added 2-3 trees (simpler and more complete than the version in ex/Tree23)
authornipkow
Sun, 18 Oct 2015 17:25:13 +0200
changeset 61469 cd82b1023932
parent 61468 7d1127ac2251
child 61478 6e789d198bbd
added 2-3 trees (simpler and more complete than the version in ex/Tree23)
src/HOL/Data_Structures/RBT.thy
src/HOL/Data_Structures/Tree23.thy
src/HOL/Data_Structures/Tree23_Map.thy
src/HOL/Data_Structures/Tree23_Set.thy
src/HOL/ROOT
--- a/src/HOL/Data_Structures/RBT.thy	Sat Oct 17 16:08:30 2015 +0200
+++ b/src/HOL/Data_Structures/RBT.thy	Sun Oct 18 17:25:13 2015 +0200
@@ -1,6 +1,6 @@
 (* Author: Tobias Nipkow *)
 
-section \<open>Red-Black Tree\<close>
+section \<open>Red-Black Trees\<close>
 
 theory RBT
 imports Tree2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Tree23.thy	Sun Oct 18 17:25:13 2015 +0200
@@ -0,0 +1,43 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>2-3 Trees\<close>
+
+theory Tree23
+imports Main
+begin
+
+class height =
+fixes height :: "'a \<Rightarrow> nat"
+
+datatype 'a tree23 =
+  Leaf |
+  Node2 "'a tree23" 'a "'a tree23" |
+  Node3 "'a tree23" 'a "'a tree23" 'a "'a tree23"
+
+fun inorder :: "'a tree23 \<Rightarrow> 'a list" where
+"inorder Leaf = []" |
+"inorder(Node2 l a r) = inorder l @ a # inorder r" |
+"inorder(Node3 l a m b r) = inorder l @ a # inorder m @ b # inorder r"
+
+
+instantiation tree23 :: (type)height
+begin
+
+fun height_tree23 :: "'a tree23 \<Rightarrow> nat" where
+"height Leaf = 0" |
+"height (Node2 l _ r) = Suc(max (height l) (height r))" |
+"height (Node3 l _ m _ r) = Suc(max (height l) (max (height m) (height r)))"
+
+instance ..
+
+end
+
+text \<open>Balanced:\<close>
+
+fun bal :: "'a tree23 \<Rightarrow> bool" where
+"bal Leaf = True" |
+"bal (Node2 l _ r) = (bal l & bal r & height l = height r)" |
+"bal (Node3 l _ m _ r) =
+  (bal l & bal m & bal r & height l = height m & height m = height r)"
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Tree23_Map.thy	Sun Oct 18 17:25:13 2015 +0200
@@ -0,0 +1,155 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>2-3 Tree Implementation of Maps\<close>
+
+theory Tree23_Map
+imports
+  Tree23_Set
+  Map_by_Ordered
+begin
+
+fun lookup :: "('a::linorder * 'b) tree23 \<Rightarrow> 'a \<Rightarrow> 'b option" where
+"lookup Leaf x = None" |
+"lookup (Node2 l (a,b) r) x =
+  (if x < a then lookup l x else
+  if a < x then lookup r x else Some b)" |
+"lookup (Node3 l (a1,b1) m (a2,b2) r) x =
+  (if x < a1 then lookup l x else
+   if x = a1 then Some b1 else
+   if x < a2 then lookup m x else
+   if x = a2 then Some b2
+   else lookup r x)"
+
+fun upd :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree23 \<Rightarrow> ('a*'b) up\<^sub>i" where
+"upd a b Leaf = Up\<^sub>i Leaf (a,b) Leaf" |
+"upd a b (Node2 l xy r) =
+   (if a < fst xy then
+        (case upd a b l of
+           T\<^sub>i l' => T\<^sub>i (Node2 l' xy r)
+         | Up\<^sub>i l1 q l2 => T\<^sub>i (Node3 l1 q l2 xy r))
+    else if a = fst xy then T\<^sub>i (Node2 l (a,b) r)
+    else
+        (case upd a b r of
+           T\<^sub>i r' => T\<^sub>i (Node2 l xy r')
+         | Up\<^sub>i r1 q r2 => T\<^sub>i (Node3 l xy r1 q r2)))" |
+"upd a b (Node3 l xy1 m xy2 r) =
+   (if a < fst xy1 then
+        (case upd a b l of
+           T\<^sub>i l' => T\<^sub>i (Node3 l' xy1 m xy2 r)
+         | Up\<^sub>i l1 q l2 => Up\<^sub>i (Node2 l1 q l2) xy1 (Node2 m xy2 r))
+    else if a = fst xy1 then T\<^sub>i (Node3 l (a,b) m xy2 r)
+    else if a < fst xy2 then
+             (case upd a b m of
+                T\<^sub>i m' => T\<^sub>i (Node3 l xy1 m' xy2 r)
+              | Up\<^sub>i m1 q m2 => Up\<^sub>i (Node2 l xy1 m1) q (Node2 m2 xy2 r))
+         else if a = fst xy2 then T\<^sub>i (Node3 l xy1 m (a,b) r)
+         else
+             (case upd a b r of
+                T\<^sub>i r' => T\<^sub>i (Node3 l xy1 m xy2 r')
+              | Up\<^sub>i r1 q r2 => Up\<^sub>i (Node2 l xy1 m) xy2 (Node2 r1 q r2)))"
+
+definition update :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree23 \<Rightarrow> ('a*'b) tree23" where
+"update a b t = tree\<^sub>i(upd a b t)"
+
+fun del :: "'a::linorder \<Rightarrow> ('a*'b) tree23 \<Rightarrow> ('a*'b) up\<^sub>d"
+where
+"del k Leaf = T\<^sub>d Leaf" |
+"del k (Node2 Leaf p Leaf) = (if k=fst p then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf p Leaf))" |
+"del k (Node3 Leaf p Leaf q Leaf) = T\<^sub>d(if k=fst p then Node2 Leaf q Leaf
+  else if k=fst q then Node2 Leaf p Leaf else Node3 Leaf p Leaf q Leaf)" |
+"del k (Node2 l a r) = (if k<fst a then node21 (del k l) a r else
+  if k > fst a then node22 l a (del k r) else
+  let (a',t) = del_min r in node22 l a' t)" |
+"del k (Node3 l a m b r) = (if k<fst a then node31 (del k l) a m b r else
+  if k = fst a then let (a',m') = del_min m in node32 l a' m' b r else
+  if k < fst b then node32 l a (del k m) b r else
+  if k = fst b then let (b',r') = del_min r in node33 l a m b' r'
+  else node33 l a m b (del k r))"
+
+definition delete :: "'a::linorder \<Rightarrow> ('a*'b) tree23 \<Rightarrow> ('a*'b) tree23" where
+"delete k t = tree\<^sub>d(del k t)"
+
+
+subsection "Proofs for Lookup"
+
+lemma lookup: "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
+by (induction t) (auto simp: map_of_simps split: option.split)
+
+
+subsection "Proofs for Update"
+
+text {* Balanced trees *}
+
+text{* First a standard proof that @{const upd} preserves @{const bal}. *}
+
+lemma bal_upd: "bal t \<Longrightarrow> bal (tree\<^sub>i(upd a b t)) \<and> height(upd a b t) = height t"
+by (induct t) (auto split: up\<^sub>i.split)
+
+text{* Now an alternative proof (by Brian Huffman) that runs faster because
+two properties (balance and height) are combined in one predicate. *}
+
+lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (upd a b t)"
+by (induct rule: full.induct, auto split: up\<^sub>i.split)
+
+text {* The @{const update} operation preserves balance. *}
+
+lemma bal_update: "bal t \<Longrightarrow> bal (update a b t)"
+unfolding bal_iff_full update_def
+apply (erule exE)
+apply (drule full\<^sub>i_ins [of _ _ a b])
+apply (cases "upd a b t")
+apply (auto intro: full.intros)
+done
+
+text {* Functional correctness of @{const "update"}. *}
+
+lemma inorder_upd:
+  "sorted1(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(upd a b t)) = upd_list a b (inorder t)"
+by(induction t) (auto simp: upd_list_simps split: up\<^sub>i.splits)
+
+lemma inorder_update:
+  "sorted1(inorder t) \<Longrightarrow> inorder(update a b t) = upd_list a b (inorder t)"
+by(simp add: update_def inorder_upd)
+
+
+subsection "Proofs for Deletion"
+
+lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
+by(induction x t rule: del.induct)
+  (auto simp add: heights max_def height_del_min split: prod.split)
+
+lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
+by(induction x t rule: del.induct)
+  (auto simp: bals bal_del_min height_del height_del_min split: prod.split)
+
+corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
+by(simp add: delete_def bal_tree\<^sub>d_del)
+
+lemma inorder_del: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
+  inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
+by(induction t rule: del.induct)
+  (auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)
+
+lemma inorder_delete: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
+  inorder(delete x t) = del_list x (inorder t)"
+by(simp add: delete_def inorder_del)
+
+
+subsection \<open>Overall Correctness\<close>
+
+interpretation T23_Map: Map_by_Ordered
+where empty = Leaf and lookup = lookup and update = update and delete = delete
+and inorder = inorder and wf = bal
+proof (standard, goal_cases)
+  case 2 thus ?case by(simp add: lookup)
+next
+  case 3 thus ?case by(simp add: inorder_update)
+next
+  case 4 thus ?case by(simp add: inorder_delete)
+next
+  case 6 thus ?case by(simp add: bal_update)
+next
+  case 7 thus ?case by(simp add: bal_delete)
+qed simp+
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Tree23_Set.thy	Sun Oct 18 17:25:13 2015 +0200
@@ -0,0 +1,370 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>2-3 Tree Implementation of Sets\<close>
+
+theory Tree23_Set
+imports
+  Tree23
+  Set_by_Ordered
+begin
+
+fun isin :: "'a::linorder tree23 \<Rightarrow> 'a \<Rightarrow> bool" where
+"isin Leaf x = False" |
+"isin (Node2 l a r) x = (x < a \<and> isin l x \<or> x=a \<or> isin r x)" |
+"isin (Node3 l a m b r) x =
+  (x < a \<and> isin l x \<or> x = a \<or> (x < b \<and> isin m x \<or> x = b \<or> isin r x))"
+
+datatype 'a up\<^sub>i = T\<^sub>i "'a tree23" | Up\<^sub>i "'a tree23" 'a "'a tree23"
+
+fun tree\<^sub>i :: "'a up\<^sub>i \<Rightarrow> 'a tree23" where
+"tree\<^sub>i (T\<^sub>i t) = t" |
+"tree\<^sub>i (Up\<^sub>i l p r) = Node2 l p r"
+
+fun ins :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>i" where
+"ins a Leaf = Up\<^sub>i Leaf a Leaf" |
+"ins a (Node2 l x r) =
+   (if a < x then
+      case ins a l of
+         T\<^sub>i l' => T\<^sub>i (Node2 l' x r)
+       | Up\<^sub>i l1 q l2 => T\<^sub>i (Node3 l1 q l2 x r)
+    else if a=x then T\<^sub>i (Node2 l x r)
+    else
+      case ins a r of
+        T\<^sub>i r' => T\<^sub>i (Node2 l x r')
+      | Up\<^sub>i r1 q r2 => T\<^sub>i (Node3 l x r1 q r2))" |
+"ins a (Node3 l x1 m x2 r) =
+   (if a < x1 then
+      case ins a l of
+        T\<^sub>i l' => T\<^sub>i (Node3 l' x1 m x2 r)
+      | Up\<^sub>i l1 q l2 => Up\<^sub>i (Node2 l1 q l2) x1 (Node2 m x2 r)
+    else if a=x1 then T\<^sub>i (Node3 l x1 m x2 r)
+    else if a < x2 then
+           case ins a m of
+             T\<^sub>i m' => T\<^sub>i (Node3 l x1 m' x2 r)
+           | Up\<^sub>i m1 q m2 => Up\<^sub>i (Node2 l x1 m1) q (Node2 m2 x2 r)
+         else if a=x2 then T\<^sub>i (Node3 l x1 m x2 r)
+         else
+           case ins a r of
+             T\<^sub>i r' => T\<^sub>i (Node3 l x1 m x2 r')
+           | Up\<^sub>i r1 q r2 => Up\<^sub>i (Node2 l x1 m) x2 (Node2 r1 q r2))"
+
+hide_const insert
+
+definition insert :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
+"insert a t = tree\<^sub>i(ins a t)"
+
+datatype 'a up\<^sub>d = T\<^sub>d "'a tree23" | Up\<^sub>d "'a tree23"
+
+fun tree\<^sub>d :: "'a up\<^sub>d \<Rightarrow> 'a tree23" where
+"tree\<^sub>d (T\<^sub>d x) = x" |
+"tree\<^sub>d (Up\<^sub>d x) = x"
+
+(* Variation: return None to signal no-change *)
+
+fun node21 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
+"node21 (T\<^sub>d t1) a t2 = T\<^sub>d(Node2 t1 a t2)" |
+"node21 (Up\<^sub>d t1) a (Node2 t2 b t3) = Up\<^sub>d(Node3 t1 a t2 b t3)" |
+"node21 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node2 t3 c t4))"
+
+fun node22 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where
+"node22 t1 a (T\<^sub>d t2) = T\<^sub>d(Node2 t1 a t2)" |
+"node22 (Node2 t1 b t2) a (Up\<^sub>d t3) = Up\<^sub>d(Node3 t1 b t2 a t3)" |
+"node22 (Node3 t1 b t2 c t3) a (Up\<^sub>d t4) = T\<^sub>d(Node2 (Node2 t1 b t2) c (Node2 t3 a t4))"
+
+fun node31 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
+"node31 (T\<^sub>d t1) a t2 b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |
+"node31 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 = T\<^sub>d(Node2 (Node3 t1 a t2 b t3) c t4)" |
+"node31 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)"
+
+fun node32 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
+"node32 t1 a (T\<^sub>d t2) b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |
+"node32 t1 a (Up\<^sub>d t2) b (Node2 t3 c t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |
+"node32 t1 a (Up\<^sub>d t2) b (Node3 t3 c t4 d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"
+
+fun node33 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where
+"node33 l a m b (T\<^sub>d r) = T\<^sub>d(Node3 l a m b r)" |
+"node33 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |
+"node33 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"
+
+fun del_min :: "'a tree23 \<Rightarrow> 'a * 'a up\<^sub>d" where
+"del_min (Node2 Leaf a Leaf) = (a, Up\<^sub>d Leaf)" |
+"del_min (Node3 Leaf a Leaf b Leaf) = (a, T\<^sub>d(Node2 Leaf b Leaf))" |
+"del_min (Node2 l a r) = (let (x,l') = del_min l in (x, node21 l' a r))" |
+"del_min (Node3 l a m b r) = (let (x,l') = del_min l in (x, node31 l' a m b r))"
+
+fun del :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d"
+where
+"del k Leaf = T\<^sub>d Leaf" |
+"del k (Node2 Leaf p Leaf) = (if k=p then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf p Leaf))" |
+"del k (Node3 Leaf p Leaf q Leaf) = T\<^sub>d(if k=p then Node2 Leaf q Leaf
+  else if k=q then Node2 Leaf p Leaf else Node3 Leaf p Leaf q Leaf)" |
+"del k (Node2 l a r) = (if k<a then node21 (del k l) a r else
+  if k > a then node22 l a (del k r) else
+  let (a',t) = del_min r in node22 l a' t)" |
+"del k (Node3 l a m b r) = (if k<a then node31 (del k l) a m b r else
+  if k = a then let (a',m') = del_min m in node32 l a' m' b r else
+  if k < b then node32 l a (del k m) b r else
+  if k = b then let (b',r') = del_min r in node33 l a m b' r'
+  else node33 l a m b (del k r))"
+
+definition delete :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
+"delete k t = tree\<^sub>d(del k t)"
+
+
+declare prod.splits [split]
+
+subsection "Functional Correctness"
+
+
+subsubsection "Proofs for isin"
+
+lemma "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))"
+by (induction t) (auto simp: elems_simps1)
+
+lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))"
+by (induction t) (auto simp: elems_simps2)
+
+
+subsubsection "Proofs for insert"
+
+lemma inorder_ins:
+  "sorted(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)"
+by(induction t) (auto simp: ins_list_simps split: up\<^sub>i.splits)
+
+lemma inorder_insert:
+  "sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"
+by(simp add: insert_def inorder_ins)
+
+
+subsubsection "Proofs for delete"
+
+lemma inorder_node21: "height r > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node21 l' a r)) = inorder (tree\<^sub>d l') @ a # inorder r"
+by(induct l' a r rule: node21.induct) auto
+
+lemma inorder_node22: "height l > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node22 l a r')) = inorder l @ a # inorder (tree\<^sub>d r')"
+by(induct l a r' rule: node22.induct) auto
+
+lemma inorder_node31: "height m > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node31 l' a m b r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder r"
+by(induct l' a m b r rule: node31.induct) auto
+
+lemma inorder_node32: "height r > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node32 l a m' b r)) = inorder l @ a # inorder (tree\<^sub>d m') @ b # inorder r"
+by(induct l a m' b r rule: node32.induct) auto
+
+lemma inorder_node33: "height m > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (tree\<^sub>d r')"
+by(induct l a m b r' rule: node33.induct) auto
+
+lemmas inorder_nodes = inorder_node21 inorder_node22
+  inorder_node31 inorder_node32 inorder_node33
+
+lemma del_minD:
+  "del_min t = (x,t') \<Longrightarrow> bal t \<Longrightarrow> height t > 0 \<Longrightarrow>
+  x # inorder(tree\<^sub>d t') = inorder t"
+by(induction t arbitrary: t' rule: del_min.induct)
+  (auto simp: inorder_nodes)
+
+lemma inorder_del: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>
+  inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
+by(induction t rule: del.induct)
+  (auto simp: del_list_simps inorder_nodes del_minD)
+
+lemma inorder_delete: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>
+  inorder(delete x t) = del_list x (inorder t)"
+by(simp add: delete_def inorder_del)
+
+
+subsection \<open>Balancedness\<close>
+
+
+subsubsection "Proofs for insert"
+
+text{* First a standard proof that @{const ins} preserves @{const bal}. *}
+
+instantiation up\<^sub>i :: (type)height
+begin
+
+fun height_up\<^sub>i :: "'a up\<^sub>i \<Rightarrow> nat" where
+"height (T\<^sub>i t) = height t" |
+"height (Up\<^sub>i l a r) = height l"
+
+instance ..
+
+end
+
+lemma bal_ins: "bal t \<Longrightarrow> bal (tree\<^sub>i(ins a t)) \<and> height(ins a t) = height t"
+by (induct t) (auto split: up\<^sub>i.split)
+
+text{* Now an alternative proof (by Brian Huffman) that runs faster because
+two properties (balance and height) are combined in one predicate. *}
+
+inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where
+"full 0 Leaf" |
+"\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" |
+"\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)"
+
+inductive_cases full_elims:
+  "full n Leaf"
+  "full n (Node2 l p r)"
+  "full n (Node3 l p m q r)"
+
+inductive_cases full_0_elim: "full 0 t"
+inductive_cases full_Suc_elim: "full (Suc n) t"
+
+lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf"
+  by (auto elim: full_0_elim intro: full.intros)
+
+lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0"
+  by (auto elim: full_elims intro: full.intros)
+
+lemma full_Suc_Node2_iff [simp]:
+  "full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r"
+  by (auto elim: full_elims intro: full.intros)
+
+lemma full_Suc_Node3_iff [simp]:
+  "full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"
+  by (auto elim: full_elims intro: full.intros)
+
+lemma full_imp_height: "full n t \<Longrightarrow> height t = n"
+  by (induct set: full, simp_all)
+
+lemma full_imp_bal: "full n t \<Longrightarrow> bal t"
+  by (induct set: full, auto dest: full_imp_height)
+
+lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t"
+  by (induct t, simp_all)
+
+lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)"
+  by (auto elim!: bal_imp_full full_imp_bal)
+
+text {* The @{const "insert"} function either preserves the height of the
+tree, or increases it by one. The constructor returned by the @{term
+"insert"} function determines which: A return value of the form @{term
+"T\<^sub>i t"} indicates that the height will be the same. A value of the
+form @{term "Up\<^sub>i l p r"} indicates an increase in height. *}
+
+fun full\<^sub>i :: "nat \<Rightarrow> 'a up\<^sub>i \<Rightarrow> bool" where
+"full\<^sub>i n (T\<^sub>i t) \<longleftrightarrow> full n t" |
+"full\<^sub>i n (Up\<^sub>i l p r) \<longleftrightarrow> full n l \<and> full n r"
+
+lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)"
+by (induct rule: full.induct) (auto split: up\<^sub>i.split)
+
+text {* The @{const insert} operation preserves balance. *}
+
+lemma bal_insert: "bal t \<Longrightarrow> bal (insert a t)"
+unfolding bal_iff_full insert_def
+apply (erule exE)
+apply (drule full\<^sub>i_ins [of _ _ a])
+apply (cases "ins a t")
+apply (auto intro: full.intros)
+done
+
+
+subsection "Proofs for delete"
+
+instantiation up\<^sub>d :: (type)height
+begin
+
+fun height_up\<^sub>d :: "'a up\<^sub>d \<Rightarrow> nat" where
+"height (T\<^sub>d t) = height t" |
+"height (Up\<^sub>d t) = height t + 1"
+
+instance ..
+
+end
+
+lemma bal_tree\<^sub>d_node21:
+  "\<lbrakk>bal r; bal (tree\<^sub>d l'); height r = height l' \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node21 l' a r))"
+by(induct l' a r rule: node21.induct) auto
+
+lemma bal_tree\<^sub>d_node22:
+  "\<lbrakk>bal(tree\<^sub>d r'); bal l; height r' = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node22 l a r'))"
+by(induct l a r' rule: node22.induct) auto
+
+lemma bal_tree\<^sub>d_node31:
+  "\<lbrakk> bal (tree\<^sub>d l'); bal m; bal r; height l' = height r; height m = height r \<rbrakk>
+  \<Longrightarrow> bal (tree\<^sub>d (node31 l' a m b r))"
+by(induct l' a m b r rule: node31.induct) auto
+
+lemma bal_tree\<^sub>d_node32:
+  "\<lbrakk> bal l; bal (tree\<^sub>d m'); bal r; height l = height r; height m' = height r \<rbrakk>
+  \<Longrightarrow> bal (tree\<^sub>d (node32 l a m' b r))"
+by(induct l a m' b r rule: node32.induct) auto
+
+lemma bal_tree\<^sub>d_node33:
+  "\<lbrakk> bal l; bal m; bal(tree\<^sub>d r'); height l = height r'; height m = height r' \<rbrakk>
+  \<Longrightarrow> bal (tree\<^sub>d (node33 l a m b r'))"
+by(induct l a m b r' rule: node33.induct) auto
+
+lemmas bals = bal_tree\<^sub>d_node21 bal_tree\<^sub>d_node22
+  bal_tree\<^sub>d_node31 bal_tree\<^sub>d_node32 bal_tree\<^sub>d_node33
+
+lemma height'_node21:
+   "height r > 0 \<Longrightarrow> height(node21 l' a r) = max (height l') (height r) + 1"
+by(induct l' a r rule: node21.induct)(simp_all)
+
+lemma height'_node22:
+   "height l > 0 \<Longrightarrow> height(node22 l a r') = max (height l) (height r') + 1"
+by(induct l a r' rule: node22.induct)(simp_all)
+
+lemma height'_node31:
+  "height m > 0 \<Longrightarrow> height(node31 l a m b r) =
+   max (height l) (max (height m) (height r)) + 1"
+by(induct l a m b r rule: node31.induct)(simp_all add: max_def)
+
+lemma height'_node32:
+  "height r > 0 \<Longrightarrow> height(node32 l a m b r) =
+   max (height l) (max (height m) (height r)) + 1"
+by(induct l a m b r rule: node32.induct)(simp_all add: max_def)
+
+lemma height'_node33:
+  "height m > 0 \<Longrightarrow> height(node33 l a m b r) =
+   max (height l) (max (height m) (height r)) + 1"
+by(induct l a m b r rule: node33.induct)(simp_all add: max_def)
+
+lemmas heights = height'_node21 height'_node22
+  height'_node31 height'_node32 height'_node33
+
+lemma height_del_min:
+  "del_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> bal t \<Longrightarrow> height t' = height t"
+by(induct t arbitrary: x t' rule: del_min.induct)
+  (auto simp: heights split: prod.splits)
+
+lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
+by(induction x t rule: del.induct)
+  (auto simp add: heights max_def height_del_min)
+
+lemma bal_del_min:
+  "\<lbrakk> del_min t = (x, t'); bal t; height t > 0 \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d t')"
+by(induct t arbitrary: x t' rule: del_min.induct)
+  (auto simp: heights height_del_min bals)
+
+lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
+by(induction x t rule: del.induct)
+  (auto simp: bals bal_del_min height_del height_del_min)
+corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
+by(simp add: delete_def bal_tree\<^sub>d_del)
+
+
+subsection \<open>Overall Correctness\<close>
+
+interpretation Set_by_Ordered
+where empty = Leaf and isin = isin and insert = insert and delete = delete
+and inorder = inorder and wf = bal
+proof (standard, goal_cases)
+  case 2 thus ?case by(simp add: isin_set)
+next
+  case 3 thus ?case by(simp add: inorder_insert)
+next
+  case 4 thus ?case by(simp add: inorder_delete)
+next
+  case 6 thus ?case by(simp add: bal_insert)
+next
+  case 7 thus ?case by(simp add: bal_delete)
+qed simp+
+
+end
--- a/src/HOL/ROOT	Sat Oct 17 16:08:30 2015 +0200
+++ b/src/HOL/ROOT	Sun Oct 18 17:25:13 2015 +0200
@@ -178,6 +178,7 @@
     Tree_Map
     AVL_Map
     RBT_Map
+    Tree23_Map
   document_files "root.tex" "root.bib"
 
 session "HOL-Import" in Import = HOL +