition also allows non-proper filters.
+*}
+
+locale is_filter =
+ fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
+ assumes True: "F (\<lambda>x. True)"
+ assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)"
+ assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)"
+
+typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
+proof
+ show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro)
+qed
+
+lemma is_filter_Rep_filter: "is_filter (Rep_filter F)"
+ using Rep_filter [of F] by simp
+
+lemma Abs_filter_inverse':
+ assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F"
+ using assms by (simp add: Abs_filter_inverse)
+
+
+subsubsection {* Eventually *}
+
+definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
+ where "eventually P F \<longleftrightarrow> Rep_filter F P"
+
+lemma eventually_Abs_filter:
+ assumes "is_filter F" shows "eventually P (Abs_filter F) = F P"
+ unfolding eventually_def using assms by (simp add: Abs_filter_inverse)
+
+lemma filter_eq_iff:
+ shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')"
+ unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def ..
+
+lemma eventually_True [simp]: "eventually (\<lambda>x. True) F"
+ unfolding eventually_def
+ by (rule is_filter.True [OF is_filter_Rep_filter])
+
+lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F"
+proof -
+ assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext)
+ thus "eventually P F" by simp
+qed
+
+lemma eventually_mono:
+ "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P F \<Longrightarrow> eventually Q F"
+ unfolding eventually_def
+ by (rule is_filter.mono [OF is_filter_Rep_filter])
+
+lemma eventually_conj:
+ assumes P: "eventually (\<lambda>x. P x) F"
+ assumes Q: "eventually (\<lambda>x. Q x) F"
+ shows "eventually (\<lambda>x. P x \<and> Q x) F"
+ using assms unfolding eventually_def
+ by (rule is_filter.conj [OF is_filter_Rep_filter])
+
+lemma eventually_Ball_finite:
+ assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net"
+ shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net"
+using assms by (induct set: finite, simp, simp add: eventually_conj)
+
+lemma eventually_all_finite:
+ fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool"
+ assumes "\<And>y. eventually (\<lambda>x. P x y) net"
+ shows "eventually (\<lambda>x. \<forall>y. P x y) net"
+using eventually_Ball_finite [of UNIV P] assms by simp
+
+lemma eventually_mp:
+ assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
+ assumes "eventually (\<lambda>x. P x) F"
+ shows "eventually (\<lambda>x. Q x) F"
+proof (rule eventually_mono)
+ show "\<forall>x. (P x \<longrightarrow> Q x) \<and> P x \<longrightarrow> Q x" by simp
+ show "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F"
+ using assms by (rule eventually_conj)
+qed
+
+lemma eventually_rev_mp:
+ assumes "eventually (\<lambda>x. P x) F"
+ assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
+ shows "eventually (\<lambda>x. Q x) F"
+using assms(2) assms(1) by (rule eventually_mp)
+
+lemma eventually_conj_iff:
+ "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F"
+ by (auto intro: eventually_conj elim: eventually_rev_mp)
+
+lemma eventually_elim1:
+ assumes "eventually (\<lambda>i. P i) F"
+ assumes "\<And>i. P i \<Longrightarrow> Q i"
+ shows "eventually (\<lambda>i. Q i) F"
+ using assms by (auto elim!: eventually_rev_mp)
+
+lemma eventually_elim2:
+ assumes "eventually (\<lambda>i. P i) F"
+ assumes "eventually (\<lambda>i. Q i) F"
+ assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i"
+ shows "eventually (\<lambda>i. R i) F"
+ using assms by (auto elim!: eventually_rev_mp)
+
+lemma eventually_subst:
+ assumes "eventually (\<lambda>n. P n = Q n) F"
+ shows "eventually P F = eventually Q F" (is "?L = ?R")
+proof -
+ from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
+ and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F"
+ by (auto elim: eventually_elim1)
+ then show ?thesis by (auto elim: eventually_elim2)
+qed
+
+ML {*
+ fun eventually_elim_tac ctxt thms thm =
+ let
+ val thy = Proof_Context.theory_of ctxt
+ val mp_thms = thms RL [@{thm eventually_rev_mp}]
+ val raw_elim_thm =
+ (@{thm allI} RS @{thm always_eventually})
+ |> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms
+ |> fold (fn _ => fn thm => @{thm impI} RS thm) thms
+ val cases_prop = prop_of (raw_elim_thm RS thm)
+ val cases = (Rule_Cases.make_common (thy, cases_prop) [(("elim", []), [])])
+ in
+ CASES cases (rtac raw_elim_thm 1) thm
+ end
+*}
+
+method_setup eventually_elim = {*
+ Scan.succeed (fn ctxt => METHOD_CASES (eventually_elim_tac ctxt))
+*} "elimination of eventually quantifiers"
+
+
+subsubsection {* Finer-than relation *}
+
+text {* @{term "F \<le> F'"} means that filter @{term F} is finer than
+filter @{term F'}. *}
+
+instantiation filter :: (type) complete_lattice
+begin
+
+definition le_filter_def:
+ "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)"
+
+definition
+ "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
+
+definition
+ "top = Abs_filter (\<lambda>P. \<forall>x. P x)"
+
+definition
+ "bot = Abs_filter (\<lambda>P. True)"
+
+definition
+ "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')"
+
+definition
+ "inf F F' = Abs_filter
+ (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
+
+definition
+ "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)"
+
+definition
+ "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
+
+lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)"
+ unfolding top_filter_def
+ by (rule eventually_Abs_filter, rule is_filter.intro, auto)
+
+lemma eventually_bot [simp]: "eventually P bot"
+ unfolding bot_filter_def
+ by (subst eventually_Abs_filter, rule is_filter.intro, auto)
+
+lemma eventually_sup:
+ "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'"
+ unfolding sup_filter_def
+ by (rule eventually_Abs_filter, rule is_filter.intro)
+ (auto elim!: eventually_rev_mp)
+
+lemma eventually_inf:
+ "eventually P (inf F F') \<longleftrightarrow>
+ (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
+ unfolding inf_filter_def
+ apply (rule eventually_Abs_filter, rule is_filter.intro)
+ apply (fast intro: eventually_True)
+ apply clarify
+ apply (intro exI conjI)
+ apply (erule (1) eventually_conj)
+ apply (erule (1) eventually_conj)
+ apply simp
+ apply auto
+ done
+
+lemma eventually_Sup:
+ "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)"
+ unfolding Sup_filter_def
+ apply (rule eventually_Abs_filter, rule is_filter.intro)
+ apply (auto intro: eventually_conj elim!: eventually_rev_mp)
+ done
+
+instance proof
+ fix F F' F'' :: "'a filter" and S :: "'a filter set"
+ { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
+ by (rule less_filter_def) }
+ { show "F \<le> F"
+ unfolding le_filter_def by simp }
+ { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
+ unfolding le_filter_def by simp }
+ { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
+ unfolding le_filter_def filter_eq_iff by fast }
+ { show "F \<le> top"
+ unfolding le_filter_def eventually_top by (simp add: always_eventually) }
+ { show "bot \<le> F"
+ unfolding le_filter_def by simp }
+ { show "F \<le> sup F F'" and "F' \<le> sup F F'"
+ unfolding le_filter_def eventually_sup by simp_all }
+ { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
+ unfolding le_filter_def eventually_sup by simp }
+ { show "inf F F' \<le> F" and "inf F F' \<le> F'"
+ unfolding le_filter_def eventually_inf by (auto intro: eventually_True) }
+ { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
+ unfolding le_filter_def eventually_inf
+ by (auto elim!: eventually_mono intro: eventually_conj) }
+ { assume "F \<in> S" thus "F \<le> Sup S"
+ unfolding le_filter_def eventually_Sup by simp }
+ { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
+ unfolding le_filter_def eventually_Sup by simp }
+ { assume "F'' \<in> S" thus "Inf S \<le> F''"
+ unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
+ { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
+ unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
+qed
+
+end
+
+lemma filter_leD:
+ "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F"
+ unfolding le_filter_def by simp
+
+lemma filter_leI:
+ "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'"
+ unfolding le_filter_def by simp
+
+lemma eventually_False:
+ "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot"
+ unfolding filter_eq_iff by (auto elim: eventually_rev_mp)
+
+abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool"
+ where "trivial_limit F \<equiv> F = bot"
+
+lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F"
+ by (rule eventually_False [symmetric])
+
+lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P"
+ by (cases P) (simp_all add: eventually_False)
+
+
+subsubsection {* Map function for filters *}
+
+definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
+ where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)"
+
+lemma eventually_filtermap:
+ "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F"
+ unfolding filtermap_def
+ apply (rule eventually_Abs_filter)
+ apply (rule is_filter.intro)
+ apply (auto elim!: eventually_rev_mp)
+ done
+
+lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F"
+ by (simp add: filter_eq_iff eventually_filtermap)
+
+lemma filtermap_filtermap:
+ "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F"
+ by (simp add: filter_eq_iff eventually_filtermap)
+
+lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'"
+ unfolding le_filter_def eventually_filtermap by simp
+
+lemma filtermap_bot [simp]: "filtermap f bot = bot"
+ by (simp add: filter_eq_iff eventually_filtermap)
+
+lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)"
+ by (auto simp: filter_eq_iff eventually_filtermap eventually_sup)
+
+subsubsection {* Order filters *}
+
+definition at_top :: "('a::order) filter"
+ where "at_top = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<ge>k. P n)"
+
+lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)"
+ unfolding at_top_def
+proof (rule eventually_Abs_filter, rule is_filter.intro)
+ fix P Q :: "'a \<Rightarrow> bool"
+ assume "\<exists>i. \<forall>n\<ge>i. P n" and "\<exists>j. \<forall>n\<ge>j. Q n"
+ then obtain i j where "\<forall>n\<ge>i. P n" and "\<forall>n\<ge>j. Q n" by auto
+ then have "\<forall>n\<ge>max i j. P n \<and> Q n" by simp
+ then show "\<exists>k. \<forall>n\<ge>k. P n \<and> Q n" ..
+qed auto
+
+lemma eventually_ge_at_top:
+ "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top"
+ unfolding eventually_at_top_linorder by auto
+
+lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::dense_linorder. \<forall>n>N. P n)"
+ unfolding eventually_at_top_linorder
+proof safe
+ fix N assume "\<forall>n\<ge>N. P n" then show "\<exists>N. \<forall>n>N. P n" by (auto intro!: exI[of _ N])
+next
+ fix N assume "\<forall>n>N. P n"
+ moreover from gt_ex[of N] guess y ..
+ ultimately show "\<exists>N. \<forall>n\<ge>N. P n" by (auto intro!: exI[of _ y])
+qed
+
+lemma eventually_gt_at_top:
+ "eventually (\<lambda>x. (c::_::dense_linorder) < x) at_top"
+ unfolding eventually_at_top_dense by auto
+
+definition at_bot :: "('a::order) filter"
+ where "at_bot = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<le>k. P n)"
+
+lemma eventually_at_bot_linorder:
+ fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)"
+ unfolding at_bot_def
+proof (rule eventually_Abs_filter, rule is_filter.intro)
+ fix P Q :: "'a \<Rightarrow> bool"
+ assume "\<exists>i. \<forall>n\<le>i. P n" and "\<exists>j. \<forall>n\<le>j. Q n"
+ then obtain i j where "\<forall>n\<le>i. P n" and "\<forall>n\<le>j. Q n" by auto
+ then have "\<forall>n\<le>min i j. P n \<and> Q n" by simp
+ then show "\<exists>k. \<forall>n\<le>k. P n \<and> Q n" ..
+qed auto
+
+lemma eventually_le_at_bot:
+ "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot"
+ unfolding eventually_at_bot_linorder by auto
+
+lemma eventually_at_bot_dense:
+ fixes P :: "'a::dense_linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n<N. P n)"
+ unfolding eventually_at_bot_linorder
+proof safe
+ fix N assume "\<forall>n\<le>N. P n" then show "\<exists>N. \<forall>n<N. P n" by (auto intro!: exI[of _ N])
+next
+ fix N assume "\<forall>n<N. P n"
+ moreover from lt_ex[of N] guess y ..
+ ultimately show "\<exists>N. \<forall>n\<le>N. P n" by (auto intro!: exI[of _ y])
+qed
+
+lemma eventually_gt_at_bot:
+ "eventually (\<lambda>x. x < (c::_::dense_linorder)) at_bot"
+ unfolding eventually_at_bot_dense by auto
+
+subsection {* Sequentially *}
+
+abbreviation sequentially :: "nat filter"
+ where "sequentially == at_top"
+
+lemma sequentially_def: "sequentially = Abs_filter (\<lambda>P. \<exists>k. \<forall>n\<ge>k. P n)"
+ unfolding at_top_def by simp
+
+lemma eventually_sequentially:
+ "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)"
+ by (rule eventually_at_top_linorder)
+
+lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot"
+ unfolding filter_eq_iff eventually_sequentially by auto
+
+lemmas trivial_limit_sequentially = sequentially_bot
+
+lemma eventually_False_sequentially [simp]:
+ "\<not> eventually (\<lambda>n. False) sequentially"
+ by (simp add: eventually_False)
+
+lemma le_sequentially:
+ "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)"
+ unfolding le_filter_def eventually_sequentially
+ by (safe, fast, drule_tac x=N in spec, auto elim: eventually_rev_mp)
+
+lemma eventually_sequentiallyI:
+ assumes "\<And>x. c \<le> x \<Longrightarrow> P x"
+ shows "eventually P sequentially"
+using assms by (auto simp: eventually_sequentially)
+
+
+subsubsection {* Standard filters *}
+
+definition within :: "'a filter \<Rightarrow> 'a set \<Rightarrow> 'a filter" (infixr "within" 70)
+ where "F within S = Abs_filter (\<lambda>P. eventually (\<lambda>x. x \<in> S \<longrightarrow> P x) F)"
+
+lemma eventually_within:
+ "eventually P (F within S) = eventually (\<lambda>x. x \<in> S \<longrightarrow> P x) F"
+ unfolding within_def
+ by (rule eventually_Abs_filter, rule is_filter.intro)
+ (auto elim!: eventually_rev_mp)
+
+lemma within_UNIV [simp]: "F within UNIV = F"
+ unfolding filter_eq_iff eventually_within by simp
+
+lemma within_empty [simp]: "F within {} = bot"
+ unfolding filter_eq_iff eventually_within by simp
+
+lemma within_within_eq: "(F within S) within T = F within (S \<inter> T)"
+ by (auto simp: filter_eq_iff eventually_within elim: eventually_elim1)
+
+lemma within_le: "F within S \<le> F"
+ unfolding le_filter_def eventually_within by (auto elim: eventually_elim1)
+
+lemma le_withinI: "F \<le> F' \<Longrightarrow> eventually (\<lambda>x. x \<in> S) F \<Longrightarrow> F \<le> F' within S"
+ unfolding le_filter_def eventually_within by (auto elim: eventually_elim2)
+
+lemma le_within_iff: "eventually (\<lambda>x. x \<in> S) F \<Longrightarrow> F \<le> F' within S \<longleftrightarrow> F \<le> F'"
+ by (blast intro: within_le le_withinI order_trans)
+
+subsubsection {* Topological filters *}
+
+definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter"
+ where "nhds a = Abs_filter (\<lambda>P. \<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
+
+definition (in topological_space) at :: "'a \<Rightarrow> 'a filter"
+ where "at a = nhds a within - {a}"
+
+abbreviation at_right :: "'a\<Colon>{topological_space, order} \<Rightarrow> 'a filter" where
+ "at_right x \<equiv> at x within {x <..}"
+
+abbreviation at_left :: "'a\<Colon>{topological_space, order} \<Rightarrow> 'a filter" where
+ "at_left x \<equiv> at x within {..< x}"
+
+lemma eventually_nhds:
+ "eventually P (nhds a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
+ unfolding nhds_def
+proof (rule eventually_Abs_filter, rule is_filter.intro)
+ have "open (UNIV :: 'a :: topological_space set) \<and> a \<in> UNIV \<and> (\<forall>x\<in>UNIV. True)" by simp
+ thus "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. True)" ..
+next
+ fix P Q
+ assume "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x)"
+ and "\<exists>T. open T \<and> a \<in> T \<and> (\<forall>x\<in>T. Q x)"
+ then obtain S T where
+ "open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x)"
+ "open T \<and> a \<in> T \<and> (\<forall>x\<in>T. Q x)" by auto
+ hence "open (S \<inter> T) \<and> a \<in> S \<inter> T \<and> (\<forall>x\<in>(S \<inter> T). P x \<and> Q x)"
+ by (simp add: open_Int)
+ thus "\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x \<and> Q x)" ..
+qed auto
+
+lemma nhds_neq_bot [simp]: "nhds a \<noteq> bot"
+ unfolding trivial_limit_def eventually_nhds by simp
+
+lemma eventually_at_topological:
+ "eventually P (at a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. x \<noteq> a \<longrightarrow> P x))"
+unfolding at_def eventually_within eventually_nhds by simp
+
+lemma at_eq_bot_iff: "at a = bot \<longleftrightarrow> open {a}"
+ unfolding trivial_limit_def eventually_at_topological
+ by (safe, case_tac "S = {a}", simp, fast, fast)
+
+lemma at_neq_bot [simp]: "at (a::'a::perfect_space) \<noteq> bot"
+ by (simp add: at_eq_bot_iff not_open_singleton)
+
+lemma eventually_at_right:
+ fixes x :: "'a :: {no_top, linorder_topology}"
+ shows "eventually P (at_right x) \<longleftrightarrow> (\<exists>b. x < b \<and> (\<forall>z. x < z \<and> z < b \<longrightarrow> P z))"
+ unfolding eventually_nhds eventually_within at_def
+proof safe
+ fix S assume "open S" "x \<in> S"
+ note open_right[OF this]
+ moreover assume "\<forall>s\<in>S. s \<in> - {x} \<longrightarrow> s \<in> {x<..} \<longrightarrow> P s"
+ ultimately show "\<exists>b>x. \<forall>z. x < z \<and> z < b \<longrightarrow> P z"
+ by (auto simp: subset_eq Ball_def)
+next
+ fix b assume "x < b" "\<forall>z. x < z \<and> z < b \<longrightarrow> P z"
+ then show "\<exists>S. open S \<and> x \<in> S \<and> (\<forall>xa\<in>S. xa \<in> - {x} \<longrightarrow> xa \<in> {x<..} \<longrightarrow> P xa)"
+ by (intro exI[of _ "{..< b}"]) auto
+qed
+
+lemma eventually_at_left:
+ fixes x :: "'a :: {no_bot, linorder_topology}"
+ shows "eventually P (at_left x) \<longleftrightarrow> (\<exists>b. x > b \<and> (\<forall>z. b < z \<and> z < x \<longrightarrow> P z))"
+ unfolding eventually_nhds eventually_within at_def
+proof safe
+ fix S assume "open S" "x \<in> S"
+ note open_left[OF this]
+ moreover assume "\<forall>s\<in>S. s \<in> - {x} \<longrightarrow> s \<in> {..<x} \<longrightarrow> P s"
+ ultimately show "\<exists>b<x. \<forall>z. b < z \<and> z < x \<longrightarrow> P z"
+ by (auto simp: subset_eq Ball_def)
+next
+ fix b assume "b < x" "\<forall>z. b < z \<and> z < x \<longrightarrow> P z"
+ then show "\<exists>S. open S \<and> x \<in> S \<and> (\<forall>xa\<in>S. xa \<in> - {x} \<longrightarrow> xa \<in> {..<x} \<longrightarrow> P xa)"
+ by (intro exI[of _ "{b <..}"]) auto
+qed
+
+lemma trivial_limit_at_left_real [simp]:
+ "\<not> trivial_limit (at_left (x::'a::{no_bot, dense_linorder, linorder_topology}))"
+ unfolding trivial_limit_def eventually_at_left by (auto dest: dense)
+
+lemma trivial_limit_at_right_real [simp]:
+ "\<not> trivial_limit (at_right (x::'a::{no_top, dense_linorder, linorder_topology}))"
+ unfolding trivial_limit_def eventually_at_right by (auto dest: dense)
+
+lemma at_within_eq: "at x within T = nhds x within (T - {x})"
+ unfolding at_def within_within_eq by (simp add: ac_simps Diff_eq)
+
+lemma at_eq_sup_left_right: "at (x::'a::linorder_topology) = sup (at_left x) (at_right x)"
+ by (auto simp: eventually_within at_def filter_eq_iff eventually_sup
+ elim: eventually_elim2 eventually_elim1)
+
+lemma eventually_at_split:
+ "eventually P (at (x::'a::linorder_topology)) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)"
+ by (subst at_eq_sup_left_right) (simp add: eventually_sup)
+
+subsection {* Limits *}
+
+definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
+ "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2"
+
+syntax
+ "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
+
+translations
+ "LIM x F1. f :> F2" == "CONST filterlim (%x. f) F2 F1"
+
+lemma filterlim_iff:
+ "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)"
+ unfolding filterlim_def le_filter_def eventually_filtermap ..
+
+lemma filterlim_compose:
+ "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1"
+ unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans)
+
+lemma filterlim_mono:
+ "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'"
+ unfolding filterlim_def by (metis filtermap_mono order_trans)
+
+lemma filterlim_ident: "LIM x F. x :> F"
+ by (simp add: filterlim_def filtermap_ident)
+
+lemma filterlim_cong:
+ "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'"
+ by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2)
+
+lemma filterlim_within:
+ "(LIM x F1. f x :> F2 within S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F1 \<and> (LIM x F1. f x :> F2))"
+ unfolding filterlim_def
+proof safe
+ assume "filtermap f F1 \<le> F2 within S" then show "eventually (\<lambda>x. f x \<in> S) F1"
+ by (auto simp: le_filter_def eventually_filtermap eventually_within elim!: allE[of _ "\<lambda>x. x \<in> S"])
+qed (auto intro: within_le order_trans simp: le_within_iff eventually_filtermap)
+
+lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2"
+ unfolding filterlim_def filtermap_filtermap ..
+
+lemma filterlim_sup:
+ "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)"
+ unfolding filterlim_def filtermap_sup by auto
+
+lemma filterlim_Suc: "filterlim Suc sequentially sequentially"
+ by (simp add: filterlim_iff eventually_sequentially) (metis le_Suc_eq)
+
+subsubsection {* Tendsto *}
+
+abbreviation (in topological_space)
+ tendsto :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool" (infixr "--->" 55) where
+ "(f ---> l) F \<equiv> filterlim f (nhds l) F"
+
+lemma tendsto_eq_rhs: "(f ---> x) F \<Longrightarrow> x = y \<Longrightarrow> (f ---> y) F"
+ by simp
+
+ML {*
+
+structure Tendsto_Intros = Named_Thms
+(
+ val name = @{binding tendsto_intros}
+ val description = "introduction rules for tendsto"
+)
+
+*}
+
+setup {*
+ Tendsto_Intros.setup #>
+ Global_Theory.add_thms_dynamic (@{binding tendsto_eq_intros},
+ map (fn thm => @{thm tendsto_eq_rhs} OF [thm]) o Tendsto_Intros.get o Context.proof_of);
+*}
+
+lemma tendsto_def: "(f ---> l) F \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F)"
+ unfolding filterlim_def
+proof safe
+ fix S assume "open S" "l \<in> S" "filtermap f F \<le> nhds l"
+ then show "eventually (\<lambda>x. f x \<in> S) F"
+ unfolding eventually_nhds eventually_filtermap le_filter_def
+ by (auto elim!: allE[of _ "\<lambda>x. x \<in> S"] eventually_rev_mp)
+qed (auto elim!: eventually_rev_mp simp: eventually_nhds eventually_filtermap le_filter_def)
+
+lemma filterlim_at:
+ "(LIM x F. f x :> at b) \<longleftrightarrow> (eventually (\<lambda>x. f x \<noteq> b) F \<and> (f ---> b) F)"
+ by (simp add: at_def filterlim_within)
+
+lemma tendsto_mono: "F \<le> F' \<Longrightarrow> (f ---> l) F' \<Longrightarrow> (f ---> l) F"
+ unfolding tendsto_def le_filter_def by fast
+
+lemma topological_tendstoI:
+ "(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F)
+ \<Longrightarrow> (f ---> l) F"
+ unfolding tendsto_def by auto
+
+lemma topological_tendstoD:
+ "(f ---> l) F \<Longrightarrow> open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
+ unfolding tendsto_def by auto
+
+lemma order_tendstoI:
+ fixes y :: "_ :: order_topology"
+ assumes "\<And>a. a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F"
+ assumes "\<And>a. y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F"
+ shows "(f ---> y) F"
+proof (rule topological_tendstoI)
+ fix S assume "open S" "y \<in> S"
+ then show "eventually (\<lambda>x. f x \<in> S) F"
+ unfolding open_generated_order
+ proof induct
+ case (UN K)
+ then obtain k where "y \<in> k" "k \<in> K" by auto
+ with UN(2)[of k] show ?case
+ by (auto elim: eventually_elim1)
+ qed (insert assms, auto elim: eventually_elim2)
+qed
+
+lemma order_tendstoD:
+ fixes y :: "_ :: order_topology"
+ assumes y: "(f ---> y) F"
+ shows "a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F"
+ and "y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F"
+ using topological_tendstoD[OF y, of "{..< a}"] topological_tendstoD[OF y, of "{a <..}"] by auto
+
+lemma order_tendsto_iff:
+ fixes f :: "_ \<Rightarrow> 'a :: order_topology"
+ shows "(f ---> x) F \<longleftrightarrow>(\<forall>l<x. eventually (\<lambda>x. l < f x) F) \<and> (\<forall>u>x. eventually (\<lambda>x. f x < u) F)"
+ by (metis order_tendstoI order_tendstoD)
+
+lemma tendsto_bot [simp]: "(f ---> a) bot"
+ unfolding tendsto_def by simp
+
+lemma tendsto_ident_at [tendsto_intros]: "((\<lambda>x. x) ---> a) (at a)"
+ unfolding tendsto_def eventually_at_topological by auto
+
+lemma tendsto_ident_at_within [tendsto_intros]:
+ "((\<lambda>x. x) ---> a) (at a within S)"
+ unfolding tendsto_def eventually_within eventually_at_topological by auto
+
+lemma tendsto_const [tendsto_intros]: "((\<lambda>x. k) ---> k) F"
+ by (simp add: tendsto_def)
+
+lemma tendsto_unique:
+ fixes f :: "'a \<Rightarrow> 'b::t2_space"
+ assumes "\<not> trivial_limit F" and "(f ---> a) F" and "(f ---> b) F"
+ shows "a = b"
+proof (rule ccontr)
+ assume "a \<noteq> b"
+ obtain U V where "open U" "open V" "a \<in> U" "b \<in> V" "U \<inter> V = {}"
+ using hausdorff [OF `a \<noteq> b`] by fast
+ have "eventually (\<lambda>x. f x \<in> U) F"
+ using `(f ---> a) F` `open U` `a \<in> U` by (rule topological_tendstoD)
+ moreover
+ have "eventually (\<lambda>x. f x \<in> V) F"
+ using `(f ---> b) F` `open V` `b \<in> V` by (rule topological_tendstoD)
+ ultimately
+ have "eventually (\<lambda>x. False) F"
+ proof eventually_elim
+ case (elim x)
+ hence "f x \<in> U \<inter> V" by simp
+ with `U \<inter> V = {}` show ?case by simp
+ qed
+ with `\<not> trivial_limit F` show "False"
+ by (simp add: trivial_limit_def)
+qed
+
+lemma tendsto_const_iff:
+ fixes a b :: "'a::t2_space"
+ assumes "\<not> trivial_limit F" shows "((\<lambda>x. a) ---> b) F \<longleftrightarrow> a = b"
+ by (safe intro!: tendsto_const tendsto_unique [OF assms tendsto_const])
+
+lemma increasing_tendsto:
+ fixes f :: "_ \<Rightarrow> 'a::order_topology"
+ assumes bdd: "eventually (\<lambda>n. f n \<le> l) F"
+ and en: "\<And>x. x < l \<Longrightarrow> eventually (\<lambda>n. x < f n) F"
+ shows "(f ---> l) F"
+ using assms by (intro order_tendstoI) (auto elim!: eventually_elim1)
+
+lemma decreasing_tendsto:
+ fixes f :: "_ \<Rightarrow> 'a::order_topology"
+ assumes bdd: "eventually (\<lambda>n. l \<le> f n) F"
+ and en: "\<And>x. l < x \<Longrightarrow> eventually (\<lambda>n. f n < x) F"
+ shows "(f ---> l) F"
+ using assms by (intro order_tendstoI) (auto elim!: eventually_elim1)
+
+lemma tendsto_sandwich:
+ fixes f g h :: "'a \<Rightarrow> 'b::order_topology"
+ assumes ev: "eventually (\<lambda>n. f n \<le> g n) net" "eventually (\<lambda>n. g n \<le> h n) net"
+ assumes lim: "(f ---> c) net" "(h ---> c) net"
+ shows "(g ---> c) net"
+proof (rule order_tendstoI)
+ fix a show "a < c \<Longrightarrow> eventually (\<lambda>x. a < g x) net"
+ using order_tendstoD[OF lim(1), of a] ev by (auto elim: eventually_elim2)
+next
+ fix a show "c < a \<Longrightarrow> eventually (\<lambda>x. g x < a) net"
+ using order_tendstoD[OF lim(2), of a] ev by (auto elim: eventually_elim2)
+qed
+
+lemma tendsto_le:
+ fixes f g :: "'a \<Rightarrow> 'b::linorder_topology"
+ assumes F: "\<not> trivial_limit F"
+ assumes x: "(f ---> x) F" and y: "(g ---> y) F"
+ assumes ev: "eventually (\<lambda>x. g x \<le> f x) F"
+ shows "y \<le> x"
+proof (rule ccontr)
+ assume "\<not> y \<le> x"
+ with less_separate[of x y] obtain a b where xy: "x < a" "b < y" "{..<a} \<inter> {b<..} = {}"
+ by (auto simp: not_le)
+ then have "eventually (\<lambda>x. f x < a) F" "eventually (\<lambda>x. b < g x) F"
+ using x y by (auto intro: order_tendstoD)
+ with ev have "eventually (\<lambda>x. False) F"
+ by eventually_elim (insert xy, fastforce)
+ with F show False
+ by (simp add: eventually_False)
+qed
+
+lemma tendsto_le_const:
+ fixes f :: "'a \<Rightarrow> 'b::linorder_topology"
+ assumes F: "\<not> trivial_limit F"
+ assumes x: "(f ---> x) F" and a: "eventually (\<lambda>x. a \<le> f x) F"
+ shows "a \<le> x"
+ using F x tendsto_const a by (rule tendsto_le)
+
+subsection {* Limits to @{const at_top} and @{const at_bot} *}
+
+lemma filterlim_at_top:
+ fixes f :: "'a \<Rightarrow> ('b::linorder)"
+ shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)"
+ by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1)
+
+lemma filterlim_at_top_dense:
+ fixes f :: "'a \<Rightarrow> ('b::dense_linorder)"
+ shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)"
+ by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le
+ filterlim_at_top[of f F] filterlim_iff[of f at_top F])
+
+lemma filterlim_at_top_ge:
+ fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
+ shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)"
+ unfolding filterlim_at_top
+proof safe
+ fix Z assume *: "\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F"
+ with *[THEN spec, of "max Z c"] show "eventually (\<lambda>x. Z \<le> f x) F"
+ by (auto elim!: eventually_elim1)
+qed simp
+
+lemma filterlim_at_top_at_top:
+ fixes f :: "'a::linorder \<Rightarrow> 'b::linorder"
+ assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
+ assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
+ assumes Q: "eventually Q at_top"
+ assumes P: "eventually P at_top"
+ shows "filterlim f at_top at_top"
+proof -
+ from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
+ unfolding eventually_at_top_linorder by auto
+ show ?thesis
+ proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
+ fix z assume "x \<le> z"
+ with x have "P z" by auto
+ have "eventually (\<lambda>x. g z \<le> x) at_top"
+ by (rule eventually_ge_at_top)
+ with Q show "eventually (\<lambda>x. z \<le> f x) at_top"
+ by eventually_elim (metis mono bij `P z`)
+ qed
+qed
+
+lemma filterlim_at_top_gt:
+ fixes f :: "'a \<Rightarrow> ('b::dense_linorder)" and c :: "'b"
+ shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)"
+ by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge)
+
+lemma filterlim_at_bot:
+ fixes f :: "'a \<Rightarrow> ('b::linorder)"
+ shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)"
+ by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_elim1)
+
+lemma filterlim_at_bot_le:
+ fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
+ shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)"
+ unfolding filterlim_at_bot
+proof safe
+ fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F"
+ with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F"
+ by (auto elim!: eventually_elim1)
+qed simp
+
+lemma filterlim_at_bot_lt:
+ fixes f :: "'a \<Rightarrow> ('b::dense_linorder)" and c :: "'b"
+ shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
+ by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
+
+lemma filterlim_at_bot_at_right:
+ fixes f :: "'a::{no_top, linorder_topology} \<Rightarrow> 'b::linorder"
+ assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
+ assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
+ assumes Q: "eventually Q (at_right a)" and bound: "\<And>b. Q b \<Longrightarrow> a < b"
+ assumes P: "eventually P at_bot"
+ shows "filterlim f at_bot (at_right a)"
+proof -
+ from P obtain x where x: "\<And>y. y \<le> x \<Longrightarrow> P y"
+ unfolding eventually_at_bot_linorder by auto
+ show ?thesis
+ proof (intro filterlim_at_bot_le[THEN iffD2] allI impI)
+ fix z assume "z \<le> x"
+ with x have "P z" by auto
+ have "eventually (\<lambda>x. x \<le> g z) (at_right a)"
+ using bound[OF bij(2)[OF `P z`]]
+ unfolding eventually_at_right by (auto intro!: exI[of _ "g z"])
+ with Q show "eventually (\<lambda>x. f x \<le> z) (at_right a)"
+ by eventually_elim (metis bij `P z` mono)
+ qed
+qed
+
+lemma filterlim_at_top_at_left:
+ fixes f :: "'a::{no_bot, linorder_topology} \<Rightarrow> 'b::linorder"
+ assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
+ assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
+ assumes Q: "eventually Q (at_left a)" and bound: "\<And>b. Q b \<Longrightarrow> b < a"
+ assumes P: "eventually P at_top"
+ shows "filterlim f at_top (at_left a)"
+proof -
+ from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
+ unfolding eventually_at_top_linorder by auto
+ show ?thesis
+ proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
+ fix z assume "x \<le> z"
+ with x have "P z" by auto
+ have "eventually (\<lambda>x. g z \<le> x) (at_left a)"
+ using bound[OF bij(2)[OF `P z`]]
+ unfolding eventually_at_left by (auto intro!: exI[of _ "g z"])
+ with Q show "eventually (\<lambda>x. z \<le> f x) (at_left a)"
+ by eventually_elim (metis bij `P z` mono)
+ qed
+qed
+
+lemma filterlim_split_at:
+ "filterlim f F (at_left x) \<Longrightarrow> filterlim f F (at_right x) \<Longrightarrow> filterlim f F (at (x::'a::linorder_topology))"
+ by (subst at_eq_sup_left_right) (rule filterlim_sup)
+
+lemma filterlim_at_split:
+ "filterlim f F (at (x::'a::linorder_topology)) \<longleftrightarrow> filterlim f F (at_left x) \<and> filterlim f F (at_right x)"
+ by (subst at_eq_sup_left_right) (simp add: filterlim_def filtermap_sup)
+
+
+subsection {* Limits on sequences *}
+
+abbreviation (in topological_space)
+ LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool"
+ ("((_)/ ----> (_))" [60, 60] 60) where
+ "X ----> L \<equiv> (X ---> L) sequentially"
+
+definition
+ lim :: "(nat \<Rightarrow> 'a::t2_space) \<Rightarrow> 'a" where
+ --{*Standard definition of limit using choice operator*}
+ "lim X = (THE L. X ----> L)"
+
+definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where
+ "convergent X = (\<exists>L. X ----> L)"
+
+subsubsection {* Monotone sequences and subsequences *}
+
+definition
+ monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
+ --{*Definition of monotonicity.
+ The use of disjunction here complicates proofs considerably.
+ One alternative is to add a Boolean argument to indicate the direction.
+ Another is to develop the notions of increasing and decreasing first.*}
+ "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) | (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"
+
+definition
+ incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
+ --{*Increasing sequence*}
+ "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X m \<le> X n)"
+
+definition
+ decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
+ --{*Decreasing sequence*}
+ "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)"
+
+definition
+ subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" where
+ --{*Definition of subsequence*}
+ "subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)"
+
+lemma incseq_mono: "mono f \<longleftrightarrow> incseq f"
+ unfolding mono_def incseq_def by auto
+
+lemma incseq_SucI:
+ "(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X"
+ using lift_Suc_mono_le[of X]
+ by (auto simp: incseq_def)
+
+lemma incseqD: "\<And>i j. incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j"
+ by (auto simp: incseq_def)
+
+lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)"
+ using incseqD[of A i "Suc i"] by auto
+
+lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
+ by (auto intro: incseq_SucI dest: incseq_SucD)
+
+lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)"
+ unfolding incseq_def by auto
+
+lemma decseq_SucI:
+ "(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X"
+ using order.lift_Suc_mono_le[OF dual_order, of X]
+ by (auto simp: decseq_def)
+
+lemma decseqD: "\<And>i j. decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i"
+ by (auto simp: decseq_def)
+
+lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i"
+ using decseqD[of A i "Suc i"] by auto
+
+lemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)"
+ by (auto intro: decseq_SucI dest: decseq_SucD)
+
+lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)"
+ unfolding decseq_def by auto
+
+lemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X"
+ unfolding monoseq_def incseq_def decseq_def ..
+
+lemma monoseq_Suc:
+ "monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)"
+ unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff ..
+
+lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X"
+by (simp add: monoseq_def)
+
+lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X"
+by (simp add: monoseq_def)
+
+lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X"
+by (simp add: monoseq_Suc)
+
+lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X"
+by (simp add: monoseq_Suc)
+
+lemma monoseq_minus:
+ fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add"
+ assumes "monoseq a"
+ shows "monoseq (\<lambda> n. - a n)"
+proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n")
+ case True
+ hence "\<forall> m. \<forall> n \<ge> m. - a n \<le> - a m" by auto
+ thus ?thesis by (rule monoI2)
+next
+ case False
+ hence "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" using `monoseq a`[unfolded monoseq_def] by auto
+ thus ?thesis by (rule monoI1)
+qed
+
+text{*Subsequence (alternative definition, (e.g. Hoskins)*}
+
+lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))"
+apply (simp add: subseq_def)
+apply (auto dest!: less_imp_Suc_add)
+apply (induct_tac k)
+apply (auto intro: less_trans)
+done
+
+text{* for any sequence, there is a monotonic subsequence *}
+lemma seq_monosub:
+ fixes s :: "nat => 'a::linorder"
+ shows "\<exists>f. subseq f \<and> monoseq (\<lambda> n. (s (f n)))"
+proof cases
+ let "?P p n" = "p > n \<and> (\<forall>m\<ge>p. s m \<le> s p)"
+ assume *: "\<forall>n. \<exists>p. ?P p n"
+ def f \<equiv> "nat_rec (SOME p. ?P p 0) (\<lambda>_ n. SOME p. ?P p n)"
+ have f_0: "f 0 = (SOME p. ?P p 0)" unfolding f_def by simp
+ have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat_rec_Suc ..
+ have P_0: "?P (f 0) 0" unfolding f_0 using *[rule_format] by (rule someI2_ex) auto
+ have P_Suc: "\<And>i. ?P (f (Suc i)) (f i)" unfolding f_Suc using *[rule_format] by (rule someI2_ex) auto
+ then have "subseq f" unfolding subseq_Suc_iff by auto
+ moreover have "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc
+ proof (intro disjI2 allI)
+ fix n show "s (f (Suc n)) \<le> s (f n)"
+ proof (cases n)
+ case 0 with P_Suc[of 0] P_0 show ?thesis by auto
+ next
+ case (Suc m)
+ from P_Suc[of n] Suc have "f (Suc m) \<le> f (Suc (Suc m))" by simp
+ with P_Suc Suc show ?thesis by simp
+ qed
+ qed
+ ultimately show ?thesis by auto
+next
+ let "?P p m" = "m < p \<and> s m < s p"
+ assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. s m \<le> s p))"
+ then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. s p < s m" by (force simp: not_le le_less)
+ def f \<equiv> "nat_rec (SOME p. ?P p (Suc N)) (\<lambda>_ n. SOME p. ?P p n)"
+ have f_0: "f 0 = (SOME p. ?P p (Suc N))" unfolding f_def by simp
+ have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat_rec_Suc ..
+ have P_0: "?P (f 0) (Suc N)"
+ unfolding f_0 some_eq_ex[of "\<lambda>p. ?P p (Suc N)"] using N[of "Suc N"] by auto
+ { fix i have "N < f i \<Longrightarrow> ?P (f (Suc i)) (f i)"
+ unfolding f_Suc some_eq_ex[of "\<lambda>p. ?P p (f i)"] using N[of "f i"] . }
+ note P' = this
+ { fix i have "N < f i \<and> ?P (f (Suc i)) (f i)"
+ by (induct i) (insert P_0 P', auto) }
+ then have "subseq f" "monoseq (\<lambda>x. s (f x))"
+ unfolding subseq_Suc_iff monoseq_Suc by (auto simp: not_le intro: less_imp_le)
+ then show ?thesis by auto
+qed
+
+lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"
+proof(induct n)
+ case 0 thus ?case by simp
+next
+ case (Suc n)
+ from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps
+ have "n < f (Suc n)" by arith
+ thus ?case by arith
+qed
+
+lemma eventually_subseq:
+ "subseq r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially"
+ unfolding eventually_sequentially by (metis seq_suble le_trans)
+
+lemma filterlim_subseq: "subseq f \<Longrightarrow> filterlim f sequentially sequentially"
+ unfolding filterlim_iff by (metis eventually_subseq)
+
+lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)"
+ unfolding subseq_def by simp
+
+lemma subseq_mono: assumes "subseq r" "m < n" shows "r m < r n"
+ using assms by (auto simp: subseq_def)
+
+lemma incseq_imp_monoseq: "incseq X \<Longrightarrow> monoseq X"
+ by (simp add: incseq_def monoseq_def)
+
+lemma decseq_imp_monoseq: "decseq X \<Longrightarrow> monoseq X"
+ by (simp add: decseq_def monoseq_def)
+
+lemma decseq_eq_incseq:
+ fixes X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" shows "decseq X = incseq (\<lambda>n. - X n)"
+ by (simp add: decseq_def incseq_def)
+
+lemma INT_decseq_offset:
+ assumes "decseq F"
+ shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
+proof safe
+ fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
+ show "x \<in> F i"
+ proof cases
+ from x have "x \<in> F n" by auto
+ also assume "i \<le> n" with `decseq F` have "F n \<subseteq> F i"
+ unfolding decseq_def by simp
+ finally show ?thesis .
+ qed (insert x, simp)
+qed auto
+
+lemma LIMSEQ_const_iff:
+ fixes k l :: "'a::t2_space"
+ shows "(\<lambda>n. k) ----> l \<longleftrightarrow> k = l"
+ using trivial_limit_sequentially by (rule tendsto_const_iff)
+
+lemma LIMSEQ_SUP:
+ "incseq X \<Longrightarrow> X ----> (SUP i. X i :: 'a :: {complete_linorder, linorder_topology})"
+ by (intro increasing_tendsto)
+ (auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans)
+
+lemma LIMSEQ_INF:
+ "decseq X \<Longrightarrow> X ----> (INF i. X i :: 'a :: {complete_linorder, linorder_topology})"
+ by (intro decreasing_tendsto)
+ (auto simp: INF_lower INF_less_iff decseq_def eventually_sequentially intro: le_less_trans)
+
+lemma LIMSEQ_ignore_initial_segment:
+ "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a"
+apply (rule topological_tendstoI)
+apply (drule (2) topological_tendstoD)
+apply (simp only: eventually_sequentially)
+apply (erule exE, rename_tac N)
+apply (rule_tac x=N in exI)
+apply simp
+done
+
+lemma LIMSEQ_offset:
+ "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a"
+apply (rule topological_tendstoI)
+apply (drule (2) topological_tendstoD)
+apply (simp only: eventually_sequentially)
+apply (erule exE, rename_tac N)
+apply (rule_tac x="N + k" in exI)
+apply clarify
+apply (drule_tac x="n - k" in spec)
+apply (simp add: le_diff_conv2)
+done
+
+lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l"
+by (drule_tac k="Suc 0" in LIMSEQ_ignore_initial_segment, simp)
+
+lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l"
+by (rule_tac k="Suc 0" in LIMSEQ_offset, simp)
+
+lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l"
+by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc)
+
+lemma LIMSEQ_unique:
+ fixes a b :: "'a::t2_space"
+ shows "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b"
+ using trivial_limit_sequentially by (rule tendsto_unique)
+
+lemma LIMSEQ_le_const:
+ "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x"
+ using tendsto_le_const[of sequentially X x a] by (simp add: eventually_sequentially)
+
+lemma LIMSEQ_le:
+ "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::'a::linorder_topology)"
+ using tendsto_le[of sequentially Y y X x] by (simp add: eventually_sequentially)
+
+lemma LIMSEQ_le_const2:
+ "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a"
+ by (rule LIMSEQ_le[of X x "\<lambda>n. a"]) (auto simp: tendsto_const)
+
+lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)"
+by (simp add: convergent_def)
+
+lemma convergentI: "(X ----> L) ==> convergent X"
+by (auto simp add: convergent_def)
+
+lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)"
+by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def)
+
+lemma convergent_const: "convergent (\<lambda>n. c)"
+ by (rule convergentI, rule tendsto_const)
+
+lemma monoseq_le:
+ "monoseq a \<Longrightarrow> a ----> (x::'a::linorder_topology) \<Longrightarrow>
+ ((\<forall> n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)) \<or> ((\<forall> n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m))"
+ by (metis LIMSEQ_le_const LIMSEQ_le_const2 decseq_def incseq_def monoseq_iff)
+
+lemma LIMSEQ_subseq_LIMSEQ:
+ "\<lbrakk> X ----> L; subseq f \<rbrakk> \<Longrightarrow> (X o f) ----> L"
+ unfolding comp_def by (rule filterlim_compose[of X, OF _ filterlim_subseq])
+
+lemma convergent_subseq_convergent:
+ "\<lbrakk>convergent X; subseq f\<rbrakk> \<Longrightarrow> convergent (X o f)"
+ unfolding convergent_def by (auto intro: LIMSEQ_subseq_LIMSEQ)
+
+lemma limI: "X ----> L ==> lim X = L"
+apply (simp add: lim_def)
+apply (blast intro: LIMSEQ_unique)
+done
+
+lemma lim_le: "convergent f \<Longrightarrow> (\<And>n. f n \<le> (x::'a::linorder_topology)) \<Longrightarrow> lim f \<le> x"
+ using LIMSEQ_le_const2[of f "lim f" x] by (simp add: convergent_LIMSEQ_iff)
+
+subsubsection{*Increasing and Decreasing Series*}
+
+lemma incseq_le: "incseq X \<Longrightarrow> X ----> L \<Longrightarrow> X n \<le> (L::'a::linorder_topology)"
+ by (metis incseq_def LIMSEQ_le_const)
+
+lemma decseq_le: "decseq X \<Longrightarrow> X ----> L \<Longrightarrow> (L::'a::linorder_topology) \<le> X n"
+ by (metis decseq_def LIMSEQ_le_const2)
+
+subsection {* Function limit at a point *}
+
+abbreviation
+ LIM :: "('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
+ ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
+ "f -- a --> L \<equiv> (f ---> L) (at a)"
+
+lemma LIM_const_not_eq[tendsto_intros]:
+ fixes a :: "'a::perfect_space"
+ fixes k L :: "'b::t2_space"
+ shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --> L"
+ by (simp add: tendsto_const_iff)
+
+lemmas LIM_not_zero = LIM_const_not_eq [where L = 0]
+
+lemma LIM_const_eq:
+ fixes a :: "'a::perfect_space"
+ fixes k L :: "'b::t2_space"
+ shows "(\<lambda>x. k) -- a --> L \<Longrightarrow> k = L"
+ by (simp add: tendsto_const_iff)
+
+lemma LIM_unique:
+ fixes a :: "'a::perfect_space" and L M :: "'b::t2_space"
+ shows "f -- a --> L \<Longrightarrow> f -- a --> M \<Longrightarrow> L = M"
+ using at_neq_bot by (rule tendsto_unique)
+
+text {* Limits are equal for functions equal except at limit point *}
+
+lemma LIM_equal: "\<forall>x. x \<noteq> a --> (f x = g x) \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- a --> l)"
+ unfolding tendsto_def eventually_at_topological by simp
+
+lemma LIM_cong: "a = b \<Longrightarrow> (\<And>x. x \<noteq> b \<Longrightarrow> f x = g x) \<Longrightarrow> l = m \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- b --> m)"
+ by (simp add: LIM_equal)
+
+lemma LIM_cong_limit: "f -- x --> L \<Longrightarrow> K = L \<Longrightarrow> f -- x --> K"
+ by simp
+
+lemma tendsto_at_iff_tendsto_nhds:
+ "g -- l --> g l \<longleftrightarrow> (g ---> g l) (nhds l)"
+ unfolding tendsto_def at_def eventually_within
+ by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1)
+
+lemma tendsto_compose:
+ "g -- l --> g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
+ unfolding tendsto_at_iff_tendsto_nhds by (rule filterlim_compose[of g])
+
+lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l"
+ unfolding o_def by (rule tendsto_compose)
+
+lemma tendsto_compose_eventually:
+ "g -- l --> m \<Longrightarrow> (f ---> l) F \<Longrightarrow> eventually (\<lambda>x. f x \<noteq> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> m) F"
+ by (rule filterlim_compose[of g _ "at l"]) (auto simp add: filterlim_at)
+
+lemma LIM_compose_eventually:
+ assumes f: "f -- a --> b"
+ assumes g: "g -- b --> c"
+ assumes inj: "eventually (\<lambda>x. f x \<noteq> b) (at a)"
+ shows "(\<lambda>x. g (f x)) -- a --> c"
+ using g f inj by (rule tendsto_compose_eventually)
+
+subsection {* Continuity *}
+
+definition isCont :: "('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> bool" where
+ "isCont f a \<longleftrightarrow> f -- a --> f a"
+
+lemma isCont_ident [simp]: "isCont (\<lambda>x. x) a"
+ unfolding isCont_def by (rule tendsto_ident_at)
+
+lemma isCont_const [simp]: "isCont (\<lambda>x. k) a"
+ unfolding isCont_def by (rule tendsto_const)
+
+lemma isCont_tendsto_compose: "isCont g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
+ unfolding isCont_def by (rule tendsto_compose)
+
+lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"
+ unfolding isCont_def by (rule tendsto_compose)
+
+lemma isCont_o: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (g o f) a"
+ unfolding o_def by (rule isCont_o2)
+
+end
+