renamed LexOrds.thy to Termination.thy; examples for sizechange method
authorkrauss
Sat, 27 Dec 2008 17:35:00 +0100
changeset 29181 cc177742e607
parent 29180 62513d4d34c2
child 29182 9304afad825e
renamed LexOrds.thy to Termination.thy; examples for sizechange method
src/HOL/IsaMakefile
src/HOL/ex/LexOrds.thy
src/HOL/ex/ROOT.ML
src/HOL/ex/Termination.thy
--- a/src/HOL/IsaMakefile	Sat Dec 27 17:09:27 2008 +0100
+++ b/src/HOL/IsaMakefile	Sat Dec 27 17:35:00 2008 +0100
@@ -789,14 +789,14 @@
   ex/Binary.thy ex/Higher_Order_Logic.thy ex/Hilbert_Classical.thy	\
   ex/Induction_Scheme.thy ex/InductiveInvariant.thy			\
   ex/InductiveInvariant_examples.thy ex/Intuitionistic.thy		\
-  ex/Lagrange.thy ex/LexOrds.thy ex/LocaleTest2.thy ex/MT.thy		\
+  ex/Lagrange.thy ex/LocaleTest2.thy ex/MT.thy		\
   ex/MergeSort.thy ex/MonoidGroup.thy ex/Multiquote.thy ex/NatSum.thy	\
   ex/Numeral.thy ex/PER.thy ex/PresburgerEx.thy ex/Primrec.thy		\
   ex/Quickcheck_Examples.thy ex/Reflection.thy ex/reflection_data.ML	\
   ex/ReflectionEx.thy ex/ROOT.ML ex/Recdefs.thy ex/Records.thy		\
   ex/Reflected_Presburger.thy ex/coopertac.ML				\
   ex/Refute_Examples.thy ex/SAT_Examples.thy ex/SVC_Oracle.thy		\
-  ex/Sudoku.thy ex/Tarski.thy ex/Term_Of_Syntax.thy			\
+  ex/Sudoku.thy ex/Tarski.thy ex/Termination.thy ex/Term_Of_Syntax.thy			\
   ex/Unification.thy ex/document/root.bib			\
   ex/document/root.tex ex/Meson_Test.thy ex/reflection.ML ex/set.thy	\
   ex/svc_funcs.ML ex/svc_test.thy	\
--- a/src/HOL/ex/LexOrds.thy	Sat Dec 27 17:09:27 2008 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,182 +0,0 @@
-(* Title:       HOL/ex/LexOrds.thy
-   ID:          $Id$
-   Author:      Lukas Bulwahn, TU Muenchen
-*)
-
-header {* Examples and regression tests for method lexicographic order. *}
- 
-theory LexOrds
-imports Main
-begin
-
-subsection {* Trivial examples *}
-
-fun identity :: "nat \<Rightarrow> nat"
-where
-  "identity n = n"
-
-fun yaSuc :: "nat \<Rightarrow> nat"
-where 
-  "yaSuc 0 = 0"
-| "yaSuc (Suc n) = Suc (yaSuc n)"
-
-
-subsection {* Examples on natural numbers *}
-
-fun bin :: "(nat * nat) \<Rightarrow> nat"
-where
-  "bin (0, 0) = 1"
-| "bin (Suc n, 0) = 0"
-| "bin (0, Suc m) = 0"
-| "bin (Suc n, Suc m) = bin (n, m) + bin (Suc n, m)"
-
-
-fun t :: "(nat * nat) \<Rightarrow> nat"
-where
-  "t (0,n) = 0"
-| "t (n,0) = 0"
-| "t (Suc n, Suc m) = (if (n mod 2 = 0) then (t (Suc n, m)) else (t (n, Suc m)))" 
-
-
-fun k :: "(nat * nat) * (nat * nat) \<Rightarrow> nat"
-where
-  "k ((0,0),(0,0)) = 0"
-| "k ((Suc z, y), (u,v)) = k((z, y), (u, v))" (* z is descending *)
-| "k ((0, Suc y), (u,v)) = k((1, y), (u, v))" (* y is descending *)
-| "k ((0,0), (Suc u, v)) = k((1, 1), (u, v))" (* u is descending *)
-| "k ((0,0), (0, Suc v)) = k((1,1), (1,v))"   (* v is descending *)
-
-
-fun gcd2 :: "nat \<Rightarrow> nat \<Rightarrow> nat"
-where
-  "gcd2 x 0 = x"
-| "gcd2 0 y = y"
-| "gcd2 (Suc x) (Suc y) = (if x < y then gcd2 (Suc x) (y - x)
-                                    else gcd2 (x - y) (Suc y))"
-
-fun ack :: "(nat * nat) \<Rightarrow> nat"
-where
-  "ack (0, m) = Suc m"
-| "ack (Suc n, 0) = ack(n, 1)"
-| "ack (Suc n, Suc m) = ack (n, ack (Suc n, m))"
-
-
-fun greedy :: "nat * nat * nat * nat * nat => nat"
-where
-  "greedy (Suc a, Suc b, Suc c, Suc d, Suc e) =
-  (if (a < 10) then greedy (Suc a, Suc b, c, d + 2, Suc e) else
-  (if (a < 20) then greedy (Suc a, b, Suc c, d, Suc e) else
-  (if (a < 30) then greedy (Suc a, b, Suc c, d, Suc e) else
-  (if (a < 40) then greedy (Suc a, b, Suc c, d, Suc e) else
-  (if (a < 50) then greedy (Suc a, b, Suc c, d, Suc e) else
-  (if (a < 60) then greedy (a, Suc b, Suc c, d, Suc e) else
-  (if (a < 70) then greedy (a, Suc b, Suc c, d, Suc e) else
-  (if (a < 80) then greedy (a, Suc b, Suc c, d, Suc e) else
-  (if (a < 90) then greedy (Suc a, Suc b, Suc c, d, e) else
-  greedy (Suc a, Suc b, Suc c, d, e))))))))))"
-| "greedy (a, b, c, d, e) = 0"
-
-
-fun blowup :: "nat => nat => nat => nat => nat => nat => nat => nat => nat => nat"
-where
-  "blowup 0 0 0 0 0 0 0 0 0 = 0"
-| "blowup 0 0 0 0 0 0 0 0 (Suc i) = Suc (blowup i i i i i i i i i)"
-| "blowup 0 0 0 0 0 0 0 (Suc h) i = Suc (blowup h h h h h h h h i)"
-| "blowup 0 0 0 0 0 0 (Suc g) h i = Suc (blowup g g g g g g g h i)"
-| "blowup 0 0 0 0 0 (Suc f) g h i = Suc (blowup f f f f f f g h i)"
-| "blowup 0 0 0 0 (Suc e) f g h i = Suc (blowup e e e e e f g h i)"
-| "blowup 0 0 0 (Suc d) e f g h i = Suc (blowup d d d d e f g h i)"
-| "blowup 0 0 (Suc c) d e f g h i = Suc (blowup c c c d e f g h i)"
-| "blowup 0 (Suc b) c d e f g h i = Suc (blowup b b c d e f g h i)"
-| "blowup (Suc a) b c d e f g h i = Suc (blowup a b c d e f g h i)"
-
-  
-subsection {* Simple examples with other datatypes than nat, e.g. trees and lists *}
-
-datatype tree = Node | Branch tree tree
-
-fun g_tree :: "tree * tree \<Rightarrow> tree"
-where
-  "g_tree (Node, Node) = Node"
-| "g_tree (Node, Branch a b) = Branch Node (g_tree (a,b))"
-| "g_tree (Branch a b, Node) = Branch (g_tree (a,Node)) b"
-| "g_tree (Branch a b, Branch c d) = Branch (g_tree (a,c)) (g_tree (b,d))"
-
-
-fun acklist :: "'a list * 'a list \<Rightarrow> 'a list"
-where
-  "acklist ([], m) = ((hd m)#m)"
-|  "acklist (n#ns, []) = acklist (ns, [n])"
-|  "acklist ((n#ns), (m#ms)) = acklist (ns, acklist ((n#ns), ms))"
-
-
-subsection {* Examples with mutual recursion *}
-
-fun evn od :: "nat \<Rightarrow> bool"
-where
-  "evn 0 = True"
-| "od 0 = False"
-| "evn (Suc n) = od (Suc n)"
-| "od (Suc n) = evn n"
-
-
-fun sizechange_f :: "'a list => 'a list => 'a list" and
-sizechange_g :: "'a list => 'a list => 'a list => 'a list"
-where
-  "sizechange_f i x = (if i=[] then x else sizechange_g (tl i) x i)"
-| "sizechange_g a b c = sizechange_f a (b @ c)"
-
-
-fun
-  prod :: "nat => nat => nat => nat" and
-  eprod :: "nat => nat => nat => nat" and
-  oprod :: "nat => nat => nat => nat"
-where
-  "prod x y z = (if y mod 2 = 0 then eprod x y z else oprod x y z)"
-| "oprod x y z = eprod x (y - 1) (z+x)"
-| "eprod x y z = (if y=0 then z else prod (2*x) (y div 2) z)"
-
-
-fun
-  pedal :: "nat => nat => nat => nat"
-and
-  coast :: "nat => nat => nat => nat"
-where
-  "pedal 0 m c = c"
-| "pedal n 0 c = c"
-| "pedal n m c =
-     (if n < m then coast (n - 1) (m - 1) (c + m)
-               else pedal (n - 1) m (c + m))"
-
-| "coast n m c =
-     (if n < m then coast n (m - 1) (c + n)
-               else pedal n m (c + n))"
-
-
-subsection {*Examples for an unprovable termination *}
-
-text {* If termination cannot be proven, the tactic gives further information about unprovable subgoals on the arguments *}
-
-function noterm :: "(nat * nat) \<Rightarrow> nat"
-where
-  "noterm (a,b) = noterm(b,a)"
-by pat_completeness auto
-(* termination by apply lexicographic_order*)
-
-function term_but_no_prove :: "nat * nat \<Rightarrow> nat"
-where
-  "term_but_no_prove (0,0) = 1"
-| "term_but_no_prove (0, Suc b) = 0"
-| "term_but_no_prove (Suc a, 0) = 0"
-| "term_but_no_prove (Suc a, Suc b) = term_but_no_prove (b, a)"
-by pat_completeness auto
-(* termination by lexicographic_order *)
-
-text{* The tactic distinguishes between N = not provable AND F = False *}
-function no_proof :: "nat \<Rightarrow> nat"
-where
-  "no_proof m = no_proof (Suc m)"
-by pat_completeness auto
-(* termination by lexicographic_order *)
-
-end
\ No newline at end of file
--- a/src/HOL/ex/ROOT.ML	Sat Dec 27 17:09:27 2008 +0100
+++ b/src/HOL/ex/ROOT.ML	Sat Dec 27 17:35:00 2008 +0100
@@ -56,7 +56,7 @@
   "set",
   "Meson_Test",
   "Code_Antiq",
-  "LexOrds",
+  "Termination",
   "Coherent"
 ];
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Termination.thy	Sat Dec 27 17:35:00 2008 +0100
@@ -0,0 +1,212 @@
+(* Title:       HOL/ex/Termination.thy
+   ID:          $Id$
+   Author:      Lukas Bulwahn, TU Muenchen
+   Author:      Alexander Krauss, TU Muenchen
+*)
+
+header {* Examples and regression tests for automated termination proofs *}
+ 
+theory Termination
+imports Main Multiset
+begin
+
+text {*
+  The @{text fun} command uses the method @{text lexicographic_order} by default.
+*}
+
+subsection {* Trivial examples *}
+
+fun identity :: "nat \<Rightarrow> nat"
+where
+  "identity n = n"
+
+fun yaSuc :: "nat \<Rightarrow> nat"
+where 
+  "yaSuc 0 = 0"
+| "yaSuc (Suc n) = Suc (yaSuc n)"
+
+
+subsection {* Examples on natural numbers *}
+
+fun bin :: "(nat * nat) \<Rightarrow> nat"
+where
+  "bin (0, 0) = 1"
+| "bin (Suc n, 0) = 0"
+| "bin (0, Suc m) = 0"
+| "bin (Suc n, Suc m) = bin (n, m) + bin (Suc n, m)"
+
+
+fun t :: "(nat * nat) \<Rightarrow> nat"
+where
+  "t (0,n) = 0"
+| "t (n,0) = 0"
+| "t (Suc n, Suc m) = (if (n mod 2 = 0) then (t (Suc n, m)) else (t (n, Suc m)))" 
+
+
+fun k :: "(nat * nat) * (nat * nat) \<Rightarrow> nat"
+where
+  "k ((0,0),(0,0)) = 0"
+| "k ((Suc z, y), (u,v)) = k((z, y), (u, v))" (* z is descending *)
+| "k ((0, Suc y), (u,v)) = k((1, y), (u, v))" (* y is descending *)
+| "k ((0,0), (Suc u, v)) = k((1, 1), (u, v))" (* u is descending *)
+| "k ((0,0), (0, Suc v)) = k((1,1), (1,v))"   (* v is descending *)
+
+
+fun gcd2 :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "gcd2 x 0 = x"
+| "gcd2 0 y = y"
+| "gcd2 (Suc x) (Suc y) = (if x < y then gcd2 (Suc x) (y - x)
+                                    else gcd2 (x - y) (Suc y))"
+
+fun ack :: "(nat * nat) \<Rightarrow> nat"
+where
+  "ack (0, m) = Suc m"
+| "ack (Suc n, 0) = ack(n, 1)"
+| "ack (Suc n, Suc m) = ack (n, ack (Suc n, m))"
+
+
+fun greedy :: "nat * nat * nat * nat * nat => nat"
+where
+  "greedy (Suc a, Suc b, Suc c, Suc d, Suc e) =
+  (if (a < 10) then greedy (Suc a, Suc b, c, d + 2, Suc e) else
+  (if (a < 20) then greedy (Suc a, b, Suc c, d, Suc e) else
+  (if (a < 30) then greedy (Suc a, b, Suc c, d, Suc e) else
+  (if (a < 40) then greedy (Suc a, b, Suc c, d, Suc e) else
+  (if (a < 50) then greedy (Suc a, b, Suc c, d, Suc e) else
+  (if (a < 60) then greedy (a, Suc b, Suc c, d, Suc e) else
+  (if (a < 70) then greedy (a, Suc b, Suc c, d, Suc e) else
+  (if (a < 80) then greedy (a, Suc b, Suc c, d, Suc e) else
+  (if (a < 90) then greedy (Suc a, Suc b, Suc c, d, e) else
+  greedy (Suc a, Suc b, Suc c, d, e))))))))))"
+| "greedy (a, b, c, d, e) = 0"
+
+
+fun blowup :: "nat => nat => nat => nat => nat => nat => nat => nat => nat => nat"
+where
+  "blowup 0 0 0 0 0 0 0 0 0 = 0"
+| "blowup 0 0 0 0 0 0 0 0 (Suc i) = Suc (blowup i i i i i i i i i)"
+| "blowup 0 0 0 0 0 0 0 (Suc h) i = Suc (blowup h h h h h h h h i)"
+| "blowup 0 0 0 0 0 0 (Suc g) h i = Suc (blowup g g g g g g g h i)"
+| "blowup 0 0 0 0 0 (Suc f) g h i = Suc (blowup f f f f f f g h i)"
+| "blowup 0 0 0 0 (Suc e) f g h i = Suc (blowup e e e e e f g h i)"
+| "blowup 0 0 0 (Suc d) e f g h i = Suc (blowup d d d d e f g h i)"
+| "blowup 0 0 (Suc c) d e f g h i = Suc (blowup c c c d e f g h i)"
+| "blowup 0 (Suc b) c d e f g h i = Suc (blowup b b c d e f g h i)"
+| "blowup (Suc a) b c d e f g h i = Suc (blowup a b c d e f g h i)"
+
+  
+subsection {* Simple examples with other datatypes than nat, e.g. trees and lists *}
+
+datatype tree = Node | Branch tree tree
+
+fun g_tree :: "tree * tree \<Rightarrow> tree"
+where
+  "g_tree (Node, Node) = Node"
+| "g_tree (Node, Branch a b) = Branch Node (g_tree (a,b))"
+| "g_tree (Branch a b, Node) = Branch (g_tree (a,Node)) b"
+| "g_tree (Branch a b, Branch c d) = Branch (g_tree (a,c)) (g_tree (b,d))"
+
+
+fun acklist :: "'a list * 'a list \<Rightarrow> 'a list"
+where
+  "acklist ([], m) = ((hd m)#m)"
+|  "acklist (n#ns, []) = acklist (ns, [n])"
+|  "acklist ((n#ns), (m#ms)) = acklist (ns, acklist ((n#ns), ms))"
+
+
+subsection {* Examples with mutual recursion *}
+
+fun evn od :: "nat \<Rightarrow> bool"
+where
+  "evn 0 = True"
+| "od 0 = False"
+| "evn (Suc n) = od (Suc n)"
+| "od (Suc n) = evn n"
+
+
+fun sizechange_f :: "'a list => 'a list => 'a list" and
+sizechange_g :: "'a list => 'a list => 'a list => 'a list"
+where
+  "sizechange_f i x = (if i=[] then x else sizechange_g (tl i) x i)"
+| "sizechange_g a b c = sizechange_f a (b @ c)"
+
+fun
+  pedal :: "nat => nat => nat => nat"
+and
+  coast :: "nat => nat => nat => nat"
+where
+  "pedal 0 m c = c"
+| "pedal n 0 c = c"
+| "pedal n m c =
+     (if n < m then coast (n - 1) (m - 1) (c + m)
+               else pedal (n - 1) m (c + m))"
+
+| "coast n m c =
+     (if n < m then coast n (m - 1) (c + n)
+               else pedal n m (c + n))"
+
+
+
+subsection {* Refined analysis: The @{text sizechange} method *}
+
+text {* Unsolvable for @{text lexicographic_order} *}
+
+function fun1 :: "nat * nat \<Rightarrow> nat"
+where
+  "fun1 (0,0) = 1"
+| "fun1 (0, Suc b) = 0"
+| "fun1 (Suc a, 0) = 0"
+| "fun1 (Suc a, Suc b) = fun1 (b, a)"
+by pat_completeness auto
+termination by sizechange
+
+
+text {* 
+  @{text lexicographic_order} can do the following, but it is much slower. 
+*}
+
+function
+  prod :: "nat => nat => nat => nat" and
+  eprod :: "nat => nat => nat => nat" and
+  oprod :: "nat => nat => nat => nat"
+where
+  "prod x y z = (if y mod 2 = 0 then eprod x y z else oprod x y z)"
+| "oprod x y z = eprod x (y - 1) (z+x)"
+| "eprod x y z = (if y=0 then z else prod (2*x) (y div 2) z)"
+by pat_completeness auto
+termination by sizechange
+
+text {* 
+  Permutations of arguments:
+*}
+
+function perm :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "perm m n r = (if r > 0 then perm m (r - 1) n
+                  else if n > 0 then perm r (n - 1) m
+                  else m)"
+by auto
+termination by sizechange
+
+text {*
+  Artificial examples and regression tests:
+*}
+
+function
+  fun2 :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "fun2 x y z =
+      (if x > 1000 \<and> z > 0 then
+           fun2 (min x y) y (z - 1)
+       else if y > 0 \<and> x > 100 then
+           fun2 x (y - 1) (2 * z)
+       else if z > 0 then
+           fun2 (min y (z - 1)) x x
+       else
+           0
+      )"
+by pat_completeness auto
+termination by sizechange -- {* requires Multiset *}
+
+end