added examples of adhoc overloading
authorChristian Sternagel
Fri, 02 Aug 2013 15:42:01 +0900
changeset 52894 cebaf814ca6e
parent 52893 aa2afbafd983
child 52895 a806aa7a5370
added examples of adhoc overloading
src/HOL/ex/Adhoc_Overloading_Examples.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Adhoc_Overloading_Examples.thy	Fri Aug 02 15:42:01 2013 +0900
@@ -0,0 +1,250 @@
+(*  Title:  HOL/ex/Adhoc_Overloading_Examples.thy
+    Author: Christian Sternagel
+*)
+
+header {* Ad Hoc Overloading *}
+
+theory Adhoc_Overloading_Examples
+imports
+  Main
+  "~~/src/Tools/Adhoc_Overloading"
+  "~~/src/HOL/Library/Infinite_Set"
+begin
+
+text {*Adhoc overloading allows to overload a constant depending on
+its type. Typically this involves to introduce an uninterpreted
+constant (used for input and output) and then add some variants (used
+internally).*}
+
+subsection {* Plain Ad Hoc Overloading *}
+
+text {*Consider the type of first-order terms.*}
+datatype ('a, 'b) "term" =
+  Var 'b |
+  Fun 'a "('a, 'b) term list"
+
+text {*The set of variables of a term might be computed as follows.*}
+fun term_vars :: "('a, 'b) term \<Rightarrow> 'b set" where
+  "term_vars (Var x) = {x}" |
+  "term_vars (Fun f ts) = \<Union>set (map term_vars ts)"
+
+text {*However, also for \emph{rules} (i.e., pairs of terms) and term
+rewrite systems (i.e., sets of rules), the set of variables makes
+sense. Thus we introduce an unspecified constant @{text vars}.*}
+
+consts vars :: "'a \<Rightarrow> 'b set"
+
+text {*Which is then overloaded with variants for terms, rules, and TRSs.*}
+adhoc_overloading
+  vars term_vars
+
+value "vars (Fun ''f'' [Var 0, Var 1])"
+
+fun rule_vars :: "('a, 'b) term \<times> ('a, 'b) term \<Rightarrow> 'b set" where
+  "rule_vars (l, r) = vars l \<union> vars r"
+
+adhoc_overloading
+  vars rule_vars
+
+value "vars (Var 1, Var 0)"
+
+definition trs_vars :: "(('a, 'b) term \<times> ('a, 'b) term) set \<Rightarrow> 'b set" where
+  "trs_vars R = \<Union>(rule_vars ` R)"
+
+adhoc_overloading
+  vars trs_vars
+
+value "vars {(Var 1, Var 0)}"
+
+text {*Sometimes it is necessary to add explicit type constraints
+before a variant can be determined.*}
+(*value "vars R" (*has multiple instances*)*)
+value "vars (R :: (('a, 'b) term \<times> ('a, 'b) term) set)"
+
+text {*It is also possible to remove variants.*}
+no_adhoc_overloading
+  vars term_vars rule_vars 
+
+(*value "vars (Var 1)" (*does not have an instance*)*)
+
+text {*As stated earlier, the overloaded constant is only used for
+input and output. Internally, always a variant is used, as can be
+observed by the configuration option @{text show_variants}.*}
+
+adhoc_overloading
+  vars term_vars
+
+declare [[show_variants]]
+
+term "vars (Var 1)" (*which yields: "term_vars (Var 1)"*)
+
+
+subsection {* Adhoc Overloading inside Locales *}
+
+text {*As example we use permutations that are parametrized over an
+atom type @{typ "'a"}.*}
+
+definition perms :: "('a \<Rightarrow> 'a) set" where
+  "perms = {f. bij f \<and> finite {x. f x \<noteq> x}}"
+
+typedef 'a perm = "perms :: ('a \<Rightarrow> 'a) set"
+  by (default) (auto simp: perms_def)
+
+text {*First we need some auxiliary lemmas.*}
+lemma permsI [Pure.intro]:
+  assumes "bij f" and "MOST x. f x = x"
+  shows "f \<in> perms"
+  using assms by (auto simp: perms_def) (metis MOST_iff_finiteNeg)
+
+lemma perms_imp_bij:
+  "f \<in> perms \<Longrightarrow> bij f"
+  by (simp add: perms_def)
+
+lemma perms_imp_MOST_eq:
+  "f \<in> perms \<Longrightarrow> MOST x. f x = x"
+  by (simp add: perms_def) (metis MOST_iff_finiteNeg)
+
+lemma id_perms [simp]:
+  "id \<in> perms"
+  "(\<lambda>x. x) \<in> perms"
+  by (auto simp: perms_def bij_def)
+
+lemma perms_comp [simp]:
+  assumes f: "f \<in> perms" and g: "g \<in> perms"
+  shows "(f \<circ> g) \<in> perms"
+  apply (intro permsI bij_comp)
+  apply (rule perms_imp_bij [OF g])
+  apply (rule perms_imp_bij [OF f])
+  apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF g]])
+  apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF f]])
+  by simp
+
+lemma perms_inv:
+  assumes f: "f \<in> perms"
+  shows "inv f \<in> perms"
+  apply (rule permsI)
+  apply (rule bij_imp_bij_inv)
+  apply (rule perms_imp_bij [OF f])
+  apply (rule MOST_mono [OF perms_imp_MOST_eq [OF f]])
+  apply (erule subst, rule inv_f_f)
+  by (rule bij_is_inj [OF perms_imp_bij [OF f]])
+
+lemma bij_Rep_perm: "bij (Rep_perm p)"
+  using Rep_perm [of p] unfolding perms_def by simp
+
+instantiation perm :: (type) group_add
+begin
+
+definition "0 = Abs_perm id"
+definition "- p = Abs_perm (inv (Rep_perm p))"
+definition "p + q = Abs_perm (Rep_perm p \<circ> Rep_perm q)"
+definition "(p1::'a perm) - p2 = p1 + - p2"
+
+lemma Rep_perm_0: "Rep_perm 0 = id"
+  unfolding zero_perm_def by (simp add: Abs_perm_inverse)
+
+lemma Rep_perm_add:
+  "Rep_perm (p1 + p2) = Rep_perm p1 \<circ> Rep_perm p2"
+  unfolding plus_perm_def by (simp add: Abs_perm_inverse Rep_perm)
+
+lemma Rep_perm_uminus:
+  "Rep_perm (- p) = inv (Rep_perm p)"
+  unfolding uminus_perm_def by (simp add: Abs_perm_inverse perms_inv Rep_perm)
+
+instance
+  apply default
+  unfolding Rep_perm_inject [symmetric]
+  unfolding minus_perm_def
+  unfolding Rep_perm_add
+  unfolding Rep_perm_uminus
+  unfolding Rep_perm_0
+  by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]])
+
+end
+
+lemmas Rep_perm_simps =
+  Rep_perm_0
+  Rep_perm_add
+  Rep_perm_uminus
+
+
+section {* Permutation Types *}
+
+text {*We want to be able to apply permutations to arbitrary types. To
+this end we introduce a constant @{text PERMUTE} together with
+convenient infix syntax.*}
+
+consts PERMUTE :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b" (infixr "\<bullet>" 75)
+
+text {*Then we add a locale for types @{typ 'b} that support
+appliciation of permutations.*}
+locale permute =
+  fixes permute :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b"
+  assumes permute_zero [simp]: "permute 0 x = x"
+    and permute_plus [simp]: "permute (p + q) x = permute p (permute q x)"
+begin
+
+adhoc_overloading
+  PERMUTE permute
+
+end
+
+text {*Permuting atoms.*}
+definition permute_atom :: "'a perm \<Rightarrow> 'a \<Rightarrow> 'a" where
+  "permute_atom p a = (Rep_perm p) a"
+
+adhoc_overloading
+  PERMUTE permute_atom
+
+interpretation atom_permute: permute permute_atom
+  by (default) (simp add: permute_atom_def Rep_perm_simps)+
+
+text {*Permuting permutations.*}
+definition permute_perm :: "'a perm \<Rightarrow> 'a perm \<Rightarrow> 'a perm" where
+  "permute_perm p q = p + q - p"
+
+adhoc_overloading
+  PERMUTE permute_perm
+
+interpretation perm_permute: permute permute_perm
+  by (default) (simp add: diff_minus minus_add add_assoc permute_perm_def)+
+
+text {*Permuting functions.*}
+locale fun_permute =
+  dom: permute perm1 + ran: permute perm2
+  for perm1 :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b"
+  and perm2 :: "'a perm \<Rightarrow> 'c \<Rightarrow> 'c"
+begin
+
+adhoc_overloading
+  PERMUTE perm1 perm2
+
+definition permute_fun :: "'a perm \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'c)" where
+  "permute_fun p f = (\<lambda>x. p \<bullet> (f (-p \<bullet> x)))"
+
+adhoc_overloading
+  PERMUTE permute_fun
+
+end
+
+sublocale fun_permute \<subseteq> permute permute_fun
+  by (unfold_locales, auto simp: permute_fun_def)
+     (metis dom.permute_plus minus_add)
+
+lemma "(Abs_perm id :: nat perm) \<bullet> Suc 0 = Suc 0"
+  unfolding permute_atom_def
+  by (metis Rep_perm_0 id_apply zero_perm_def)
+
+interpretation atom_fun_permute: fun_permute permute_atom permute_atom
+  by (unfold_locales)
+
+adhoc_overloading
+  PERMUTE atom_fun_permute.permute_fun
+
+lemma "(Abs_perm id :: 'a perm) \<bullet> id = id"
+  unfolding atom_fun_permute.permute_fun_def
+  unfolding permute_atom_def
+  by (metis Rep_perm_0 id_def inj_imp_inv_eq inj_on_id uminus_perm_def zero_perm_def)
+
+end
+