added lemma
authorbulwahn
Thu, 11 Jun 2009 23:13:02 +0200 (2009-06-11)
changeset 31577 ce3721fa1e17
parent 31576 525073f7aff6
child 31578 86eeb9b7a4ba
added lemma
src/HOL/Transitive_Closure.thy
--- a/src/HOL/Transitive_Closure.thy	Thu Jun 11 22:17:13 2009 +0200
+++ b/src/HOL/Transitive_Closure.thy	Thu Jun 11 23:13:02 2009 +0200
@@ -478,20 +478,6 @@
 
 lemmas converse_trancl_induct = converse_tranclp_induct [to_set]
 
-lemma converse_tranclpE:
-  assumes "tranclp r x z "
-  assumes "r x z ==> P"
-  assumes "\<And> y. [| r x y; tranclp r y z |] ==> P"
-  shows P
-proof -
-  from tranclpD[OF assms(1)]
-  obtain y where "r x y" and "rtranclp r y z" by iprover
-  with assms(2-3) rtranclpD[OF this(2)] this(1)
-  show P by iprover
-qed  
-
-lemmas converse_tranclE = converse_tranclpE [to_set]
-
 lemma tranclpD: "R^++ x y ==> EX z. R x z \<and> R^** z y"
   apply (erule converse_tranclp_induct)
    apply auto
@@ -500,6 +486,28 @@
 
 lemmas tranclD = tranclpD [to_set]
 
+lemma converse_tranclpE:
+  assumes major: "tranclp r x z"
+  assumes base: "r x z ==> P"
+  assumes step: "\<And> y. [| r x y; tranclp r y z |] ==> P"
+  shows P
+proof -
+  from tranclpD[OF major]
+  obtain y where "r x y" and "rtranclp r y z" by iprover
+  from this(2) show P
+  proof (cases rule: rtranclp.cases)
+    case rtrancl_refl
+    with `r x y` base show P by iprover
+  next
+    case rtrancl_into_rtrancl
+    from this have "tranclp r y z"
+      by (iprover intro: rtranclp_into_tranclp1)
+    with `r x y` step show P by iprover
+  qed
+qed
+
+lemmas converse_tranclE = converse_tranclpE [to_set]
+
 lemma tranclD2:
   "(x, y) \<in> R\<^sup>+ \<Longrightarrow> \<exists>z. (x, z) \<in> R\<^sup>* \<and> (z, y) \<in> R"
   by (blast elim: tranclE intro: trancl_into_rtrancl)