tuned document (headers, sections, spacing);
authorwenzelm
Fri, 13 Apr 2007 21:26:35 +0200
changeset 22665 cf152ff55d16
parent 22664 e965391e2864
child 22666 2d4d02efd9d9
tuned document (headers, sections, spacing);
src/HOL/Library/BigO.thy
src/HOL/Library/Commutative_Ring.thy
src/HOL/Library/Eval.thy
src/HOL/Library/ExecutableSet.thy
src/HOL/Library/Graphs.thy
src/HOL/Library/Kleene_Algebras.thy
src/HOL/Library/Library/document/root.tex
src/HOL/Library/MLString.thy
src/HOL/Library/Primes.thy
src/HOL/Library/Pure_term.thy
src/HOL/Library/Ramsey.thy
src/HOL/Library/SCT_Definition.thy
src/HOL/Library/SCT_Examples.thy
src/HOL/Library/SCT_Implementation.thy
src/HOL/Library/SCT_Interpretation.thy
src/HOL/Library/SCT_Misc.thy
src/HOL/Library/SCT_Theorem.thy
src/HOL/Library/Size_Change_Termination.thy
--- a/src/HOL/Library/BigO.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/BigO.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -59,11 +59,11 @@
   apply (rule mult_right_mono)
   apply (rule abs_ge_self)
   apply (rule abs_ge_zero)
-done
+  done
 
 lemma bigo_alt_def: "O(f) = 
     {h. EX c. (0 < c & (ALL x. abs (h x) <= c * abs (f x)))}"
-by (auto simp add: bigo_def bigo_pos_const)
+  by (auto simp add: bigo_def bigo_pos_const)
 
 lemma bigo_elt_subset [intro]: "f : O(g) ==> O(f) <= O(g)"
   apply (auto simp add: bigo_alt_def)
@@ -78,25 +78,25 @@
   apply (simp add: mult_ac)
   apply (rule mult_left_mono, assumption)
   apply (rule order_less_imp_le, assumption)
-done
+  done
 
 lemma bigo_refl [intro]: "f : O(f)"
   apply(auto simp add: bigo_def)
   apply(rule_tac x = 1 in exI)
   apply simp
-done
+  done
 
 lemma bigo_zero: "0 : O(g)"
   apply (auto simp add: bigo_def func_zero)
   apply (rule_tac x = 0 in exI)
   apply auto
-done
+  done
 
 lemma bigo_zero2: "O(%x.0) = {%x.0}"
   apply (auto simp add: bigo_def) 
   apply (rule ext)
   apply auto
-done
+  done
 
 lemma bigo_plus_self_subset [intro]: 
   "O(f) + O(f) <= O(f)"
@@ -116,7 +116,7 @@
   apply (rule bigo_plus_self_subset)
   apply (rule set_zero_plus2) 
   apply (rule bigo_zero)
-done
+  done
 
 lemma bigo_plus_subset [intro]: "O(f + g) <= O(f) + O(g)"
   apply (rule subsetI)
@@ -168,17 +168,17 @@
   apply simp
   apply (rule ext)
   apply (auto simp add: if_splits linorder_not_le)
-done
+  done
 
 lemma bigo_plus_subset2 [intro]: "A <= O(f) ==> B <= O(f) ==> A + B <= O(f)"
   apply (subgoal_tac "A + B <= O(f) + O(f)")
   apply (erule order_trans)
   apply simp
   apply (auto del: subsetI simp del: bigo_plus_idemp)
-done
+  done
 
 lemma bigo_plus_eq: "ALL x. 0 <= f x ==> ALL x. 0 <= g x ==> 
-  O(f + g) = O(f) + O(g)"
+    O(f + g) = O(f) + O(g)"
   apply (rule equalityI)
   apply (rule bigo_plus_subset)
   apply (simp add: bigo_alt_def set_plus func_plus)
@@ -211,7 +211,7 @@
   apply (rule abs_triangle_ineq)
   apply (rule add_nonneg_nonneg)
   apply assumption+
-done
+  done
 
 lemma bigo_bounded_alt: "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> 
     f : O(g)" 
@@ -220,13 +220,13 @@
   apply auto
   apply (drule_tac x = x in spec)+
   apply (simp add: abs_mult [symmetric])
-done
+  done
 
 lemma bigo_bounded: "ALL x. 0 <= f x ==> ALL x. f x <= g x ==> 
     f : O(g)" 
   apply (erule bigo_bounded_alt [of f 1 g])
   apply simp
-done
+  done
 
 lemma bigo_bounded2: "ALL x. lb x <= f x ==> ALL x. f x <= lb x + g x ==>
     f : lb +o O(g)"
@@ -237,21 +237,21 @@
   apply force
   apply (drule_tac x = x in spec)+
   apply force
-done
+  done
 
 lemma bigo_abs: "(%x. abs(f x)) =o O(f)" 
   apply (unfold bigo_def)
   apply auto
   apply (rule_tac x = 1 in exI)
   apply auto
-done
+  done
 
 lemma bigo_abs2: "f =o O(%x. abs(f x))"
   apply (unfold bigo_def)
   apply auto
   apply (rule_tac x = 1 in exI)
   apply auto
-done
+  done
 
 lemma bigo_abs3: "O(f) = O(%x. abs(f x))"
   apply (rule equalityI)
@@ -259,7 +259,7 @@
   apply (rule bigo_abs2)
   apply (rule bigo_elt_subset)
   apply (rule bigo_abs)
-done
+  done
 
 lemma bigo_abs4: "f =o g +o O(h) ==> 
     (%x. abs (f x)) =o (%x. abs (g x)) +o O(h)"
@@ -288,7 +288,7 @@
 qed
 
 lemma bigo_abs5: "f =o O(g) ==> (%x. abs(f x)) =o O(g)" 
-by (unfold bigo_def, auto)
+  by (unfold bigo_def, auto)
 
 lemma bigo_elt_subset2 [intro]: "f : g +o O(h) ==> O(f) <= O(g) + O(h)"
 proof -
@@ -326,7 +326,7 @@
   apply (rule mult_nonneg_nonneg)
   apply auto
   apply (simp add: mult_ac abs_mult)
-done
+  done
 
 lemma bigo_mult2 [intro]: "f *o O(g) <= O(f * g)"
   apply (auto simp add: bigo_def elt_set_times_def func_times abs_mult)
@@ -337,20 +337,20 @@
   apply (force simp add: mult_ac)
   apply (rule mult_left_mono, assumption)
   apply (rule abs_ge_zero)
-done
+  done
 
 lemma bigo_mult3: "f : O(h) ==> g : O(j) ==> f * g : O(h * j)"
   apply (rule subsetD)
   apply (rule bigo_mult)
   apply (erule set_times_intro, assumption)
-done
+  done
 
 lemma bigo_mult4 [intro]:"f : k +o O(h) ==> g * f : (g * k) +o O(g * h)"
   apply (drule set_plus_imp_minus)
   apply (rule set_minus_imp_plus)
   apply (drule bigo_mult3 [where g = g and j = g])
   apply (auto simp add: ring_eq_simps mult_ac)
-done
+  done
 
 lemma bigo_mult5: "ALL x. f x ~= 0 ==>
     O(f * g) <= (f::'a => ('b::ordered_field)) *o O(g)"
@@ -386,7 +386,7 @@
   apply (rule equalityI)
   apply (erule bigo_mult5)
   apply (rule bigo_mult2)
-done
+  done
 
 lemma bigo_mult7: "ALL x. f x ~= 0 ==>
     O(f * g) <= O(f::'a => ('b::ordered_field)) * O(g)"
@@ -394,14 +394,14 @@
   apply assumption
   apply (rule set_times_mono3)
   apply (rule bigo_refl)
-done
+  done
 
 lemma bigo_mult8: "ALL x. f x ~= 0 ==>
     O(f * g) = O(f::'a => ('b::ordered_field)) * O(g)"
   apply (rule equalityI)
   apply (erule bigo_mult7)
   apply (rule bigo_mult)
-done
+  done
 
 lemma bigo_minus [intro]: "f : O(g) ==> - f : O(g)"
   by (auto simp add: bigo_def func_minus)
@@ -411,7 +411,7 @@
   apply (drule set_plus_imp_minus)
   apply (drule bigo_minus)
   apply (simp add: diff_minus)
-done
+  done
 
 lemma bigo_minus3: "O(-f) = O(f)"
   by (auto simp add: bigo_def func_minus abs_minus_cancel)
@@ -452,12 +452,12 @@
   apply (rule equalityI)
   apply (erule bigo_plus_absorb_lemma1)
   apply (erule bigo_plus_absorb_lemma2)
-done
+  done
 
 lemma bigo_plus_absorb2 [intro]: "f : O(g) ==> A <= O(g) ==> f +o A <= O(g)"
   apply (subgoal_tac "f +o A <= f +o O(g)")
   apply force+
-done
+  done
 
 lemma bigo_add_commute_imp: "f : g +o O(h) ==> g : f +o O(h)"
   apply (subst set_minus_plus [symmetric])
@@ -467,56 +467,56 @@
   apply (subst set_minus_plus)
   apply assumption
   apply  (simp add: diff_minus add_ac)
-done
+  done
 
 lemma bigo_add_commute: "(f : g +o O(h)) = (g : f +o O(h))"
   apply (rule iffI)
   apply (erule bigo_add_commute_imp)+
-done
+  done
 
 lemma bigo_const1: "(%x. c) : O(%x. 1)"
-by (auto simp add: bigo_def mult_ac)
+  by (auto simp add: bigo_def mult_ac)
 
 lemma bigo_const2 [intro]: "O(%x. c) <= O(%x. 1)"
   apply (rule bigo_elt_subset)
   apply (rule bigo_const1)
-done
+  done
 
 lemma bigo_const3: "(c::'a::ordered_field) ~= 0 ==> (%x. 1) : O(%x. c)"
   apply (simp add: bigo_def)
   apply (rule_tac x = "abs(inverse c)" in exI)
   apply (simp add: abs_mult [symmetric])
-done
+  done
 
 lemma bigo_const4: "(c::'a::ordered_field) ~= 0 ==> O(%x. 1) <= O(%x. c)"
-by (rule bigo_elt_subset, rule bigo_const3, assumption)
+  by (rule bigo_elt_subset, rule bigo_const3, assumption)
 
 lemma bigo_const [simp]: "(c::'a::ordered_field) ~= 0 ==> 
     O(%x. c) = O(%x. 1)"
-by (rule equalityI, rule bigo_const2, rule bigo_const4, assumption)
+  by (rule equalityI, rule bigo_const2, rule bigo_const4, assumption)
 
 lemma bigo_const_mult1: "(%x. c * f x) : O(f)"
   apply (simp add: bigo_def)
   apply (rule_tac x = "abs(c)" in exI)
   apply (auto simp add: abs_mult [symmetric])
-done
+  done
 
 lemma bigo_const_mult2: "O(%x. c * f x) <= O(f)"
-by (rule bigo_elt_subset, rule bigo_const_mult1)
+  by (rule bigo_elt_subset, rule bigo_const_mult1)
 
 lemma bigo_const_mult3: "(c::'a::ordered_field) ~= 0 ==> f : O(%x. c * f x)"
   apply (simp add: bigo_def)
   apply (rule_tac x = "abs(inverse c)" in exI)
   apply (simp add: abs_mult [symmetric] mult_assoc [symmetric])
-done
+  done
 
 lemma bigo_const_mult4: "(c::'a::ordered_field) ~= 0 ==> 
     O(f) <= O(%x. c * f x)"
-by (rule bigo_elt_subset, rule bigo_const_mult3, assumption)
+  by (rule bigo_elt_subset, rule bigo_const_mult3, assumption)
 
 lemma bigo_const_mult [simp]: "(c::'a::ordered_field) ~= 0 ==> 
     O(%x. c * f x) = O(f)"
-by (rule equalityI, rule bigo_const_mult2, erule bigo_const_mult4)
+  by (rule equalityI, rule bigo_const_mult2, erule bigo_const_mult4)
 
 lemma bigo_const_mult5 [simp]: "(c::'a::ordered_field) ~= 0 ==> 
     (%x. c) *o O(f) = O(f)"
@@ -533,7 +533,7 @@
   apply (rule mult_left_mono)
   apply (erule spec)
   apply force
-done
+  done
 
 lemma bigo_const_mult6 [intro]: "(%x. c) *o O(f) <= O(f)"
   apply (auto intro!: subsetI
@@ -547,7 +547,7 @@
   apply (erule spec)
   apply simp
   apply(simp add: mult_ac)
-done
+  done
 
 lemma bigo_const_mult7 [intro]: "f =o O(g) ==> (%x. c * f x) =o O(g)"
 proof -
@@ -571,6 +571,7 @@
   apply (erule bigo_compose1)
 done
 
+
 subsection {* Setsum *}
 
 lemma bigo_setsum_main: "ALL x. ALL y : A x. 0 <= h x y ==> 
@@ -595,7 +596,7 @@
   apply (rule mult_right_mono) 
   apply (rule abs_ge_self)
   apply force
-done
+  done
 
 lemma bigo_setsum1: "ALL x y. 0 <= h x y ==> 
     EX c. ALL x y. abs(f x y) <= c * (h x y) ==>
@@ -605,12 +606,12 @@
   apply clarsimp
   apply (rule_tac x = c in exI)
   apply force
-done
+  done
 
 lemma bigo_setsum2: "ALL y. 0 <= h y ==> 
     EX c. ALL y. abs(f y) <= c * (h y) ==>
       (%x. SUM y : A x. f y) =o O(%x. SUM y : A x. h y)"
-by (rule bigo_setsum1, auto)  
+  by (rule bigo_setsum1, auto)  
 
 lemma bigo_setsum3: "f =o O(h) ==>
     (%x. SUM y : A x. (l x y) * f(k x y)) =o
@@ -627,7 +628,7 @@
   apply (rule mult_left_mono)
   apply (erule spec)
   apply (rule abs_ge_zero)
-done
+  done
 
 lemma bigo_setsum4: "f =o g +o O(h) ==>
     (%x. SUM y : A x. l x y * f(k x y)) =o
@@ -640,7 +641,7 @@
   apply (rule bigo_setsum3)
   apply (subst func_diff [symmetric])
   apply (erule set_plus_imp_minus)
-done
+  done
 
 lemma bigo_setsum5: "f =o O(h) ==> ALL x y. 0 <= l x y ==> 
     ALL x. 0 <= h x ==>
@@ -655,7 +656,7 @@
   apply (subst abs_of_nonneg)
   apply (rule mult_nonneg_nonneg)
   apply auto
-done
+  done
 
 lemma bigo_setsum6: "f =o g +o O(h) ==> ALL x y. 0 <= l x y ==>
     ALL x. 0 <= h x ==>
@@ -670,7 +671,8 @@
   apply (subst func_diff [symmetric])
   apply (drule set_plus_imp_minus)
   apply auto
-done
+  done
+
 
 subsection {* Misc useful stuff *}
 
@@ -679,13 +681,13 @@
   apply (subst bigo_plus_idemp [symmetric])
   apply (rule set_plus_mono2)
   apply assumption+
-done
+  done
 
 lemma bigo_useful_add: "f =o O(h) ==> g =o O(h) ==> f + g =o O(h)"
   apply (subst bigo_plus_idemp [symmetric])
   apply (rule set_plus_intro)
   apply assumption+
-done
+  done
   
 lemma bigo_useful_const_mult: "(c::'a::ordered_field) ~= 0 ==> 
     (%x. c) * f =o O(h) ==> f =o O(h)"
@@ -701,7 +703,7 @@
   apply (subst times_divide_eq_left [symmetric])
   apply (subst divide_self)
   apply (assumption, simp)
-done
+  done
 
 lemma bigo_fix: "(%x. f ((x::nat) + 1)) =o O(%x. h(x + 1)) ==> f 0 = 0 ==>
     f =o O(h)"
@@ -718,7 +720,7 @@
   apply (erule ssubst) back
   apply (erule spec)
   apply simp
-done
+  done
 
 lemma bigo_fix2: 
     "(%x. f ((x::nat) + 1)) =o (%x. g(x + 1)) +o O(%x. h(x + 1)) ==> 
@@ -730,7 +732,8 @@
   apply (rule set_plus_imp_minus)
   apply simp
   apply (simp add: func_diff)
-done
+  done
+
 
 subsection {* Less than or equal to *}
 
@@ -747,7 +750,7 @@
   apply (rule allI)
   apply (rule order_trans)
   apply (erule spec)+
-done
+  done
 
 lemma bigo_lesseq2: "f =o O(h) ==> ALL x. abs (g x) <= f x ==>
       g =o O(h)"
@@ -757,15 +760,15 @@
   apply (rule order_trans)
   apply assumption
   apply (rule abs_ge_self)
-done
+  done
 
 lemma bigo_lesseq3: "f =o O(h) ==> ALL x. 0 <= g x ==> ALL x. g x <= f x ==>
-      g =o O(h)"
+    g =o O(h)"
   apply (erule bigo_lesseq2)
   apply (rule allI)
   apply (subst abs_of_nonneg)
   apply (erule spec)+
-done
+  done
 
 lemma bigo_lesseq4: "f =o O(h) ==>
     ALL x. 0 <= g x ==> ALL x. g x <= abs (f x) ==>
@@ -774,7 +777,7 @@
   apply (rule allI)
   apply (subst abs_of_nonneg)
   apply (erule spec)+
-done
+  done
 
 lemma bigo_lesso1: "ALL x. f x <= g x ==> f <o g =o O(h)"
   apply (unfold lesso_def)
@@ -784,7 +787,7 @@
   apply (unfold func_zero)
   apply (rule ext)
   apply (simp split: split_max)
-done
+  done
 
 lemma bigo_lesso2: "f =o g +o O(h) ==>
     ALL x. 0 <= k x ==> ALL x. k x <= f x ==>
@@ -808,7 +811,7 @@
   prefer 2
   apply (rule abs_ge_zero)
   apply (simp add: compare_rls)
-done
+  done
 
 lemma bigo_lesso3: "f =o g +o O(h) ==>
     ALL x. 0 <= k x ==> ALL x. g x <= k x ==>
@@ -833,7 +836,7 @@
   prefer 2
   apply (rule abs_ge_zero)
   apply (simp add: compare_rls)
-done
+  done
 
 lemma bigo_lesso4: "f <o g =o O(k::'a=>'b::ordered_field) ==>
     g =o h +o O(k) ==> f <o h =o O(k)"
@@ -847,7 +850,7 @@
   apply (rule allI)
   apply (auto simp add: func_plus func_diff compare_rls 
     split: split_max abs_split)
-done
+  done
 
 lemma bigo_lesso5: "f <o g =o O(h) ==>
     EX C. ALL x. f x <= g x + C * abs(h x)"
@@ -860,7 +863,7 @@
   apply (clarsimp simp add: compare_rls add_ac) 
   apply (rule abs_of_nonneg)
   apply (rule le_maxI2)
-done
+  done
 
 lemma lesso_add: "f <o g =o O(h) ==>
       k <o l =o O(h) ==> (f + k) <o (g + l) =o O(h)"
@@ -870,6 +873,6 @@
   apply assumption
   apply (force split: split_max)
   apply (auto split: split_max simp add: func_plus)
-done
+  done
 
 end
--- a/src/HOL/Library/Commutative_Ring.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Commutative_Ring.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -325,6 +325,4 @@
 use "comm_ring.ML"
 setup CommRing.setup
 
-thm mkPX_def mkPinj_def sub_def power_add even_def pow_if power_add [symmetric]
-
 end
--- a/src/HOL/Library/Eval.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Eval.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -151,4 +151,4 @@
 end;
 *}
 
-end
\ No newline at end of file
+end
--- a/src/HOL/Library/ExecutableSet.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/ExecutableSet.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -9,7 +9,7 @@
 imports Main
 begin
 
-section {* Definitional rewrites *}
+subsection {* Definitional rewrites *}
 
 instance set :: (eq) eq ..
 
@@ -40,9 +40,9 @@
 lemmas [symmetric, code inline] = filter_set_def
 
 
-section {* Operations on lists *}
+subsection {* Operations on lists *}
 
-subsection {* Basic definitions *}
+subsubsection {* Basic definitions *}
 
 definition
   flip :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c" where
@@ -107,7 +107,7 @@
   by (induct xs) simp_all
 
 
-subsection {* Derived definitions *}
+subsubsection {* Derived definitions *}
 
 function unionl :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
 where
@@ -169,7 +169,7 @@
   "map_inter xs f = intersects (map f xs)"
 
 
-section {* Isomorphism proofs *}
+subsection {* Isomorphism proofs *}
 
 lemma iso_member:
   "member xs x \<longleftrightarrow> x \<in> set xs"
@@ -248,7 +248,7 @@
   "set (filter P xs) = filter_set P (set xs)"
   unfolding filter_set_def by (induct xs) auto
 
-section {* code generator setup *}
+subsection {* code generator setup *}
 
 ML {*
 nonfix inter;
@@ -317,7 +317,7 @@
   filter_set \<equiv> filter
 
 
-subsection {* type serializations *}
+subsubsection {* type serializations *}
 
 types_code
   set ("_ list")
@@ -333,7 +333,7 @@
 *}
 
 
-subsection {* const serializations *}
+subsubsection {* const serializations *}
 
 consts_code
   "{}"      ("[]")
--- a/src/HOL/Library/Graphs.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Graphs.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,12 +3,13 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory Graphs
 imports Main SCT_Misc Kleene_Algebras ExecutableSet
 begin
 
-
-section {* Basic types, Size Change Graphs *}
+subsection {* Basic types, Size Change Graphs *}
 
 datatype ('a, 'b) graph = 
   Graph "('a \<times> 'b \<times> 'a) set"
@@ -40,8 +41,7 @@
   "has_edge G n e n' = ((n, e, n') \<in> dest_graph G)"
 
 
-
-section {* Graph composition *}
+subsection {* Graph composition *}
 
 fun grcomp :: "('n, 'e::times) graph \<Rightarrow> ('n, 'e) graph  \<Rightarrow> ('n, 'e) graph"
 where
@@ -131,8 +131,7 @@
   by (simp add:graph_zero_def has_edge_def)
 
 
-
-subsection {* Multiplicative Structure *}
+subsubsection {* Multiplicative Structure *}
 
 instance graph :: (type, times) mult_zero
   graph_mult_def: "G * H == grcomp G H" 
@@ -297,8 +296,7 @@
   done
 
 
-
-section {* Infinite Paths *}
+subsection {* Infinite Paths *}
 
 types ('n, 'e) ipath = "('n \<times> 'e) sequence"
 
@@ -308,8 +306,7 @@
   (\<forall>i. has_edge G (fst (p i)) (snd (p i)) (fst (p (Suc i))))"
 
 
-
-section {* Finite Paths *}
+subsection {* Finite Paths *}
 
 types ('n, 'e) fpath = "('n \<times> ('e \<times> 'n) list)"
 
@@ -470,11 +467,7 @@
 qed
 
 
-
-
-
-section {* Sub-Paths *}
-
+subsection {* Sub-Paths *}
 
 definition sub_path :: "('n, 'e) ipath \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> ('n, 'e) fpath"
 ("(_\<langle>_,_\<rangle>)")
@@ -710,4 +703,4 @@
   qed
 qed
 
-end
\ No newline at end of file
+end
--- a/src/HOL/Library/Kleene_Algebras.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Kleene_Algebras.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,6 +3,8 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory Kleene_Algebras
 imports Main 
 begin
--- a/src/HOL/Library/Library/document/root.tex	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Library/document/root.tex	Fri Apr 13 21:26:35 2007 +0200
@@ -21,7 +21,8 @@
 \newpage
 
 \renewcommand{\isamarkupheader}[1]%
-{\section{\isabellecontext: #1}\markright{THEORY~``\isabellecontext''}}
+{\ifthenelse{\equal{#1}{}}{\section{\isabellecontext}}{\section{\isabellecontext: #1}}%
+\markright{THEORY~``\isabellecontext''}}
 \renewcommand{\isasymguillemotright}{$\gg$}
 
 \parindent 0pt \parskip 0.5ex
--- a/src/HOL/Library/MLString.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/MLString.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -2,7 +2,7 @@
     Author:     Florian Haftmann, TU Muenchen
 *)
 
-header {* Monolithic strings for ML  *}
+header {* Monolithic strings for ML *}
 
 theory MLString
 imports List
--- a/src/HOL/Library/Primes.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Primes.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -48,5 +48,4 @@
 lemma prime_dvd_power_two: "prime p ==> p dvd m\<twosuperior> ==> p dvd m"
   by (rule prime_dvd_square) (simp_all add: power2_eq_square)
 
-
 end
--- a/src/HOL/Library/Pure_term.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Pure_term.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -128,4 +128,4 @@
 
 code_reserved SML Term
 
-end
\ No newline at end of file
+end
--- a/src/HOL/Library/Ramsey.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Ramsey.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -7,10 +7,9 @@
 
 theory Ramsey imports Main Infinite_Set begin
 
+subsection {* Preliminaries *}
 
-subsection{*Preliminaries*}
-
-subsubsection{*``Axiom'' of Dependent Choice*}
+subsubsection {* ``Axiom'' of Dependent Choice *}
 
 consts choice :: "('a => bool) => ('a * 'a) set => nat => 'a"
   --{*An integer-indexed chain of choices*}
@@ -50,7 +49,7 @@
 qed
 
 
-subsubsection {*Partitions of a Set*}
+subsubsection {* Partitions of a Set *}
 
 definition
   part :: "nat => nat => 'a set => ('a set => nat) => bool"
@@ -72,7 +71,7 @@
   unfolding part_def by blast
   
 
-subsection {*Ramsey's Theorem: Infinitary Version*}
+subsection {* Ramsey's Theorem: Infinitary Version *}
 
 lemma Ramsey_induction: 
   fixes s and r::nat
@@ -231,9 +230,7 @@
 qed
 
 
-
-
-subsection {*Disjunctive Well-Foundedness*}
+subsection {* Disjunctive Well-Foundedness *}
 
 text {*
   An application of Ramsey's theorem to program termination. See
@@ -336,5 +333,4 @@
   thus False using wfT less by blast
 qed
 
-
 end
--- a/src/HOL/Library/SCT_Definition.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/SCT_Definition.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,14 +3,16 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory SCT_Definition
 imports Graphs Infinite_Set
 begin
 
-section {* Size-Change Graphs *}
+subsection {* Size-Change Graphs *}
 
 datatype sedge =
-  LESS ("\<down>")
+    LESS ("\<down>")
   | LEQ ("\<Down>")
 
 instance sedge :: times ..
@@ -42,7 +44,7 @@
 types acg = "(nat, scg) graph"
 
 
-section {* Size-Change Termination *}
+subsection {* Size-Change Termination *}
 
 abbreviation (input)
   "desc P Q == ((\<exists>n.\<forall>i\<ge>n. P i) \<and> (\<exists>\<^sub>\<infinity>i. Q i))"
@@ -97,5 +99,4 @@
 where
   "SCT' A = no_bad_graphs (tcl A)"
 
-
-end
\ No newline at end of file
+end
--- a/src/HOL/Library/SCT_Examples.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/SCT_Examples.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,6 +3,8 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory SCT_Examples
 imports Size_Change_Termination
 begin
--- a/src/HOL/Library/SCT_Implementation.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/SCT_Implementation.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,6 +3,8 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory SCT_Implementation
 imports ExecutableSet SCT_Definition
 begin
@@ -119,13 +121,4 @@
 
 code_gen test_SCT (SML -)
 
-
 end
-
-
-
-
-
-
-
-
--- a/src/HOL/Library/SCT_Interpretation.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/SCT_Interpretation.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,6 +3,8 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory SCT_Interpretation
 imports Main SCT_Misc SCT_Definition
 begin
--- a/src/HOL/Library/SCT_Misc.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/SCT_Misc.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,6 +3,8 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory SCT_Misc
 imports Main
 begin
@@ -22,6 +24,7 @@
   "(x \<in> set l) = (index_of l x < length l)"
   by (induct l) auto
 
+
 subsection {* Some reasoning tools *}
 
 lemma inc_induct[consumes 1]:
@@ -67,12 +70,14 @@
   using prems
   by auto
 
-section {* Sequences *}
+
+subsection {* Sequences *}
 
 types
   'a sequence = "nat \<Rightarrow> 'a"
 
-subsection {* Increasing sequences *}
+
+subsubsection {* Increasing sequences *}
 
 definition increasing :: "(nat \<Rightarrow> nat) \<Rightarrow> bool"
 where
@@ -115,7 +120,8 @@
   qed
 qed (simp add:increasing_strict)
 
-subsection {* Sections induced by an increasing sequence *}
+
+subsubsection {* Sections induced by an increasing sequence *}
 
 abbreviation
   "section s i == {s i ..< s (Suc i)}"
--- a/src/HOL/Library/SCT_Theorem.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/SCT_Theorem.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,11 +3,13 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory SCT_Theorem
 imports Main Ramsey SCT_Misc SCT_Definition
 begin
 
-section {* The size change criterion SCT *}
+subsection {* The size change criterion SCT *}
 
 definition is_thread :: "nat \<Rightarrow> nat sequence \<Rightarrow> (nat, scg) ipath \<Rightarrow> bool"
 where
@@ -33,7 +35,8 @@
   "has_desc_fth p i j n m = 
   (\<exists>\<theta>. is_desc_fthread \<theta> p i j \<and> \<theta> i = n \<and> \<theta> j = m)"
 
-section {* Bounded graphs and threads *}
+
+subsection {* Bounded graphs and threads *}
 
 definition 
   "bounded_scg (P::nat) (G::scg) = 
@@ -325,9 +328,7 @@
 qed
 
 
-
-section {* Contraction and more *}
-
+subsection {* Contraction and more *}
 
 abbreviation 
   "pdesc P == (fst P, prod P, end_node P)"
@@ -342,8 +343,6 @@
   by (auto intro:sub_path_is_path[of "\<A>" p i j] simp:sub_path_def)
 
 
-
-
 lemma combine_fthreads: 
   assumes range: "i < j" "j \<le> k"
   shows 
@@ -657,7 +656,7 @@
   by (auto simp:Lemma7a increasing_weak contract_def)
 
 
-subsection {* Connecting threads *}
+subsubsection {* Connecting threads *}
 
 definition
   "connect s \<theta>s = (\<lambda>k. \<theta>s (section_of s k) k)"
@@ -685,7 +684,6 @@
 qed
 
 
-
 lemma connect_threads:
   assumes [simp]: "increasing s"
   assumes connected: "\<theta>s i (s (Suc i)) = \<theta>s (Suc i) (s (Suc i))"
@@ -889,7 +887,7 @@
   assume "?A"
   then obtain \<theta> n 
     where fr: "\<forall>i\<ge>n. eqlat p \<theta> i" 
-    and ds: "\<exists>\<^sub>\<infinity>i. descat p \<theta> i"
+      and ds: "\<exists>\<^sub>\<infinity>i. descat p \<theta> i"
     unfolding is_desc_thread_def 
     by auto
 
@@ -903,18 +901,18 @@
     proof (intro allI impI)
       fix i assume "n \<le> i"
       also have "i \<le> s i" 
-	    using increasing_inc by auto
+	using increasing_inc by auto
       finally have "n \<le> s i" .
 
       with fr have "is_fthread \<theta> p (s i) (s (Suc i))"
-	    unfolding is_fthread_def by auto
+	unfolding is_fthread_def by auto
       hence "has_fth p (s i) (s (Suc i)) (\<theta> (s i)) (\<theta> (s (Suc i)))"
-	    unfolding has_fth_def by auto
+	unfolding has_fth_def by auto
       with less_imp_le[OF increasing_strict]
       have "eql (prod (p\<langle>s i,s (Suc i)\<rangle>)) (\<theta> (s i)) (\<theta> (s (Suc i)))"
-	    by (simp add:Lemma7a)
+	by (simp add:Lemma7a)
       thus "eqlat (contract s p) ?c\<theta> i" unfolding contract_def
-	    by auto
+	by auto
     qed
 
     show "\<exists>\<^sub>\<infinity>i. descat (contract s p) ?c\<theta> i"
@@ -924,57 +922,56 @@
 
       let ?K = "section_of s (max (s (Suc i)) n)"
       from `\<exists>\<^sub>\<infinity>i. descat p \<theta> i` obtain j
-	    where "s (Suc ?K) < j" "descat p \<theta> j"
-	    unfolding INF_nat by blast
+	  where "s (Suc ?K) < j" "descat p \<theta> j"
+	unfolding INF_nat by blast
       
       let ?L = "section_of s j"
       {
-	    fix x assume r: "x \<in> section s ?L"
-
-	    have e1: "max (s (Suc i)) n < s (Suc ?K)" by (rule section_of2)
+	fix x assume r: "x \<in> section s ?L"
+	
+	have e1: "max (s (Suc i)) n < s (Suc ?K)" by (rule section_of2)
         note `s (Suc ?K) < j`
         also have "j < s (Suc ?L)"
           by (rule section_of2)
         finally have "Suc ?K \<le> ?L"
           by (simp add:increasing_bij)          
-	    with increasing_weak have "s (Suc ?K) \<le> s ?L" by simp
-	    with e1 r have "max (s (Suc i)) n < x" by simp
+	with increasing_weak have "s (Suc ?K) \<le> s ?L" by simp
+	with e1 r have "max (s (Suc i)) n < x" by simp
         
-	    hence "(s (Suc i)) < x" "n < x" by auto
+	hence "(s (Suc i)) < x" "n < x" by auto
       }
       note range_est = this
       
       have "is_desc_fthread \<theta> p (s ?L) (s (Suc ?L))"
-	    unfolding is_desc_fthread_def is_fthread_def
+	unfolding is_desc_fthread_def is_fthread_def
       proof
-	    show "\<forall>m\<in>section s ?L. eqlat p \<theta> m"
+	show "\<forall>m\<in>section s ?L. eqlat p \<theta> m"
         proof 
           fix m assume "m\<in>section s ?L"
           with range_est(2) have "n < m" . 
           with fr show "eqlat p \<theta> m" by simp
         qed
-        
 
         from in_section_of inc less_imp_le[OF `s (Suc ?K) < j`]
-	    have "j \<in> section s ?L" .
+	have "j \<in> section s ?L" .
 
-	    with `descat p \<theta> j`
-	    show "\<exists>m\<in>section s ?L. descat p \<theta> m" ..
+	with `descat p \<theta> j`
+	show "\<exists>m\<in>section s ?L. descat p \<theta> m" ..
       qed
       
       with less_imp_le[OF increasing_strict]
       have a: "descat (contract s p) ?c\<theta> ?L"
-	    unfolding contract_def Lemma7b[symmetric]
-	    by (auto simp:Lemma7b[symmetric] has_desc_fth_def)
+	unfolding contract_def Lemma7b[symmetric]
+	by (auto simp:Lemma7b[symmetric] has_desc_fth_def)
       
       have "i < ?L"
       proof (rule classical)
-	    assume "\<not> i < ?L" 
-	    hence "s ?L < s (Suc i)" 
+	assume "\<not> i < ?L" 
+	hence "s ?L < s (Suc i)" 
           by (simp add:increasing_bij)
-	    also have "\<dots> < s ?L"
-	      by (rule range_est(1)) (simp add:increasing_strict)
-	    finally show ?thesis .
+	also have "\<dots> < s ?L"
+	  by (rule range_est(1)) (simp add:increasing_strict)
+	finally show ?thesis .
       qed
       with a show "\<exists>l. i < l \<and> descat (contract s p) ?c\<theta> l"
         by blast
@@ -994,7 +991,7 @@
           (\<lambda>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))
                   \<and> \<theta>s i (s i) = \<theta> i 
                   \<and> \<theta>s i (s (Suc i)) = \<theta> (Suc i))" 
-    (is "desc ?alw ?inf") 
+      (is "desc ?alw ?inf") 
     by blast
 
   then obtain n where fr: "\<forall>i\<ge>n. ?alw i" by blast
@@ -1004,8 +1001,8 @@
   let ?j\<theta> = "connect s \<theta>s"
   
   from fr ths_spec have ths_spec2:
-    "\<And>i. i > n \<Longrightarrow> is_fthread (\<theta>s i) p (s i) (s (Suc i))"
-    "\<exists>\<^sub>\<infinity>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))"
+      "\<And>i. i > n \<Longrightarrow> is_fthread (\<theta>s i) p (s i) (s (Suc i))"
+      "\<exists>\<^sub>\<infinity>i. is_desc_fthread (\<theta>s i) p (s i) (s (Suc i))"
     by (auto intro:INF_mono)
   
   have p1: "\<And>i. i > n \<Longrightarrow> is_fthread ?j\<theta> p (s i) (s (Suc i))"
@@ -1027,7 +1024,6 @@
 qed
 
 
-
 lemma repeated_edge:
   assumes "\<And>i. i > n \<Longrightarrow> dsc (snd (p i)) k k"
   shows "is_desc_thread (\<lambda>i. k) p"
@@ -1050,9 +1046,7 @@
   by auto
 
 
-
-section {* Ramsey's Theorem *}
-
+subsection {* Ramsey's Theorem *}
 
 definition 
   "set2pair S = (THE (x,y). x < y \<and> S = {x,y})"
@@ -1176,8 +1170,7 @@
 qed
 
 
-section {* Main Result *}
-
+subsection {* Main Result *}
 
 theorem LJA_Theorem4: 
   assumes "bounded_acg P \<A>"
@@ -1383,7 +1376,6 @@
 qed
 
 
-
 lemma LJA_apply:
   assumes fin: "finite_acg A"
   assumes "SCT' A"
--- a/src/HOL/Library/Size_Change_Termination.thy	Fri Apr 13 21:26:34 2007 +0200
+++ b/src/HOL/Library/Size_Change_Termination.thy	Fri Apr 13 21:26:35 2007 +0200
@@ -3,12 +3,14 @@
     Author:     Alexander Krauss, TU Muenchen
 *)
 
+header ""
+
 theory Size_Change_Termination
 imports SCT_Theorem SCT_Interpretation SCT_Implementation 
 uses "sct.ML"
 begin
 
-section {* Simplifier setup *}
+subsection {* Simplifier setup *}
 
 text {* This is needed to run the SCT algorithm in the simplifier: *}