Deletion of a duplicate proof
authorpaulson <lp15@cam.ac.uk>
Fri, 28 Jan 2022 16:15:28 +0000
changeset 75013 ccf203c9b2db
parent 75012 7483347efb4c
child 75014 0778d233964d
Deletion of a duplicate proof
src/HOL/Examples/Ackermann.thy
--- a/src/HOL/Examples/Ackermann.thy	Thu Jan 27 12:25:24 2022 +0000
+++ b/src/HOL/Examples/Ackermann.thy	Fri Jan 28 16:15:28 2022 +0000
@@ -61,9 +61,6 @@
   "ackloop_dom (ack m n # l) \<Longrightarrow> ackloop_dom (n # m # l)"
   by (induction m n arbitrary: l rule: ack.induct) auto
 
-lemma "ackloop_dom (ack m n # l) \<Longrightarrow> ackloop_dom (n # m # l)"
-  by (induction m n arbitrary: l rule: ack.induct) auto
-
 text\<open>This function codifies what @{term ackloop} is designed to do.
 Proving the two functions equivalent also shows that @{term ackloop} can be used
 to compute Ackermann's function.\<close>