merged
authornipkow
Fri, 06 Mar 2009 09:35:43 +0100
changeset 30294 d6bffd97d8d5
parent 30292 a3bb22493f11 (diff)
parent 30293 cf57f2acb94c (current diff)
child 30295 3d65318d17b7
child 30298 abefe1dfadbb
child 30307 6c74ef5a349f
merged
--- a/Admin/makedist	Fri Mar 06 09:35:29 2009 +0100
+++ b/Admin/makedist	Fri Mar 06 09:35:43 2009 +0100
@@ -144,7 +144,7 @@
 echo "###"
 
 find . -name .cvsignore -print | xargs rm -rf
-find . "(" -name \*.thy -o -name \*.ML ")" -perm +111 -print | xargs chmod -x
+find . "(" -name \*.thy -o -name \*.ML ")" -perm +111 -print | xargs chmod -f -x
 find . -print | xargs chmod u+rw
 
 ./Admin/build all || fail "Failed to build distribution"
--- a/NEWS	Fri Mar 06 09:35:29 2009 +0100
+++ b/NEWS	Fri Mar 06 09:35:43 2009 +0100
@@ -361,6 +361,19 @@
 further lemmas!). At the moment both still exist but the former will disappear
 at some point.
 
+* HOL/Power: Lemma power_Suc is now declared as a simp rule in class
+recpower.  Type-specific simp rules for various recpower types have
+been removed.  INCOMPATIBILITY.  Rename old lemmas as follows:
+
+rat_power_0    -> power_0
+rat_power_Suc  -> power_Suc
+realpow_0      -> power_0
+realpow_Suc    -> power_Suc
+complexpow_0   -> power_0
+complexpow_Suc -> power_Suc
+power_poly_0   -> power_0
+power_poly_Suc -> power_Suc
+
 * HOL/Ring_and_Field and HOL/Divides: Definition of "op dvd" has been
 moved to separate class dvd in Ring_and_Field; a couple of lemmas on
 dvd has been generalized to class comm_semiring_1.  Likewise a bunch
@@ -501,7 +514,7 @@
     Suc_not_Zero Zero_not_Suc   ~> nat.distinct
 
 * The option datatype has been moved to a new theory HOL/Option.thy.
-Renamed option_map to Option.map.
+Renamed option_map to Option.map, and o2s to Option.set.
 
 * Library/Nat_Infinity: added addition, numeral syntax and more
 instantiations for algebraic structures.  Removed some duplicate
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/Base.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,6 @@
+theory Base
+imports Pure
+uses "../../antiquote_setup.ML"
+begin
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/Integration.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,425 @@
+theory Integration
+imports Base
+begin
+
+chapter {* System integration *}
+
+section {* Isar toplevel \label{sec:isar-toplevel} *}
+
+text {* The Isar toplevel may be considered the centeral hub of the
+  Isabelle/Isar system, where all key components and sub-systems are
+  integrated into a single read-eval-print loop of Isar commands.  We
+  shall even incorporate the existing {\ML} toplevel of the compiler
+  and run-time system (cf.\ \secref{sec:ML-toplevel}).
+
+  Isabelle/Isar departs from the original ``LCF system architecture''
+  where {\ML} was really The Meta Language for defining theories and
+  conducting proofs.  Instead, {\ML} now only serves as the
+  implementation language for the system (and user extensions), while
+  the specific Isar toplevel supports the concepts of theory and proof
+  development natively.  This includes the graph structure of theories
+  and the block structure of proofs, support for unlimited undo,
+  facilities for tracing, debugging, timing, profiling etc.
+
+  \medskip The toplevel maintains an implicit state, which is
+  transformed by a sequence of transitions -- either interactively or
+  in batch-mode.  In interactive mode, Isar state transitions are
+  encapsulated as safe transactions, such that both failure and undo
+  are handled conveniently without destroying the underlying draft
+  theory (cf.~\secref{sec:context-theory}).  In batch mode,
+  transitions operate in a linear (destructive) fashion, such that
+  error conditions abort the present attempt to construct a theory or
+  proof altogether.
+
+  The toplevel state is a disjoint sum of empty @{text toplevel}, or
+  @{text theory}, or @{text proof}.  On entering the main Isar loop we
+  start with an empty toplevel.  A theory is commenced by giving a
+  @{text \<THEORY>} header; within a theory we may issue theory
+  commands such as @{text \<DEFINITION>}, or state a @{text
+  \<THEOREM>} to be proven.  Now we are within a proof state, with a
+  rich collection of Isar proof commands for structured proof
+  composition, or unstructured proof scripts.  When the proof is
+  concluded we get back to the theory, which is then updated by
+  storing the resulting fact.  Further theory declarations or theorem
+  statements with proofs may follow, until we eventually conclude the
+  theory development by issuing @{text \<END>}.  The resulting theory
+  is then stored within the theory database and we are back to the
+  empty toplevel.
+
+  In addition to these proper state transformations, there are also
+  some diagnostic commands for peeking at the toplevel state without
+  modifying it (e.g.\ \isakeyword{thm}, \isakeyword{term},
+  \isakeyword{print-cases}).
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type Toplevel.state} \\
+  @{index_ML Toplevel.UNDEF: "exn"} \\
+  @{index_ML Toplevel.is_toplevel: "Toplevel.state -> bool"} \\
+  @{index_ML Toplevel.theory_of: "Toplevel.state -> theory"} \\
+  @{index_ML Toplevel.proof_of: "Toplevel.state -> Proof.state"} \\
+  @{index_ML Toplevel.debug: "bool ref"} \\
+  @{index_ML Toplevel.timing: "bool ref"} \\
+  @{index_ML Toplevel.profiling: "int ref"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type Toplevel.state} represents Isar toplevel states,
+  which are normally manipulated through the concept of toplevel
+  transitions only (\secref{sec:toplevel-transition}).  Also note that
+  a raw toplevel state is subject to the same linearity restrictions
+  as a theory context (cf.~\secref{sec:context-theory}).
+
+  \item @{ML Toplevel.UNDEF} is raised for undefined toplevel
+  operations.  Many operations work only partially for certain cases,
+  since @{ML_type Toplevel.state} is a sum type.
+
+  \item @{ML Toplevel.is_toplevel}~@{text "state"} checks for an empty
+  toplevel state.
+
+  \item @{ML Toplevel.theory_of}~@{text "state"} selects the theory of
+  a theory or proof (!), otherwise raises @{ML Toplevel.UNDEF}.
+
+  \item @{ML Toplevel.proof_of}~@{text "state"} selects the Isar proof
+  state if available, otherwise raises @{ML Toplevel.UNDEF}.
+
+  \item @{ML "set Toplevel.debug"} makes the toplevel print further
+  details about internal error conditions, exceptions being raised
+  etc.
+
+  \item @{ML "set Toplevel.timing"} makes the toplevel print timing
+  information for each Isar command being executed.
+
+  \item @{ML Toplevel.profiling}~@{verbatim ":="}~@{text "n"} controls
+  low-level profiling of the underlying {\ML} runtime system.  For
+  Poly/ML, @{text "n = 1"} means time and @{text "n = 2"} space
+  profiling.
+
+  \end{description}
+*}
+
+
+subsection {* Toplevel transitions \label{sec:toplevel-transition} *}
+
+text {*
+  An Isar toplevel transition consists of a partial function on the
+  toplevel state, with additional information for diagnostics and
+  error reporting: there are fields for command name, source position,
+  optional source text, as well as flags for interactive-only commands
+  (which issue a warning in batch-mode), printing of result state,
+  etc.
+
+  The operational part is represented as the sequential union of a
+  list of partial functions, which are tried in turn until the first
+  one succeeds.  This acts like an outer case-expression for various
+  alternative state transitions.  For example, \isakeyword{qed} acts
+  differently for a local proofs vs.\ the global ending of the main
+  proof.
+
+  Toplevel transitions are composed via transition transformers.
+  Internally, Isar commands are put together from an empty transition
+  extended by name and source position (and optional source text).  It
+  is then left to the individual command parser to turn the given
+  concrete syntax into a suitable transition transformer that adjoins
+  actual operations on a theory or proof state etc.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML Toplevel.print: "Toplevel.transition -> Toplevel.transition"} \\
+  @{index_ML Toplevel.no_timing: "Toplevel.transition -> Toplevel.transition"} \\
+  @{index_ML Toplevel.keep: "(Toplevel.state -> unit) ->
+  Toplevel.transition -> Toplevel.transition"} \\
+  @{index_ML Toplevel.theory: "(theory -> theory) ->
+  Toplevel.transition -> Toplevel.transition"} \\
+  @{index_ML Toplevel.theory_to_proof: "(theory -> Proof.state) ->
+  Toplevel.transition -> Toplevel.transition"} \\
+  @{index_ML Toplevel.proof: "(Proof.state -> Proof.state) ->
+  Toplevel.transition -> Toplevel.transition"} \\
+  @{index_ML Toplevel.proofs: "(Proof.state -> Proof.state Seq.seq) ->
+  Toplevel.transition -> Toplevel.transition"} \\
+  @{index_ML Toplevel.end_proof: "(bool -> Proof.state -> Proof.context) ->
+  Toplevel.transition -> Toplevel.transition"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML Toplevel.print}~@{text "tr"} sets the print flag, which
+  causes the toplevel loop to echo the result state (in interactive
+  mode).
+
+  \item @{ML Toplevel.no_timing}~@{text "tr"} indicates that the
+  transition should never show timing information, e.g.\ because it is
+  a diagnostic command.
+
+  \item @{ML Toplevel.keep}~@{text "tr"} adjoins a diagnostic
+  function.
+
+  \item @{ML Toplevel.theory}~@{text "tr"} adjoins a theory
+  transformer.
+
+  \item @{ML Toplevel.theory_to_proof}~@{text "tr"} adjoins a global
+  goal function, which turns a theory into a proof state.  The theory
+  may be changed before entering the proof; the generic Isar goal
+  setup includes an argument that specifies how to apply the proven
+  result to the theory, when the proof is finished.
+
+  \item @{ML Toplevel.proof}~@{text "tr"} adjoins a deterministic
+  proof command, with a singleton result.
+
+  \item @{ML Toplevel.proofs}~@{text "tr"} adjoins a general proof
+  command, with zero or more result states (represented as a lazy
+  list).
+
+  \item @{ML Toplevel.end_proof}~@{text "tr"} adjoins a concluding
+  proof command, that returns the resulting theory, after storing the
+  resulting facts in the context etc.
+
+  \end{description}
+*}
+
+
+subsection {* Toplevel control *}
+
+text {*
+  There are a few special control commands that modify the behavior
+  the toplevel itself, and only make sense in interactive mode.  Under
+  normal circumstances, the user encounters these only implicitly as
+  part of the protocol between the Isabelle/Isar system and a
+  user-interface such as ProofGeneral.
+
+  \begin{description}
+
+  \item \isacommand{undo} follows the three-level hierarchy of empty
+  toplevel vs.\ theory vs.\ proof: undo within a proof reverts to the
+  previous proof context, undo after a proof reverts to the theory
+  before the initial goal statement, undo of a theory command reverts
+  to the previous theory value, undo of a theory header discontinues
+  the current theory development and removes it from the theory
+  database (\secref{sec:theory-database}).
+
+  \item \isacommand{kill} aborts the current level of development:
+  kill in a proof context reverts to the theory before the initial
+  goal statement, kill in a theory context aborts the current theory
+  development, removing it from the database.
+
+  \item \isacommand{exit} drops out of the Isar toplevel into the
+  underlying {\ML} toplevel (\secref{sec:ML-toplevel}).  The Isar
+  toplevel state is preserved and may be continued later.
+
+  \item \isacommand{quit} terminates the Isabelle/Isar process without
+  saving.
+
+  \end{description}
+*}
+
+
+section {* ML toplevel \label{sec:ML-toplevel} *}
+
+text {*
+  The {\ML} toplevel provides a read-compile-eval-print loop for {\ML}
+  values, types, structures, and functors.  {\ML} declarations operate
+  on the global system state, which consists of the compiler
+  environment plus the values of {\ML} reference variables.  There is
+  no clean way to undo {\ML} declarations, except for reverting to a
+  previously saved state of the whole Isabelle process.  {\ML} input
+  is either read interactively from a TTY, or from a string (usually
+  within a theory text), or from a source file (usually loaded from a
+  theory).
+
+  Whenever the {\ML} toplevel is active, the current Isabelle theory
+  context is passed as an internal reference variable.  Thus {\ML}
+  code may access the theory context during compilation, it may even
+  change the value of a theory being under construction --- while
+  observing the usual linearity restrictions
+  (cf.~\secref{sec:context-theory}).
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML the_context: "unit -> theory"} \\
+  @{index_ML "Context.>> ": "(Context.generic -> Context.generic) -> unit"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML "the_context ()"} refers to the theory context of the
+  {\ML} toplevel --- at compile time!  {\ML} code needs to take care
+  to refer to @{ML "the_context ()"} correctly.  Recall that
+  evaluation of a function body is delayed until actual runtime.
+  Moreover, persistent {\ML} toplevel bindings to an unfinished theory
+  should be avoided: code should either project out the desired
+  information immediately, or produce an explicit @{ML_type
+  theory_ref} (cf.\ \secref{sec:context-theory}).
+
+  \item @{ML "Context.>>"}~@{text f} applies context transformation
+  @{text f} to the implicit context of the {\ML} toplevel.
+
+  \end{description}
+
+  It is very important to note that the above functions are really
+  restricted to the compile time, even though the {\ML} compiler is
+  invoked at runtime!  The majority of {\ML} code uses explicit
+  functional arguments of a theory or proof context instead.  Thus it
+  may be invoked for an arbitrary context later on, without having to
+  worry about any operational details.
+
+  \bigskip
+
+  \begin{mldecls}
+  @{index_ML Isar.main: "unit -> unit"} \\
+  @{index_ML Isar.loop: "unit -> unit"} \\
+  @{index_ML Isar.state: "unit -> Toplevel.state"} \\
+  @{index_ML Isar.exn: "unit -> (exn * string) option"} \\
+  @{index_ML Isar.context: "unit -> Proof.context"} \\
+  @{index_ML Isar.goal: "unit -> thm"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML "Isar.main ()"} invokes the Isar toplevel from {\ML},
+  initializing an empty toplevel state.
+
+  \item @{ML "Isar.loop ()"} continues the Isar toplevel with the
+  current state, after having dropped out of the Isar toplevel loop.
+
+  \item @{ML "Isar.state ()"} and @{ML "Isar.exn ()"} get current
+  toplevel state and error condition, respectively.  This only works
+  after having dropped out of the Isar toplevel loop.
+
+  \item @{ML "Isar.context ()"} produces the proof context from @{ML
+  "Isar.state ()"}, analogous to @{ML Context.proof_of}
+  (\secref{sec:generic-context}).
+
+  \item @{ML "Isar.goal ()"} picks the tactical goal from @{ML
+  "Isar.state ()"}, represented as a theorem according to
+  \secref{sec:tactical-goals}.
+
+  \end{description}
+*}
+
+
+section {* Theory database \label{sec:theory-database} *}
+
+text {*
+  The theory database maintains a collection of theories, together
+  with some administrative information about their original sources,
+  which are held in an external store (i.e.\ some directory within the
+  regular file system).
+
+  The theory database is organized as a directed acyclic graph;
+  entries are referenced by theory name.  Although some additional
+  interfaces allow to include a directory specification as well, this
+  is only a hint to the underlying theory loader.  The internal theory
+  name space is flat!
+
+  Theory @{text A} is associated with the main theory file @{text
+  A}\verb,.thy,, which needs to be accessible through the theory
+  loader path.  Any number of additional {\ML} source files may be
+  associated with each theory, by declaring these dependencies in the
+  theory header as @{text \<USES>}, and loading them consecutively
+  within the theory context.  The system keeps track of incoming {\ML}
+  sources and associates them with the current theory.  The file
+  @{text A}\verb,.ML, is loaded after a theory has been concluded, in
+  order to support legacy proof {\ML} proof scripts.
+
+  The basic internal actions of the theory database are @{text
+  "update"}, @{text "outdate"}, and @{text "remove"}:
+
+  \begin{itemize}
+
+  \item @{text "update A"} introduces a link of @{text "A"} with a
+  @{text "theory"} value of the same name; it asserts that the theory
+  sources are now consistent with that value;
+
+  \item @{text "outdate A"} invalidates the link of a theory database
+  entry to its sources, but retains the present theory value;
+
+  \item @{text "remove A"} deletes entry @{text "A"} from the theory
+  database.
+  
+  \end{itemize}
+
+  These actions are propagated to sub- or super-graphs of a theory
+  entry as expected, in order to preserve global consistency of the
+  state of all loaded theories with the sources of the external store.
+  This implies certain causalities between actions: @{text "update"}
+  or @{text "outdate"} of an entry will @{text "outdate"} all
+  descendants; @{text "remove"} will @{text "remove"} all descendants.
+
+  \medskip There are separate user-level interfaces to operate on the
+  theory database directly or indirectly.  The primitive actions then
+  just happen automatically while working with the system.  In
+  particular, processing a theory header @{text "\<THEORY> A
+  \<IMPORTS> B\<^sub>1 \<dots> B\<^sub>n \<BEGIN>"} ensures that the
+  sub-graph of the collective imports @{text "B\<^sub>1 \<dots> B\<^sub>n"}
+  is up-to-date, too.  Earlier theories are reloaded as required, with
+  @{text update} actions proceeding in topological order according to
+  theory dependencies.  There may be also a wave of implied @{text
+  outdate} actions for derived theory nodes until a stable situation
+  is achieved eventually.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML theory: "string -> theory"} \\
+  @{index_ML use_thy: "string -> unit"} \\
+  @{index_ML use_thys: "string list -> unit"} \\
+  @{index_ML ThyInfo.touch_thy: "string -> unit"} \\
+  @{index_ML ThyInfo.remove_thy: "string -> unit"} \\[1ex]
+  @{index_ML ThyInfo.begin_theory}@{verbatim ": ... -> bool -> theory"} \\
+  @{index_ML ThyInfo.end_theory: "theory -> unit"} \\
+  @{index_ML ThyInfo.register_theory: "theory -> unit"} \\[1ex]
+  @{verbatim "datatype action = Update | Outdate | Remove"} \\
+  @{index_ML ThyInfo.add_hook: "(ThyInfo.action -> string -> unit) -> unit"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML theory}~@{text A} retrieves the theory value presently
+  associated with name @{text A}.  Note that the result might be
+  outdated.
+
+  \item @{ML use_thy}~@{text A} ensures that theory @{text A} is fully
+  up-to-date wrt.\ the external file store, reloading outdated
+  ancestors as required.
+
+  \item @{ML use_thys} is similar to @{ML use_thy}, but handles
+  several theories simultaneously.  Thus it acts like processing the
+  import header of a theory, without performing the merge of the
+  result, though.
+
+  \item @{ML ThyInfo.touch_thy}~@{text A} performs and @{text outdate} action
+  on theory @{text A} and all descendants.
+
+  \item @{ML ThyInfo.remove_thy}~@{text A} deletes theory @{text A} and all
+  descendants from the theory database.
+
+  \item @{ML ThyInfo.begin_theory} is the basic operation behind a
+  @{text \<THEORY>} header declaration.  This is {\ML} functions is
+  normally not invoked directly.
+
+  \item @{ML ThyInfo.end_theory} concludes the loading of a theory
+  proper and stores the result in the theory database.
+
+  \item @{ML ThyInfo.register_theory}~@{text "text thy"} registers an
+  existing theory value with the theory loader database.  There is no
+  management of associated sources.
+
+  \item @{ML "ThyInfo.add_hook"}~@{text f} registers function @{text
+  f} as a hook for theory database actions.  The function will be
+  invoked with the action and theory name being involved; thus derived
+  actions may be performed in associated system components, e.g.\
+  maintaining the state of an editor for the theory sources.
+
+  The kind and order of actions occurring in practice depends both on
+  user interactions and the internal process of resolving theory
+  imports.  Hooks should not rely on a particular policy here!  Any
+  exceptions raised by the hook are ignored.
+
+  \end{description}
+*}
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/Isar.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,37 @@
+theory Isar
+imports Base
+begin
+
+chapter {* Isar language elements *}
+
+text {*
+  The primary Isar language consists of three main categories of
+  language elements:
+
+  \begin{enumerate}
+
+  \item Proof commands
+
+  \item Proof methods
+
+  \item Attributes
+
+  \end{enumerate}
+*}
+
+
+section {* Proof commands *}
+
+text FIXME
+
+
+section {* Proof methods *}
+
+text FIXME
+
+
+section {* Attributes *}
+
+text FIXME
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/Logic.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,909 @@
+theory Logic
+imports Base
+begin
+
+chapter {* Primitive logic \label{ch:logic} *}
+
+text {*
+  The logical foundations of Isabelle/Isar are that of the Pure logic,
+  which has been introduced as a Natural Deduction framework in
+  \cite{paulson700}.  This is essentially the same logic as ``@{text
+  "\<lambda>HOL"}'' in the more abstract setting of Pure Type Systems (PTS)
+  \cite{Barendregt-Geuvers:2001}, although there are some key
+  differences in the specific treatment of simple types in
+  Isabelle/Pure.
+
+  Following type-theoretic parlance, the Pure logic consists of three
+  levels of @{text "\<lambda>"}-calculus with corresponding arrows, @{text
+  "\<Rightarrow>"} for syntactic function space (terms depending on terms), @{text
+  "\<And>"} for universal quantification (proofs depending on terms), and
+  @{text "\<Longrightarrow>"} for implication (proofs depending on proofs).
+
+  Derivations are relative to a logical theory, which declares type
+  constructors, constants, and axioms.  Theory declarations support
+  schematic polymorphism, which is strictly speaking outside the
+  logic.\footnote{This is the deeper logical reason, why the theory
+  context @{text "\<Theta>"} is separate from the proof context @{text "\<Gamma>"}
+  of the core calculus.}
+*}
+
+
+section {* Types \label{sec:types} *}
+
+text {*
+  The language of types is an uninterpreted order-sorted first-order
+  algebra; types are qualified by ordered type classes.
+
+  \medskip A \emph{type class} is an abstract syntactic entity
+  declared in the theory context.  The \emph{subclass relation} @{text
+  "c\<^isub>1 \<subseteq> c\<^isub>2"} is specified by stating an acyclic
+  generating relation; the transitive closure is maintained
+  internally.  The resulting relation is an ordering: reflexive,
+  transitive, and antisymmetric.
+
+  A \emph{sort} is a list of type classes written as @{text "s =
+  {c\<^isub>1, \<dots>, c\<^isub>m}"}, which represents symbolic
+  intersection.  Notationally, the curly braces are omitted for
+  singleton intersections, i.e.\ any class @{text "c"} may be read as
+  a sort @{text "{c}"}.  The ordering on type classes is extended to
+  sorts according to the meaning of intersections: @{text
+  "{c\<^isub>1, \<dots> c\<^isub>m} \<subseteq> {d\<^isub>1, \<dots>, d\<^isub>n}"} iff
+  @{text "\<forall>j. \<exists>i. c\<^isub>i \<subseteq> d\<^isub>j"}.  The empty intersection
+  @{text "{}"} refers to the universal sort, which is the largest
+  element wrt.\ the sort order.  The intersections of all (finitely
+  many) classes declared in the current theory are the minimal
+  elements wrt.\ the sort order.
+
+  \medskip A \emph{fixed type variable} is a pair of a basic name
+  (starting with a @{text "'"} character) and a sort constraint, e.g.\
+  @{text "('a, s)"} which is usually printed as @{text "\<alpha>\<^isub>s"}.
+  A \emph{schematic type variable} is a pair of an indexname and a
+  sort constraint, e.g.\ @{text "(('a, 0), s)"} which is usually
+  printed as @{text "?\<alpha>\<^isub>s"}.
+
+  Note that \emph{all} syntactic components contribute to the identity
+  of type variables, including the sort constraint.  The core logic
+  handles type variables with the same name but different sorts as
+  different, although some outer layers of the system make it hard to
+  produce anything like this.
+
+  A \emph{type constructor} @{text "\<kappa>"} is a @{text "k"}-ary operator
+  on types declared in the theory.  Type constructor application is
+  written postfix as @{text "(\<alpha>\<^isub>1, \<dots>, \<alpha>\<^isub>k)\<kappa>"}.  For
+  @{text "k = 0"} the argument tuple is omitted, e.g.\ @{text "prop"}
+  instead of @{text "()prop"}.  For @{text "k = 1"} the parentheses
+  are omitted, e.g.\ @{text "\<alpha> list"} instead of @{text "(\<alpha>)list"}.
+  Further notation is provided for specific constructors, notably the
+  right-associative infix @{text "\<alpha> \<Rightarrow> \<beta>"} instead of @{text "(\<alpha>,
+  \<beta>)fun"}.
+  
+  A \emph{type} is defined inductively over type variables and type
+  constructors as follows: @{text "\<tau> = \<alpha>\<^isub>s | ?\<alpha>\<^isub>s |
+  (\<tau>\<^sub>1, \<dots>, \<tau>\<^sub>k)\<kappa>"}.
+
+  A \emph{type abbreviation} is a syntactic definition @{text
+  "(\<^vec>\<alpha>)\<kappa> = \<tau>"} of an arbitrary type expression @{text "\<tau>"} over
+  variables @{text "\<^vec>\<alpha>"}.  Type abbreviations appear as type
+  constructors in the syntax, but are expanded before entering the
+  logical core.
+
+  A \emph{type arity} declares the image behavior of a type
+  constructor wrt.\ the algebra of sorts: @{text "\<kappa> :: (s\<^isub>1, \<dots>,
+  s\<^isub>k)s"} means that @{text "(\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>k)\<kappa>"} is
+  of sort @{text "s"} if every argument type @{text "\<tau>\<^isub>i"} is
+  of sort @{text "s\<^isub>i"}.  Arity declarations are implicitly
+  completed, i.e.\ @{text "\<kappa> :: (\<^vec>s)c"} entails @{text "\<kappa> ::
+  (\<^vec>s)c'"} for any @{text "c' \<supseteq> c"}.
+
+  \medskip The sort algebra is always maintained as \emph{coregular},
+  which means that type arities are consistent with the subclass
+  relation: for any type constructor @{text "\<kappa>"}, and classes @{text
+  "c\<^isub>1 \<subseteq> c\<^isub>2"}, and arities @{text "\<kappa> ::
+  (\<^vec>s\<^isub>1)c\<^isub>1"} and @{text "\<kappa> ::
+  (\<^vec>s\<^isub>2)c\<^isub>2"} holds @{text "\<^vec>s\<^isub>1 \<subseteq>
+  \<^vec>s\<^isub>2"} component-wise.
+
+  The key property of a coregular order-sorted algebra is that sort
+  constraints can be solved in a most general fashion: for each type
+  constructor @{text "\<kappa>"} and sort @{text "s"} there is a most general
+  vector of argument sorts @{text "(s\<^isub>1, \<dots>, s\<^isub>k)"} such
+  that a type scheme @{text "(\<alpha>\<^bsub>s\<^isub>1\<^esub>, \<dots>,
+  \<alpha>\<^bsub>s\<^isub>k\<^esub>)\<kappa>"} is of sort @{text "s"}.
+  Consequently, type unification has most general solutions (modulo
+  equivalence of sorts), so type-inference produces primary types as
+  expected \cite{nipkow-prehofer}.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type class} \\
+  @{index_ML_type sort} \\
+  @{index_ML_type arity} \\
+  @{index_ML_type typ} \\
+  @{index_ML map_atyps: "(typ -> typ) -> typ -> typ"} \\
+  @{index_ML fold_atyps: "(typ -> 'a -> 'a) -> typ -> 'a -> 'a"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML Sign.subsort: "theory -> sort * sort -> bool"} \\
+  @{index_ML Sign.of_sort: "theory -> typ * sort -> bool"} \\
+  @{index_ML Sign.add_types: "(string * int * mixfix) list -> theory -> theory"} \\
+  @{index_ML Sign.add_tyabbrs_i: "
+  (string * string list * typ * mixfix) list -> theory -> theory"} \\
+  @{index_ML Sign.primitive_class: "string * class list -> theory -> theory"} \\
+  @{index_ML Sign.primitive_classrel: "class * class -> theory -> theory"} \\
+  @{index_ML Sign.primitive_arity: "arity -> theory -> theory"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type class} represents type classes; this is an alias for
+  @{ML_type string}.
+
+  \item @{ML_type sort} represents sorts; this is an alias for
+  @{ML_type "class list"}.
+
+  \item @{ML_type arity} represents type arities; this is an alias for
+  triples of the form @{text "(\<kappa>, \<^vec>s, s)"} for @{text "\<kappa> ::
+  (\<^vec>s)s"} described above.
+
+  \item @{ML_type typ} represents types; this is a datatype with
+  constructors @{ML TFree}, @{ML TVar}, @{ML Type}.
+
+  \item @{ML map_atyps}~@{text "f \<tau>"} applies the mapping @{text "f"}
+  to all atomic types (@{ML TFree}, @{ML TVar}) occurring in @{text
+  "\<tau>"}.
+
+  \item @{ML fold_atyps}~@{text "f \<tau>"} iterates the operation @{text
+  "f"} over all occurrences of atomic types (@{ML TFree}, @{ML TVar})
+  in @{text "\<tau>"}; the type structure is traversed from left to right.
+
+  \item @{ML Sign.subsort}~@{text "thy (s\<^isub>1, s\<^isub>2)"}
+  tests the subsort relation @{text "s\<^isub>1 \<subseteq> s\<^isub>2"}.
+
+  \item @{ML Sign.of_sort}~@{text "thy (\<tau>, s)"} tests whether type
+  @{text "\<tau>"} is of sort @{text "s"}.
+
+  \item @{ML Sign.add_types}~@{text "[(\<kappa>, k, mx), \<dots>]"} declares a new
+  type constructors @{text "\<kappa>"} with @{text "k"} arguments and
+  optional mixfix syntax.
+
+  \item @{ML Sign.add_tyabbrs_i}~@{text "[(\<kappa>, \<^vec>\<alpha>, \<tau>, mx), \<dots>]"}
+  defines a new type abbreviation @{text "(\<^vec>\<alpha>)\<kappa> = \<tau>"} with
+  optional mixfix syntax.
+
+  \item @{ML Sign.primitive_class}~@{text "(c, [c\<^isub>1, \<dots>,
+  c\<^isub>n])"} declares a new class @{text "c"}, together with class
+  relations @{text "c \<subseteq> c\<^isub>i"}, for @{text "i = 1, \<dots>, n"}.
+
+  \item @{ML Sign.primitive_classrel}~@{text "(c\<^isub>1,
+  c\<^isub>2)"} declares the class relation @{text "c\<^isub>1 \<subseteq>
+  c\<^isub>2"}.
+
+  \item @{ML Sign.primitive_arity}~@{text "(\<kappa>, \<^vec>s, s)"} declares
+  the arity @{text "\<kappa> :: (\<^vec>s)s"}.
+
+  \end{description}
+*}
+
+
+section {* Terms \label{sec:terms} *}
+
+text {*
+  The language of terms is that of simply-typed @{text "\<lambda>"}-calculus
+  with de-Bruijn indices for bound variables (cf.\ \cite{debruijn72}
+  or \cite{paulson-ml2}), with the types being determined by the
+  corresponding binders.  In contrast, free variables and constants
+  are have an explicit name and type in each occurrence.
+
+  \medskip A \emph{bound variable} is a natural number @{text "b"},
+  which accounts for the number of intermediate binders between the
+  variable occurrence in the body and its binding position.  For
+  example, the de-Bruijn term @{text
+  "\<lambda>\<^bsub>nat\<^esub>. \<lambda>\<^bsub>nat\<^esub>. 1 + 0"} would
+  correspond to @{text
+  "\<lambda>x\<^bsub>nat\<^esub>. \<lambda>y\<^bsub>nat\<^esub>. x + y"} in a named
+  representation.  Note that a bound variable may be represented by
+  different de-Bruijn indices at different occurrences, depending on
+  the nesting of abstractions.
+
+  A \emph{loose variable} is a bound variable that is outside the
+  scope of local binders.  The types (and names) for loose variables
+  can be managed as a separate context, that is maintained as a stack
+  of hypothetical binders.  The core logic operates on closed terms,
+  without any loose variables.
+
+  A \emph{fixed variable} is a pair of a basic name and a type, e.g.\
+  @{text "(x, \<tau>)"} which is usually printed @{text "x\<^isub>\<tau>"}.  A
+  \emph{schematic variable} is a pair of an indexname and a type,
+  e.g.\ @{text "((x, 0), \<tau>)"} which is usually printed as @{text
+  "?x\<^isub>\<tau>"}.
+
+  \medskip A \emph{constant} is a pair of a basic name and a type,
+  e.g.\ @{text "(c, \<tau>)"} which is usually printed as @{text
+  "c\<^isub>\<tau>"}.  Constants are declared in the context as polymorphic
+  families @{text "c :: \<sigma>"}, meaning that all substitution instances
+  @{text "c\<^isub>\<tau>"} for @{text "\<tau> = \<sigma>\<vartheta>"} are valid.
+
+  The vector of \emph{type arguments} of constant @{text "c\<^isub>\<tau>"}
+  wrt.\ the declaration @{text "c :: \<sigma>"} is defined as the codomain of
+  the matcher @{text "\<vartheta> = {?\<alpha>\<^isub>1 \<mapsto> \<tau>\<^isub>1, \<dots>,
+  ?\<alpha>\<^isub>n \<mapsto> \<tau>\<^isub>n}"} presented in canonical order @{text
+  "(\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>n)"}.  Within a given theory context,
+  there is a one-to-one correspondence between any constant @{text
+  "c\<^isub>\<tau>"} and the application @{text "c(\<tau>\<^isub>1, \<dots>,
+  \<tau>\<^isub>n)"} of its type arguments.  For example, with @{text "plus
+  :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>"}, the instance @{text "plus\<^bsub>nat \<Rightarrow> nat \<Rightarrow>
+  nat\<^esub>"} corresponds to @{text "plus(nat)"}.
+
+  Constant declarations @{text "c :: \<sigma>"} may contain sort constraints
+  for type variables in @{text "\<sigma>"}.  These are observed by
+  type-inference as expected, but \emph{ignored} by the core logic.
+  This means the primitive logic is able to reason with instances of
+  polymorphic constants that the user-level type-checker would reject
+  due to violation of type class restrictions.
+
+  \medskip An \emph{atomic} term is either a variable or constant.  A
+  \emph{term} is defined inductively over atomic terms, with
+  abstraction and application as follows: @{text "t = b | x\<^isub>\<tau> |
+  ?x\<^isub>\<tau> | c\<^isub>\<tau> | \<lambda>\<^isub>\<tau>. t | t\<^isub>1 t\<^isub>2"}.
+  Parsing and printing takes care of converting between an external
+  representation with named bound variables.  Subsequently, we shall
+  use the latter notation instead of internal de-Bruijn
+  representation.
+
+  The inductive relation @{text "t :: \<tau>"} assigns a (unique) type to a
+  term according to the structure of atomic terms, abstractions, and
+  applicatins:
+  \[
+  \infer{@{text "a\<^isub>\<tau> :: \<tau>"}}{}
+  \qquad
+  \infer{@{text "(\<lambda>x\<^sub>\<tau>. t) :: \<tau> \<Rightarrow> \<sigma>"}}{@{text "t :: \<sigma>"}}
+  \qquad
+  \infer{@{text "t u :: \<sigma>"}}{@{text "t :: \<tau> \<Rightarrow> \<sigma>"} & @{text "u :: \<tau>"}}
+  \]
+  A \emph{well-typed term} is a term that can be typed according to these rules.
+
+  Typing information can be omitted: type-inference is able to
+  reconstruct the most general type of a raw term, while assigning
+  most general types to all of its variables and constants.
+  Type-inference depends on a context of type constraints for fixed
+  variables, and declarations for polymorphic constants.
+
+  The identity of atomic terms consists both of the name and the type
+  component.  This means that different variables @{text
+  "x\<^bsub>\<tau>\<^isub>1\<^esub>"} and @{text
+  "x\<^bsub>\<tau>\<^isub>2\<^esub>"} may become the same after type
+  instantiation.  Some outer layers of the system make it hard to
+  produce variables of the same name, but different types.  In
+  contrast, mixed instances of polymorphic constants occur frequently.
+
+  \medskip The \emph{hidden polymorphism} of a term @{text "t :: \<sigma>"}
+  is the set of type variables occurring in @{text "t"}, but not in
+  @{text "\<sigma>"}.  This means that the term implicitly depends on type
+  arguments that are not accounted in the result type, i.e.\ there are
+  different type instances @{text "t\<vartheta> :: \<sigma>"} and @{text
+  "t\<vartheta>' :: \<sigma>"} with the same type.  This slightly
+  pathological situation notoriously demands additional care.
+
+  \medskip A \emph{term abbreviation} is a syntactic definition @{text
+  "c\<^isub>\<sigma> \<equiv> t"} of a closed term @{text "t"} of type @{text "\<sigma>"},
+  without any hidden polymorphism.  A term abbreviation looks like a
+  constant in the syntax, but is expanded before entering the logical
+  core.  Abbreviations are usually reverted when printing terms, using
+  @{text "t \<rightarrow> c\<^isub>\<sigma>"} as rules for higher-order rewriting.
+
+  \medskip Canonical operations on @{text "\<lambda>"}-terms include @{text
+  "\<alpha>\<beta>\<eta>"}-conversion: @{text "\<alpha>"}-conversion refers to capture-free
+  renaming of bound variables; @{text "\<beta>"}-conversion contracts an
+  abstraction applied to an argument term, substituting the argument
+  in the body: @{text "(\<lambda>x. b)a"} becomes @{text "b[a/x]"}; @{text
+  "\<eta>"}-conversion contracts vacuous application-abstraction: @{text
+  "\<lambda>x. f x"} becomes @{text "f"}, provided that the bound variable
+  does not occur in @{text "f"}.
+
+  Terms are normally treated modulo @{text "\<alpha>"}-conversion, which is
+  implicit in the de-Bruijn representation.  Names for bound variables
+  in abstractions are maintained separately as (meaningless) comments,
+  mostly for parsing and printing.  Full @{text "\<alpha>\<beta>\<eta>"}-conversion is
+  commonplace in various standard operations (\secref{sec:obj-rules})
+  that are based on higher-order unification and matching.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type term} \\
+  @{index_ML "op aconv": "term * term -> bool"} \\
+  @{index_ML map_types: "(typ -> typ) -> term -> term"} \\
+  @{index_ML fold_types: "(typ -> 'a -> 'a) -> term -> 'a -> 'a"} \\
+  @{index_ML map_aterms: "(term -> term) -> term -> term"} \\
+  @{index_ML fold_aterms: "(term -> 'a -> 'a) -> term -> 'a -> 'a"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML fastype_of: "term -> typ"} \\
+  @{index_ML lambda: "term -> term -> term"} \\
+  @{index_ML betapply: "term * term -> term"} \\
+  @{index_ML Sign.declare_const: "Properties.T -> (binding * typ) * mixfix ->
+  theory -> term * theory"} \\
+  @{index_ML Sign.add_abbrev: "string -> Properties.T -> binding * term ->
+  theory -> (term * term) * theory"} \\
+  @{index_ML Sign.const_typargs: "theory -> string * typ -> typ list"} \\
+  @{index_ML Sign.const_instance: "theory -> string * typ list -> typ"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type term} represents de-Bruijn terms, with comments in
+  abstractions, and explicitly named free variables and constants;
+  this is a datatype with constructors @{ML Bound}, @{ML Free}, @{ML
+  Var}, @{ML Const}, @{ML Abs}, @{ML "op $"}.
+
+  \item @{text "t"}~@{ML aconv}~@{text "u"} checks @{text
+  "\<alpha>"}-equivalence of two terms.  This is the basic equality relation
+  on type @{ML_type term}; raw datatype equality should only be used
+  for operations related to parsing or printing!
+
+  \item @{ML map_types}~@{text "f t"} applies the mapping @{text
+  "f"} to all types occurring in @{text "t"}.
+
+  \item @{ML fold_types}~@{text "f t"} iterates the operation @{text
+  "f"} over all occurrences of types in @{text "t"}; the term
+  structure is traversed from left to right.
+
+  \item @{ML map_aterms}~@{text "f t"} applies the mapping @{text "f"}
+  to all atomic terms (@{ML Bound}, @{ML Free}, @{ML Var}, @{ML
+  Const}) occurring in @{text "t"}.
+
+  \item @{ML fold_aterms}~@{text "f t"} iterates the operation @{text
+  "f"} over all occurrences of atomic terms (@{ML Bound}, @{ML Free},
+  @{ML Var}, @{ML Const}) in @{text "t"}; the term structure is
+  traversed from left to right.
+
+  \item @{ML fastype_of}~@{text "t"} determines the type of a
+  well-typed term.  This operation is relatively slow, despite the
+  omission of any sanity checks.
+
+  \item @{ML lambda}~@{text "a b"} produces an abstraction @{text
+  "\<lambda>a. b"}, where occurrences of the atomic term @{text "a"} in the
+  body @{text "b"} are replaced by bound variables.
+
+  \item @{ML betapply}~@{text "(t, u)"} produces an application @{text
+  "t u"}, with topmost @{text "\<beta>"}-conversion if @{text "t"} is an
+  abstraction.
+
+  \item @{ML Sign.declare_const}~@{text "properties ((c, \<sigma>), mx)"}
+  declares a new constant @{text "c :: \<sigma>"} with optional mixfix
+  syntax.
+
+  \item @{ML Sign.add_abbrev}~@{text "print_mode properties (c, t)"}
+  introduces a new term abbreviation @{text "c \<equiv> t"}.
+
+  \item @{ML Sign.const_typargs}~@{text "thy (c, \<tau>)"} and @{ML
+  Sign.const_instance}~@{text "thy (c, [\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>n])"}
+  convert between two representations of polymorphic constants: full
+  type instance vs.\ compact type arguments form.
+
+  \end{description}
+*}
+
+
+section {* Theorems \label{sec:thms} *}
+
+text {*
+  A \emph{proposition} is a well-typed term of type @{text "prop"}, a
+  \emph{theorem} is a proven proposition (depending on a context of
+  hypotheses and the background theory).  Primitive inferences include
+  plain Natural Deduction rules for the primary connectives @{text
+  "\<And>"} and @{text "\<Longrightarrow>"} of the framework.  There is also a builtin
+  notion of equality/equivalence @{text "\<equiv>"}.
+*}
+
+
+subsection {* Primitive connectives and rules \label{sec:prim-rules} *}
+
+text {*
+  The theory @{text "Pure"} contains constant declarations for the
+  primitive connectives @{text "\<And>"}, @{text "\<Longrightarrow>"}, and @{text "\<equiv>"} of
+  the logical framework, see \figref{fig:pure-connectives}.  The
+  derivability judgment @{text "A\<^isub>1, \<dots>, A\<^isub>n \<turnstile> B"} is
+  defined inductively by the primitive inferences given in
+  \figref{fig:prim-rules}, with the global restriction that the
+  hypotheses must \emph{not} contain any schematic variables.  The
+  builtin equality is conceptually axiomatized as shown in
+  \figref{fig:pure-equality}, although the implementation works
+  directly with derived inferences.
+
+  \begin{figure}[htb]
+  \begin{center}
+  \begin{tabular}{ll}
+  @{text "all :: (\<alpha> \<Rightarrow> prop) \<Rightarrow> prop"} & universal quantification (binder @{text "\<And>"}) \\
+  @{text "\<Longrightarrow> :: prop \<Rightarrow> prop \<Rightarrow> prop"} & implication (right associative infix) \\
+  @{text "\<equiv> :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> prop"} & equality relation (infix) \\
+  \end{tabular}
+  \caption{Primitive connectives of Pure}\label{fig:pure-connectives}
+  \end{center}
+  \end{figure}
+
+  \begin{figure}[htb]
+  \begin{center}
+  \[
+  \infer[@{text "(axiom)"}]{@{text "\<turnstile> A"}}{@{text "A \<in> \<Theta>"}}
+  \qquad
+  \infer[@{text "(assume)"}]{@{text "A \<turnstile> A"}}{}
+  \]
+  \[
+  \infer[@{text "(\<And>_intro)"}]{@{text "\<Gamma> \<turnstile> \<And>x. b[x]"}}{@{text "\<Gamma> \<turnstile> b[x]"} & @{text "x \<notin> \<Gamma>"}}
+  \qquad
+  \infer[@{text "(\<And>_elim)"}]{@{text "\<Gamma> \<turnstile> b[a]"}}{@{text "\<Gamma> \<turnstile> \<And>x. b[x]"}}
+  \]
+  \[
+  \infer[@{text "(\<Longrightarrow>_intro)"}]{@{text "\<Gamma> - A \<turnstile> A \<Longrightarrow> B"}}{@{text "\<Gamma> \<turnstile> B"}}
+  \qquad
+  \infer[@{text "(\<Longrightarrow>_elim)"}]{@{text "\<Gamma>\<^sub>1 \<union> \<Gamma>\<^sub>2 \<turnstile> B"}}{@{text "\<Gamma>\<^sub>1 \<turnstile> A \<Longrightarrow> B"} & @{text "\<Gamma>\<^sub>2 \<turnstile> A"}}
+  \]
+  \caption{Primitive inferences of Pure}\label{fig:prim-rules}
+  \end{center}
+  \end{figure}
+
+  \begin{figure}[htb]
+  \begin{center}
+  \begin{tabular}{ll}
+  @{text "\<turnstile> (\<lambda>x. b[x]) a \<equiv> b[a]"} & @{text "\<beta>"}-conversion \\
+  @{text "\<turnstile> x \<equiv> x"} & reflexivity \\
+  @{text "\<turnstile> x \<equiv> y \<Longrightarrow> P x \<Longrightarrow> P y"} & substitution \\
+  @{text "\<turnstile> (\<And>x. f x \<equiv> g x) \<Longrightarrow> f \<equiv> g"} & extensionality \\
+  @{text "\<turnstile> (A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<equiv> B"} & logical equivalence \\
+  \end{tabular}
+  \caption{Conceptual axiomatization of Pure equality}\label{fig:pure-equality}
+  \end{center}
+  \end{figure}
+
+  The introduction and elimination rules for @{text "\<And>"} and @{text
+  "\<Longrightarrow>"} are analogous to formation of dependently typed @{text
+  "\<lambda>"}-terms representing the underlying proof objects.  Proof terms
+  are irrelevant in the Pure logic, though; they cannot occur within
+  propositions.  The system provides a runtime option to record
+  explicit proof terms for primitive inferences.  Thus all three
+  levels of @{text "\<lambda>"}-calculus become explicit: @{text "\<Rightarrow>"} for
+  terms, and @{text "\<And>/\<Longrightarrow>"} for proofs (cf.\
+  \cite{Berghofer-Nipkow:2000:TPHOL}).
+
+  Observe that locally fixed parameters (as in @{text "\<And>_intro"}) need
+  not be recorded in the hypotheses, because the simple syntactic
+  types of Pure are always inhabitable.  ``Assumptions'' @{text "x ::
+  \<tau>"} for type-membership are only present as long as some @{text
+  "x\<^isub>\<tau>"} occurs in the statement body.\footnote{This is the key
+  difference to ``@{text "\<lambda>HOL"}'' in the PTS framework
+  \cite{Barendregt-Geuvers:2001}, where hypotheses @{text "x : A"} are
+  treated uniformly for propositions and types.}
+
+  \medskip The axiomatization of a theory is implicitly closed by
+  forming all instances of type and term variables: @{text "\<turnstile>
+  A\<vartheta>"} holds for any substitution instance of an axiom
+  @{text "\<turnstile> A"}.  By pushing substitutions through derivations
+  inductively, we also get admissible @{text "generalize"} and @{text
+  "instance"} rules as shown in \figref{fig:subst-rules}.
+
+  \begin{figure}[htb]
+  \begin{center}
+  \[
+  \infer{@{text "\<Gamma> \<turnstile> B[?\<alpha>]"}}{@{text "\<Gamma> \<turnstile> B[\<alpha>]"} & @{text "\<alpha> \<notin> \<Gamma>"}}
+  \quad
+  \infer[\quad@{text "(generalize)"}]{@{text "\<Gamma> \<turnstile> B[?x]"}}{@{text "\<Gamma> \<turnstile> B[x]"} & @{text "x \<notin> \<Gamma>"}}
+  \]
+  \[
+  \infer{@{text "\<Gamma> \<turnstile> B[\<tau>]"}}{@{text "\<Gamma> \<turnstile> B[?\<alpha>]"}}
+  \quad
+  \infer[\quad@{text "(instantiate)"}]{@{text "\<Gamma> \<turnstile> B[t]"}}{@{text "\<Gamma> \<turnstile> B[?x]"}}
+  \]
+  \caption{Admissible substitution rules}\label{fig:subst-rules}
+  \end{center}
+  \end{figure}
+
+  Note that @{text "instantiate"} does not require an explicit
+  side-condition, because @{text "\<Gamma>"} may never contain schematic
+  variables.
+
+  In principle, variables could be substituted in hypotheses as well,
+  but this would disrupt the monotonicity of reasoning: deriving
+  @{text "\<Gamma>\<vartheta> \<turnstile> B\<vartheta>"} from @{text "\<Gamma> \<turnstile> B"} is
+  correct, but @{text "\<Gamma>\<vartheta> \<supseteq> \<Gamma>"} does not necessarily hold:
+  the result belongs to a different proof context.
+
+  \medskip An \emph{oracle} is a function that produces axioms on the
+  fly.  Logically, this is an instance of the @{text "axiom"} rule
+  (\figref{fig:prim-rules}), but there is an operational difference.
+  The system always records oracle invocations within derivations of
+  theorems by a unique tag.
+
+  Axiomatizations should be limited to the bare minimum, typically as
+  part of the initial logical basis of an object-logic formalization.
+  Later on, theories are usually developed in a strictly definitional
+  fashion, by stating only certain equalities over new constants.
+
+  A \emph{simple definition} consists of a constant declaration @{text
+  "c :: \<sigma>"} together with an axiom @{text "\<turnstile> c \<equiv> t"}, where @{text "t
+  :: \<sigma>"} is a closed term without any hidden polymorphism.  The RHS
+  may depend on further defined constants, but not @{text "c"} itself.
+  Definitions of functions may be presented as @{text "c \<^vec>x \<equiv>
+  t"} instead of the puristic @{text "c \<equiv> \<lambda>\<^vec>x. t"}.
+
+  An \emph{overloaded definition} consists of a collection of axioms
+  for the same constant, with zero or one equations @{text
+  "c((\<^vec>\<alpha>)\<kappa>) \<equiv> t"} for each type constructor @{text "\<kappa>"} (for
+  distinct variables @{text "\<^vec>\<alpha>"}).  The RHS may mention
+  previously defined constants as above, or arbitrary constants @{text
+  "d(\<alpha>\<^isub>i)"} for some @{text "\<alpha>\<^isub>i"} projected from @{text
+  "\<^vec>\<alpha>"}.  Thus overloaded definitions essentially work by
+  primitive recursion over the syntactic structure of a single type
+  argument.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type ctyp} \\
+  @{index_ML_type cterm} \\
+  @{index_ML Thm.ctyp_of: "theory -> typ -> ctyp"} \\
+  @{index_ML Thm.cterm_of: "theory -> term -> cterm"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML_type thm} \\
+  @{index_ML proofs: "int ref"} \\
+  @{index_ML Thm.assume: "cterm -> thm"} \\
+  @{index_ML Thm.forall_intr: "cterm -> thm -> thm"} \\
+  @{index_ML Thm.forall_elim: "cterm -> thm -> thm"} \\
+  @{index_ML Thm.implies_intr: "cterm -> thm -> thm"} \\
+  @{index_ML Thm.implies_elim: "thm -> thm -> thm"} \\
+  @{index_ML Thm.generalize: "string list * string list -> int -> thm -> thm"} \\
+  @{index_ML Thm.instantiate: "(ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm"} \\
+  @{index_ML Thm.axiom: "theory -> string -> thm"} \\
+  @{index_ML Thm.add_oracle: "binding * ('a -> cterm) -> theory
+  -> (string * ('a -> thm)) * theory"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML Theory.add_axioms_i: "(binding * term) list -> theory -> theory"} \\
+  @{index_ML Theory.add_deps: "string -> string * typ -> (string * typ) list -> theory -> theory"} \\
+  @{index_ML Theory.add_defs_i: "bool -> bool -> (binding * term) list -> theory -> theory"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type ctyp} and @{ML_type cterm} represent certified types
+  and terms, respectively.  These are abstract datatypes that
+  guarantee that its values have passed the full well-formedness (and
+  well-typedness) checks, relative to the declarations of type
+  constructors, constants etc. in the theory.
+
+  \item @{ML Thm.ctyp_of}~@{text "thy \<tau>"} and @{ML
+  Thm.cterm_of}~@{text "thy t"} explicitly checks types and terms,
+  respectively.  This also involves some basic normalizations, such
+  expansion of type and term abbreviations from the theory context.
+
+  Re-certification is relatively slow and should be avoided in tight
+  reasoning loops.  There are separate operations to decompose
+  certified entities (including actual theorems).
+
+  \item @{ML_type thm} represents proven propositions.  This is an
+  abstract datatype that guarantees that its values have been
+  constructed by basic principles of the @{ML_struct Thm} module.
+  Every @{ML thm} value contains a sliding back-reference to the
+  enclosing theory, cf.\ \secref{sec:context-theory}.
+
+  \item @{ML proofs} determines the detail of proof recording within
+  @{ML_type thm} values: @{ML 0} records only the names of oracles,
+  @{ML 1} records oracle names and propositions, @{ML 2} additionally
+  records full proof terms.  Officially named theorems that contribute
+  to a result are always recorded.
+
+  \item @{ML Thm.assume}, @{ML Thm.forall_intr}, @{ML
+  Thm.forall_elim}, @{ML Thm.implies_intr}, and @{ML Thm.implies_elim}
+  correspond to the primitive inferences of \figref{fig:prim-rules}.
+
+  \item @{ML Thm.generalize}~@{text "(\<^vec>\<alpha>, \<^vec>x)"}
+  corresponds to the @{text "generalize"} rules of
+  \figref{fig:subst-rules}.  Here collections of type and term
+  variables are generalized simultaneously, specified by the given
+  basic names.
+
+  \item @{ML Thm.instantiate}~@{text "(\<^vec>\<alpha>\<^isub>s,
+  \<^vec>x\<^isub>\<tau>)"} corresponds to the @{text "instantiate"} rules
+  of \figref{fig:subst-rules}.  Type variables are substituted before
+  term variables.  Note that the types in @{text "\<^vec>x\<^isub>\<tau>"}
+  refer to the instantiated versions.
+
+  \item @{ML Thm.axiom}~@{text "thy name"} retrieves a named
+  axiom, cf.\ @{text "axiom"} in \figref{fig:prim-rules}.
+
+  \item @{ML Thm.add_oracle}~@{text "(binding, oracle)"} produces a named
+  oracle rule, essentially generating arbitrary axioms on the fly,
+  cf.\ @{text "axiom"} in \figref{fig:prim-rules}.
+
+  \item @{ML Theory.add_axioms_i}~@{text "[(name, A), \<dots>]"} declares
+  arbitrary propositions as axioms.
+
+  \item @{ML Theory.add_deps}~@{text "name c\<^isub>\<tau>
+  \<^vec>d\<^isub>\<sigma>"} declares dependencies of a named specification
+  for constant @{text "c\<^isub>\<tau>"}, relative to existing
+  specifications for constants @{text "\<^vec>d\<^isub>\<sigma>"}.
+
+  \item @{ML Theory.add_defs_i}~@{text "unchecked overloaded [(name, c
+  \<^vec>x \<equiv> t), \<dots>]"} states a definitional axiom for an existing
+  constant @{text "c"}.  Dependencies are recorded (cf.\ @{ML
+  Theory.add_deps}), unless the @{text "unchecked"} option is set.
+
+  \end{description}
+*}
+
+
+subsection {* Auxiliary definitions *}
+
+text {*
+  Theory @{text "Pure"} provides a few auxiliary definitions, see
+  \figref{fig:pure-aux}.  These special constants are normally not
+  exposed to the user, but appear in internal encodings.
+
+  \begin{figure}[htb]
+  \begin{center}
+  \begin{tabular}{ll}
+  @{text "conjunction :: prop \<Rightarrow> prop \<Rightarrow> prop"} & (infix @{text "&"}) \\
+  @{text "\<turnstile> A & B \<equiv> (\<And>C. (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C)"} \\[1ex]
+  @{text "prop :: prop \<Rightarrow> prop"} & (prefix @{text "#"}, suppressed) \\
+  @{text "#A \<equiv> A"} \\[1ex]
+  @{text "term :: \<alpha> \<Rightarrow> prop"} & (prefix @{text "TERM"}) \\
+  @{text "term x \<equiv> (\<And>A. A \<Longrightarrow> A)"} \\[1ex]
+  @{text "TYPE :: \<alpha> itself"} & (prefix @{text "TYPE"}) \\
+  @{text "(unspecified)"} \\
+  \end{tabular}
+  \caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
+  \end{center}
+  \end{figure}
+
+  Derived conjunction rules include introduction @{text "A \<Longrightarrow> B \<Longrightarrow> A &
+  B"}, and destructions @{text "A & B \<Longrightarrow> A"} and @{text "A & B \<Longrightarrow> B"}.
+  Conjunction allows to treat simultaneous assumptions and conclusions
+  uniformly.  For example, multiple claims are intermediately
+  represented as explicit conjunction, but this is refined into
+  separate sub-goals before the user continues the proof; the final
+  result is projected into a list of theorems (cf.\
+  \secref{sec:tactical-goals}).
+
+  The @{text "prop"} marker (@{text "#"}) makes arbitrarily complex
+  propositions appear as atomic, without changing the meaning: @{text
+  "\<Gamma> \<turnstile> A"} and @{text "\<Gamma> \<turnstile> #A"} are interchangeable.  See
+  \secref{sec:tactical-goals} for specific operations.
+
+  The @{text "term"} marker turns any well-typed term into a derivable
+  proposition: @{text "\<turnstile> TERM t"} holds unconditionally.  Although
+  this is logically vacuous, it allows to treat terms and proofs
+  uniformly, similar to a type-theoretic framework.
+
+  The @{text "TYPE"} constructor is the canonical representative of
+  the unspecified type @{text "\<alpha> itself"}; it essentially injects the
+  language of types into that of terms.  There is specific notation
+  @{text "TYPE(\<tau>)"} for @{text "TYPE\<^bsub>\<tau>
+ itself\<^esub>"}.
+  Although being devoid of any particular meaning, the @{text
+  "TYPE(\<tau>)"} accounts for the type @{text "\<tau>"} within the term
+  language.  In particular, @{text "TYPE(\<alpha>)"} may be used as formal
+  argument in primitive definitions, in order to circumvent hidden
+  polymorphism (cf.\ \secref{sec:terms}).  For example, @{text "c
+  TYPE(\<alpha>) \<equiv> A[\<alpha>]"} defines @{text "c :: \<alpha> itself \<Rightarrow> prop"} in terms of
+  a proposition @{text "A"} that depends on an additional type
+  argument, which is essentially a predicate on types.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML Conjunction.intr: "thm -> thm -> thm"} \\
+  @{index_ML Conjunction.elim: "thm -> thm * thm"} \\
+  @{index_ML Drule.mk_term: "cterm -> thm"} \\
+  @{index_ML Drule.dest_term: "thm -> cterm"} \\
+  @{index_ML Logic.mk_type: "typ -> term"} \\
+  @{index_ML Logic.dest_type: "term -> typ"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML Conjunction.intr} derives @{text "A & B"} from @{text
+  "A"} and @{text "B"}.
+
+  \item @{ML Conjunction.elim} derives @{text "A"} and @{text "B"}
+  from @{text "A & B"}.
+
+  \item @{ML Drule.mk_term} derives @{text "TERM t"}.
+
+  \item @{ML Drule.dest_term} recovers term @{text "t"} from @{text
+  "TERM t"}.
+
+  \item @{ML Logic.mk_type}~@{text "\<tau>"} produces the term @{text
+  "TYPE(\<tau>)"}.
+
+  \item @{ML Logic.dest_type}~@{text "TYPE(\<tau>)"} recovers the type
+  @{text "\<tau>"}.
+
+  \end{description}
+*}
+
+
+section {* Object-level rules \label{sec:obj-rules} *}
+
+text {*
+  The primitive inferences covered so far mostly serve foundational
+  purposes.  User-level reasoning usually works via object-level rules
+  that are represented as theorems of Pure.  Composition of rules
+  involves \emph{backchaining}, \emph{higher-order unification} modulo
+  @{text "\<alpha>\<beta>\<eta>"}-conversion of @{text "\<lambda>"}-terms, and so-called
+  \emph{lifting} of rules into a context of @{text "\<And>"} and @{text
+  "\<Longrightarrow>"} connectives.  Thus the full power of higher-order Natural
+  Deduction in Isabelle/Pure becomes readily available.
+*}
+
+
+subsection {* Hereditary Harrop Formulae *}
+
+text {*
+  The idea of object-level rules is to model Natural Deduction
+  inferences in the style of Gentzen \cite{Gentzen:1935}, but we allow
+  arbitrary nesting similar to \cite{extensions91}.  The most basic
+  rule format is that of a \emph{Horn Clause}:
+  \[
+  \infer{@{text "A"}}{@{text "A\<^sub>1"} & @{text "\<dots>"} & @{text "A\<^sub>n"}}
+  \]
+  where @{text "A, A\<^sub>1, \<dots>, A\<^sub>n"} are atomic propositions
+  of the framework, usually of the form @{text "Trueprop B"}, where
+  @{text "B"} is a (compound) object-level statement.  This
+  object-level inference corresponds to an iterated implication in
+  Pure like this:
+  \[
+  @{text "A\<^sub>1 \<Longrightarrow> \<dots> A\<^sub>n \<Longrightarrow> A"}
+  \]
+  As an example consider conjunction introduction: @{text "A \<Longrightarrow> B \<Longrightarrow> A \<and>
+  B"}.  Any parameters occurring in such rule statements are
+  conceptionally treated as arbitrary:
+  \[
+  @{text "\<And>x\<^sub>1 \<dots> x\<^sub>m. A\<^sub>1 x\<^sub>1 \<dots> x\<^sub>m \<Longrightarrow> \<dots> A\<^sub>n x\<^sub>1 \<dots> x\<^sub>m \<Longrightarrow> A x\<^sub>1 \<dots> x\<^sub>m"}
+  \]
+
+  Nesting of rules means that the positions of @{text "A\<^sub>i"} may
+  again hold compound rules, not just atomic propositions.
+  Propositions of this format are called \emph{Hereditary Harrop
+  Formulae} in the literature \cite{Miller:1991}.  Here we give an
+  inductive characterization as follows:
+
+  \medskip
+  \begin{tabular}{ll}
+  @{text "\<^bold>x"} & set of variables \\
+  @{text "\<^bold>A"} & set of atomic propositions \\
+  @{text "\<^bold>H  =  \<And>\<^bold>x\<^sup>*. \<^bold>H\<^sup>* \<Longrightarrow> \<^bold>A"} & set of Hereditary Harrop Formulas \\
+  \end{tabular}
+  \medskip
+
+  \noindent Thus we essentially impose nesting levels on propositions
+  formed from @{text "\<And>"} and @{text "\<Longrightarrow>"}.  At each level there is a
+  prefix of parameters and compound premises, concluding an atomic
+  proposition.  Typical examples are @{text "\<longrightarrow>"}-introduction @{text
+  "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"} or mathematical induction @{text "P 0 \<Longrightarrow> (\<And>n. P n
+  \<Longrightarrow> P (Suc n)) \<Longrightarrow> P n"}.  Even deeper nesting occurs in well-founded
+  induction @{text "(\<And>x. (\<And>y. y \<prec> x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P x"}, but this
+  already marks the limit of rule complexity seen in practice.
+
+  \medskip Regular user-level inferences in Isabelle/Pure always
+  maintain the following canonical form of results:
+
+  \begin{itemize}
+
+  \item Normalization by @{text "(A \<Longrightarrow> (\<And>x. B x)) \<equiv> (\<And>x. A \<Longrightarrow> B x)"},
+  which is a theorem of Pure, means that quantifiers are pushed in
+  front of implication at each level of nesting.  The normal form is a
+  Hereditary Harrop Formula.
+
+  \item The outermost prefix of parameters is represented via
+  schematic variables: instead of @{text "\<And>\<^vec>x. \<^vec>H \<^vec>x
+  \<Longrightarrow> A \<^vec>x"} we have @{text "\<^vec>H ?\<^vec>x \<Longrightarrow> A ?\<^vec>x"}.
+  Note that this representation looses information about the order of
+  parameters, and vacuous quantifiers vanish automatically.
+
+  \end{itemize}
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML MetaSimplifier.norm_hhf: "thm -> thm"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML MetaSimplifier.norm_hhf}~@{text thm} normalizes the given
+  theorem according to the canonical form specified above.  This is
+  occasionally helpful to repair some low-level tools that do not
+  handle Hereditary Harrop Formulae properly.
+
+  \end{description}
+*}
+
+
+subsection {* Rule composition *}
+
+text {*
+  The rule calculus of Isabelle/Pure provides two main inferences:
+  @{inference resolution} (i.e.\ back-chaining of rules) and
+  @{inference assumption} (i.e.\ closing a branch), both modulo
+  higher-order unification.  There are also combined variants, notably
+  @{inference elim_resolution} and @{inference dest_resolution}.
+
+  To understand the all-important @{inference resolution} principle,
+  we first consider raw @{inference_def composition} (modulo
+  higher-order unification with substitution @{text "\<vartheta>"}):
+  \[
+  \infer[(@{inference_def composition})]{@{text "\<^vec>A\<vartheta> \<Longrightarrow> C\<vartheta>"}}
+  {@{text "\<^vec>A \<Longrightarrow> B"} & @{text "B' \<Longrightarrow> C"} & @{text "B\<vartheta> = B'\<vartheta>"}}
+  \]
+  Here the conclusion of the first rule is unified with the premise of
+  the second; the resulting rule instance inherits the premises of the
+  first and conclusion of the second.  Note that @{text "C"} can again
+  consist of iterated implications.  We can also permute the premises
+  of the second rule back-and-forth in order to compose with @{text
+  "B'"} in any position (subsequently we shall always refer to
+  position 1 w.l.o.g.).
+
+  In @{inference composition} the internal structure of the common
+  part @{text "B"} and @{text "B'"} is not taken into account.  For
+  proper @{inference resolution} we require @{text "B"} to be atomic,
+  and explicitly observe the structure @{text "\<And>\<^vec>x. \<^vec>H
+  \<^vec>x \<Longrightarrow> B' \<^vec>x"} of the premise of the second rule.  The
+  idea is to adapt the first rule by ``lifting'' it into this context,
+  by means of iterated application of the following inferences:
+  \[
+  \infer[(@{inference_def imp_lift})]{@{text "(\<^vec>H \<Longrightarrow> \<^vec>A) \<Longrightarrow> (\<^vec>H \<Longrightarrow> B)"}}{@{text "\<^vec>A \<Longrightarrow> B"}}
+  \]
+  \[
+  \infer[(@{inference_def all_lift})]{@{text "(\<And>\<^vec>x. \<^vec>A (?\<^vec>a \<^vec>x)) \<Longrightarrow> (\<And>\<^vec>x. B (?\<^vec>a \<^vec>x))"}}{@{text "\<^vec>A ?\<^vec>a \<Longrightarrow> B ?\<^vec>a"}}
+  \]
+  By combining raw composition with lifting, we get full @{inference
+  resolution} as follows:
+  \[
+  \infer[(@{inference_def resolution})]
+  {@{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> \<^vec>A (?\<^vec>a \<^vec>x))\<vartheta> \<Longrightarrow> C\<vartheta>"}}
+  {\begin{tabular}{l}
+    @{text "\<^vec>A ?\<^vec>a \<Longrightarrow> B ?\<^vec>a"} \\
+    @{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> B' \<^vec>x) \<Longrightarrow> C"} \\
+    @{text "(\<lambda>\<^vec>x. B (?\<^vec>a \<^vec>x))\<vartheta> = B'\<vartheta>"} \\
+   \end{tabular}}
+  \]
+
+  Continued resolution of rules allows to back-chain a problem towards
+  more and sub-problems.  Branches are closed either by resolving with
+  a rule of 0 premises, or by producing a ``short-circuit'' within a
+  solved situation (again modulo unification):
+  \[
+  \infer[(@{inference_def assumption})]{@{text "C\<vartheta>"}}
+  {@{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> A \<^vec>x) \<Longrightarrow> C"} & @{text "A\<vartheta> = H\<^sub>i\<vartheta>"}~~\text{(for some~@{text i})}}
+  \]
+
+  FIXME @{inference_def elim_resolution}, @{inference_def dest_resolution}
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML "op RS": "thm * thm -> thm"} \\
+  @{index_ML "op OF": "thm * thm list -> thm"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{text "rule\<^sub>1 RS rule\<^sub>2"} resolves @{text
+  "rule\<^sub>1"} with @{text "rule\<^sub>2"} according to the
+  @{inference resolution} principle explained above.  Note that the
+  corresponding attribute in the Isar language is called @{attribute
+  THEN}.
+
+  \item @{text "rule OF rules"} resolves a list of rules with the
+  first rule, addressing its premises @{text "1, \<dots>, length rules"}
+  (operating from last to first).  This means the newly emerging
+  premises are all concatenated, without interfering.  Also note that
+  compared to @{text "RS"}, the rule argument order is swapped: @{text
+  "rule\<^sub>1 RS rule\<^sub>2 = rule\<^sub>2 OF [rule\<^sub>1]"}.
+
+  \end{description}
+*}
+
+end
--- a/doc-src/IsarImplementation/Thy/ML.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/doc-src/IsarImplementation/Thy/ML.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -631,4 +631,4 @@
   Most table functions correspond to those of association lists.
 *}
 
-end
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/Prelim.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,765 @@
+theory Prelim
+imports Base
+begin
+
+chapter {* Preliminaries *}
+
+section {* Contexts \label{sec:context} *}
+
+text {*
+  A logical context represents the background that is required for
+  formulating statements and composing proofs.  It acts as a medium to
+  produce formal content, depending on earlier material (declarations,
+  results etc.).
+
+  For example, derivations within the Isabelle/Pure logic can be
+  described as a judgment @{text "\<Gamma> \<turnstile>\<^sub>\<Theta> \<phi>"}, which means that a
+  proposition @{text "\<phi>"} is derivable from hypotheses @{text "\<Gamma>"}
+  within the theory @{text "\<Theta>"}.  There are logical reasons for
+  keeping @{text "\<Theta>"} and @{text "\<Gamma>"} separate: theories can be
+  liberal about supporting type constructors and schematic
+  polymorphism of constants and axioms, while the inner calculus of
+  @{text "\<Gamma> \<turnstile> \<phi>"} is strictly limited to Simple Type Theory (with
+  fixed type variables in the assumptions).
+
+  \medskip Contexts and derivations are linked by the following key
+  principles:
+
+  \begin{itemize}
+
+  \item Transfer: monotonicity of derivations admits results to be
+  transferred into a \emph{larger} context, i.e.\ @{text "\<Gamma> \<turnstile>\<^sub>\<Theta>
+  \<phi>"} implies @{text "\<Gamma>' \<turnstile>\<^sub>\<Theta>\<^sub>' \<phi>"} for contexts @{text "\<Theta>'
+  \<supseteq> \<Theta>"} and @{text "\<Gamma>' \<supseteq> \<Gamma>"}.
+
+  \item Export: discharge of hypotheses admits results to be exported
+  into a \emph{smaller} context, i.e.\ @{text "\<Gamma>' \<turnstile>\<^sub>\<Theta> \<phi>"}
+  implies @{text "\<Gamma> \<turnstile>\<^sub>\<Theta> \<Delta> \<Longrightarrow> \<phi>"} where @{text "\<Gamma>' \<supseteq> \<Gamma>"} and
+  @{text "\<Delta> = \<Gamma>' - \<Gamma>"}.  Note that @{text "\<Theta>"} remains unchanged here,
+  only the @{text "\<Gamma>"} part is affected.
+
+  \end{itemize}
+
+  \medskip By modeling the main characteristics of the primitive
+  @{text "\<Theta>"} and @{text "\<Gamma>"} above, and abstracting over any
+  particular logical content, we arrive at the fundamental notions of
+  \emph{theory context} and \emph{proof context} in Isabelle/Isar.
+  These implement a certain policy to manage arbitrary \emph{context
+  data}.  There is a strongly-typed mechanism to declare new kinds of
+  data at compile time.
+
+  The internal bootstrap process of Isabelle/Pure eventually reaches a
+  stage where certain data slots provide the logical content of @{text
+  "\<Theta>"} and @{text "\<Gamma>"} sketched above, but this does not stop there!
+  Various additional data slots support all kinds of mechanisms that
+  are not necessarily part of the core logic.
+
+  For example, there would be data for canonical introduction and
+  elimination rules for arbitrary operators (depending on the
+  object-logic and application), which enables users to perform
+  standard proof steps implicitly (cf.\ the @{text "rule"} method
+  \cite{isabelle-isar-ref}).
+
+  \medskip Thus Isabelle/Isar is able to bring forth more and more
+  concepts successively.  In particular, an object-logic like
+  Isabelle/HOL continues the Isabelle/Pure setup by adding specific
+  components for automated reasoning (classical reasoner, tableau
+  prover, structured induction etc.) and derived specification
+  mechanisms (inductive predicates, recursive functions etc.).  All of
+  this is ultimately based on the generic data management by theory
+  and proof contexts introduced here.
+*}
+
+
+subsection {* Theory context \label{sec:context-theory} *}
+
+text {*
+  A \emph{theory} is a data container with explicit name and unique
+  identifier.  Theories are related by a (nominal) sub-theory
+  relation, which corresponds to the dependency graph of the original
+  construction; each theory is derived from a certain sub-graph of
+  ancestor theories.
+
+  The @{text "merge"} operation produces the least upper bound of two
+  theories, which actually degenerates into absorption of one theory
+  into the other (due to the nominal sub-theory relation).
+
+  The @{text "begin"} operation starts a new theory by importing
+  several parent theories and entering a special @{text "draft"} mode,
+  which is sustained until the final @{text "end"} operation.  A draft
+  theory acts like a linear type, where updates invalidate earlier
+  versions.  An invalidated draft is called ``stale''.
+
+  The @{text "checkpoint"} operation produces an intermediate stepping
+  stone that will survive the next update: both the original and the
+  changed theory remain valid and are related by the sub-theory
+  relation.  Checkpointing essentially recovers purely functional
+  theory values, at the expense of some extra internal bookkeeping.
+
+  The @{text "copy"} operation produces an auxiliary version that has
+  the same data content, but is unrelated to the original: updates of
+  the copy do not affect the original, neither does the sub-theory
+  relation hold.
+
+  \medskip The example in \figref{fig:ex-theory} below shows a theory
+  graph derived from @{text "Pure"}, with theory @{text "Length"}
+  importing @{text "Nat"} and @{text "List"}.  The body of @{text
+  "Length"} consists of a sequence of updates, working mostly on
+  drafts.  Intermediate checkpoints may occur as well, due to the
+  history mechanism provided by the Isar top-level, cf.\
+  \secref{sec:isar-toplevel}.
+
+  \begin{figure}[htb]
+  \begin{center}
+  \begin{tabular}{rcccl}
+        &            & @{text "Pure"} \\
+        &            & @{text "\<down>"} \\
+        &            & @{text "FOL"} \\
+        & $\swarrow$ &              & $\searrow$ & \\
+  @{text "Nat"} &    &              &            & @{text "List"} \\
+        & $\searrow$ &              & $\swarrow$ \\
+        &            & @{text "Length"} \\
+        &            & \multicolumn{3}{l}{~~@{keyword "imports"}} \\
+        &            & \multicolumn{3}{l}{~~@{keyword "begin"}} \\
+        &            & $\vdots$~~ \\
+        &            & @{text "\<bullet>"}~~ \\
+        &            & $\vdots$~~ \\
+        &            & @{text "\<bullet>"}~~ \\
+        &            & $\vdots$~~ \\
+        &            & \multicolumn{3}{l}{~~@{command "end"}} \\
+  \end{tabular}
+  \caption{A theory definition depending on ancestors}\label{fig:ex-theory}
+  \end{center}
+  \end{figure}
+
+  \medskip There is a separate notion of \emph{theory reference} for
+  maintaining a live link to an evolving theory context: updates on
+  drafts are propagated automatically.  Dynamic updating stops after
+  an explicit @{text "end"} only.
+
+  Derived entities may store a theory reference in order to indicate
+  the context they belong to.  This implicitly assumes monotonic
+  reasoning, because the referenced context may become larger without
+  further notice.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type theory} \\
+  @{index_ML Theory.subthy: "theory * theory -> bool"} \\
+  @{index_ML Theory.merge: "theory * theory -> theory"} \\
+  @{index_ML Theory.checkpoint: "theory -> theory"} \\
+  @{index_ML Theory.copy: "theory -> theory"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML_type theory_ref} \\
+  @{index_ML Theory.deref: "theory_ref -> theory"} \\
+  @{index_ML Theory.check_thy: "theory -> theory_ref"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type theory} represents theory contexts.  This is
+  essentially a linear type!  Most operations destroy the original
+  version, which then becomes ``stale''.
+
+  \item @{ML "Theory.subthy"}~@{text "(thy\<^sub>1, thy\<^sub>2)"}
+  compares theories according to the inherent graph structure of the
+  construction.  This sub-theory relation is a nominal approximation
+  of inclusion (@{text "\<subseteq>"}) of the corresponding content.
+
+  \item @{ML "Theory.merge"}~@{text "(thy\<^sub>1, thy\<^sub>2)"}
+  absorbs one theory into the other.  This fails for unrelated
+  theories!
+
+  \item @{ML "Theory.checkpoint"}~@{text "thy"} produces a safe
+  stepping stone in the linear development of @{text "thy"}.  The next
+  update will result in two related, valid theories.
+
+  \item @{ML "Theory.copy"}~@{text "thy"} produces a variant of @{text
+  "thy"} that holds a copy of the same data.  The result is not
+  related to the original; the original is unchanged.
+
+  \item @{ML_type theory_ref} represents a sliding reference to an
+  always valid theory; updates on the original are propagated
+  automatically.
+
+  \item @{ML "Theory.deref"}~@{text "thy_ref"} turns a @{ML_type
+  "theory_ref"} into an @{ML_type "theory"} value.  As the referenced
+  theory evolves monotonically over time, later invocations of @{ML
+  "Theory.deref"} may refer to a larger context.
+
+  \item @{ML "Theory.check_thy"}~@{text "thy"} produces a @{ML_type
+  "theory_ref"} from a valid @{ML_type "theory"} value.
+
+  \end{description}
+*}
+
+
+subsection {* Proof context \label{sec:context-proof} *}
+
+text {*
+  A proof context is a container for pure data with a back-reference
+  to the theory it belongs to.  The @{text "init"} operation creates a
+  proof context from a given theory.  Modifications to draft theories
+  are propagated to the proof context as usual, but there is also an
+  explicit @{text "transfer"} operation to force resynchronization
+  with more substantial updates to the underlying theory.  The actual
+  context data does not require any special bookkeeping, thanks to the
+  lack of destructive features.
+
+  Entities derived in a proof context need to record inherent logical
+  requirements explicitly, since there is no separate context
+  identification as for theories.  For example, hypotheses used in
+  primitive derivations (cf.\ \secref{sec:thms}) are recorded
+  separately within the sequent @{text "\<Gamma> \<turnstile> \<phi>"}, just to make double
+  sure.  Results could still leak into an alien proof context due to
+  programming errors, but Isabelle/Isar includes some extra validity
+  checks in critical positions, notably at the end of a sub-proof.
+
+  Proof contexts may be manipulated arbitrarily, although the common
+  discipline is to follow block structure as a mental model: a given
+  context is extended consecutively, and results are exported back
+  into the original context.  Note that the Isar proof states model
+  block-structured reasoning explicitly, using a stack of proof
+  contexts internally.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type Proof.context} \\
+  @{index_ML ProofContext.init: "theory -> Proof.context"} \\
+  @{index_ML ProofContext.theory_of: "Proof.context -> theory"} \\
+  @{index_ML ProofContext.transfer: "theory -> Proof.context -> Proof.context"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type Proof.context} represents proof contexts.  Elements
+  of this type are essentially pure values, with a sliding reference
+  to the background theory.
+
+  \item @{ML ProofContext.init}~@{text "thy"} produces a proof context
+  derived from @{text "thy"}, initializing all data.
+
+  \item @{ML ProofContext.theory_of}~@{text "ctxt"} selects the
+  background theory from @{text "ctxt"}, dereferencing its internal
+  @{ML_type theory_ref}.
+
+  \item @{ML ProofContext.transfer}~@{text "thy ctxt"} promotes the
+  background theory of @{text "ctxt"} to the super theory @{text
+  "thy"}.
+
+  \end{description}
+*}
+
+
+subsection {* Generic contexts \label{sec:generic-context} *}
+
+text {*
+  A generic context is the disjoint sum of either a theory or proof
+  context.  Occasionally, this enables uniform treatment of generic
+  context data, typically extra-logical information.  Operations on
+  generic contexts include the usual injections, partial selections,
+  and combinators for lifting operations on either component of the
+  disjoint sum.
+
+  Moreover, there are total operations @{text "theory_of"} and @{text
+  "proof_of"} to convert a generic context into either kind: a theory
+  can always be selected from the sum, while a proof context might
+  have to be constructed by an ad-hoc @{text "init"} operation.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type Context.generic} \\
+  @{index_ML Context.theory_of: "Context.generic -> theory"} \\
+  @{index_ML Context.proof_of: "Context.generic -> Proof.context"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type Context.generic} is the direct sum of @{ML_type
+  "theory"} and @{ML_type "Proof.context"}, with the datatype
+  constructors @{ML "Context.Theory"} and @{ML "Context.Proof"}.
+
+  \item @{ML Context.theory_of}~@{text "context"} always produces a
+  theory from the generic @{text "context"}, using @{ML
+  "ProofContext.theory_of"} as required.
+
+  \item @{ML Context.proof_of}~@{text "context"} always produces a
+  proof context from the generic @{text "context"}, using @{ML
+  "ProofContext.init"} as required (note that this re-initializes the
+  context data with each invocation).
+
+  \end{description}
+*}
+
+
+subsection {* Context data \label{sec:context-data} *}
+
+text {*
+  The main purpose of theory and proof contexts is to manage arbitrary
+  data.  New data types can be declared incrementally at compile time.
+  There are separate declaration mechanisms for any of the three kinds
+  of contexts: theory, proof, generic.
+
+  \paragraph{Theory data} may refer to destructive entities, which are
+  maintained in direct correspondence to the linear evolution of
+  theory values, including explicit copies.\footnote{Most existing
+  instances of destructive theory data are merely historical relics
+  (e.g.\ the destructive theorem storage, and destructive hints for
+  the Simplifier and Classical rules).}  A theory data declaration
+  needs to implement the following SML signature:
+
+  \medskip
+  \begin{tabular}{ll}
+  @{text "\<type> T"} & representing type \\
+  @{text "\<val> empty: T"} & empty default value \\
+  @{text "\<val> copy: T \<rightarrow> T"} & refresh impure data \\
+  @{text "\<val> extend: T \<rightarrow> T"} & re-initialize on import \\
+  @{text "\<val> merge: T \<times> T \<rightarrow> T"} & join on import \\
+  \end{tabular}
+  \medskip
+
+  \noindent The @{text "empty"} value acts as initial default for
+  \emph{any} theory that does not declare actual data content; @{text
+  "copy"} maintains persistent integrity for impure data, it is just
+  the identity for pure values; @{text "extend"} is acts like a
+  unitary version of @{text "merge"}, both operations should also
+  include the functionality of @{text "copy"} for impure data.
+
+  \paragraph{Proof context data} is purely functional.  A declaration
+  needs to implement the following SML signature:
+
+  \medskip
+  \begin{tabular}{ll}
+  @{text "\<type> T"} & representing type \\
+  @{text "\<val> init: theory \<rightarrow> T"} & produce initial value \\
+  \end{tabular}
+  \medskip
+
+  \noindent The @{text "init"} operation is supposed to produce a pure
+  value from the given background theory.
+
+  \paragraph{Generic data} provides a hybrid interface for both theory
+  and proof data.  The declaration is essentially the same as for
+  (pure) theory data, without @{text "copy"}.  The @{text "init"}
+  operation for proof contexts merely selects the current data value
+  from the background theory.
+
+  \bigskip A data declaration of type @{text "T"} results in the
+  following interface:
+
+  \medskip
+  \begin{tabular}{ll}
+  @{text "init: theory \<rightarrow> T"} \\
+  @{text "get: context \<rightarrow> T"} \\
+  @{text "put: T \<rightarrow> context \<rightarrow> context"} \\
+  @{text "map: (T \<rightarrow> T) \<rightarrow> context \<rightarrow> context"} \\
+  \end{tabular}
+  \medskip
+
+  \noindent Here @{text "init"} is only applicable to impure theory
+  data to install a fresh copy persistently (destructive update on
+  uninitialized has no permanent effect).  The other operations provide
+  access for the particular kind of context (theory, proof, or generic
+  context).  Note that this is a safe interface: there is no other way
+  to access the corresponding data slot of a context.  By keeping
+  these operations private, a component may maintain abstract values
+  authentically, without other components interfering.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_functor TheoryDataFun} \\
+  @{index_ML_functor ProofDataFun} \\
+  @{index_ML_functor GenericDataFun} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_functor TheoryDataFun}@{text "(spec)"} declares data for
+  type @{ML_type theory} according to the specification provided as
+  argument structure.  The resulting structure provides data init and
+  access operations as described above.
+
+  \item @{ML_functor ProofDataFun}@{text "(spec)"} is analogous to
+  @{ML_functor TheoryDataFun} for type @{ML_type Proof.context}.
+
+  \item @{ML_functor GenericDataFun}@{text "(spec)"} is analogous to
+  @{ML_functor TheoryDataFun} for type @{ML_type Context.generic}.
+
+  \end{description}
+*}
+
+
+section {* Names \label{sec:names} *}
+
+text {*
+  In principle, a name is just a string, but there are various
+  convention for encoding additional structure.  For example, ``@{text
+  "Foo.bar.baz"}'' is considered as a qualified name consisting of
+  three basic name components.  The individual constituents of a name
+  may have further substructure, e.g.\ the string
+  ``\verb,\,\verb,<alpha>,'' encodes as a single symbol.
+*}
+
+
+subsection {* Strings of symbols *}
+
+text {*
+  A \emph{symbol} constitutes the smallest textual unit in Isabelle
+  --- raw characters are normally not encountered at all.  Isabelle
+  strings consist of a sequence of symbols, represented as a packed
+  string or a list of strings.  Each symbol is in itself a small
+  string, which has either one of the following forms:
+
+  \begin{enumerate}
+
+  \item a single ASCII character ``@{text "c"}'', for example
+  ``\verb,a,'',
+
+  \item a regular symbol ``\verb,\,\verb,<,@{text "ident"}\verb,>,'',
+  for example ``\verb,\,\verb,<alpha>,'',
+
+  \item a control symbol ``\verb,\,\verb,<^,@{text "ident"}\verb,>,'',
+  for example ``\verb,\,\verb,<^bold>,'',
+
+  \item a raw symbol ``\verb,\,\verb,<^raw:,@{text text}\verb,>,''
+  where @{text text} constists of printable characters excluding
+  ``\verb,.,'' and ``\verb,>,'', for example
+  ``\verb,\,\verb,<^raw:$\sum_{i = 1}^n$>,'',
+
+  \item a numbered raw control symbol ``\verb,\,\verb,<^raw,@{text
+  n}\verb,>, where @{text n} consists of digits, for example
+  ``\verb,\,\verb,<^raw42>,''.
+
+  \end{enumerate}
+
+  \noindent The @{text "ident"} syntax for symbol names is @{text
+  "letter (letter | digit)\<^sup>*"}, where @{text "letter =
+  A..Za..z"} and @{text "digit = 0..9"}.  There are infinitely many
+  regular symbols and control symbols, but a fixed collection of
+  standard symbols is treated specifically.  For example,
+  ``\verb,\,\verb,<alpha>,'' is classified as a letter, which means it
+  may occur within regular Isabelle identifiers.
+
+  Since the character set underlying Isabelle symbols is 7-bit ASCII
+  and 8-bit characters are passed through transparently, Isabelle may
+  also process Unicode/UCS data in UTF-8 encoding.  Unicode provides
+  its own collection of mathematical symbols, but there is no built-in
+  link to the standard collection of Isabelle.
+
+  \medskip Output of Isabelle symbols depends on the print mode
+  (\secref{print-mode}).  For example, the standard {\LaTeX} setup of
+  the Isabelle document preparation system would present
+  ``\verb,\,\verb,<alpha>,'' as @{text "\<alpha>"}, and
+  ``\verb,\,\verb,<^bold>,\verb,\,\verb,<alpha>,'' as @{text
+  "\<^bold>\<alpha>"}.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type "Symbol.symbol"} \\
+  @{index_ML Symbol.explode: "string -> Symbol.symbol list"} \\
+  @{index_ML Symbol.is_letter: "Symbol.symbol -> bool"} \\
+  @{index_ML Symbol.is_digit: "Symbol.symbol -> bool"} \\
+  @{index_ML Symbol.is_quasi: "Symbol.symbol -> bool"} \\
+  @{index_ML Symbol.is_blank: "Symbol.symbol -> bool"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML_type "Symbol.sym"} \\
+  @{index_ML Symbol.decode: "Symbol.symbol -> Symbol.sym"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type "Symbol.symbol"} represents individual Isabelle
+  symbols; this is an alias for @{ML_type "string"}.
+
+  \item @{ML "Symbol.explode"}~@{text "str"} produces a symbol list
+  from the packed form.  This function supercedes @{ML
+  "String.explode"} for virtually all purposes of manipulating text in
+  Isabelle!
+
+  \item @{ML "Symbol.is_letter"}, @{ML "Symbol.is_digit"}, @{ML
+  "Symbol.is_quasi"}, @{ML "Symbol.is_blank"} classify standard
+  symbols according to fixed syntactic conventions of Isabelle, cf.\
+  \cite{isabelle-isar-ref}.
+
+  \item @{ML_type "Symbol.sym"} is a concrete datatype that represents
+  the different kinds of symbols explicitly, with constructors @{ML
+  "Symbol.Char"}, @{ML "Symbol.Sym"}, @{ML "Symbol.Ctrl"}, @{ML
+  "Symbol.Raw"}.
+
+  \item @{ML "Symbol.decode"} converts the string representation of a
+  symbol into the datatype version.
+
+  \end{description}
+*}
+
+
+subsection {* Basic names \label{sec:basic-names} *}
+
+text {*
+  A \emph{basic name} essentially consists of a single Isabelle
+  identifier.  There are conventions to mark separate classes of basic
+  names, by attaching a suffix of underscores: one underscore means
+  \emph{internal name}, two underscores means \emph{Skolem name},
+  three underscores means \emph{internal Skolem name}.
+
+  For example, the basic name @{text "foo"} has the internal version
+  @{text "foo_"}, with Skolem versions @{text "foo__"} and @{text
+  "foo___"}, respectively.
+
+  These special versions provide copies of the basic name space, apart
+  from anything that normally appears in the user text.  For example,
+  system generated variables in Isar proof contexts are usually marked
+  as internal, which prevents mysterious name references like @{text
+  "xaa"} to appear in the text.
+
+  \medskip Manipulating binding scopes often requires on-the-fly
+  renamings.  A \emph{name context} contains a collection of already
+  used names.  The @{text "declare"} operation adds names to the
+  context.
+
+  The @{text "invents"} operation derives a number of fresh names from
+  a given starting point.  For example, the first three names derived
+  from @{text "a"} are @{text "a"}, @{text "b"}, @{text "c"}.
+
+  The @{text "variants"} operation produces fresh names by
+  incrementing tentative names as base-26 numbers (with digits @{text
+  "a..z"}) until all clashes are resolved.  For example, name @{text
+  "foo"} results in variants @{text "fooa"}, @{text "foob"}, @{text
+  "fooc"}, \dots, @{text "fooaa"}, @{text "fooab"} etc.; each renaming
+  step picks the next unused variant from this sequence.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML Name.internal: "string -> string"} \\
+  @{index_ML Name.skolem: "string -> string"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML_type Name.context} \\
+  @{index_ML Name.context: Name.context} \\
+  @{index_ML Name.declare: "string -> Name.context -> Name.context"} \\
+  @{index_ML Name.invents: "Name.context -> string -> int -> string list"} \\
+  @{index_ML Name.variants: "string list -> Name.context -> string list * Name.context"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML Name.internal}~@{text "name"} produces an internal name
+  by adding one underscore.
+
+  \item @{ML Name.skolem}~@{text "name"} produces a Skolem name by
+  adding two underscores.
+
+  \item @{ML_type Name.context} represents the context of already used
+  names; the initial value is @{ML "Name.context"}.
+
+  \item @{ML Name.declare}~@{text "name"} enters a used name into the
+  context.
+
+  \item @{ML Name.invents}~@{text "context name n"} produces @{text
+  "n"} fresh names derived from @{text "name"}.
+
+  \item @{ML Name.variants}~@{text "names context"} produces fresh
+  variants of @{text "names"}; the result is entered into the context.
+
+  \end{description}
+*}
+
+
+subsection {* Indexed names *}
+
+text {*
+  An \emph{indexed name} (or @{text "indexname"}) is a pair of a basic
+  name and a natural number.  This representation allows efficient
+  renaming by incrementing the second component only.  The canonical
+  way to rename two collections of indexnames apart from each other is
+  this: determine the maximum index @{text "maxidx"} of the first
+  collection, then increment all indexes of the second collection by
+  @{text "maxidx + 1"}; the maximum index of an empty collection is
+  @{text "-1"}.
+
+  Occasionally, basic names and indexed names are injected into the
+  same pair type: the (improper) indexname @{text "(x, -1)"} is used
+  to encode basic names.
+
+  \medskip Isabelle syntax observes the following rules for
+  representing an indexname @{text "(x, i)"} as a packed string:
+
+  \begin{itemize}
+
+  \item @{text "?x"} if @{text "x"} does not end with a digit and @{text "i = 0"},
+
+  \item @{text "?xi"} if @{text "x"} does not end with a digit,
+
+  \item @{text "?x.i"} otherwise.
+
+  \end{itemize}
+
+  Indexnames may acquire large index numbers over time.  Results are
+  normalized towards @{text "0"} at certain checkpoints, notably at
+  the end of a proof.  This works by producing variants of the
+  corresponding basic name components.  For example, the collection
+  @{text "?x1, ?x7, ?x42"} becomes @{text "?x, ?xa, ?xb"}.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type indexname} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type indexname} represents indexed names.  This is an
+  abbreviation for @{ML_type "string * int"}.  The second component is
+  usually non-negative, except for situations where @{text "(x, -1)"}
+  is used to embed basic names into this type.
+
+  \end{description}
+*}
+
+
+subsection {* Qualified names and name spaces *}
+
+text {*
+  A \emph{qualified name} consists of a non-empty sequence of basic
+  name components.  The packed representation uses a dot as separator,
+  as in ``@{text "A.b.c"}''.  The last component is called \emph{base}
+  name, the remaining prefix \emph{qualifier} (which may be empty).
+  The idea of qualified names is to encode nested structures by
+  recording the access paths as qualifiers.  For example, an item
+  named ``@{text "A.b.c"}'' may be understood as a local entity @{text
+  "c"}, within a local structure @{text "b"}, within a global
+  structure @{text "A"}.  Typically, name space hierarchies consist of
+  1--2 levels of qualification, but this need not be always so.
+
+  The empty name is commonly used as an indication of unnamed
+  entities, whenever this makes any sense.  The basic operations on
+  qualified names are smart enough to pass through such improper names
+  unchanged.
+
+  \medskip A @{text "naming"} policy tells how to turn a name
+  specification into a fully qualified internal name (by the @{text
+  "full"} operation), and how fully qualified names may be accessed
+  externally.  For example, the default naming policy is to prefix an
+  implicit path: @{text "full x"} produces @{text "path.x"}, and the
+  standard accesses for @{text "path.x"} include both @{text "x"} and
+  @{text "path.x"}.  Normally, the naming is implicit in the theory or
+  proof context; there are separate versions of the corresponding.
+
+  \medskip A @{text "name space"} manages a collection of fully
+  internalized names, together with a mapping between external names
+  and internal names (in both directions).  The corresponding @{text
+  "intern"} and @{text "extern"} operations are mostly used for
+  parsing and printing only!  The @{text "declare"} operation augments
+  a name space according to the accesses determined by the naming
+  policy.
+
+  \medskip As a general principle, there is a separate name space for
+  each kind of formal entity, e.g.\ logical constant, type
+  constructor, type class, theorem.  It is usually clear from the
+  occurrence in concrete syntax (or from the scope) which kind of
+  entity a name refers to.  For example, the very same name @{text
+  "c"} may be used uniformly for a constant, type constructor, and
+  type class.
+
+  There are common schemes to name theorems systematically, according
+  to the name of the main logical entity involved, e.g.\ @{text
+  "c.intro"} for a canonical theorem related to constant @{text "c"}.
+  This technique of mapping names from one space into another requires
+  some care in order to avoid conflicts.  In particular, theorem names
+  derived from a type constructor or type class are better suffixed in
+  addition to the usual qualification, e.g.\ @{text "c_type.intro"}
+  and @{text "c_class.intro"} for theorems related to type @{text "c"}
+  and class @{text "c"}, respectively.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML NameSpace.base_name: "string -> string"} \\
+  @{index_ML NameSpace.qualifier: "string -> string"} \\
+  @{index_ML NameSpace.append: "string -> string -> string"} \\
+  @{index_ML NameSpace.implode: "string list -> string"} \\
+  @{index_ML NameSpace.explode: "string -> string list"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML_type NameSpace.naming} \\
+  @{index_ML NameSpace.default_naming: NameSpace.naming} \\
+  @{index_ML NameSpace.add_path: "string -> NameSpace.naming -> NameSpace.naming"} \\
+  @{index_ML NameSpace.full_name: "NameSpace.naming -> binding -> string"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML_type NameSpace.T} \\
+  @{index_ML NameSpace.empty: NameSpace.T} \\
+  @{index_ML NameSpace.merge: "NameSpace.T * NameSpace.T -> NameSpace.T"} \\
+  @{index_ML NameSpace.declare: "NameSpace.naming -> binding -> NameSpace.T ->
+  string * NameSpace.T"} \\
+  @{index_ML NameSpace.intern: "NameSpace.T -> string -> string"} \\
+  @{index_ML NameSpace.extern: "NameSpace.T -> string -> string"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML NameSpace.base_name}~@{text "name"} returns the base name of a
+  qualified name.
+
+  \item @{ML NameSpace.qualifier}~@{text "name"} returns the qualifier
+  of a qualified name.
+
+  \item @{ML NameSpace.append}~@{text "name\<^isub>1 name\<^isub>2"}
+  appends two qualified names.
+
+  \item @{ML NameSpace.implode}~@{text "name"} and @{ML
+  NameSpace.explode}~@{text "names"} convert between the packed string
+  representation and the explicit list form of qualified names.
+
+  \item @{ML_type NameSpace.naming} represents the abstract concept of
+  a naming policy.
+
+  \item @{ML NameSpace.default_naming} is the default naming policy.
+  In a theory context, this is usually augmented by a path prefix
+  consisting of the theory name.
+
+  \item @{ML NameSpace.add_path}~@{text "path naming"} augments the
+  naming policy by extending its path component.
+
+  \item @{ML NameSpace.full_name}~@{text "naming binding"} turns a
+  name binding (usually a basic name) into the fully qualified
+  internal name, according to the given naming policy.
+
+  \item @{ML_type NameSpace.T} represents name spaces.
+
+  \item @{ML NameSpace.empty} and @{ML NameSpace.merge}~@{text
+  "(space\<^isub>1, space\<^isub>2)"} are the canonical operations for
+  maintaining name spaces according to theory data management
+  (\secref{sec:context-data}).
+
+  \item @{ML NameSpace.declare}~@{text "naming bindings space"} enters a
+  name binding as fully qualified internal name into the name space,
+  with external accesses determined by the naming policy.
+
+  \item @{ML NameSpace.intern}~@{text "space name"} internalizes a
+  (partially qualified) external name.
+
+  This operation is mostly for parsing!  Note that fully qualified
+  names stemming from declarations are produced via @{ML
+  "NameSpace.full_name"} and @{ML "NameSpace.declare"}
+  (or their derivatives for @{ML_type theory} and
+  @{ML_type Proof.context}).
+
+  \item @{ML NameSpace.extern}~@{text "space name"} externalizes a
+  (fully qualified) internal name.
+
+  This operation is mostly for printing!  User code should not rely on
+  the precise result too much.
+
+  \end{description}
+*}
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/Proof.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,330 @@
+theory Proof
+imports Base
+begin
+
+chapter {* Structured proofs *}
+
+section {* Variables \label{sec:variables} *}
+
+text {*
+  Any variable that is not explicitly bound by @{text "\<lambda>"}-abstraction
+  is considered as ``free''.  Logically, free variables act like
+  outermost universal quantification at the sequent level: @{text
+  "A\<^isub>1(x), \<dots>, A\<^isub>n(x) \<turnstile> B(x)"} means that the result
+  holds \emph{for all} values of @{text "x"}.  Free variables for
+  terms (not types) can be fully internalized into the logic: @{text
+  "\<turnstile> B(x)"} and @{text "\<turnstile> \<And>x. B(x)"} are interchangeable, provided
+  that @{text "x"} does not occur elsewhere in the context.
+  Inspecting @{text "\<turnstile> \<And>x. B(x)"} more closely, we see that inside the
+  quantifier, @{text "x"} is essentially ``arbitrary, but fixed'',
+  while from outside it appears as a place-holder for instantiation
+  (thanks to @{text "\<And>"} elimination).
+
+  The Pure logic represents the idea of variables being either inside
+  or outside the current scope by providing separate syntactic
+  categories for \emph{fixed variables} (e.g.\ @{text "x"}) vs.\
+  \emph{schematic variables} (e.g.\ @{text "?x"}).  Incidently, a
+  universal result @{text "\<turnstile> \<And>x. B(x)"} has the HHF normal form @{text
+  "\<turnstile> B(?x)"}, which represents its generality nicely without requiring
+  an explicit quantifier.  The same principle works for type
+  variables: @{text "\<turnstile> B(?\<alpha>)"} represents the idea of ``@{text "\<turnstile>
+  \<forall>\<alpha>. B(\<alpha>)"}'' without demanding a truly polymorphic framework.
+
+  \medskip Additional care is required to treat type variables in a
+  way that facilitates type-inference.  In principle, term variables
+  depend on type variables, which means that type variables would have
+  to be declared first.  For example, a raw type-theoretic framework
+  would demand the context to be constructed in stages as follows:
+  @{text "\<Gamma> = \<alpha>: type, x: \<alpha>, a: A(x\<^isub>\<alpha>)"}.
+
+  We allow a slightly less formalistic mode of operation: term
+  variables @{text "x"} are fixed without specifying a type yet
+  (essentially \emph{all} potential occurrences of some instance
+  @{text "x\<^isub>\<tau>"} are fixed); the first occurrence of @{text "x"}
+  within a specific term assigns its most general type, which is then
+  maintained consistently in the context.  The above example becomes
+  @{text "\<Gamma> = x: term, \<alpha>: type, A(x\<^isub>\<alpha>)"}, where type @{text
+  "\<alpha>"} is fixed \emph{after} term @{text "x"}, and the constraint
+  @{text "x :: \<alpha>"} is an implicit consequence of the occurrence of
+  @{text "x\<^isub>\<alpha>"} in the subsequent proposition.
+
+  This twist of dependencies is also accommodated by the reverse
+  operation of exporting results from a context: a type variable
+  @{text "\<alpha>"} is considered fixed as long as it occurs in some fixed
+  term variable of the context.  For example, exporting @{text "x:
+  term, \<alpha>: type \<turnstile> x\<^isub>\<alpha> = x\<^isub>\<alpha>"} produces in the first step
+  @{text "x: term \<turnstile> x\<^isub>\<alpha> = x\<^isub>\<alpha>"} for fixed @{text "\<alpha>"},
+  and only in the second step @{text "\<turnstile> ?x\<^isub>?\<^isub>\<alpha> =
+  ?x\<^isub>?\<^isub>\<alpha>"} for schematic @{text "?x"} and @{text "?\<alpha>"}.
+
+  \medskip The Isabelle/Isar proof context manages the gory details of
+  term vs.\ type variables, with high-level principles for moving the
+  frontier between fixed and schematic variables.
+
+  The @{text "add_fixes"} operation explictly declares fixed
+  variables; the @{text "declare_term"} operation absorbs a term into
+  a context by fixing new type variables and adding syntactic
+  constraints.
+
+  The @{text "export"} operation is able to perform the main work of
+  generalizing term and type variables as sketched above, assuming
+  that fixing variables and terms have been declared properly.
+
+  There @{text "import"} operation makes a generalized fact a genuine
+  part of the context, by inventing fixed variables for the schematic
+  ones.  The effect can be reversed by using @{text "export"} later,
+  potentially with an extended context; the result is equivalent to
+  the original modulo renaming of schematic variables.
+
+  The @{text "focus"} operation provides a variant of @{text "import"}
+  for nested propositions (with explicit quantification): @{text
+  "\<And>x\<^isub>1 \<dots> x\<^isub>n. B(x\<^isub>1, \<dots>, x\<^isub>n)"} is
+  decomposed by inventing fixed variables @{text "x\<^isub>1, \<dots>,
+  x\<^isub>n"} for the body.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML Variable.add_fixes: "
+  string list -> Proof.context -> string list * Proof.context"} \\
+  @{index_ML Variable.variant_fixes: "
+  string list -> Proof.context -> string list * Proof.context"} \\
+  @{index_ML Variable.declare_term: "term -> Proof.context -> Proof.context"} \\
+  @{index_ML Variable.declare_constraints: "term -> Proof.context -> Proof.context"} \\
+  @{index_ML Variable.export: "Proof.context -> Proof.context -> thm list -> thm list"} \\
+  @{index_ML Variable.polymorphic: "Proof.context -> term list -> term list"} \\
+  @{index_ML Variable.import_thms: "bool -> thm list -> Proof.context ->
+  ((ctyp list * cterm list) * thm list) * Proof.context"} \\
+  @{index_ML Variable.focus: "cterm -> Proof.context -> (cterm list * cterm) * Proof.context"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML Variable.add_fixes}~@{text "xs ctxt"} fixes term
+  variables @{text "xs"}, returning the resulting internal names.  By
+  default, the internal representation coincides with the external
+  one, which also means that the given variables must not be fixed
+  already.  There is a different policy within a local proof body: the
+  given names are just hints for newly invented Skolem variables.
+
+  \item @{ML Variable.variant_fixes} is similar to @{ML
+  Variable.add_fixes}, but always produces fresh variants of the given
+  names.
+
+  \item @{ML Variable.declare_term}~@{text "t ctxt"} declares term
+  @{text "t"} to belong to the context.  This automatically fixes new
+  type variables, but not term variables.  Syntactic constraints for
+  type and term variables are declared uniformly, though.
+
+  \item @{ML Variable.declare_constraints}~@{text "t ctxt"} declares
+  syntactic constraints from term @{text "t"}, without making it part
+  of the context yet.
+
+  \item @{ML Variable.export}~@{text "inner outer thms"} generalizes
+  fixed type and term variables in @{text "thms"} according to the
+  difference of the @{text "inner"} and @{text "outer"} context,
+  following the principles sketched above.
+
+  \item @{ML Variable.polymorphic}~@{text "ctxt ts"} generalizes type
+  variables in @{text "ts"} as far as possible, even those occurring
+  in fixed term variables.  The default policy of type-inference is to
+  fix newly introduced type variables, which is essentially reversed
+  with @{ML Variable.polymorphic}: here the given terms are detached
+  from the context as far as possible.
+
+  \item @{ML Variable.import_thms}~@{text "open thms ctxt"} invents fixed
+  type and term variables for the schematic ones occurring in @{text
+  "thms"}.  The @{text "open"} flag indicates whether the fixed names
+  should be accessible to the user, otherwise newly introduced names
+  are marked as ``internal'' (\secref{sec:names}).
+
+  \item @{ML Variable.focus}~@{text B} decomposes the outermost @{text
+  "\<And>"} prefix of proposition @{text "B"}.
+
+  \end{description}
+*}
+
+
+section {* Assumptions \label{sec:assumptions} *}
+
+text {*
+  An \emph{assumption} is a proposition that it is postulated in the
+  current context.  Local conclusions may use assumptions as
+  additional facts, but this imposes implicit hypotheses that weaken
+  the overall statement.
+
+  Assumptions are restricted to fixed non-schematic statements, i.e.\
+  all generality needs to be expressed by explicit quantifiers.
+  Nevertheless, the result will be in HHF normal form with outermost
+  quantifiers stripped.  For example, by assuming @{text "\<And>x :: \<alpha>. P
+  x"} we get @{text "\<And>x :: \<alpha>. P x \<turnstile> P ?x"} for schematic @{text "?x"}
+  of fixed type @{text "\<alpha>"}.  Local derivations accumulate more and
+  more explicit references to hypotheses: @{text "A\<^isub>1, \<dots>,
+  A\<^isub>n \<turnstile> B"} where @{text "A\<^isub>1, \<dots>, A\<^isub>n"} needs to
+  be covered by the assumptions of the current context.
+
+  \medskip The @{text "add_assms"} operation augments the context by
+  local assumptions, which are parameterized by an arbitrary @{text
+  "export"} rule (see below).
+
+  The @{text "export"} operation moves facts from a (larger) inner
+  context into a (smaller) outer context, by discharging the
+  difference of the assumptions as specified by the associated export
+  rules.  Note that the discharged portion is determined by the
+  difference contexts, not the facts being exported!  There is a
+  separate flag to indicate a goal context, where the result is meant
+  to refine an enclosing sub-goal of a structured proof state.
+
+  \medskip The most basic export rule discharges assumptions directly
+  by means of the @{text "\<Longrightarrow>"} introduction rule:
+  \[
+  \infer[(@{text "\<Longrightarrow>_intro"})]{@{text "\<Gamma> \\ A \<turnstile> A \<Longrightarrow> B"}}{@{text "\<Gamma> \<turnstile> B"}}
+  \]
+
+  The variant for goal refinements marks the newly introduced
+  premises, which causes the canonical Isar goal refinement scheme to
+  enforce unification with local premises within the goal:
+  \[
+  \infer[(@{text "#\<Longrightarrow>_intro"})]{@{text "\<Gamma> \\ A \<turnstile> #A \<Longrightarrow> B"}}{@{text "\<Gamma> \<turnstile> B"}}
+  \]
+
+  \medskip Alternative versions of assumptions may perform arbitrary
+  transformations on export, as long as the corresponding portion of
+  hypotheses is removed from the given facts.  For example, a local
+  definition works by fixing @{text "x"} and assuming @{text "x \<equiv> t"},
+  with the following export rule to reverse the effect:
+  \[
+  \infer[(@{text "\<equiv>-expand"})]{@{text "\<Gamma> \\ x \<equiv> t \<turnstile> B t"}}{@{text "\<Gamma> \<turnstile> B x"}}
+  \]
+  This works, because the assumption @{text "x \<equiv> t"} was introduced in
+  a context with @{text "x"} being fresh, so @{text "x"} does not
+  occur in @{text "\<Gamma>"} here.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type Assumption.export} \\
+  @{index_ML Assumption.assume: "cterm -> thm"} \\
+  @{index_ML Assumption.add_assms:
+    "Assumption.export ->
+  cterm list -> Proof.context -> thm list * Proof.context"} \\
+  @{index_ML Assumption.add_assumes: "
+  cterm list -> Proof.context -> thm list * Proof.context"} \\
+  @{index_ML Assumption.export: "bool -> Proof.context -> Proof.context -> thm -> thm"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type Assumption.export} represents arbitrary export
+  rules, which is any function of type @{ML_type "bool -> cterm list -> thm -> thm"},
+  where the @{ML_type "bool"} indicates goal mode, and the @{ML_type
+  "cterm list"} the collection of assumptions to be discharged
+  simultaneously.
+
+  \item @{ML Assumption.assume}~@{text "A"} turns proposition @{text
+  "A"} into a raw assumption @{text "A \<turnstile> A'"}, where the conclusion
+  @{text "A'"} is in HHF normal form.
+
+  \item @{ML Assumption.add_assms}~@{text "r As"} augments the context
+  by assumptions @{text "As"} with export rule @{text "r"}.  The
+  resulting facts are hypothetical theorems as produced by the raw
+  @{ML Assumption.assume}.
+
+  \item @{ML Assumption.add_assumes}~@{text "As"} is a special case of
+  @{ML Assumption.add_assms} where the export rule performs @{text
+  "\<Longrightarrow>_intro"} or @{text "#\<Longrightarrow>_intro"}, depending on goal mode.
+
+  \item @{ML Assumption.export}~@{text "is_goal inner outer thm"}
+  exports result @{text "thm"} from the the @{text "inner"} context
+  back into the @{text "outer"} one; @{text "is_goal = true"} means
+  this is a goal context.  The result is in HHF normal form.  Note
+  that @{ML "ProofContext.export"} combines @{ML "Variable.export"}
+  and @{ML "Assumption.export"} in the canonical way.
+
+  \end{description}
+*}
+
+
+section {* Results \label{sec:results} *}
+
+text {*
+  Local results are established by monotonic reasoning from facts
+  within a context.  This allows common combinations of theorems,
+  e.g.\ via @{text "\<And>/\<Longrightarrow>"} elimination, resolution rules, or equational
+  reasoning, see \secref{sec:thms}.  Unaccounted context manipulations
+  should be avoided, notably raw @{text "\<And>/\<Longrightarrow>"} introduction or ad-hoc
+  references to free variables or assumptions not present in the proof
+  context.
+
+  \medskip The @{text "SUBPROOF"} combinator allows to structure a
+  tactical proof recursively by decomposing a selected sub-goal:
+  @{text "(\<And>x. A(x) \<Longrightarrow> B(x)) \<Longrightarrow> \<dots>"} is turned into @{text "B(x) \<Longrightarrow> \<dots>"}
+  after fixing @{text "x"} and assuming @{text "A(x)"}.  This means
+  the tactic needs to solve the conclusion, but may use the premise as
+  a local fact, for locally fixed variables.
+
+  The @{text "prove"} operation provides an interface for structured
+  backwards reasoning under program control, with some explicit sanity
+  checks of the result.  The goal context can be augmented by
+  additional fixed variables (cf.\ \secref{sec:variables}) and
+  assumptions (cf.\ \secref{sec:assumptions}), which will be available
+  as local facts during the proof and discharged into implications in
+  the result.  Type and term variables are generalized as usual,
+  according to the context.
+
+  The @{text "obtain"} operation produces results by eliminating
+  existing facts by means of a given tactic.  This acts like a dual
+  conclusion: the proof demonstrates that the context may be augmented
+  by certain fixed variables and assumptions.  See also
+  \cite{isabelle-isar-ref} for the user-level @{text "\<OBTAIN>"} and
+  @{text "\<GUESS>"} elements.  Final results, which may not refer to
+  the parameters in the conclusion, need to exported explicitly into
+  the original context.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML SUBPROOF:
+  "({context: Proof.context, schematics: ctyp list * cterm list,
+    params: cterm list, asms: cterm list, concl: cterm,
+    prems: thm list} -> tactic) -> Proof.context -> int -> tactic"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML Goal.prove: "Proof.context -> string list -> term list -> term ->
+  ({prems: thm list, context: Proof.context} -> tactic) -> thm"} \\
+  @{index_ML Goal.prove_multi: "Proof.context -> string list -> term list -> term list ->
+  ({prems: thm list, context: Proof.context} -> tactic) -> thm list"} \\
+  \end{mldecls}
+  \begin{mldecls}
+  @{index_ML Obtain.result: "(Proof.context -> tactic) ->
+  thm list -> Proof.context -> (cterm list * thm list) * Proof.context"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML SUBPROOF}~@{text "tac ctxt i"} decomposes the structure
+  of the specified sub-goal, producing an extended context and a
+  reduced goal, which needs to be solved by the given tactic.  All
+  schematic parameters of the goal are imported into the context as
+  fixed ones, which may not be instantiated in the sub-proof.
+
+  \item @{ML Goal.prove}~@{text "ctxt xs As C tac"} states goal @{text
+  "C"} in the context augmented by fixed variables @{text "xs"} and
+  assumptions @{text "As"}, and applies tactic @{text "tac"} to solve
+  it.  The latter may depend on the local assumptions being presented
+  as facts.  The result is in HHF normal form.
+
+  \item @{ML Goal.prove_multi} is simular to @{ML Goal.prove}, but
+  states several conclusions simultaneously.  The goal is encoded by
+  means of Pure conjunction; @{ML Goal.conjunction_tac} will turn this
+  into a collection of individual subgoals.
+
+  \item @{ML Obtain.result}~@{text "tac thms ctxt"} eliminates the
+  given facts using a tactic, which results in additional fixed
+  variables and assumptions in the context.  Final results need to be
+  exported explicitly.
+
+  \end{description}
+*}
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/Tactic.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,405 @@
+theory Tactic
+imports Base
+begin
+
+chapter {* Tactical reasoning *}
+
+text {*
+  Tactical reasoning works by refining the initial claim in a
+  backwards fashion, until a solved form is reached.  A @{text "goal"}
+  consists of several subgoals that need to be solved in order to
+  achieve the main statement; zero subgoals means that the proof may
+  be finished.  A @{text "tactic"} is a refinement operation that maps
+  a goal to a lazy sequence of potential successors.  A @{text
+  "tactical"} is a combinator for composing tactics.
+*}
+
+
+section {* Goals \label{sec:tactical-goals} *}
+
+text {*
+  Isabelle/Pure represents a goal as a theorem stating that the
+  subgoals imply the main goal: @{text "A\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> A\<^sub>n \<Longrightarrow>
+  C"}.  The outermost goal structure is that of a Horn Clause: i.e.\
+  an iterated implication without any quantifiers\footnote{Recall that
+  outermost @{text "\<And>x. \<phi>[x]"} is always represented via schematic
+  variables in the body: @{text "\<phi>[?x]"}.  These variables may get
+  instantiated during the course of reasoning.}.  For @{text "n = 0"}
+  a goal is called ``solved''.
+
+  The structure of each subgoal @{text "A\<^sub>i"} is that of a
+  general Hereditary Harrop Formula @{text "\<And>x\<^sub>1 \<dots>
+  \<And>x\<^sub>k. H\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> H\<^sub>m \<Longrightarrow> B"}.  Here @{text
+  "x\<^sub>1, \<dots>, x\<^sub>k"} are goal parameters, i.e.\
+  arbitrary-but-fixed entities of certain types, and @{text
+  "H\<^sub>1, \<dots>, H\<^sub>m"} are goal hypotheses, i.e.\ facts that may
+  be assumed locally.  Together, this forms the goal context of the
+  conclusion @{text B} to be established.  The goal hypotheses may be
+  again arbitrary Hereditary Harrop Formulas, although the level of
+  nesting rarely exceeds 1--2 in practice.
+
+  The main conclusion @{text C} is internally marked as a protected
+  proposition, which is represented explicitly by the notation @{text
+  "#C"}.  This ensures that the decomposition into subgoals and main
+  conclusion is well-defined for arbitrarily structured claims.
+
+  \medskip Basic goal management is performed via the following
+  Isabelle/Pure rules:
+
+  \[
+  \infer[@{text "(init)"}]{@{text "C \<Longrightarrow> #C"}}{} \qquad
+  \infer[@{text "(finish)"}]{@{text "C"}}{@{text "#C"}}
+  \]
+
+  \medskip The following low-level variants admit general reasoning
+  with protected propositions:
+
+  \[
+  \infer[@{text "(protect)"}]{@{text "#C"}}{@{text "C"}} \qquad
+  \infer[@{text "(conclude)"}]{@{text "A\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> A\<^sub>n \<Longrightarrow> C"}}{@{text "A\<^sub>1 \<Longrightarrow> \<dots> \<Longrightarrow> A\<^sub>n \<Longrightarrow> #C"}}
+  \]
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML Goal.init: "cterm -> thm"} \\
+  @{index_ML Goal.finish: "thm -> thm"} \\
+  @{index_ML Goal.protect: "thm -> thm"} \\
+  @{index_ML Goal.conclude: "thm -> thm"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML "Goal.init"}~@{text C} initializes a tactical goal from
+  the well-formed proposition @{text C}.
+
+  \item @{ML "Goal.finish"}~@{text "thm"} checks whether theorem
+  @{text "thm"} is a solved goal (no subgoals), and concludes the
+  result by removing the goal protection.
+
+  \item @{ML "Goal.protect"}~@{text "thm"} protects the full statement
+  of theorem @{text "thm"}.
+
+  \item @{ML "Goal.conclude"}~@{text "thm"} removes the goal
+  protection, even if there are pending subgoals.
+
+  \end{description}
+*}
+
+
+section {* Tactics *}
+
+text {* A @{text "tactic"} is a function @{text "goal \<rightarrow> goal\<^sup>*\<^sup>*"} that
+  maps a given goal state (represented as a theorem, cf.\
+  \secref{sec:tactical-goals}) to a lazy sequence of potential
+  successor states.  The underlying sequence implementation is lazy
+  both in head and tail, and is purely functional in \emph{not}
+  supporting memoing.\footnote{The lack of memoing and the strict
+  nature of SML requires some care when working with low-level
+  sequence operations, to avoid duplicate or premature evaluation of
+  results.}
+
+  An \emph{empty result sequence} means that the tactic has failed: in
+  a compound tactic expressions other tactics might be tried instead,
+  or the whole refinement step might fail outright, producing a
+  toplevel error message.  When implementing tactics from scratch, one
+  should take care to observe the basic protocol of mapping regular
+  error conditions to an empty result; only serious faults should
+  emerge as exceptions.
+
+  By enumerating \emph{multiple results}, a tactic can easily express
+  the potential outcome of an internal search process.  There are also
+  combinators for building proof tools that involve search
+  systematically, see also \secref{sec:tacticals}.
+
+  \medskip As explained in \secref{sec:tactical-goals}, a goal state
+  essentially consists of a list of subgoals that imply the main goal
+  (conclusion).  Tactics may operate on all subgoals or on a
+  particularly specified subgoal, but must not change the main
+  conclusion (apart from instantiating schematic goal variables).
+
+  Tactics with explicit \emph{subgoal addressing} are of the form
+  @{text "int \<rightarrow> tactic"} and may be applied to a particular subgoal
+  (counting from 1).  If the subgoal number is out of range, the
+  tactic should fail with an empty result sequence, but must not raise
+  an exception!
+
+  Operating on a particular subgoal means to replace it by an interval
+  of zero or more subgoals in the same place; other subgoals must not
+  be affected, apart from instantiating schematic variables ranging
+  over the whole goal state.
+
+  A common pattern of composing tactics with subgoal addressing is to
+  try the first one, and then the second one only if the subgoal has
+  not been solved yet.  Special care is required here to avoid bumping
+  into unrelated subgoals that happen to come after the original
+  subgoal.  Assuming that there is only a single initial subgoal is a
+  very common error when implementing tactics!
+
+  Tactics with internal subgoal addressing should expose the subgoal
+  index as @{text "int"} argument in full generality; a hardwired
+  subgoal 1 inappropriate.
+  
+  \medskip The main well-formedness conditions for proper tactics are
+  summarized as follows.
+
+  \begin{itemize}
+
+  \item General tactic failure is indicated by an empty result, only
+  serious faults may produce an exception.
+
+  \item The main conclusion must not be changed, apart from
+  instantiating schematic variables.
+
+  \item A tactic operates either uniformly on all subgoals, or
+  specifically on a selected subgoal (without bumping into unrelated
+  subgoals).
+
+  \item Range errors in subgoal addressing produce an empty result.
+
+  \end{itemize}
+
+  Some of these conditions are checked by higher-level goal
+  infrastructure (\secref{sec:results}); others are not checked
+  explicitly, and violating them merely results in ill-behaved tactics
+  experienced by the user (e.g.\ tactics that insist in being
+  applicable only to singleton goals, or disallow composition with
+  basic tacticals).
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML_type tactic: "thm -> thm Seq.seq"} \\
+  @{index_ML no_tac: tactic} \\
+  @{index_ML all_tac: tactic} \\
+  @{index_ML print_tac: "string -> tactic"} \\[1ex]
+  @{index_ML PRIMITIVE: "(thm -> thm) -> tactic"} \\[1ex]
+  @{index_ML SUBGOAL: "(term * int -> tactic) -> int -> tactic"} \\
+  @{index_ML CSUBGOAL: "(cterm * int -> tactic) -> int -> tactic"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML_type tactic} represents tactics.  The well-formedness
+  conditions described above need to be observed.  See also @{"file"
+  "~~/src/Pure/General/seq.ML"} for the underlying implementation of
+  lazy sequences.
+
+  \item @{ML_type "int -> tactic"} represents tactics with explicit
+  subgoal addressing, with well-formedness conditions as described
+  above.
+
+  \item @{ML no_tac} is a tactic that always fails, returning the
+  empty sequence.
+
+  \item @{ML all_tac} is a tactic that always succeeds, returning a
+  singleton sequence with unchanged goal state.
+
+  \item @{ML print_tac}~@{text "message"} is like @{ML all_tac}, but
+  prints a message together with the goal state on the tracing
+  channel.
+
+  \item @{ML PRIMITIVE}~@{text rule} turns a primitive inference rule
+  into a tactic with unique result.  Exception @{ML THM} is considered
+  a regular tactic failure and produces an empty result; other
+  exceptions are passed through.
+
+  \item @{ML SUBGOAL}~@{text "(fn (subgoal, i) => tactic)"} is the
+  most basic form to produce a tactic with subgoal addressing.  The
+  given abstraction over the subgoal term and subgoal number allows to
+  peek at the relevant information of the full goal state.  The
+  subgoal range is checked as required above.
+
+  \item @{ML CSUBGOAL} is similar to @{ML SUBGOAL}, but passes the
+  subgoal as @{ML_type cterm} instead of raw @{ML_type term}.  This
+  avoids expensive re-certification in situations where the subgoal is
+  used directly for primitive inferences.
+
+  \end{description}
+*}
+
+
+subsection {* Resolution and assumption tactics \label{sec:resolve-assume-tac} *}
+
+text {* \emph{Resolution} is the most basic mechanism for refining a
+  subgoal using a theorem as object-level rule.
+  \emph{Elim-resolution} is particularly suited for elimination rules:
+  it resolves with a rule, proves its first premise by assumption, and
+  finally deletes that assumption from any new subgoals.
+  \emph{Destruct-resolution} is like elim-resolution, but the given
+  destruction rules are first turned into canonical elimination
+  format.  \emph{Forward-resolution} is like destruct-resolution, but
+  without deleting the selected assumption.  The @{text "r/e/d/f"}
+  naming convention is maintained for several different kinds of
+  resolution rules and tactics.
+
+  Assumption tactics close a subgoal by unifying some of its premises
+  against its conclusion.
+
+  \medskip All the tactics in this section operate on a subgoal
+  designated by a positive integer.  Other subgoals might be affected
+  indirectly, due to instantiation of schematic variables.
+
+  There are various sources of non-determinism, the tactic result
+  sequence enumerates all possibilities of the following choices (if
+  applicable):
+
+  \begin{enumerate}
+
+  \item selecting one of the rules given as argument to the tactic;
+
+  \item selecting a subgoal premise to eliminate, unifying it against
+  the first premise of the rule;
+
+  \item unifying the conclusion of the subgoal to the conclusion of
+  the rule.
+
+  \end{enumerate}
+
+  Recall that higher-order unification may produce multiple results
+  that are enumerated here.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML resolve_tac: "thm list -> int -> tactic"} \\
+  @{index_ML eresolve_tac: "thm list -> int -> tactic"} \\
+  @{index_ML dresolve_tac: "thm list -> int -> tactic"} \\
+  @{index_ML forward_tac: "thm list -> int -> tactic"} \\[1ex]
+  @{index_ML assume_tac: "int -> tactic"} \\
+  @{index_ML eq_assume_tac: "int -> tactic"} \\[1ex]
+  @{index_ML match_tac: "thm list -> int -> tactic"} \\
+  @{index_ML ematch_tac: "thm list -> int -> tactic"} \\
+  @{index_ML dmatch_tac: "thm list -> int -> tactic"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML resolve_tac}~@{text "thms i"} refines the goal state
+  using the given theorems, which should normally be introduction
+  rules.  The tactic resolves a rule's conclusion with subgoal @{text
+  i}, replacing it by the corresponding versions of the rule's
+  premises.
+
+  \item @{ML eresolve_tac}~@{text "thms i"} performs elim-resolution
+  with the given theorems, which should normally be elimination rules.
+
+  \item @{ML dresolve_tac}~@{text "thms i"} performs
+  destruct-resolution with the given theorems, which should normally
+  be destruction rules.  This replaces an assumption by the result of
+  applying one of the rules.
+
+  \item @{ML forward_tac} is like @{ML dresolve_tac} except that the
+  selected assumption is not deleted.  It applies a rule to an
+  assumption, adding the result as a new assumption.
+
+  \item @{ML assume_tac}~@{text i} attempts to solve subgoal @{text i}
+  by assumption (modulo higher-order unification).
+
+  \item @{ML eq_assume_tac} is similar to @{ML assume_tac}, but checks
+  only for immediate @{text "\<alpha>"}-convertibility instead of using
+  unification.  It succeeds (with a unique next state) if one of the
+  assumptions is equal to the subgoal's conclusion.  Since it does not
+  instantiate variables, it cannot make other subgoals unprovable.
+
+  \item @{ML match_tac}, @{ML ematch_tac}, and @{ML dmatch_tac} are
+  similar to @{ML resolve_tac}, @{ML eresolve_tac}, and @{ML
+  dresolve_tac}, respectively, but do not instantiate schematic
+  variables in the goal state.
+
+  Flexible subgoals are not updated at will, but are left alone.
+  Strictly speaking, matching means to treat the unknowns in the goal
+  state as constants; these tactics merely discard unifiers that would
+  update the goal state.
+
+  \end{description}
+*}
+
+
+subsection {* Explicit instantiation within a subgoal context *}
+
+text {* The main resolution tactics (\secref{sec:resolve-assume-tac})
+  use higher-order unification, which works well in many practical
+  situations despite its daunting theoretical properties.
+  Nonetheless, there are important problem classes where unguided
+  higher-order unification is not so useful.  This typically involves
+  rules like universal elimination, existential introduction, or
+  equational substitution.  Here the unification problem involves
+  fully flexible @{text "?P ?x"} schemes, which are hard to manage
+  without further hints.
+
+  By providing a (small) rigid term for @{text "?x"} explicitly, the
+  remaining unification problem is to assign a (large) term to @{text
+  "?P"}, according to the shape of the given subgoal.  This is
+  sufficiently well-behaved in most practical situations.
+
+  \medskip Isabelle provides separate versions of the standard @{text
+  "r/e/d/f"} resolution tactics that allow to provide explicit
+  instantiations of unknowns of the given rule, wrt.\ terms that refer
+  to the implicit context of the selected subgoal.
+
+  An instantiation consists of a list of pairs of the form @{text
+  "(?x, t)"}, where @{text ?x} is a schematic variable occurring in
+  the given rule, and @{text t} is a term from the current proof
+  context, augmented by the local goal parameters of the selected
+  subgoal; cf.\ the @{text "focus"} operation described in
+  \secref{sec:variables}.
+
+  Entering the syntactic context of a subgoal is a brittle operation,
+  because its exact form is somewhat accidental, and the choice of
+  bound variable names depends on the presence of other local and
+  global names.  Explicit renaming of subgoal parameters prior to
+  explicit instantiation might help to achieve a bit more robustness.
+
+  Type instantiations may be given as well, via pairs like @{text
+  "(?'a, \<tau>)"}.  Type instantiations are distinguished from term
+  instantiations by the syntactic form of the schematic variable.
+  Types are instantiated before terms are.  Since term instantiation
+  already performs type-inference as expected, explicit type
+  instantiations are seldom necessary.
+*}
+
+text %mlref {*
+  \begin{mldecls}
+  @{index_ML res_inst_tac: "Proof.context -> (indexname * string) list -> thm -> int -> tactic"} \\
+  @{index_ML eres_inst_tac: "Proof.context -> (indexname * string) list -> thm -> int -> tactic"} \\
+  @{index_ML dres_inst_tac: "Proof.context -> (indexname * string) list -> thm -> int -> tactic"} \\
+  @{index_ML forw_inst_tac: "Proof.context -> (indexname * string) list -> thm -> int -> tactic"} \\[1ex]
+  @{index_ML rename_tac: "string list -> int -> tactic"} \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item @{ML res_inst_tac}~@{text "ctxt insts thm i"} instantiates the
+  rule @{text thm} with the instantiations @{text insts}, as described
+  above, and then performs resolution on subgoal @{text i}.
+  
+  \item @{ML eres_inst_tac} is like @{ML res_inst_tac}, but performs
+  elim-resolution.
+
+  \item @{ML dres_inst_tac} is like @{ML res_inst_tac}, but performs
+  destruct-resolution.
+
+  \item @{ML forw_inst_tac} is like @{ML dres_inst_tac} except that
+  the selected assumption is not deleted.
+
+  \item @{ML rename_tac}~@{text "names i"} renames the innermost
+  parameters of subgoal @{text i} according to the provided @{text
+  names} (which need to be distinct indentifiers).
+
+  \end{description}
+*}
+
+
+section {* Tacticals \label{sec:tacticals} *}
+
+text {*
+  A \emph{tactical} is a functional combinator for building up complex
+  tactics from simpler ones.  Typical tactical perform sequential
+  composition, disjunction (choice), iteration, or goal addressing.
+  Various search strategies may be expressed via tacticals.
+
+  \medskip FIXME
+*}
+
+end
--- a/doc-src/IsarImplementation/Thy/document/ML.tex	Fri Mar 06 09:35:29 2009 +0100
+++ b/doc-src/IsarImplementation/Thy/document/ML.tex	Fri Mar 06 09:35:43 2009 +0100
@@ -785,7 +785,6 @@
 \isadelimtheory
 %
 \endisadelimtheory
-\isanewline
 \end{isabellebody}%
 %%% Local Variables:
 %%% mode: latex
--- a/doc-src/IsarRef/Thy/document/Generic.tex	Fri Mar 06 09:35:29 2009 +0100
+++ b/doc-src/IsarRef/Thy/document/Generic.tex	Fri Mar 06 09:35:43 2009 +0100
@@ -503,7 +503,7 @@
   \item \hyperlink{command.simproc-setup}{\mbox{\isa{\isacommand{simproc{\isacharunderscore}setup}}}} defines a named simplification
   procedure that is invoked by the Simplifier whenever any of the
   given term patterns match the current redex.  The implementation,
-  which is provided as ML source text, needs to be of type \verb|"morphism -> simpset -> cterm -> thm option"|, where the \verb|cterm| represents the current redex \isa{r} and the result is
+  which is provided as ML source text, needs to be of type \verb|morphism -> simpset -> cterm -> thm option|, where the \verb|cterm| represents the current redex \isa{r} and the result is
   supposed to be some proven rewrite rule \isa{{\isachardoublequote}r\ {\isasymequiv}\ r{\isacharprime}{\isachardoublequote}} (or a
   generalized version), or \verb|NONE| to indicate failure.  The
   \verb|simpset| argument holds the full context of the current
--- a/etc/settings	Fri Mar 06 09:35:29 2009 +0100
+++ b/etc/settings	Fri Mar 06 09:35:43 2009 +0100
@@ -262,8 +262,6 @@
 
 # zChaff (SAT Solver, cf. Isabelle/src/HOL/Tools/sat_solver.ML)
 #ZCHAFF_HOME=/usr/local/bin
-#ZCHAFF_VERSION=2004.5.13
-#ZCHAFF_VERSION=2004.11.15
 
 # BerkMin561 (SAT Solver, cf. Isabelle/src/HOL/Tools/sat_solver.ML)
 #BERKMIN_HOME=/usr/local/bin
--- a/src/HOL/Complex.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Complex.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -163,10 +163,13 @@
 begin
 
 primrec power_complex where
-  complexpow_0:     "z ^ 0     = (1\<Colon>complex)"
-  | complexpow_Suc: "z ^ Suc n = (z\<Colon>complex) * z ^ n"
+  "z ^ 0     = (1\<Colon>complex)"
+| "z ^ Suc n = (z\<Colon>complex) * z ^ n"
 
-instance by intro_classes simp_all
+instance proof
+qed simp_all
+
+declare power_complex.simps [simp del]
 
 end
 
--- a/src/HOL/Decision_Procs/Approximation.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Decision_Procs/Approximation.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -619,7 +619,7 @@
 	using arctan_0_1_bounds[OF `0 \<le> Ifloat ?DIV` `Ifloat ?DIV \<le> 1`] by auto
       also have "\<dots> \<le> 2 * arctan (Ifloat x / ?R)"
 	using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono)
-      also have "2 * arctan (Ifloat x / ?R) = arctan (Ifloat x)" using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 realpow_0 real_mult_1 . 
+      also have "2 * arctan (Ifloat x / ?R) = arctan (Ifloat x)" using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 power_0 real_mult_1 . 
       finally show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x \<le> Float 1 -1`] if_P[OF True] .
     next
       case False
@@ -708,7 +708,7 @@
 	have "0 \<le> Ifloat x / ?R" using `0 \<le> Ifloat x` `0 < ?R` unfolding real_0_le_divide_iff by auto
 	hence "0 \<le> Ifloat ?DIV" using monotone by (rule order_trans)
 
-	have "arctan (Ifloat x) = 2 * arctan (Ifloat x / ?R)" using arctan_half unfolding numeral_2_eq_2 power_Suc2 realpow_0 real_mult_1 .
+	have "arctan (Ifloat x) = 2 * arctan (Ifloat x / ?R)" using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 real_mult_1 .
 	also have "\<dots> \<le> 2 * arctan (Ifloat ?DIV)"
 	  using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono)
 	also have "\<dots> \<le> Ifloat (Float 1 1 * ?ub_horner ?DIV)" unfolding Ifloat_mult[of "Float 1 1"] Float_num
@@ -1285,7 +1285,7 @@
 	have "sin (Ifloat x) = sqrt (1 - cos (Ifloat x) ^ 2)" unfolding sin_squared_eq[symmetric] real_sqrt_abs using `0 \<le> sin (Ifloat x)` by auto
 	also have "\<dots> \<le> sqrt (Ifloat (1 - lb_cos prec x * lb_cos prec x))" 
 	proof (rule real_sqrt_le_mono)
-	  have "Ifloat (lb_cos prec x * lb_cos prec x) \<le> cos (Ifloat x) ^ 2" unfolding numeral_2_eq_2 power_Suc2 realpow_0 Ifloat_mult
+	  have "Ifloat (lb_cos prec x * lb_cos prec x) \<le> cos (Ifloat x) ^ 2" unfolding numeral_2_eq_2 power_Suc2 power_0 Ifloat_mult
 	    using `0 \<le> Ifloat (lb_cos prec x)` lb_cos[OF `0 \<le> Ifloat x` `Ifloat x \<le> pi`] `0 \<le> cos (Ifloat x)` by(auto intro!: mult_mono)
 	  thus "1 - cos (Ifloat x) ^ 2 \<le> Ifloat (1 - lb_cos prec x * lb_cos prec x)" unfolding Ifloat_sub Ifloat_1 by auto
 	qed
@@ -1317,7 +1317,7 @@
 	qed
 	also have "\<dots> \<le> sqrt (1 - cos (Ifloat x) ^ 2)"
 	proof (rule real_sqrt_le_mono)
-	  have "cos (Ifloat x) ^ 2 \<le> Ifloat (ub_cos prec x * ub_cos prec x)" unfolding numeral_2_eq_2 power_Suc2 realpow_0 Ifloat_mult
+	  have "cos (Ifloat x) ^ 2 \<le> Ifloat (ub_cos prec x * ub_cos prec x)" unfolding numeral_2_eq_2 power_Suc2 power_0 Ifloat_mult
 	    using `0 \<le> Ifloat (ub_cos prec x)` lb_cos[OF `0 \<le> Ifloat x` `Ifloat x \<le> pi`] `0 \<le> cos (Ifloat x)` by(auto intro!: mult_mono)
 	  thus "Ifloat (1 - ub_cos prec x * ub_cos prec x) \<le> 1 - cos (Ifloat x) ^ 2" unfolding Ifloat_sub Ifloat_1 by auto
 	qed
@@ -1814,7 +1814,7 @@
 
     {
       have "Ifloat (lb_ln2 prec * ?s) \<le> ln 2 * real (e + (bitlen m - 1))" (is "?lb2 \<le> _")
-	unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 realpow_0 mult_1_right
+	unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 power_0 mult_1_right
 	using lb_ln2[of prec]
       proof (rule mult_right_mono)
 	have "1 \<le> Float m e" using `1 \<le> x` Float unfolding le_float_def by auto
@@ -1837,7 +1837,7 @@
       have "ln (Ifloat ?x) \<le> Ifloat ((?x - 1) * ub_ln_horner prec (get_odd prec) 1 (?x - 1))" (is "_ \<le> ?ub_horner") by auto
       moreover
       have "ln 2 * real (e + (bitlen m - 1)) \<le> Ifloat (ub_ln2 prec * ?s)" (is "_ \<le> ?ub2")
-	unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 realpow_0 mult_1_right
+	unfolding Ifloat_mult Ifloat_ge0_exp[OF order_refl] nat_0 power_0 mult_1_right
 	using ub_ln2[of prec] 
       proof (rule mult_right_mono)
 	have "1 \<le> Float m e" using `1 \<le> x` Float unfolding le_float_def by auto
--- a/src/HOL/Deriv.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Deriv.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -202,7 +202,7 @@
   shows "DERIV (\<lambda>x. f x ^ Suc n) x :> (1 + of_nat n) * (D * f x ^ n)"
 proof (induct n)
 case 0
-  show ?case by (simp add: power_Suc f)
+  show ?case by (simp add: f)
 case (Suc k)
   from DERIV_mult' [OF f Suc] show ?case
     apply (simp only: of_nat_Suc ring_distribs mult_1_left)
@@ -214,7 +214,7 @@
   fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,recpower}"
   assumes f: "DERIV f x :> D"
   shows "DERIV (\<lambda>x. f x ^ n) x :> of_nat n * (D * f x ^ (n - Suc 0))"
-by (cases "n", simp, simp add: DERIV_power_Suc f)
+by (cases "n", simp, simp add: DERIV_power_Suc f del: power_Suc)
 
 
 text {* Caratheodory formulation of derivative at a point *}
@@ -289,21 +289,21 @@
 lemma DERIV_inverse:
   fixes x :: "'a::{real_normed_field,recpower}"
   shows "x \<noteq> 0 ==> DERIV (%x. inverse(x)) x :> (-(inverse x ^ Suc (Suc 0)))"
-by (drule DERIV_inverse' [OF DERIV_ident]) (simp add: power_Suc)
+by (drule DERIV_inverse' [OF DERIV_ident]) simp
 
 text{*Derivative of inverse*}
 lemma DERIV_inverse_fun:
   fixes x :: "'a::{real_normed_field,recpower}"
   shows "[| DERIV f x :> d; f(x) \<noteq> 0 |]
       ==> DERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))"
-by (drule (1) DERIV_inverse') (simp add: mult_ac power_Suc nonzero_inverse_mult_distrib)
+by (drule (1) DERIV_inverse') (simp add: mult_ac nonzero_inverse_mult_distrib)
 
 text{*Derivative of quotient*}
 lemma DERIV_quotient:
   fixes x :: "'a::{real_normed_field,recpower}"
   shows "[| DERIV f x :> d; DERIV g x :> e; g(x) \<noteq> 0 |]
        ==> DERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / (g(x) ^ Suc (Suc 0))"
-by (drule (2) DERIV_divide) (simp add: mult_commute power_Suc)
+by (drule (2) DERIV_divide) (simp add: mult_commute)
 
 lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E"
 by auto
@@ -407,7 +407,7 @@
   fixes f :: "'a::{recpower,real_normed_field} \<Rightarrow> 'a"
   assumes "f differentiable x"
   shows "(\<lambda>x. f x ^ n) differentiable x"
-  by (induct n, simp, simp add: power_Suc prems)
+  by (induct n, simp, simp add: prems)
 
 
 subsection {* Nested Intervals and Bisection *}
--- a/src/HOL/Finite_Set.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Finite_Set.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -878,9 +878,54 @@
    fold_image times g 1 A *  fold_image times h 1 A"
 by (erule finite_induct) (simp_all add: mult_ac)
 
+lemma fold_image_related: 
+  assumes Re: "R e e" 
+  and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
+  and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
+  shows "R (fold_image (op *) h e S) (fold_image (op *) g e S)"
+  using fS by (rule finite_subset_induct) (insert assms, auto)
+
+lemma  fold_image_eq_general:
+  assumes fS: "finite S"
+  and h: "\<forall>y\<in>S'. \<exists>!x. x\<in> S \<and> h(x) = y" 
+  and f12:  "\<forall>x\<in>S. h x \<in> S' \<and> f2(h x) = f1 x"
+  shows "fold_image (op *) f1 e S = fold_image (op *) f2 e S'"
+proof-
+  from h f12 have hS: "h ` S = S'" by auto
+  {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
+    from f12 h H  have "x = y" by auto }
+  hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
+  from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto 
+  from hS have "fold_image (op *) f2 e S' = fold_image (op *) f2 e (h ` S)" by simp
+  also have "\<dots> = fold_image (op *) (f2 o h) e S" 
+    using fold_image_reindex[OF fS hinj, of f2 e] .
+  also have "\<dots> = fold_image (op *) f1 e S " using th fold_image_cong[OF fS, of "f2 o h" f1 e]
+    by blast
+  finally show ?thesis ..
+qed
+
+lemma fold_image_eq_general_inverses:
+  assumes fS: "finite S" 
+  and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
+  and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x  \<and> g (h x) = f x"
+  shows "fold_image (op *) f e S = fold_image (op *) g e T"
+  (* metis solves it, but not yet available here *)
+  apply (rule fold_image_eq_general[OF fS, of T h g f e])
+  apply (rule ballI)
+  apply (frule kh)
+  apply (rule ex1I[])
+  apply blast
+  apply clarsimp
+  apply (drule hk) apply simp
+  apply (rule sym)
+  apply (erule conjunct1[OF conjunct2[OF hk]])
+  apply (rule ballI)
+  apply (drule  hk)
+  apply blast
+  done
+
 end
 
-
 subsection {* Generalized summation over a set *}
 
 interpretation comm_monoid_add!: comm_monoid_mult "0::'a::comm_monoid_add" "op +"
@@ -1092,6 +1137,31 @@
   using setsum_delta[OF fS, of a b, symmetric] 
   by (auto intro: setsum_cong)
 
+lemma setsum_restrict_set:
+  assumes fA: "finite A"
+  shows "setsum f (A \<inter> B) = setsum (\<lambda>x. if x \<in> B then f x else 0) A"
+proof-
+  from fA have fab: "finite (A \<inter> B)" by auto
+  have aba: "A \<inter> B \<subseteq> A" by blast
+  let ?g = "\<lambda>x. if x \<in> A\<inter>B then f x else 0"
+  from setsum_mono_zero_left[OF fA aba, of ?g]
+  show ?thesis by simp
+qed
+
+lemma setsum_cases:
+  assumes fA: "finite A"
+  shows "setsum (\<lambda>x. if x \<in> B then f x else g x) A =
+         setsum f (A \<inter> B) + setsum g (A \<inter> - B)"
+proof-
+  have a: "A = A \<inter> B \<union> A \<inter> -B" "(A \<inter> B) \<inter> (A \<inter> -B) = {}" 
+    by blast+
+  from fA 
+  have f: "finite (A \<inter> B)" "finite (A \<inter> -B)" by auto
+  let ?g = "\<lambda>x. if x \<in> B then f x else g x"
+  from setsum_Un_disjoint[OF f a(2), of ?g] a(1)
+  show ?thesis by simp
+qed
+
 
 (*But we can't get rid of finite I. If infinite, although the rhs is 0, 
   the lhs need not be, since UNION I A could still be finite.*)
@@ -1158,6 +1228,62 @@
    setsum f A + setsum f B - setsum f (A Int B)"
 by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)
 
+lemma (in comm_monoid_mult) fold_image_1: "finite S \<Longrightarrow> (\<forall>x\<in>S. f x = 1) \<Longrightarrow> fold_image op * f 1 S = 1"
+  apply (induct set: finite)
+  apply simp by (auto simp add: fold_image_insert)
+
+lemma (in comm_monoid_mult) fold_image_Un_one:
+  assumes fS: "finite S" and fT: "finite T"
+  and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
+  shows "fold_image (op *) f 1 (S \<union> T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T"
+proof-
+  have "fold_image op * f 1 (S \<inter> T) = 1" 
+    apply (rule fold_image_1)
+    using fS fT I0 by auto 
+  with fold_image_Un_Int[OF fS fT] show ?thesis by simp
+qed
+
+lemma setsum_eq_general_reverses:
+  assumes fS: "finite S" and fT: "finite T"
+  and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
+  and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = f x"
+  shows "setsum f S = setsum g T"
+  apply (simp add: setsum_def fS fT)
+  apply (rule comm_monoid_add.fold_image_eq_general_inverses[OF fS])
+  apply (erule kh)
+  apply (erule hk)
+  done
+
+
+
+lemma setsum_Un_zero:  
+  assumes fS: "finite S" and fT: "finite T"
+  and I0: "\<forall>x \<in> S\<inter>T. f x = 0"
+  shows "setsum f (S \<union> T) = setsum f S  + setsum f T"
+  using fS fT
+  apply (simp add: setsum_def)
+  apply (rule comm_monoid_add.fold_image_Un_one)
+  using I0 by auto
+
+
+lemma setsum_UNION_zero: 
+  assumes fS: "finite S" and fSS: "\<forall>T \<in> S. finite T"
+  and f0: "\<And>T1 T2 x. T1\<in>S \<Longrightarrow> T2\<in>S \<Longrightarrow> T1 \<noteq> T2 \<Longrightarrow> x \<in> T1 \<Longrightarrow> x \<in> T2 \<Longrightarrow> f x = 0"
+  shows "setsum f (\<Union>S) = setsum (\<lambda>T. setsum f T) S"
+  using fSS f0
+proof(induct rule: finite_induct[OF fS])
+  case 1 thus ?case by simp
+next
+  case (2 T F)
+  then have fTF: "finite T" "\<forall>T\<in>F. finite T" "finite F" and TF: "T \<notin> F" 
+    and H: "setsum f (\<Union> F) = setsum (setsum f) F" by (auto simp add: finite_insert)
+  from fTF have fUF: "finite (\<Union>F)" by (auto intro: finite_Union)
+  from "2.prems" TF fTF
+  show ?case 
+    by (auto simp add: H[symmetric] intro: setsum_Un_zero[OF fTF(1) fUF, of f])
+qed
+
+
 lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
   (if a:A then setsum f A - f a else setsum f A)"
 apply (case_tac "finite A")
@@ -1539,6 +1665,15 @@
       by (erule eq[symmetric])
 qed
 
+lemma setprod_Un_one:  
+  assumes fS: "finite S" and fT: "finite T"
+  and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
+  shows "setprod f (S \<union> T) = setprod f S  * setprod f T"
+  using fS fT
+  apply (simp add: setprod_def)
+  apply (rule fold_image_Un_one)
+  using I0 by auto
+
 
 lemma setprod_1: "setprod (%i. 1) A = 1"
 apply (case_tac "finite A")
--- a/src/HOL/HOL.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/HOL.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -1709,6 +1709,11 @@
 subsection {* Nitpick theorem store *}
 
 ML {*
+structure Nitpick_Const_Def_Thms = NamedThmsFun
+(
+  val name = "nitpick_const_def"
+  val description = "alternative definitions of constants as needed by Nitpick"
+)
 structure Nitpick_Const_Simp_Thms = NamedThmsFun
 (
   val name = "nitpick_const_simp"
@@ -1725,7 +1730,8 @@
   val description = "introduction rules for (co)inductive predicates as needed by Nitpick"
 )
 *}
-setup {* Nitpick_Const_Simp_Thms.setup
+setup {* Nitpick_Const_Def_Thms.setup
+         #> Nitpick_Const_Simp_Thms.setup
          #> Nitpick_Const_Psimp_Thms.setup
          #> Nitpick_Ind_Intro_Thms.setup *}
 
--- a/src/HOL/Int.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Int.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -1870,6 +1870,8 @@
   show "z ^ Suc n = z * (z ^ n)" by simp
 qed
 
+declare power_int.simps [simp del]
+
 end
 
 lemma zpower_zadd_distrib: "x ^ (y + z) = ((x ^ y) * (x ^ z)::int)"
@@ -1887,7 +1889,7 @@
 
 lemma of_int_power:
   "of_int (z ^ n) = (of_int z ^ n :: 'a::{recpower, ring_1})"
-  by (induct n) (simp_all add: power_Suc)
+  by (induct n) simp_all
 
 lemma int_power: "int (m^n) = (int m) ^ n"
   by (rule of_nat_power)
--- a/src/HOL/IsaMakefile	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/IsaMakefile	Fri Mar 06 09:35:43 2009 +0100
@@ -314,7 +314,7 @@
   Library/Euclidean_Space.thy Library/Glbs.thy Library/normarith.ML \
   Library/Executable_Set.thy Library/Infinite_Set.thy			\
   Library/FuncSet.thy Library/Permutations.thy Library/Determinants.thy\
-  Library/Bit.thy \
+  Library/Bit.thy Library/Topology_Euclidean_Space.thy \
   Library/Finite_Cartesian_Product.thy \
   Library/FrechetDeriv.thy \
   Library/Fundamental_Theorem_Algebra.thy \
--- a/src/HOL/Library/Binomial.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Binomial.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -355,7 +355,6 @@
   using binomial_fact_lemma[OF kn]
   by (simp add: field_simps fact_not_eq_zero of_nat_mult[symmetric])
 
-
 lemma binomial_gbinomial: "of_nat (n choose k) = of_nat n gchoose k"
 proof-
   {assume kn: "k > n" 
@@ -384,7 +383,7 @@
     have ?thesis using kn
       apply (simp add: binomial_fact[OF kn, where ?'a = 'a] 
 	gbinomial_pochhammer field_simps pochhammer_Suc_setprod)
-      apply (simp add: pochhammer_Suc_setprod fact_setprod h of_nat_setprod setprod_timesf[symmetric] eq' del: One_nat_def)
+      apply (simp add: pochhammer_Suc_setprod fact_setprod h of_nat_setprod setprod_timesf[symmetric] eq' del: One_nat_def power_Suc)
       unfolding setprod_Un_disjoint[OF th0, unfolded eq3, of "of_nat:: nat \<Rightarrow> 'a"] eq[unfolded h]
       unfolding mult_assoc[symmetric] 
       unfolding setprod_timesf[symmetric]
--- a/src/HOL/Library/Commutative_Ring.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Commutative_Ring.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -291,7 +291,8 @@
 	  then have "Ipol ls P * Ipol ls P = Ipol ls P ^ 2"
 	    by (simp add: numerals)
           with Suc show ?thesis
-            by (auto simp add: power_mult [symmetric, of _ 2 _] two_times mul_ci sqr_ci)
+            by (auto simp add: power_mult [symmetric, of _ 2 _] two_times mul_ci sqr_ci
+                     simp del: power_Suc)
         qed
       } with 1 Suc `odd l` show ?thesis by simp
     qed
--- a/src/HOL/Library/Determinants.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Determinants.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -1,5 +1,4 @@
 (* Title:      Determinants
-   ID:         $Id: 
    Author:     Amine Chaieb, University of Cambridge
 *)
 
@@ -176,7 +175,7 @@
     from ld[OF i(1) piU i(2)] i(1) have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
     from setprod_zero[OF fU ex] have "?pp p = 0" by simp}
   then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"  by blast
-  from setsum_superset[OF fPU id0 p0] show ?thesis
+  from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis
     unfolding det_def by (simp add: sign_id)
 qed
 
@@ -199,7 +198,7 @@
     from ld[OF i(1) piU i(2)] i(1) have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
     from setprod_zero[OF fU ex] have "?pp p = 0" by simp}
   then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"  by blast
-  from setsum_superset[OF fPU id0 p0] show ?thesis
+  from   setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis
     unfolding det_def by (simp add: sign_id)
 qed
 
@@ -750,8 +749,8 @@
   have "det (A**B) = setsum (\<lambda>f.  det (\<chi> i. A $ i $ f i *s B $ f i)) ?F"
     unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] .. 
   also have "\<dots> = setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU"
-    unfolding setsum_superset[OF fF PUF zth, symmetric] 
-    unfolding det_rows_mul ..
+    using setsum_mono_zero_cong_left[OF fF PUF zth, symmetric] 
+    unfolding det_rows_mul by auto
   finally show ?thesis unfolding th2 .
 qed  
 
--- a/src/HOL/Library/Euclidean_Space.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Euclidean_Space.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -1,5 +1,4 @@
 (* Title:      Library/Euclidean_Space
-   ID:         $Id: 
    Author:     Amine Chaieb, University of Cambridge
 *)
 
@@ -626,7 +625,7 @@
   ultimately show ?thesis by metis
 qed
 
-lemma dot_pos_lt: "(0 < x \<bullet> x) \<longleftrightarrow> (x::'a::{ordered_ring_strict,ring_no_zero_divisors} ^ 'n) \<noteq> 0" using dot_eq_0[of x] dot_pos_le[of x] 
+lemma dot_pos_lt[simp]: "(0 < x \<bullet> x) \<longleftrightarrow> (x::'a::{ordered_ring_strict,ring_no_zero_divisors} ^ 'n) \<noteq> 0" using dot_eq_0[of x] dot_pos_le[of x] 
   by (auto simp add: le_less) 
 
 subsection{* The collapse of the general concepts to dimension one. *}
@@ -759,10 +758,10 @@
 
 text{* Hence derive more interesting properties of the norm. *}
 
-lemma norm_0: "norm (0::real ^ 'n) = 0"
+lemma norm_0[simp]: "norm (0::real ^ 'n) = 0"
   by (rule norm_zero)
 
-lemma norm_mul: "norm(a *s x) = abs(a) * norm x"
+lemma norm_mul[simp]: "norm(a *s x) = abs(a) * norm x"
   by (simp add: vector_norm_def vector_component setL2_right_distrib
            abs_mult cong: strong_setL2_cong)
 lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (x \<bullet> x = (0::real))"
@@ -772,11 +771,11 @@
 lemma norm_pow_2: "norm x ^ 2 = x \<bullet> x"
   by (simp add: real_vector_norm_def)
 lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero)
-lemma vector_mul_eq_0: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
+lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
   by vector
-lemma vector_mul_lcancel: "a *s x = a *s y \<longleftrightarrow> a = (0::real) \<or> x = y"
+lemma vector_mul_lcancel[simp]: "a *s x = a *s y \<longleftrightarrow> a = (0::real) \<or> x = y"
   by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_ssub_ldistrib)
-lemma vector_mul_rcancel: "a *s x = b *s x \<longleftrightarrow> (a::real) = b \<or> x = 0"
+lemma vector_mul_rcancel[simp]: "a *s x = b *s x \<longleftrightarrow> (a::real) = b \<or> x = 0"
   by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_sub_rdistrib)
 lemma vector_mul_lcancel_imp: "a \<noteq> (0::real) ==>  a *s x = a *s y ==> (x = y)"
   by (metis vector_mul_lcancel)
@@ -814,28 +813,6 @@
 lemma norm_triangle_lt: "norm(x::real ^'n) + norm(y) < e ==> norm(x + y) < e"
   by (metis basic_trans_rules(21) norm_triangle_ineq)
 
-lemma setsum_delta: 
-  assumes fS: "finite S"
-  shows "setsum (\<lambda>k. if k=a then b k else 0) S = (if a \<in> S then b a else 0)"
-proof-
-  let ?f = "(\<lambda>k. if k=a then b k else 0)"
-  {assume a: "a \<notin> S"
-    hence "\<forall> k\<in> S. ?f k = 0" by simp
-    hence ?thesis  using a by simp}
-  moreover 
-  {assume a: "a \<in> S"
-    let ?A = "S - {a}"
-    let ?B = "{a}"
-    have eq: "S = ?A \<union> ?B" using a by blast 
-    have dj: "?A \<inter> ?B = {}" by simp
-    from fS have fAB: "finite ?A" "finite ?B" by auto  
-    have "setsum ?f S = setsum ?f ?A + setsum ?f ?B"
-      using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
-      by simp
-    then have ?thesis  using a by simp}
-  ultimately show ?thesis by blast
-qed
-  
 lemma component_le_norm: "i \<in> {1 .. dimindex(UNIV :: 'n set)} ==> \<bar>x$i\<bar> <= norm (x::real ^ 'n)"
   apply (simp add: vector_norm_def)
   apply (rule member_le_setL2, simp_all)
@@ -852,7 +829,7 @@
 lemma norm_le_l1: "norm (x:: real ^'n) <= setsum(\<lambda>i. \<bar>x$i\<bar>) {1..dimindex(UNIV::'n set)}"
   by (simp add: vector_norm_def setL2_le_setsum)
 
-lemma real_abs_norm: "\<bar> norm x\<bar> = norm (x :: real ^'n)" 
+lemma real_abs_norm[simp]: "\<bar> norm x\<bar> = norm (x :: real ^'n)" 
   by (rule abs_norm_cancel)
 lemma real_abs_sub_norm: "\<bar>norm(x::real ^'n) - norm y\<bar> <= norm(x - y)"
   by (rule norm_triangle_ineq3)
@@ -929,6 +906,7 @@
   apply simp_all
   done
 
+  (* FIXME: Move all these theorems into the ML code using lemma antiquotation *)
 lemma norm_add_rule_thm: "b1 >= norm(x1 :: real ^'n) \<Longrightarrow> b2 >= norm(x2) ==> b1 + b2 >= norm(x1 + x2)"
   apply (rule norm_triangle_le) by simp
 
@@ -977,17 +955,17 @@
 
 text{* Hence more metric properties. *}
 
-lemma dist_refl: "dist x x = 0" by norm
+lemma dist_refl[simp]: "dist x x = 0" by norm
 
 lemma dist_sym: "dist x y = dist y x"by norm
 
-lemma dist_pos_le: "0 <= dist x y" by norm
+lemma dist_pos_le[simp]: "0 <= dist x y" by norm
 
 lemma dist_triangle: "dist x z <= dist x y + dist y z" by norm
 
 lemma dist_triangle_alt: "dist y z <= dist x y + dist x z" by norm
 
-lemma dist_eq_0: "dist x y = 0 \<longleftrightarrow> x = y" by norm
+lemma dist_eq_0[simp]: "dist x y = 0 \<longleftrightarrow> x = y" by norm
 
 lemma dist_pos_lt: "x \<noteq> y ==> 0 < dist x y" by norm 
 lemma dist_nz:  "x \<noteq> y \<longleftrightarrow> 0 < dist x y" by norm 
@@ -1003,12 +981,12 @@
 lemma dist_triangle_add: "dist (x + y) (x' + y') <= dist x x' + dist y y'"
   by norm 
 
-lemma dist_mul: "dist (c *s x) (c *s y) = \<bar>c\<bar> * dist x y" 
+lemma dist_mul[simp]: "dist (c *s x) (c *s y) = \<bar>c\<bar> * dist x y" 
   unfolding dist_def vector_ssub_ldistrib[symmetric] norm_mul .. 
 
 lemma dist_triangle_add_half: " dist x x' < e / 2 \<Longrightarrow> dist y y' < e / 2 ==> dist(x + y) (x' + y') < e" by norm 
 
-lemma dist_le_0: "dist x y <= 0 \<longleftrightarrow> x = y" by norm 
+lemma dist_le_0[simp]: "dist x y <= 0 \<longleftrightarrow> x = y" by norm 
 
 lemma setsum_eq: "setsum f S = (\<chi> i. setsum (\<lambda>x. (f x)$i ) S)"
   apply vector
@@ -1035,47 +1013,6 @@
   shows "(setsum f S)$i = setsum (\<lambda>x. (f x)$i) S"
   using i by (simp add: setsum_eq Cart_lambda_beta)
 
-  (* This needs finiteness assumption due to the definition of fold!!! *)
-
-lemma setsum_superset:
-  assumes fb: "finite B" and ab: "A \<subseteq> B" 
-  and f0: "\<forall>x \<in> B - A. f x = 0"
-  shows "setsum f B = setsum f A"
-proof-
-  from ab fb have fa: "finite A" by (metis finite_subset)
-  from fb have fba: "finite (B - A)" by (metis finite_Diff)
-  have d: "A \<inter> (B - A) = {}" by blast
-  from ab have b: "B = A \<union> (B - A)" by blast
-  from setsum_Un_disjoint[OF fa fba d, of f] b
-    setsum_0'[OF f0]
-  show "setsum f B = setsum f A" by simp
-qed
-
-lemma setsum_restrict_set:
-  assumes fA: "finite A"
-  shows "setsum f (A \<inter> B) = setsum (\<lambda>x. if x \<in> B then f x else 0) A"
-proof-
-  from fA have fab: "finite (A \<inter> B)" by auto
-  have aba: "A \<inter> B \<subseteq> A" by blast
-  let ?g = "\<lambda>x. if x \<in> A\<inter>B then f x else 0"
-  from setsum_superset[OF fA aba, of ?g]
-  show ?thesis by simp
-qed
-
-lemma setsum_cases:
-  assumes fA: "finite A"
-  shows "setsum (\<lambda>x. if x \<in> B then f x else g x) A =
-         setsum f (A \<inter> B) + setsum g (A \<inter> - B)"
-proof-
-  have a: "A = A \<inter> B \<union> A \<inter> -B" "(A \<inter> B) \<inter> (A \<inter> -B) = {}" 
-    by blast+
-  from fA 
-  have f: "finite (A \<inter> B)" "finite (A \<inter> -B)" by auto
-  let ?g = "\<lambda>x. if x \<in> B then f x else g x"
-  from setsum_Un_disjoint[OF f a(2), of ?g] a(1)
-  show ?thesis by simp
-qed
-
 lemma setsum_norm: 
   fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
   assumes fS: "finite S"
@@ -1173,41 +1110,6 @@
   from setsum_Un_disjoint[of "?A" "?B" f] eq d show ?thesis by auto
 qed
 
-lemma setsum_reindex_nonzero: 
-  assumes fS: "finite S"
-  and nz: "\<And> x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> f x = f y \<Longrightarrow> h (f x) = 0"
-  shows "setsum h (f ` S) = setsum (h o f) S"
-using nz
-proof(induct rule: finite_induct[OF fS])
-  case 1 thus ?case by simp
-next
-  case (2 x F) 
-  {assume fxF: "f x \<in> f ` F" hence "\<exists>y \<in> F . f y = f x" by auto
-    then obtain y where y: "y \<in> F" "f x = f y" by auto 
-    from "2.hyps" y have xy: "x \<noteq> y" by auto
-    
-    from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp
-    have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto
-    also have "\<dots> = setsum (h o f) (insert x F)" 
-      using "2.hyps" "2.prems" h0  by auto 
-    finally have ?case .}
-  moreover
-  {assume fxF: "f x \<notin> f ` F"
-    have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)" 
-      using fxF "2.hyps" by simp 
-    also have "\<dots> = setsum (h o f) (insert x F)"  
-      using "2.hyps" "2.prems" fxF
-      apply auto apply metis done
-    finally have ?case .}
-  ultimately show ?case by blast
-qed
-
-lemma setsum_Un_nonzero:
-  assumes fS: "finite S" and fF: "finite F"
-  and f: "\<forall> x\<in> S \<inter> F . f x = (0::'a::ab_group_add)"
-  shows "setsum f (S \<union> F) = setsum f S + setsum f F"
-  using setsum_Un[OF fS fF, of f] setsum_0'[OF f] by simp
-
 lemma setsum_natinterval_left:
   assumes mn: "(m::nat) <= n" 
   shows "setsum f {m..n} = f m + setsum f {m + 1..n}"
@@ -1249,109 +1151,9 @@
   shows "setsum (\<lambda>y. setsum g {x. x\<in> S \<and> f x = y}) T = setsum g S"
   
 apply (subst setsum_image_gen[OF fS, of g f])
-apply (rule setsum_superset[OF fT fST])
+apply (rule setsum_mono_zero_right[OF fT fST])
 by (auto intro: setsum_0')
 
-(* FIXME: Change the name to fold_image\<dots> *)
-lemma (in comm_monoid_mult) fold_1': "finite S \<Longrightarrow> (\<forall>x\<in>S. f x = 1) \<Longrightarrow> fold_image op * f 1 S = 1"
-  apply (induct set: finite)
-  apply simp by (auto simp add: fold_image_insert)
-
-lemma (in comm_monoid_mult) fold_union_nonzero:
-  assumes fS: "finite S" and fT: "finite T"
-  and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
-  shows "fold_image (op *) f 1 (S \<union> T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T"
-proof-
-  have "fold_image op * f 1 (S \<inter> T) = 1" 
-    apply (rule fold_1')
-    using fS fT I0 by auto 
-  with fold_image_Un_Int[OF fS fT] show ?thesis by simp
-qed
-
-lemma setsum_union_nonzero:  
-  assumes fS: "finite S" and fT: "finite T"
-  and I0: "\<forall>x \<in> S\<inter>T. f x = 0"
-  shows "setsum f (S \<union> T) = setsum f S  + setsum f T"
-  using fS fT
-  apply (simp add: setsum_def)
-  apply (rule comm_monoid_add.fold_union_nonzero)
-  using I0 by auto
-
-lemma setprod_union_nonzero:  
-  assumes fS: "finite S" and fT: "finite T"
-  and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
-  shows "setprod f (S \<union> T) = setprod f S  * setprod f T"
-  using fS fT
-  apply (simp add: setprod_def)
-  apply (rule fold_union_nonzero)
-  using I0 by auto
-
-lemma setsum_unions_nonzero: 
-  assumes fS: "finite S" and fSS: "\<forall>T \<in> S. finite T"
-  and f0: "\<And>T1 T2 x. T1\<in>S \<Longrightarrow> T2\<in>S \<Longrightarrow> T1 \<noteq> T2 \<Longrightarrow> x \<in> T1 \<Longrightarrow> x \<in> T2 \<Longrightarrow> f x = 0"
-  shows "setsum f (\<Union>S) = setsum (\<lambda>T. setsum f T) S"
-  using fSS f0
-proof(induct rule: finite_induct[OF fS])
-  case 1 thus ?case by simp
-next
-  case (2 T F)
-  then have fTF: "finite T" "\<forall>T\<in>F. finite T" "finite F" and TF: "T \<notin> F" 
-    and H: "setsum f (\<Union> F) = setsum (setsum f) F" by (auto simp add: finite_insert)
-  from fTF have fUF: "finite (\<Union>F)" by (auto intro: finite_Union)
-  from "2.prems" TF fTF
-  show ?case 
-    by (auto simp add: H[symmetric] intro: setsum_union_nonzero[OF fTF(1) fUF, of f])
-qed
-
-  (* FIXME : Copied from Pocklington --- should be moved to Finite_Set!!!!!!!! *)
-
-
-lemma (in comm_monoid_mult) fold_related: 
-  assumes Re: "R e e" 
-  and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
-  and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
-  shows "R (fold_image (op *) h e S) (fold_image (op *) g e S)"
-  using fS by (rule finite_subset_induct) (insert assms, auto)
-
-  (* FIXME: I think we can get rid of the finite assumption!! *)	
-lemma (in comm_monoid_mult) 
-  fold_eq_general:
-  assumes fS: "finite S"
-  and h: "\<forall>y\<in>S'. \<exists>!x. x\<in> S \<and> h(x) = y" 
-  and f12:  "\<forall>x\<in>S. h x \<in> S' \<and> f2(h x) = f1 x"
-  shows "fold_image (op *) f1 e S = fold_image (op *) f2 e S'"
-proof-
-  from h f12 have hS: "h ` S = S'" by auto
-  {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
-    from f12 h H  have "x = y" by auto }
-  hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
-  from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto 
-  from hS have "fold_image (op *) f2 e S' = fold_image (op *) f2 e (h ` S)" by simp
-  also have "\<dots> = fold_image (op *) (f2 o h) e S" 
-    using fold_image_reindex[OF fS hinj, of f2 e] .
-  also have "\<dots> = fold_image (op *) f1 e S " using th fold_image_cong[OF fS, of "f2 o h" f1 e]
-    by blast
-  finally show ?thesis ..
-qed
-
-lemma (in comm_monoid_mult) fold_eq_general_inverses:
-  assumes fS: "finite S" 
-  and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
-  and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x  \<and> g (h x) = f x"
-  shows "fold_image (op *) f e S = fold_image (op *) g e T"
-  using fold_eq_general[OF fS, of T h g f e] kh hk by metis
-
-lemma setsum_eq_general_reverses:
-  assumes fS: "finite S" and fT: "finite T"
-  and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
-  and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x  \<and> g (h x) = f x"
-  shows "setsum f S = setsum g T"
-  apply (simp add: setsum_def fS fT)
-  apply (rule comm_monoid_add.fold_eq_general_inverses[OF fS])
-  apply (erule kh)
-  apply (erule hk)
-  done
-
 lemma vsum_norm_allsubsets_bound:
   fixes f:: "'a \<Rightarrow> real ^'n"
   assumes fP: "finite P" and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e" 
@@ -1383,7 +1185,7 @@
       by (auto simp add: setsum_negf setsum_component vector_component intro: abs_le_D1)
     have "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P = setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp + setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn" 
       apply (subst thp)
-      apply (rule setsum_Un_nonzero) 
+      apply (rule setsum_Un_zero) 
       using fP thp0 by auto
     also have "\<dots> \<le> 2*e" using Pne Ppe by arith
     finally show "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P \<le> 2*e" .
@@ -1392,7 +1194,7 @@
 qed
 
 lemma dot_lsum: "finite S \<Longrightarrow> setsum f S \<bullet> (y::'a::{comm_ring}^'n) = setsum (\<lambda>x. f x \<bullet> y) S "
-  by (induct rule: finite_induct, auto simp add: dot_lzero dot_ladd)
+  by (induct rule: finite_induct, auto simp add: dot_lzero dot_ladd dot_radd)
 
 lemma dot_rsum: "finite S \<Longrightarrow> (y::'a::{comm_ring}^'n) \<bullet> setsum f S = setsum (\<lambda>x. y \<bullet> f x) S "
   by (induct rule: finite_induct, auto simp add: dot_rzero dot_radd)
@@ -4137,7 +3939,8 @@
 	apply (subst Cy)
 	using C(1) fth
 	apply (simp only: setsum_clauses)
-	apply (auto simp add: dot_ladd dot_lmult dot_eq_0 dot_sym[of y a] dot_lsum[OF fth])
+	thm dot_ladd
+	apply (auto simp add: dot_ladd dot_radd dot_lmult dot_rmult dot_eq_0 dot_sym[of y a] dot_lsum[OF fth])
 	apply (rule setsum_0')
 	apply clarsimp
 	apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
@@ -5294,14 +5097,11 @@
       have ?lhs unfolding collinear_def c
 	apply (rule exI[where x=x])
 	apply auto
-	apply (rule exI[where x=0], simp)
 	apply (rule exI[where x="- 1"], simp only: vector_smult_lneg vector_smult_lid)
 	apply (rule exI[where x= "-c"], simp only: vector_smult_lneg)
 	apply (rule exI[where x=1], simp)
-	apply (rule exI[where x=0], simp)
 	apply (rule exI[where x="1 - c"], simp add: vector_smult_lneg vector_sub_rdistrib)
 	apply (rule exI[where x="c - 1"], simp add: vector_smult_lneg vector_sub_rdistrib)
-	apply (rule exI[where x=0], simp)
 	done}
     ultimately have ?thesis by blast}
   ultimately show ?thesis by blast
--- a/src/HOL/Library/Finite_Cartesian_Product.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Finite_Cartesian_Product.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -1,5 +1,4 @@
 (* Title:      HOL/Library/Finite_Cartesian_Product
-   ID:         $Id: Finite_Cartesian_Product.thy,v 1.5 2009/01/29 22:59:46 chaieb Exp $
    Author:     Amine Chaieb, University of Cambridge
 *)
 
--- a/src/HOL/Library/Formal_Power_Series.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Formal_Power_Series.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -1303,7 +1303,7 @@
 lemma fps_power_nth:
   fixes m :: nat and a :: "('a::comm_ring_1) fps"
   shows "(a ^m)$n = (if m=0 then 1$n else setsum (\<lambda>v. setprod (\<lambda>j. a $ (v!j)) {0..m - 1}) (natpermute n m))"
-  by (cases m, simp_all add: fps_power_nth_Suc)
+  by (cases m, simp_all add: fps_power_nth_Suc del: power_Suc)
 
 lemma fps_nth_power_0: 
   fixes m :: nat and a :: "('a::{comm_ring_1, recpower}) fps"
@@ -1314,7 +1314,7 @@
   {fix n assume m: "m = Suc n"
     have c: "m = card {0..n}" using m by simp
    have "(a ^m)$0 = setprod (\<lambda>i. a$0) {0..n}"
-     apply (simp add: m fps_power_nth del: replicate.simps)
+     apply (simp add: m fps_power_nth del: replicate.simps power_Suc)
      apply (rule setprod_cong)
      by (simp_all del: replicate.simps)
    also have "\<dots> = (a$0) ^ m"
@@ -1613,7 +1613,7 @@
   shows "(fps_radical r (Suc k) (a ^ Suc k)) = a"
 proof-
   let ?ak = "a^ Suc k"
-  have ak0: "?ak $ 0 = (a$0) ^ Suc k" by (simp add: fps_nth_power_0)
+  have ak0: "?ak $ 0 = (a$0) ^ Suc k" by (simp add: fps_nth_power_0 del: power_Suc)
   from r0 have th0: "r (Suc k) (a ^ Suc k $ 0) ^ Suc k = a ^ Suc k $ 0" using ak0 by auto
   from r0 ak0 have th1: "r (Suc k) (a ^ Suc k $ 0) = a $ 0" by auto
   from ak0 a0 have ak00: "?ak $ 0 \<noteq>0 " by auto
@@ -1634,7 +1634,7 @@
   from power_radical[of r, OF r0 a0]
   have "fps_deriv (?r ^ Suc k) = fps_deriv a" by simp
   hence "fps_deriv ?r * ?w = fps_deriv a"
-    by (simp add: fps_deriv_power mult_ac)
+    by (simp add: fps_deriv_power mult_ac del: power_Suc)
   hence "?iw * fps_deriv ?r * ?w = ?iw * fps_deriv a" by simp
   hence "fps_deriv ?r * (?iw * ?w) = fps_deriv a / ?w"
     by (simp add: fps_divide_def)
@@ -1663,7 +1663,7 @@
   have ab0: "(a*b) $ 0 \<noteq> 0" using a0 b0 by (simp add: fps_mult_nth)
   from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric] 
     power_radical[of r, OF ra0[unfolded k] a0] power_radical[of r, OF rb0[unfolded k] b0] k
-  have ?thesis by (auto simp add: power_mult_distrib)}
+  have ?thesis by (auto simp add: power_mult_distrib simp del: power_Suc)}
 ultimately show ?thesis by (cases k, auto)
 qed
 
@@ -1684,7 +1684,8 @@
     from ra0 a0 have th00: "r (Suc h) (a$0) \<noteq> 0" by auto
     have ria0': "r (Suc h) (inverse a $ 0) ^ Suc h = inverse a$0"
     using ria0 ra0 a0
-    by (simp add: fps_inverse_def  nonzero_power_inverse[OF th00, symmetric])
+    by (simp add: fps_inverse_def  nonzero_power_inverse[OF th00, symmetric]
+             del: power_Suc)
   from inverse_mult_eq_1[OF a0] have th0: "a * inverse a = 1" 
     by (simp add: mult_commute)
   from radical_unique[where a=1 and b=1 and r=r and k=h, simplified, OF r1[unfolded k]]
@@ -1848,7 +1849,8 @@
       moreover
       {fix n1 assume n1: "n = Suc n1"
 	have "?i $ n = setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + fps_inv a $ Suc n1 * (a $ 1)^ Suc n1"
-	  by (simp add: fps_compose_nth n1 startsby_zero_power_nth_same[OF a0])
+	  by (simp add: fps_compose_nth n1 startsby_zero_power_nth_same[OF a0]
+                   del: power_Suc)
 	also have "\<dots> = setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + (X$ Suc n1 - setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1})"
 	  using a0 a1 n1 by (simp add: fps_inv_def)
 	also have "\<dots> = X$n" using n1 by simp 
@@ -1878,7 +1880,8 @@
       moreover
       {fix n1 assume n1: "n = Suc n1"
 	have "?i $ n = setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + fps_ginv b a $ Suc n1 * (a $ 1)^ Suc n1"
-	  by (simp add: fps_compose_nth n1 startsby_zero_power_nth_same[OF a0])
+	  by (simp add: fps_compose_nth n1 startsby_zero_power_nth_same[OF a0]
+                   del: power_Suc)
 	also have "\<dots> = setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + (b$ Suc n1 - setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1})"
 	  using a0 a1 n1 by (simp add: fps_ginv_def)
 	also have "\<dots> = b$n" using n1 by simp 
@@ -2086,7 +2089,7 @@
   {fix h assume h: "k = Suc h"
     {fix n
       {assume kn: "k>n" hence "?l $ n = ?r $n" using a0 startsby_zero_power_prefix[OF a0] h 
-	  by (simp add: fps_compose_nth)}
+	  by (simp add: fps_compose_nth del: power_Suc)}
       moreover
       {assume kn: "k \<le> n"
 	hence "?l$n = ?r$n"
@@ -2138,7 +2141,7 @@
 proof-
   {fix n
     have "?l$n = ?r $ n"
-  apply (auto simp add: E_def field_simps power_Suc[symmetric]simp del: fact_Suc of_nat_Suc)
+  apply (auto simp add: E_def field_simps power_Suc[symmetric]simp del: fact_Suc of_nat_Suc power_Suc)
   by (simp add: of_nat_mult ring_simps)}
 then show ?thesis by (simp add: fps_eq_iff)
 qed
--- a/src/HOL/Library/FrechetDeriv.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/FrechetDeriv.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -397,7 +397,7 @@
   shows "FDERIV (\<lambda>x. x ^ n) x :> (\<lambda>h. of_nat n * x ^ (n - 1) * h)"
   apply (cases n)
    apply (simp add: FDERIV_const)
-  apply (simp add: FDERIV_power_Suc)
+  apply (simp add: FDERIV_power_Suc del: power_Suc)
   done
 
 
--- a/src/HOL/Library/Glbs.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Glbs.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -1,5 +1,4 @@
 (* Title:      Glbs
-   ID:         $Id: 
    Author:     Amine Chaieb, University of Cambridge
 *)
 
--- a/src/HOL/Library/Library.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Library.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -50,6 +50,7 @@
   Reflection
   RBT
   State_Monad
+  Topology_Euclidean_Space
   Univ_Poly
   While_Combinator
   Word
--- a/src/HOL/Library/Permutations.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Permutations.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -1,5 +1,4 @@
 (* Title:      Library/Permutations
-   ID:         $Id: 
    Author:     Amine Chaieb, University of Cambridge
 *)
 
--- a/src/HOL/Library/Pocklington.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Pocklington.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -554,12 +554,6 @@
 
 (* Fermat's Little theorem / Fermat-Euler theorem.                           *)
 
-lemma (in comm_monoid_mult) fold_image_related: 
-  assumes Re: "R e e" 
-  and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
-  and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
-  shows "R (fold_image (op *) h e S) (fold_image (op *) g e S)"
-  using fS by (rule finite_subset_induct) (insert assms, auto)
 
 lemma nproduct_mod:
   assumes fS: "finite S" and n0: "n \<noteq> 0"
@@ -585,26 +579,6 @@
   using fS unfolding setprod_def by (rule finite_subset_induct)
     (insert Sn, auto simp add: coprime_mul)
 
-lemma (in comm_monoid_mult) 
-  fold_image_eq_general:
-  assumes fS: "finite S"
-  and h: "\<forall>y\<in>S'. \<exists>!x. x\<in> S \<and> h(x) = y" 
-  and f12:  "\<forall>x\<in>S. h x \<in> S' \<and> f2(h x) = f1 x"
-  shows "fold_image (op *) f1 e S = fold_image (op *) f2 e S'"
-proof-
-  from h f12 have hS: "h ` S = S'" by auto
-  {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
-    from f12 h H  have "x = y" by auto }
-  hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
-  from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto 
-  from hS have "fold_image (op *) f2 e S' = fold_image (op *) f2 e (h ` S)" by simp
-  also have "\<dots> = fold_image (op *) (f2 o h) e S" 
-    using fold_image_reindex[OF fS hinj, of f2 e] .
-  also have "\<dots> = fold_image (op *) f1 e S " using th fold_image_cong[OF fS, of "f2 o h" f1 e]
-    by blast
-  finally show ?thesis ..
-qed
-
 lemma fermat_little: assumes an: "coprime a n"
   shows "[a ^ (\<phi> n) = 1] (mod n)"
 proof-
@@ -1287,5 +1261,4 @@
   show ?thesis by blast    
 qed
 
-
 end
--- a/src/HOL/Library/Poly_Deriv.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Poly_Deriv.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -139,7 +139,7 @@
   "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q +
     smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)"
 apply (simp only: pderiv_mult pderiv_power_Suc)
-apply (simp del: power_poly_Suc of_nat_Suc add: pderiv_pCons)
+apply (simp del: power_Suc of_nat_Suc add: pderiv_pCons)
 done
 
 lemma dvd_add_cancel1:
--- a/src/HOL/Library/Polynomial.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Library/Polynomial.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -636,12 +636,14 @@
 begin
 
 primrec power_poly where
-  power_poly_0: "(p::'a poly) ^ 0 = 1"
-| power_poly_Suc: "(p::'a poly) ^ (Suc n) = p * p ^ n"
+  "(p::'a poly) ^ 0 = 1"
+| "(p::'a poly) ^ (Suc n) = p * p ^ n"
 
 instance
   by default simp_all
 
+declare power_poly.simps [simp del]
+
 end
 
 lemma degree_power_le: "degree (p ^ n) \<le> degree p * n"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Topology_Euclidean_Space.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,5691 @@
+(* Title:      Topology
+   Author:     Amine Chaieb, University of Cambridge
+   Author:     Robert Himmelmann, TU Muenchen
+*)
+
+header {* Elementary topology in Euclidean space. *}
+
+theory Topology_Euclidean_Space
+  imports SEQ Euclidean_Space
+begin
+
+
+declare fstcart_pastecart[simp] sndcart_pastecart[simp]
+
+subsection{* General notion of a topology *}
+
+definition "istopology L \<longleftrightarrow> {} \<in> L \<and> (\<forall>S \<in>L. \<forall>T \<in>L. S \<inter> T \<in> L) \<and> (\<forall>K. K \<subseteq>L \<longrightarrow> \<Union> K \<in> L)"
+typedef (open) 'a topology = "{L::('a set) set. istopology L}" 
+  morphisms "openin" "topology"
+  unfolding istopology_def by blast
+
+lemma istopology_open_in[intro]: "istopology(openin U)"
+  using openin[of U] by blast
+
+lemma topology_inverse': "istopology U \<Longrightarrow> openin (topology U) = U"
+  using topology_inverse[unfolded mem_def Collect_def] .
+
+lemma topology_inverse_iff: "istopology U \<longleftrightarrow> openin (topology U) = U"
+  using topology_inverse[of U] istopology_open_in[of "topology U"] by auto
+
+lemma topology_eq: "T1 = T2 \<longleftrightarrow> (\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S)"
+proof-
+  {assume "T1=T2" hence "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S" by simp}
+  moreover
+  {assume H: "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S"
+    hence "openin T1 = openin T2" by (metis mem_def set_ext)
+    hence "topology (openin T1) = topology (openin T2)" by simp
+    hence "T1 = T2" unfolding openin_inverse .}
+  ultimately show ?thesis by blast
+qed
+
+text{* Infer the "universe" from union of all sets in the topology. *}
+
+definition "topspace T =  \<Union>{S. openin T S}"
+
+subsection{* Main properties of open sets *}
+
+lemma openin_clauses:
+  fixes U :: "'a topology"
+  shows "openin U {}"
+  "\<And>S T. openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S\<inter>T)"
+  "\<And>K. (\<forall>S \<in> K. openin U S) \<Longrightarrow> openin U (\<Union>K)"
+  using openin[of U] unfolding istopology_def Collect_def mem_def
+  by (metis mem_def subset_eq)+
+
+lemma openin_subset[intro]: "openin U S \<Longrightarrow> S \<subseteq> topspace U"
+  unfolding topspace_def by blast
+lemma openin_empty[simp]: "openin U {}" by (simp add: openin_clauses)
+
+lemma openin_Int[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<inter> T)"
+  by (simp add: openin_clauses)
+
+lemma openin_Union[intro]: "(\<forall>S \<in>K. openin U S) \<Longrightarrow> openin U (\<Union> K)" by (simp add: openin_clauses)
+
+lemma openin_Un[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<union> T)"
+  using openin_Union[of "{S,T}" U] by auto
+
+lemma openin_topspace[intro, simp]: "openin U (topspace U)" by (simp add: openin_Union topspace_def)
+
+lemma openin_subopen: "openin U S \<longleftrightarrow> (\<forall>x \<in> S. \<exists>T. openin U T \<and> x \<in> T \<and> T \<subseteq> S)" (is "?lhs \<longleftrightarrow> ?rhs")
+proof-
+  {assume ?lhs then have ?rhs by auto }
+  moreover
+  {assume H: ?rhs
+    then obtain t where t: "\<forall>x\<in>S. openin U (t x) \<and> x \<in> t x \<and> t x \<subseteq> S" 
+      unfolding Ball_def ex_simps(6)[symmetric] choice_iff by blast
+    from t have th0: "\<forall>x\<in> t`S. openin U x" by auto
+    have "\<Union> t`S = S" using t by auto 
+    with openin_Union[OF th0] have "openin U S" by simp }
+  ultimately show ?thesis by blast
+qed
+
+subsection{* Closed sets *}
+
+definition "closedin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> openin U (topspace U - S)"
+
+lemma closedin_subset: "closedin U S \<Longrightarrow> S \<subseteq> topspace U" by (metis closedin_def)
+lemma closedin_empty[simp]: "closedin U {}" by (simp add: closedin_def)
+lemma closedin_topspace[intro,simp]: 
+  "closedin U (topspace U)" by (simp add: closedin_def)
+lemma closedin_Un[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<union> T)"
+  by (auto simp add: Diff_Un closedin_def)
+
+lemma Diff_Inter[intro]: "A - \<Inter>S = \<Union> {A - s|s. s\<in>S}" by auto
+lemma closedin_Inter[intro]: assumes Ke: "K \<noteq> {}" and Kc: "\<forall>S \<in>K. closedin U S"
+  shows "closedin U (\<Inter> K)"  using Ke Kc unfolding closedin_def Diff_Inter by auto
+
+lemma closedin_Int[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<inter> T)"
+  using closedin_Inter[of "{S,T}" U] by auto
+
+lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B" by blast
+lemma openin_closedin_eq: "openin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> closedin U (topspace U - S)"
+  apply (auto simp add: closedin_def)
+  apply (metis openin_subset subset_eq)
+  apply (auto simp add: Diff_Diff_Int)
+  apply (subgoal_tac "topspace U \<inter> S = S")
+  by auto
+
+lemma openin_closedin:  "S \<subseteq> topspace U \<Longrightarrow> (openin U S \<longleftrightarrow> closedin U (topspace U - S))"
+  by (simp add: openin_closedin_eq)
+
+lemma openin_diff[intro]: assumes oS: "openin U S" and cT: "closedin U T" shows "openin U (S - T)"
+proof-
+  have "S - T = S \<inter> (topspace U - T)" using openin_subset[of U S]  oS cT
+    by (auto simp add: topspace_def openin_subset)
+  then show ?thesis using oS cT by (auto simp add: closedin_def)
+qed  
+
+lemma closedin_diff[intro]: assumes oS: "closedin U S" and cT: "openin U T" shows "closedin U (S - T)"
+proof-
+  have "S - T = S \<inter> (topspace U - T)" using closedin_subset[of U S]  oS cT 
+    by (auto simp add: topspace_def )
+  then show ?thesis using oS cT by (auto simp add: openin_closedin_eq)
+qed
+
+subsection{* Subspace topology. *}
+
+definition "subtopology U V = topology {S \<inter> V |S. openin U S}"
+
+lemma istopology_subtopology: "istopology {S \<inter> V |S. openin U S}" (is "istopology ?L")
+proof-
+  have "{} \<in> ?L" by blast
+  {fix A B assume A: "A \<in> ?L" and B: "B \<in> ?L"
+    from A B obtain Sa and Sb where Sa: "openin U Sa" "A = Sa \<inter> V" and Sb: "openin U Sb" "B = Sb \<inter> V" by blast
+    have "A\<inter>B = (Sa \<inter> Sb) \<inter> V" "openin U (Sa \<inter> Sb)"  using Sa Sb by blast+
+    then have "A \<inter> B \<in> ?L" by blast}
+  moreover
+  {fix K assume K: "K \<subseteq> ?L"
+    have th0: "?L = (\<lambda>S. S \<inter> V) ` openin U " 
+      apply (rule set_ext) 
+      apply (simp add: Ball_def image_iff) 
+      by (metis mem_def)
+    from K[unfolded th0 subset_image_iff]
+    obtain Sk where Sk: "Sk \<subseteq> openin U" "K = (\<lambda>S. S \<inter> V) ` Sk" by blast
+    have "\<Union>K = (\<Union>Sk) \<inter> V" using Sk by auto
+    moreover have "openin U (\<Union> Sk)" using Sk by (auto simp add: subset_eq mem_def)
+    ultimately have "\<Union>K \<in> ?L" by blast}
+  ultimately show ?thesis unfolding istopology_def by blast 
+qed
+
+lemma openin_subtopology: 
+  "openin (subtopology U V) S \<longleftrightarrow> (\<exists> T. (openin U T) \<and> (S = T \<inter> V))"
+  unfolding subtopology_def topology_inverse'[OF istopology_subtopology] 
+  by (auto simp add: Collect_def) 
+
+lemma topspace_subtopology: "topspace(subtopology U V) = topspace U \<inter> V"
+  by (auto simp add: topspace_def openin_subtopology)
+
+lemma closedin_subtopology: 
+  "closedin (subtopology U V) S \<longleftrightarrow> (\<exists>T. closedin U T \<and> S = T \<inter> V)"
+  unfolding closedin_def topspace_subtopology
+  apply (simp add: openin_subtopology)
+  apply (rule iffI)
+  apply clarify
+  apply (rule_tac x="topspace U - T" in exI)
+  by auto
+
+lemma openin_subtopology_refl: "openin (subtopology U V) V \<longleftrightarrow> V \<subseteq> topspace U"
+  unfolding openin_subtopology
+  apply (rule iffI, clarify)
+  apply (frule openin_subset[of U])  apply blast
+  apply (rule exI[where x="topspace U"])
+  by auto
+
+lemma subtopology_superset: assumes UV: "topspace U \<subseteq> V" 
+  shows "subtopology U V = U"
+proof-
+  {fix S
+    {fix T assume T: "openin U T" "S = T \<inter> V"
+      from T openin_subset[OF T(1)] UV have eq: "S = T" by blast
+      have "openin U S" unfolding eq using T by blast}
+    moreover
+    {assume S: "openin U S"
+      hence "\<exists>T. openin U T \<and> S = T \<inter> V"
+	using openin_subset[OF S] UV by auto}
+    ultimately have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S" by blast}
+  then show ?thesis unfolding topology_eq openin_subtopology by blast
+qed
+
+
+lemma subtopology_topspace[simp]: "subtopology U (topspace U) = U"
+  by (simp add: subtopology_superset)
+
+lemma subtopology_UNIV[simp]: "subtopology U UNIV = U"
+  by (simp add: subtopology_superset)
+
+subsection{* The universal Euclidean versions are what we use most of the time *}
+definition "open S \<longleftrightarrow> (\<forall>x \<in> S. \<exists>e >0. \<forall>x'. dist x' x < e \<longrightarrow> x' \<in> S)"
+definition "closed S \<longleftrightarrow> open(UNIV - S)"
+definition "euclidean = topology open"
+
+lemma open_empty[intro,simp]: "open {}" by (simp add: open_def)
+lemma open_UNIV[intro,simp]:  "open UNIV"
+  by (simp add: open_def, rule exI[where x="1"], auto)
+
+lemma open_inter[intro]: assumes S: "open S" and T: "open T"
+  shows "open (S \<inter> T)"
+proof-
+  note thS = S[unfolded open_def, rule_format]
+  note thT = T[unfolded open_def, rule_format]
+  {fix x assume x: "x \<in> S\<inter>T"
+    hence xS: "x \<in> S" and xT: "x \<in> T" by simp_all
+    from thS[OF xS] obtain eS where eS: "eS > 0" "\<forall>x'. dist x' x < eS \<longrightarrow> x' \<in> S" by blast
+    from thT[OF xT] obtain eT where eT: "eT > 0" "\<forall>x'. dist x' x < eT \<longrightarrow> x' \<in> T" by blast
+    from real_lbound_gt_zero[OF eS(1) eT(1)] obtain e where e: "e > 0" "e < eS" "e < eT" by blast
+    { fix x' assume d: "dist x' x < e"
+      hence dS: "dist x' x < eS" and dT: "dist x' x < eT" using e by arith+
+      from eS(2)[rule_format, OF dS] eT(2)[rule_format, OF dT] have "x' \<in> S\<inter>T" by blast}
+    hence "\<exists>e >0. \<forall>x'. dist x' x < e \<longrightarrow> x' \<in> (S\<inter>T)" using e by blast}
+  then show ?thesis unfolding open_def by blast
+qed
+
+lemma open_Union[intro]: "(\<forall>S\<in>K. open S) \<Longrightarrow> open (\<Union> K)"
+  by (simp add: open_def) metis
+
+lemma open_openin: "open S \<longleftrightarrow> openin euclidean S"
+  unfolding euclidean_def
+  apply (rule cong[where x=S and y=S])
+  apply (rule topology_inverse[symmetric])
+  apply (auto simp add: istopology_def)
+  by (auto simp add: mem_def subset_eq)
+
+lemma topspace_euclidean: "topspace euclidean = UNIV"
+  apply (simp add: topspace_def)
+  apply (rule set_ext)
+  by (auto simp add: open_openin[symmetric])
+
+lemma topspace_euclidean_subtopology[simp]: "topspace (subtopology euclidean S) = S"
+  by (simp add: topspace_euclidean topspace_subtopology)
+
+lemma closed_closedin: "closed S \<longleftrightarrow> closedin euclidean S"
+  by (simp add: closed_def closedin_def topspace_euclidean open_openin)
+
+lemma open_Un[intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S\<union>T)"
+  by (auto simp add: open_openin)
+
+lemma open_subopen: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S)"
+  by (simp add: open_openin openin_subopen[symmetric])
+
+lemma closed_empty[intro, simp]: "closed {}" by (simp add: closed_closedin)
+
+lemma closed_UNIV[simp,intro]: "closed UNIV"
+  by (simp add: closed_closedin topspace_euclidean[symmetric])
+
+lemma closed_Un[intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S\<union>T)"
+  by (auto simp add: closed_closedin)
+
+lemma closed_Int[intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S\<inter>T)"
+  by (auto simp add: closed_closedin)
+
+lemma closed_Inter[intro]: assumes H: "\<forall>S \<in>K. closed S" shows "closed (\<Inter>K)"
+  using H
+  unfolding closed_closedin
+  apply (cases "K = {}")
+  apply (simp add: closed_closedin[symmetric])
+  apply (rule closedin_Inter, auto)
+  done
+
+lemma open_closed: "open S \<longleftrightarrow> closed (UNIV - S)"
+  by (simp add: open_openin closed_closedin topspace_euclidean openin_closedin_eq)
+
+lemma closed_open: "closed S \<longleftrightarrow> open(UNIV - S)"
+  by (simp add: open_openin closed_closedin topspace_euclidean closedin_def)
+
+lemma open_diff[intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)"
+  by (auto simp add: open_openin closed_closedin)
+
+lemma closed_diff[intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed(S-T)"
+  by (auto simp add: open_openin closed_closedin)
+
+lemma open_Inter[intro]: assumes fS: "finite S" and h: "\<forall>T\<in>S. open T" shows "open (\<Inter>S)"
+  using h by (induct rule: finite_induct[OF fS], auto)
+
+lemma closed_Union[intro]: assumes fS: "finite S" and h: "\<forall>T\<in>S. closed T" shows "closed (\<Union>S)"
+  using h by (induct rule: finite_induct[OF fS], auto)
+
+subsection{* Open and closed balls. *}
+
+definition "ball x e = {y. dist x y < e}"
+definition "cball x e = {y. dist x y \<le> e}"
+
+lemma mem_ball[simp]: "y \<in> ball x e \<longleftrightarrow> dist x y < e" by (simp add: ball_def) 
+lemma mem_cball[simp]: "y \<in> cball x e \<longleftrightarrow> dist x y \<le> e" by (simp add: cball_def) 
+lemma mem_ball_0[simp]: "x \<in> ball 0 e \<longleftrightarrow> norm x < e" by (simp add: dist_def)
+lemma mem_cball_0[simp]: "x \<in> cball 0 e \<longleftrightarrow> norm x \<le> e" by (simp add: dist_def)
+lemma centre_in_cball[simp]: "x \<in> cball x e \<longleftrightarrow> 0\<le> e"  by simp
+lemma ball_subset_cball[simp,intro]: "ball x e \<subseteq> cball x e" by (simp add: subset_eq)
+lemma subset_ball[intro]: "d <= e ==> ball x d \<subseteq> ball x e" by (simp add: subset_eq)
+lemma subset_cball[intro]: "d <= e ==> cball x d \<subseteq> cball x e" by (simp add: subset_eq)
+lemma ball_max_Un: "ball a (max r s) = ball a r \<union> ball a s"
+  by (simp add: expand_set_eq) arith
+
+lemma ball_min_Int: "ball a (min r s) = ball a r \<inter> ball a s"
+  by (simp add: expand_set_eq) 
+
+subsection{* Topological properties of open balls *}
+
+lemma diff_less_iff: "(a::real) - b > 0 \<longleftrightarrow> a > b" 
+  "(a::real) - b < 0 \<longleftrightarrow> a < b" 
+  "a - b < c \<longleftrightarrow> a < c +b" "a - b > c \<longleftrightarrow> a > c +b" by arith+
+lemma diff_le_iff: "(a::real) - b \<ge> 0 \<longleftrightarrow> a \<ge> b" "(a::real) - b \<le> 0 \<longleftrightarrow> a \<le> b" 
+  "a - b \<le> c \<longleftrightarrow> a \<le> c +b" "a - b \<ge> c \<longleftrightarrow> a \<ge> c +b"  by arith+
+
+lemma open_ball[intro, simp]: "open (ball x e)"
+  unfolding open_def ball_def Collect_def Ball_def mem_def
+  unfolding dist_sym
+  apply clarify
+  apply (rule_tac x="e - dist xa x" in exI)
+  using dist_triangle_alt[where z=x]
+  apply (clarsimp simp add: diff_less_iff)
+  apply atomize
+  apply (erule_tac x="x'" in allE)
+  apply (erule_tac x="xa" in allE)
+  by arith
+
+lemma centre_in_ball[simp]: "x \<in> ball x e \<longleftrightarrow> e > 0" by (metis mem_ball dist_refl)
+lemma open_contains_ball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. ball x e \<subseteq> S)"
+  unfolding open_def subset_eq mem_ball Ball_def dist_sym ..
+
+lemma open_contains_ball_eq: "open S \<Longrightarrow> \<forall>x. x\<in>S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)"
+  by (metis open_contains_ball subset_eq centre_in_ball)
+
+lemma ball_eq_empty[simp]: "ball x e = {} \<longleftrightarrow> e \<le> 0"
+  unfolding mem_ball expand_set_eq
+  apply (simp add: not_less)
+  by (metis dist_pos_le order_trans dist_refl)
+
+lemma ball_empty[intro]: "e \<le> 0 ==> ball x e = {}" by simp
+
+subsection{* Basic "localization" results are handy for connectedness. *}
+
+lemma openin_open: "openin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. open T \<and> (S = U \<inter> T))"
+  by (auto simp add: openin_subtopology open_openin[symmetric])
+
+lemma openin_open_Int[intro]: "open S \<Longrightarrow> openin (subtopology euclidean U) (U \<inter> S)"
+  by (auto simp add: openin_open) 
+
+lemma open_openin_trans[trans]: 
+ "open S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> openin (subtopology euclidean S) T"
+  by (metis Int_absorb1  openin_open_Int)
+
+lemma open_subset:  "S \<subseteq> T \<Longrightarrow> open S \<Longrightarrow> openin (subtopology euclidean T) S"
+  by (auto simp add: openin_open)
+
+lemma closedin_closed: "closedin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. closed T \<and> S = U \<inter> T)"
+  by (simp add: closedin_subtopology closed_closedin Int_ac)
+
+lemma closedin_closed_Int: "closed S ==> closedin (subtopology euclidean U) (U \<inter> S)"
+  by (metis closedin_closed)
+
+lemma closed_closedin_trans: "closed S \<Longrightarrow> closed T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> closedin (subtopology euclidean S) T"
+  apply (subgoal_tac "S \<inter> T = T" )
+  apply auto
+  apply (frule closedin_closed_Int[of T S])
+  by simp
+
+lemma closed_subset: "S \<subseteq> T \<Longrightarrow> closed S \<Longrightarrow> closedin (subtopology euclidean T) S"
+  by (auto simp add: closedin_closed)
+
+lemma openin_euclidean_subtopology_iff: "openin (subtopology euclidean U) S 
+  \<longleftrightarrow> S \<subseteq> U \<and> (\<forall>x\<in>S. \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x'\<in> S)" (is "?lhs \<longleftrightarrow> ?rhs")
+proof-
+  {assume ?lhs hence ?rhs unfolding openin_subtopology open_openin[symmetric]
+      by (simp add: open_def) blast}
+  moreover
+  {assume SU: "S \<subseteq> U" and H: "\<And>x. x \<in> S \<Longrightarrow> \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x' \<in> S"
+    from H obtain d where d: "\<And>x . x\<in> S \<Longrightarrow> d x > 0 \<and> (\<forall>x' \<in> U. dist x' x < d x \<longrightarrow> x' \<in> S)"
+      by metis
+    let ?T = "\<Union>{B. \<exists>x\<in>S. B = ball x (d x)}"
+    have oT: "open ?T" by auto
+    { fix x assume "x\<in>S"
+      hence "x \<in> \<Union>{B. \<exists>x\<in>S. B = ball x (d x)}"
+	apply simp apply(rule_tac x="ball x(d x)" in exI) apply auto
+	unfolding dist_refl using d[of x] by auto
+      hence "x\<in> ?T \<inter> U" using SU and `x\<in>S` by auto  }
+    moreover
+    { fix y assume "y\<in>?T"
+      then obtain B where "y\<in>B" "B\<in>{B. \<exists>x\<in>S. B = ball x (d x)}" by auto
+      then obtain x where "x\<in>S" and x:"y \<in> ball x (d x)" by auto
+      assume "y\<in>U"
+      hence "y\<in>S" using d[OF `x\<in>S`] and x by(auto simp add: dist_sym) }
+    ultimately have "S = ?T \<inter> U" by blast 
+    with oT have ?lhs unfolding openin_subtopology open_openin[symmetric] by blast}
+  ultimately show ?thesis by blast
+qed
+
+text{* These "transitivity" results are handy too. *}
+
+lemma openin_trans[trans]: "openin (subtopology euclidean T) S \<Longrightarrow> openin (subtopology euclidean U) T 
+  \<Longrightarrow> openin (subtopology euclidean U) S"
+  unfolding open_openin openin_open by blast
+
+lemma openin_open_trans: "openin (subtopology euclidean T) S \<Longrightarrow> open T \<Longrightarrow> open S"
+  by (auto simp add: openin_open intro: openin_trans)
+
+lemma closedin_trans[trans]: 
+ "closedin (subtopology euclidean T) S \<Longrightarrow> 
+           closedin (subtopology euclidean U) T
+           ==> closedin (subtopology euclidean U) S"
+  by (auto simp add: closedin_closed closed_closedin closed_Inter Int_assoc)
+
+lemma closedin_closed_trans: "closedin (subtopology euclidean T) S \<Longrightarrow> closed T \<Longrightarrow> closed S"
+  by (auto simp add: closedin_closed intro: closedin_trans)
+
+subsection{* Connectedness *}
+
+definition "connected S \<longleftrightarrow>
+  ~(\<exists>e1 e2. open e1 \<and> open e2 \<and> S \<subseteq> (e1 \<union> e2) \<and> (e1 \<inter> e2 \<inter> S = {}) 
+  \<and> ~(e1 \<inter> S = {}) \<and> ~(e2 \<inter> S = {}))"
+
+lemma connected_local: 
+ "connected S \<longleftrightarrow> ~(\<exists>e1 e2.
+                 openin (subtopology euclidean S) e1 \<and>
+                 openin (subtopology euclidean S) e2 \<and>
+                 S \<subseteq> e1 \<union> e2 \<and>
+                 e1 \<inter> e2 = {} \<and>
+                 ~(e1 = {}) \<and>
+                 ~(e2 = {}))"
+unfolding connected_def openin_open by blast
+
+lemma exists_diff: "(\<exists>S. P(UNIV - S)) \<longleftrightarrow> (\<exists>S. P S)" (is "?lhs \<longleftrightarrow> ?rhs")
+proof-
+  
+  {assume "?lhs" hence ?rhs by blast }
+  moreover
+  {fix S assume H: "P S"
+    have "S = UNIV - (UNIV - S)" by auto
+    with H have "P (UNIV - (UNIV - S))" by metis }
+  ultimately show ?thesis by metis
+qed
+
+lemma connected_clopen: "connected S \<longleftrightarrow>
+        (\<forall>T. openin (subtopology euclidean S) T \<and>
+            closedin (subtopology euclidean S) T \<longrightarrow> T = {} \<or> T = S)" (is "?lhs \<longleftrightarrow> ?rhs")
+proof-
+  have " \<not> connected S \<longleftrightarrow> (\<exists>e1 e2. open e1 \<and> open (UNIV - e2) \<and> S \<subseteq> e1 \<union> (UNIV - e2) \<and> e1 \<inter> (UNIV - e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (UNIV - e2) \<inter> S \<noteq> {})" 
+    unfolding connected_def openin_open closedin_closed 
+    apply (subst exists_diff) by blast
+  hence th0: "connected S \<longleftrightarrow> \<not> (\<exists>e2 e1. closed e2 \<and> open e1 \<and> S \<subseteq> e1 \<union> (UNIV - e2) \<and> e1 \<inter> (UNIV - e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (UNIV - e2) \<inter> S \<noteq> {})" 
+    (is " _ \<longleftrightarrow> \<not> (\<exists>e2 e1. ?P e2 e1)") apply (simp add: closed_def) by metis
+
+  have th1: "?rhs \<longleftrightarrow> \<not> (\<exists>t' t. closed t'\<and>t = S\<inter>t' \<and> t\<noteq>{} \<and> t\<noteq>S \<and> (\<exists>t'. open t' \<and> t = S \<inter> t'))"
+    (is "_ \<longleftrightarrow> \<not> (\<exists>t' t. ?Q t' t)")
+    unfolding connected_def openin_open closedin_closed by auto
+  {fix e2
+    {fix e1 have "?P e2 e1 \<longleftrightarrow> (\<exists>t.  closed e2 \<and> t = S\<inter>e2 \<and> open e1 \<and> t = S\<inter>e1 \<and> t\<noteq>{} \<and> t\<noteq>S)"
+	by auto}
+    then have "(\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" by metis}
+  then have "\<forall>e2. (\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" by blast
+  then show ?thesis unfolding th0 th1 by simp
+qed
+
+lemma connected_empty[simp, intro]: "connected {}"
+  by (simp add: connected_def)
+
+subsection{* Hausdorff and other separation properties *}
+
+lemma hausdorff: 
+  assumes xy: "x \<noteq> y"
+  shows "\<exists>U V. open U \<and> open V \<and> x\<in> U \<and> y \<in> V \<and> (U \<inter> V = {})" (is "\<exists>U V. ?P U V")
+proof-
+  let ?U = "ball x (dist x y / 2)"
+  let ?V = "ball y (dist x y / 2)"
+  have th0: "\<And>d x y z. (d x z :: real) <= d x y + d y z \<Longrightarrow> d y z = d z y
+               ==> ~(d x y * 2 < d x z \<and> d z y * 2 < d x z)" by arith
+  have "?P ?U ?V" using dist_pos_lt[OF xy] th0[of dist,OF dist_triangle dist_sym]
+    by (auto simp add: dist_refl expand_set_eq Arith_Tools.less_divide_eq_number_of1)
+  then show ?thesis by blast
+qed
+
+lemma separation_t2: "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
+  using hausdorff[of x y] by blast 
+
+lemma separation_t1: "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in>U \<and> y\<notin> U \<and> x\<notin>V \<and> y\<in>V)"
+  using separation_t2[of x y] by blast
+
+lemma separation_t0: "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))" by(metis separation_t1)
+
+subsection{* Limit points *}
+
+definition islimpt:: "real ^'n \<Rightarrow> (real^'n) set \<Rightarrow> bool" (infixr "islimpt" 60) where
+  islimpt_def: "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))"
+
+  (* FIXME: Sure this form is OK????*)
+lemma islimptE: assumes "x islimpt S" and "x \<in> T" and "open T"
+  obtains "(\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x)"
+  using assms unfolding islimpt_def by auto
+
+lemma islimpt_subset: "x islimpt S \<Longrightarrow> S \<subseteq> T ==> x islimpt T" by (auto simp add: islimpt_def)
+lemma islimpt_approachable: "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e)"
+  unfolding islimpt_def
+  apply auto
+  apply(erule_tac x="ball x e" in allE)
+  apply (auto simp add: dist_refl)
+  apply(rule_tac x=y in bexI) apply (auto simp add: dist_sym)
+  by (metis open_def dist_sym open_ball centre_in_ball mem_ball)
+
+lemma islimpt_approachable_le: "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in> S. x' \<noteq> x \<and> dist x' x <= e)"
+  unfolding islimpt_approachable
+  using approachable_lt_le[where f="\<lambda>x'. dist x' x" and P="\<lambda>x'. \<not> (x'\<in>S \<and> x'\<noteq>x)"]
+  by metis
+
+lemma islimpt_UNIV[simp, intro]: "(x:: real ^'n) islimpt UNIV"
+proof-
+  {
+    fix e::real assume ep: "e>0"
+    from vector_choose_size[of "e/2"] ep have "\<exists>(c:: real ^'n). norm c = e/2" by auto
+    then obtain c ::"real^'n" where c: "norm c = e/2" by blast 
+    let ?x = "x + c"
+    have "?x \<noteq> x" using c ep by (auto simp add: norm_eq_0_imp)
+    moreover have "dist ?x x < e" using c ep apply simp by norm
+    ultimately have "\<exists>x'. x' \<noteq> x\<and> dist x' x < e" by blast}
+  then show ?thesis unfolding islimpt_approachable by blast
+qed
+
+lemma closed_limpt: "closed S \<longleftrightarrow> (\<forall>x. x islimpt S \<longrightarrow> x \<in> S)"
+  unfolding closed_def
+  apply (subst open_subopen)
+  apply (simp add: islimpt_def subset_eq)
+  by (metis DiffE DiffI UNIV_I insertCI insert_absorb mem_def)
+
+lemma islimpt_EMPTY[simp]: "\<not> x islimpt {}"
+  unfolding islimpt_approachable apply auto by ferrack
+
+lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i\<in>{1.. dimindex(UNIV:: 'n set)}. 0 \<le>x$i}"
+proof-
+  let ?U = "{1 .. dimindex(UNIV :: 'n set)}"
+  let ?O = "{x::real^'n. \<forall>i\<in>?U. x$i\<ge>0}"
+  {fix x:: "real^'n" and i::nat assume H: "\<forall>e>0. \<exists>x'\<in>?O. x' \<noteq> x \<and> dist x' x < e" and i: "i \<in> ?U" 
+    and xi: "x$i < 0"
+    from xi have th0: "-x$i > 0" by arith
+    from H[rule_format, OF th0] obtain x' where x': "x' \<in>?O" "x' \<noteq> x" "dist x' x < -x $ i" by blast
+      have th:" \<And>b a (x::real). abs x <= b \<Longrightarrow> b <= a ==> ~(a + x < 0)" by arith
+      have th': "\<And>x (y::real). x < 0 \<Longrightarrow> 0 <= y ==> abs x <= abs (y - x)" by arith
+      have th1: "\<bar>x$i\<bar> \<le> \<bar>(x' - x)$i\<bar>" using i x'(1) xi
+	apply (simp only: vector_component)
+	by (rule th') auto
+      have th2: "\<bar>dist x x'\<bar> \<ge> \<bar>(x' - x)$i\<bar>" using  component_le_norm[OF i, of "x'-x"]
+	apply (simp add: dist_def) by norm
+      from th[OF th1 th2] x'(3) have False by (simp add: dist_sym dist_pos_le) }
+  then show ?thesis unfolding closed_limpt islimpt_approachable 
+    unfolding not_le[symmetric] by blast
+qed
+
+lemma finite_set_avoid: assumes fS: "finite S" shows  "\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<longrightarrow> d <= dist a x"
+proof(induct rule: finite_induct[OF fS])
+  case 1 thus ?case apply auto by ferrack
+next
+  case (2 x F) 
+  from 2 obtain d where d: "d >0" "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> d \<le> dist a x" by blast
+  {assume "x = a" hence ?case using d by auto  }
+  moreover
+  {assume xa: "x\<noteq>a"
+    let ?d = "min d (dist a x)"
+    have dp: "?d > 0" using xa d(1) using dist_nz by auto
+    from d have d': "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> ?d \<le> dist a x" by auto
+    with dp xa have ?case by(auto intro!: exI[where x="?d"]) }
+  ultimately show ?case by blast
+qed
+
+lemma islimpt_finite: assumes fS: "finite S" shows "\<not> a islimpt S"
+  unfolding islimpt_approachable 
+  using finite_set_avoid[OF fS, of a] by (metis dist_sym  not_le)
+
+lemma islimpt_Un: "x islimpt (S \<union> T) \<longleftrightarrow> x islimpt S \<or> x islimpt T"
+  apply (rule iffI)
+  defer
+  apply (metis Un_upper1 Un_upper2 islimpt_subset)
+  unfolding islimpt_approachable
+  apply auto
+  apply (erule_tac x="min e ea" in allE)
+  apply auto
+  done
+
+lemma discrete_imp_closed: 
+  assumes e: "0 < e" and d: "\<forall>x \<in> S. \<forall>y \<in> S. norm(y - x) < e \<longrightarrow> y = x"
+  shows "closed S"
+proof-  
+  {fix x assume C: "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e"
+    from e have e2: "e/2 > 0" by arith
+    from C[rule_format, OF e2] obtain y where y: "y \<in> S" "y\<noteq>x" "dist y x < e/2" by blast
+    let ?m = "min (e/2) (dist x y) "
+    from e2 y(2) have mp: "?m > 0" by (simp add: dist_nz[THEN sym])
+    from C[rule_format, OF mp] obtain z where z: "z \<in> S" "z\<noteq>x" "dist z x < ?m" by blast
+    have th: "norm (z - y) < e" using z y by norm
+    from d[rule_format, OF y(1) z(1) th] y z 
+    have False by (auto simp add: dist_sym)}
+  then show ?thesis by (metis islimpt_approachable closed_limpt)
+qed
+
+subsection{* Interior of a Set *}
+definition "interior S = {x. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S}"
+
+lemma interior_eq: "interior S = S \<longleftrightarrow> open S"
+  apply (simp add: expand_set_eq interior_def)
+  apply (subst (2) open_subopen) by blast
+
+lemma interior_open: "open S ==> (interior S = S)" by (metis interior_eq)
+
+lemma interior_empty[simp]: "interior {} = {}" by (simp add: interior_def)
+
+lemma open_interior[simp, intro]: "open(interior S)"
+  apply (simp add: interior_def)
+  apply (subst open_subopen) by blast
+
+lemma interior_interior[simp]: "interior(interior S) = interior S" by (metis interior_eq open_interior)
+lemma interior_subset: "interior S \<subseteq> S" by (auto simp add: interior_def) 
+lemma subset_interior: "S \<subseteq> T ==> (interior S) \<subseteq> (interior T)" by (auto simp add: interior_def)
+lemma interior_maximal: "T \<subseteq> S \<Longrightarrow> open T ==> T \<subseteq> (interior S)" by (auto simp add: interior_def)
+lemma interior_unique: "T \<subseteq> S \<Longrightarrow> open T  \<Longrightarrow> (\<forall>T'. T' \<subseteq> S \<and> open T' \<longrightarrow> T' \<subseteq> T) \<Longrightarrow> interior S = T"
+  by (metis equalityI interior_maximal interior_subset open_interior)
+lemma mem_interior: "x \<in> interior S \<longleftrightarrow> (\<exists>e. 0 < e \<and> ball x e \<subseteq> S)"
+  apply (simp add: interior_def)
+  by (metis open_contains_ball centre_in_ball open_ball subset_trans)
+
+lemma open_subset_interior: "open S ==> S \<subseteq> interior T \<longleftrightarrow> S \<subseteq> T"
+  by (metis interior_maximal interior_subset subset_trans)
+
+lemma interior_inter[simp]: "interior(S \<inter> T) = interior S \<inter> interior T"
+  apply (rule equalityI, simp)
+  apply (metis Int_lower1 Int_lower2 subset_interior)
+  by (metis Int_mono interior_subset open_inter open_interior open_subset_interior)
+
+lemma interior_limit_point[intro]: assumes x: "x \<in> interior S" shows "x islimpt S"
+proof-
+  from x obtain e where e: "e>0" "\<forall>x'. dist x x' < e \<longrightarrow> x' \<in> S"
+    unfolding mem_interior subset_eq Ball_def mem_ball by blast
+  {fix d::real assume d: "d>0"
+    let ?m = "min d e / 2"
+    have mde2: "?m \<ge> 0" using e(1) d(1) by arith
+    from vector_choose_dist[OF mde2, of x] 
+    obtain y where y: "dist x y = ?m" by blast
+    have th: "dist x y < e" "dist x y < d" unfolding y using e(1) d(1) by arith+
+    have "\<exists>x'\<in>S. x'\<noteq> x \<and> dist x' x < d" 
+      apply (rule bexI[where x=y])
+      using e th y by (auto simp add: dist_sym)}
+  then show ?thesis unfolding islimpt_approachable by blast
+qed
+
+lemma interior_closed_Un_empty_interior: 
+  assumes cS: "closed S" and iT: "interior T = {}"
+  shows "interior(S \<union> T) = interior S"
+proof-
+  have "interior S \<subseteq> interior (S\<union>T)"
+    by (rule subset_interior, blast)
+  moreover
+  {fix x e assume e: "e > 0" "\<forall>x' \<in> ball x e. x'\<in>(S\<union>T)"
+    {fix y assume y: "y \<in> ball x e" 
+      {fix d::real assume d: "d > 0"
+	let ?k = "min d (e - dist x y)"
+	have kp: "?k > 0" using d e(1) y[unfolded mem_ball] by norm
+	have "?k/2 \<ge> 0" using kp by simp 
+	then obtain w where w: "dist y w = ?k/ 2" by (metis vector_choose_dist)
+	from iT[unfolded expand_set_eq mem_interior] 
+	have "\<not> ball w (?k/4) \<subseteq> T" using kp by (auto simp add: Arith_Tools.less_divide_eq_number_of1)
+	then obtain z where z: "dist w z < ?k/4" "z \<notin> T" by (auto simp add: subset_eq)
+	have "z \<notin> T \<and> z\<noteq> y \<and> dist z y < d \<and> dist x z < e" using z apply simp
+	  using w e(1) d apply (auto simp only: dist_sym)  
+	  apply (auto simp add: min_def cong del: if_weak_cong)
+	  apply (cases "d \<le> e - dist x y", auto simp add: ring_simps cong del: if_weak_cong)
+	  apply norm
+	  apply (cases "d \<le> e - dist x y", auto simp add: ring_simps not_le not_less cong del: if_weak_cong)
+	  apply norm
+	  apply norm
+	  apply (cases "d \<le> e - dist x y", auto simp add: ring_simps not_le not_less cong del: if_weak_cong)
+	  apply norm
+	  apply norm
+	  done
+	then have "\<exists>z. z \<notin> T \<and> z\<noteq> y \<and> dist z y < d \<and> dist x z < e" by blast
+	then have "\<exists>x' \<in>S. x'\<noteq>y \<and> dist x' y < d" using e by auto}
+      then have "y\<in>S" by (metis islimpt_approachable cS closed_limpt) }
+    then have "x \<in> interior S" unfolding mem_interior using e(1) by blast}
+  hence "interior (S\<union>T) \<subseteq> interior S" unfolding mem_interior Ball_def subset_eq by blast
+  ultimately show ?thesis by blast 
+qed
+
+
+subsection{* Closure of a Set *}
+
+definition "closure S = S \<union> {x | x. x islimpt S}"
+
+lemma closure_interior: "closure S = UNIV - interior (UNIV - S)"
+proof-
+  { fix x
+    have "x\<in>UNIV - interior (UNIV - S) \<longleftrightarrow> x \<in> closure S"  (is "?lhs = ?rhs")
+    proof
+      let ?exT = "\<lambda> y. (\<exists>T. open T \<and> y \<in> T \<and> T \<subseteq> UNIV - S)"
+      assume "?lhs"
+      hence *:"\<not> ?exT x"
+	unfolding interior_def
+	by simp
+      { assume "\<not> ?rhs"
+	hence False using *
+	  unfolding closure_def islimpt_def
+	  by blast
+      }
+      thus "?rhs"
+	by blast
+    next
+      assume "?rhs" thus "?lhs"
+	unfolding closure_def interior_def islimpt_def
+	by blast
+    qed
+  }
+  thus ?thesis
+    by blast
+qed
+
+lemma interior_closure: "interior S = UNIV - (closure (UNIV - S))"
+proof-
+  { fix x
+    have "x \<in> interior S \<longleftrightarrow> x \<in> UNIV - (closure (UNIV - S))"
+      unfolding interior_def closure_def islimpt_def
+      by blast
+  }
+  thus ?thesis
+    by blast
+qed
+
+lemma closed_closure[simp, intro]: "closed (closure S)"
+proof-
+  have "closed (UNIV - interior (UNIV -S))" by blast
+  thus ?thesis using closure_interior[of S] by simp
+qed
+
+lemma closure_hull: "closure S = closed hull S"
+proof-
+  have "S \<subseteq> closure S"
+    unfolding closure_def
+    by blast
+  moreover
+  have "closed (closure S)"
+    using closed_closure[of S]
+    by assumption
+  moreover
+  { fix t
+    assume *:"S \<subseteq> t" "closed t"
+    { fix x
+      assume "x islimpt S"
+      hence "x islimpt t" using *(1)
+	using islimpt_subset[of x, of S, of t]
+	by blast
+    }
+    with * have "closure S \<subseteq> t"
+      unfolding closure_def
+      using closed_limpt[of t]
+      by blast
+  }
+  ultimately show ?thesis
+    using hull_unique[of S, of "closure S", of closed]
+    unfolding mem_def
+    by simp
+qed
+
+lemma closure_eq: "closure S = S \<longleftrightarrow> closed S"
+  unfolding closure_hull
+  using hull_eq[of closed, unfolded mem_def, OF  closed_Inter, of S]
+  by (metis mem_def subset_eq)
+
+lemma closure_closed[simp]: "closed S \<Longrightarrow> closure S = S"
+  using closure_eq[of S]
+  by simp
+
+lemma closure_closure[simp]: "closure (closure S) = closure S"
+  unfolding closure_hull
+  using hull_hull[of closed S]
+  by assumption
+
+lemma closure_subset: "S \<subseteq> closure S"
+  unfolding closure_hull
+  using hull_subset[of S closed]
+  by assumption
+
+lemma subset_closure: "S \<subseteq> T \<Longrightarrow> closure S \<subseteq> closure T"
+  unfolding closure_hull
+  using hull_mono[of S T closed]
+  by assumption
+
+lemma closure_minimal: "S \<subseteq> T \<Longrightarrow>  closed T \<Longrightarrow> closure S \<subseteq> T"
+  using hull_minimal[of S T closed]
+  unfolding closure_hull mem_def
+  by simp
+
+lemma closure_unique: "S \<subseteq> T \<and> closed T \<and> (\<forall> T'. S \<subseteq> T' \<and> closed T' \<longrightarrow> T \<subseteq> T') \<Longrightarrow> closure S = T"
+  using hull_unique[of S T closed]
+  unfolding closure_hull mem_def
+  by simp
+
+lemma closure_empty[simp]: "closure {} = {}"
+  using closed_empty closure_closed[of "{}"]
+  by simp
+
+lemma closure_univ[simp]: "closure UNIV = UNIV"
+  using closure_closed[of UNIV]
+  by simp
+
+lemma closure_eq_empty: "closure S = {} \<longleftrightarrow> S = {}"
+  using closure_empty closure_subset[of S]
+  by blast
+
+lemma closure_subset_eq: "closure S \<subseteq> S \<longleftrightarrow> closed S"
+  using closure_eq[of S] closure_subset[of S]
+  by simp
+
+lemma open_inter_closure_eq_empty:
+  "open S \<Longrightarrow> (S \<inter> closure T) = {} \<longleftrightarrow> S \<inter> T = {}"
+  using open_subset_interior[of S "UNIV - T"]
+  using interior_subset[of "UNIV - T"]
+  unfolding closure_interior
+  by auto
+
+lemma open_inter_closure_subset: "open S \<Longrightarrow> (S \<inter> (closure T)) \<subseteq> closure(S \<inter> T)"
+proof
+  fix x
+  assume as: "open S" "x \<in> S \<inter> closure T"
+  { assume *:"x islimpt T"
+    { fix e::real
+      assume "e > 0"
+      from as `open S` obtain e' where "e' > 0" and e':"\<forall>x'. dist x' x < e' \<longrightarrow> x' \<in> S"
+	unfolding open_def
+	by auto
+      let ?e = "min e e'"
+      from `e>0` `e'>0` have "?e > 0"
+	by simp
+      then obtain y where y:"y\<in>T" "y \<noteq> x \<and> dist y x < ?e"
+	using islimpt_approachable[of x T] using *
+	by blast
+      hence "\<exists>x'\<in>S \<inter> T. x' \<noteq> x \<and> dist x' x < e" using e'
+	using y
+	by(rule_tac x=y in bexI, simp+)
+    }
+    hence "x islimpt S \<inter> T"
+      using islimpt_approachable[of x "S \<inter> T"]
+      by blast
+  }
+  then show "x \<in> closure (S \<inter> T)" using as
+    unfolding closure_def
+    by blast
+qed
+
+lemma closure_complement: "closure(UNIV - S) = UNIV - interior(S)"
+proof-
+  have "S = UNIV - (UNIV - S)"
+    by auto
+  thus ?thesis
+    unfolding closure_interior
+    by auto
+qed
+
+lemma interior_complement: "interior(UNIV - S) = UNIV - closure(S)"
+  unfolding closure_interior
+  by blast
+
+subsection{* Frontier (aka boundary) *}
+
+definition "frontier S = closure S - interior S"
+
+lemma frontier_closed: "closed(frontier S)"
+  by (simp add: frontier_def closed_diff closed_closure)
+
+lemma frontier_closures: "frontier S = (closure S) \<inter> (closure(UNIV - S))"
+  by (auto simp add: frontier_def interior_closure)
+
+lemma frontier_straddle: "a \<in> frontier S \<longleftrightarrow> (\<forall>e>0. (\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e))" (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume "?lhs"
+  { fix e::real
+    assume "e > 0"
+    let ?rhse = "(\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e)"
+    { assume "a\<in>S"
+      have "\<exists>x\<in>S. dist a x < e" using dist_refl[of a] `e>0` `a\<in>S` by(rule_tac x=a in bexI) auto
+      moreover have "\<exists>x. x \<notin> S \<and> dist a x < e" using `?lhs` `a\<in>S`
+	unfolding frontier_closures closure_def islimpt_def using dist_refl[of a] `e>0`
+	by (auto, erule_tac x="ball a e" in allE, auto)
+      ultimately have ?rhse by auto
+    }
+    moreover
+    { assume "a\<notin>S"
+      hence ?rhse using `?lhs`
+	unfolding frontier_closures closure_def islimpt_def
+	using open_ball[of a e] dist_refl[of a] `e > 0`
+	by (auto, erule_tac x = "ball a e" in allE, auto)
+    }
+    ultimately have ?rhse by auto 
+  }
+  thus ?rhs by auto
+next
+  assume ?rhs
+  moreover
+  { fix T assume "a\<notin>S" and
+    as:"\<forall>e>0. (\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e)" "a \<notin> S" "a \<in> T" "open T"
+    from `open T` `a \<in> T` have "\<exists>e>0. ball a e \<subseteq> T" unfolding open_contains_ball[of T] by auto
+    then obtain e where "e>0" "ball a e \<subseteq> T" by auto
+    then obtain y where y:"y\<in>S" "dist a y < e"  using as(1) by auto
+    have "\<exists>y\<in>S. y \<in> T \<and> y \<noteq> a"
+      using `dist a y < e` `ball a e \<subseteq> T` unfolding ball_def using `y\<in>S` `a\<notin>S` by auto
+  }
+  hence "a \<in> closure S" unfolding closure_def islimpt_def using `?rhs` by auto
+  moreover
+  { fix T assume "a \<in> T"  "open T" "a\<in>S"
+    then obtain e where "e>0" and balle: "ball a e \<subseteq> T" unfolding open_contains_ball using `?rhs` by auto
+    obtain x where "x \<notin> S" "dist a x < e" using `?rhs` using `e>0` by auto
+    hence "\<exists>y\<in>UNIV - S. y \<in> T \<and> y \<noteq> a" using balle `a\<in>S` unfolding ball_def by (rule_tac x=x in bexI)auto
+  }
+  hence "a islimpt (UNIV - S) \<or> a\<notin>S" unfolding islimpt_def by auto
+  ultimately show ?lhs unfolding frontier_closures using closure_def[of "UNIV - S"] by auto
+qed
+
+lemma frontier_subset_closed: "closed S \<Longrightarrow> frontier S \<subseteq> S" 
+  by (metis frontier_def closure_closed Diff_subset)
+
+lemma frontier_empty: "frontier {} = {}"
+  by (simp add: frontier_def closure_empty)
+
+lemma frontier_subset_eq: "frontier S \<subseteq> S \<longleftrightarrow> closed S"
+proof-
+  { assume "frontier S \<subseteq> S"
+    hence "closure S \<subseteq> S" using interior_subset unfolding frontier_def by auto
+    hence "closed S" using closure_subset_eq by auto
+  }
+  thus ?thesis using frontier_subset_closed[of S] by auto
+qed
+
+lemma frontier_complement: "frontier(UNIV - S) = frontier S" 
+  by (auto simp add: frontier_def closure_complement interior_complement)
+
+lemma frontier_disjoint_eq: "frontier S \<inter> S = {} \<longleftrightarrow> open S"
+  using frontier_complement frontier_subset_eq[of "UNIV - S"] 
+  unfolding open_closed by auto
+
+subsection{* A variant of nets (Slightly non-standard but good for our purposes). *}
+
+typedef (open) 'a net = 
+  "{g :: 'a \<Rightarrow> 'a \<Rightarrow> bool. \<forall>x y. (\<forall>z. g z x \<longrightarrow> g z y) \<or> (\<forall>z. g z y \<longrightarrow> g z x)}" 
+  morphisms "netord" "mknet" by blast
+lemma net: "(\<forall>z. netord n z x \<longrightarrow> netord n z y) \<or> (\<forall>z. netord n z y \<longrightarrow> netord n z x)"
+  using netord[of n] by auto
+
+lemma oldnet: "netord n x x \<Longrightarrow> netord n y y \<Longrightarrow>
+  \<exists>z. netord n z z \<and> (\<forall>w. netord n w z \<longrightarrow> netord n w x \<and> netord n w y)" 
+  by (metis net)
+
+lemma net_dilemma: 
+ "\<exists>a. (\<exists>x. netord net x a) \<and> (\<forall>x. netord net x a \<longrightarrow> P x) \<Longrightarrow>
+         \<exists>b. (\<exists>x. netord net x b) \<and> (\<forall>x. netord net x b \<longrightarrow> Q x)
+         \<Longrightarrow> \<exists>c. (\<exists>x. netord net x c) \<and> (\<forall>x. netord net x c \<longrightarrow> P x \<and> Q x)"
+  by (metis net)
+
+subsection{* Common nets and The "within" modifier for nets. *}
+
+definition "at a = mknet(\<lambda>x y. 0 < dist x a \<and> dist x a <= dist y a)"
+definition "at_infinity = mknet(\<lambda>x y. norm x \<ge> norm y)"
+definition "sequentially = mknet(\<lambda>(m::nat) n. m >= n)"
+
+definition within :: "'a net \<Rightarrow> 'a set \<Rightarrow> 'a net" (infixr "within" 70) where 
+  within_def: "net within S = mknet (\<lambda>x y. netord net x y \<and> x \<in> S)"
+
+definition indirection :: "real ^'n \<Rightarrow> real ^'n \<Rightarrow> (real ^'n) net" (infixr "indirection" 70) where 
+  indirection_def: "a indirection v = (at a) within {b. \<exists>c\<ge>0. b - a = c*s v}"
+
+text{* Prove That They are all nets. *}
+
+lemma mknet_inverse': "netord (mknet r) = r \<longleftrightarrow> (\<forall>x y. (\<forall>z. r z x \<longrightarrow> r z y) \<or> (\<forall>z. r z y \<longrightarrow> r z x))"
+  using mknet_inverse[of r] apply (auto simp add: netord_inverse) by (metis net)
+
+method_setup net = {* 
+ let 
+  val ss1 = HOL_basic_ss addsimps [@{thm expand_fun_eq} RS sym]
+  val ss2 = HOL_basic_ss addsimps [@{thm mknet_inverse'}]
+  fun tac ths = ObjectLogic.full_atomize_tac THEN' Simplifier.simp_tac (ss1 addsimps ths) THEN' Simplifier.asm_full_simp_tac ss2
+  in Method.thms_args (Method.SIMPLE_METHOD' o tac) end
+
+*} "Reduces goals about net"
+
+lemma at: "\<And>x y. netord (at a) x y \<longleftrightarrow> 0 < dist x a \<and> dist x a <= dist y a"
+  apply (net at_def)
+  by (metis dist_sym real_le_linear real_le_trans)
+
+lemma at_infinity: 
+ "\<And>x y. netord at_infinity x y \<longleftrightarrow> norm x >= norm y"
+  apply (net at_infinity_def)
+  apply (metis real_le_linear real_le_trans)
+  done
+
+lemma sequentially: "\<And>m n. netord sequentially m n \<longleftrightarrow> m >= n"
+  apply (net sequentially_def)
+  apply (metis linorder_linear min_max.le_supI2 min_max.sup_absorb1)
+  done
+
+lemma within: "netord (n within S) x y \<longleftrightarrow> netord n x y \<and> x \<in> S"
+proof-
+  have "\<forall>x y. (\<forall>z. netord n z x \<and> z \<in> S \<longrightarrow> netord n z y) \<or> (\<forall>z. netord n z y \<and> z \<in> S \<longrightarrow> netord n z x)"
+    by (metis net)
+  thus ?thesis
+    unfolding within_def
+    using mknet_inverse[of "\<lambda>x y. netord n x y \<and> x \<in> S"]
+    by simp
+qed
+
+lemma in_direction: "netord (a indirection v) x y \<longleftrightarrow> 0 < dist x a \<and> dist x a \<le> dist y a \<and> (\<exists>c \<ge> 0. x - a = c *s v)"
+  by (simp add: within at indirection_def)
+
+lemma within_UNIV: "at x within UNIV = at x"
+  by (simp add: within_def at_def netord_inverse)
+
+subsection{* Identify Trivial limits, where we can't approach arbitrarily closely. *}
+
+
+definition "trivial_limit (net:: 'a net) \<longleftrightarrow> 
+  (\<forall>(a::'a) b. a = b) \<or> (\<exists>(a::'a) b. a \<noteq> b \<and> (\<forall>x. ~(netord (net) x a) \<and> ~(netord(net) x b)))"
+
+
+lemma trivial_limit_within: "trivial_limit (at (a::real^'n) within S) \<longleftrightarrow> ~(a islimpt S)"
+proof-
+  {assume "\<forall>(a::real^'n) b. a = b" hence "\<not> a islimpt S" 
+      apply (simp add: islimpt_approachable_le)
+      by (rule exI[where x=1], auto)}
+  moreover
+  {fix b c assume bc: "b \<noteq> c" "\<forall>x. \<not> netord (at a within S) x b \<and> \<not> netord (at a within S) x c"
+    have "dist a b > 0 \<or> dist a c > 0" using bc by (auto simp add: within at dist_nz[THEN sym])
+    then have "\<not> a islimpt S" 
+      using bc
+      unfolding within at dist_nz islimpt_approachable_le
+      by(auto simp add: dist_triangle dist_sym dist_eq_0[THEN sym]) }
+  moreover
+  {assume "\<not> a islimpt S" 
+    then obtain e where e: "e > 0" "\<forall>x' \<in> S. x' \<noteq> a \<longrightarrow> dist x' a > e"
+      unfolding islimpt_approachable_le by (auto simp add: not_le)
+    from e vector_choose_dist[of e a] obtain b where b: "dist a b = e" by auto
+    from b e(1) have "a \<noteq> b" by (simp add: dist_nz)
+    moreover have "\<forall>x. \<not> ((0 < dist x a \<and> dist x a \<le> dist a a) \<and> x \<in> S) \<and>
+                 \<not> ((0 < dist x a \<and> dist x a \<le> dist b a) \<and> x \<in> S)"
+      using e(2) b by (auto simp add: dist_refl dist_sym)
+    ultimately have "trivial_limit (at a within S)"  unfolding trivial_limit_def within at  
+      by blast}
+  ultimately show ?thesis unfolding trivial_limit_def by blast    
+qed
+
+lemma trivial_limit_at: "~(trivial_limit (at a))"
+  apply (subst within_UNIV[symmetric]) 
+  by (simp add: trivial_limit_within islimpt_UNIV)
+
+lemma trivial_limit_at_infinity: "~(trivial_limit (at_infinity :: ('a::{norm,zero_neq_one}) net))"
+  apply (simp add: trivial_limit_def at_infinity)
+  by (metis order_refl zero_neq_one)
+
+lemma trivial_limit_sequentially:  "~(trivial_limit sequentially)"
+  by (auto simp add: trivial_limit_def sequentially) 
+
+subsection{* Some property holds "sufficiently close" to the limit point. *}
+
+definition "eventually P net \<longleftrightarrow> trivial_limit net \<or> (\<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> P x))"
+
+lemma eventually_happens: "eventually P net ==> trivial_limit net \<or> (\<exists>x. P x)"
+  by (metis eventually_def)
+
+lemma eventually_within_le: "eventually P (at a within S) \<longleftrightarrow>
+        (\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a <= d \<longrightarrow> P x)" (is "?lhs = ?rhs")
+proof
+  assume "?lhs"
+  moreover
+  { assume "\<not> a islimpt S"
+    then obtain e where "e>0" and e:"\<forall>x'\<in>S. \<not> (x' \<noteq> a \<and> dist x' a \<le> e)" unfolding islimpt_approachable_le by auto
+    hence  "?rhs" apply auto apply (rule_tac x=e in exI) by auto  }
+  moreover
+  { assume "\<exists>y. (\<exists>x. netord (at a within S) x y) \<and> (\<forall>x. netord (at a within S) x y \<longrightarrow> P x)"
+    then obtain x y where xy:"netord (at a within S) x y \<and> (\<forall>x. netord (at a within S) x y \<longrightarrow> P x)" by auto
+    hence "?rhs" unfolding within at by auto
+  }
+  ultimately show "?rhs" unfolding eventually_def trivial_limit_within by auto
+next
+  assume "?rhs"
+  then obtain d where "d>0" and d:"\<forall>x\<in>S. 0 < dist x a \<and> dist x a \<le> d \<longrightarrow> P x" by auto
+  thus "?lhs"
+    unfolding eventually_def trivial_limit_within islimpt_approachable_le within at unfolding dist_nz[THEN sym] by (clarsimp, rule_tac x=d in exI, auto)
+qed
+
+lemma eventually_within:  " eventually P (at a within S) \<longleftrightarrow>
+        (\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)"
+proof-
+  { fix d
+    assume "d>0" "\<forall>x\<in>S. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x"
+    hence "\<forall>x\<in>S. 0 < dist x a \<and> dist x a \<le> (d/2) \<longrightarrow> P x" using order_less_imp_le by auto
+  }
+  thus ?thesis unfolding eventually_within_le using approachable_lt_le
+    by (auto, rule_tac x="d/2" in exI, auto)
+qed
+
+lemma eventually_at: "eventually P (at a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)"
+  apply (subst within_UNIV[symmetric])
+  by (simp add: eventually_within)
+
+lemma eventually_sequentially: "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)"
+  apply (simp add: eventually_def sequentially trivial_limit_sequentially)
+apply (metis dlo_simps(7) dlo_simps(9) le_maxI2 min_max.le_iff_sup min_max.sup_absorb1 order_antisym_conv) done
+
+(* FIXME Declare this with P::'a::some_type \<Rightarrow> bool *)
+lemma eventually_at_infinity: "eventually (P::(real^'n \<Rightarrow> bool)) at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. norm x >= b \<longrightarrow> P x)" (is "?lhs = ?rhs")
+proof
+  assume "?lhs" thus "?rhs"
+    unfolding eventually_def at_infinity
+    by (auto simp add: trivial_limit_at_infinity)
+next
+  assume "?rhs"
+  then obtain b where b:"\<forall>x. b \<le> norm x \<longrightarrow> P x" and "b\<ge>0"
+    by (metis norm_ge_zero real_le_linear real_le_trans)
+  obtain y::"real^'n" where y:"norm y = b" using `b\<ge>0`
+    using vector_choose_size[of b] by auto
+  thus "?lhs" unfolding eventually_def at_infinity using b y by auto
+qed
+
+lemma always_eventually: "(\<forall>(x::'a::zero_neq_one). P x) ==> eventually P net"
+  apply (auto simp add: eventually_def trivial_limit_def )
+  by (rule exI[where x=0], rule exI[where x=1], rule zero_neq_one)
+
+text{* Combining theorems for "eventually" *}
+
+lemma eventually_and: " eventually (\<lambda>x. P x \<and> Q x) net \<longleftrightarrow> eventually P net \<and> eventually Q net"
+  apply (simp add: eventually_def)
+  apply (cases "trivial_limit net")
+  using net_dilemma[of net P Q] by auto 
+
+lemma eventually_mono: "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P net  \<Longrightarrow> eventually Q net"
+  by (metis eventually_def)
+
+lemma eventually_mp: "eventually (\<lambda>x. P x \<longrightarrow> Q x) net \<Longrightarrow> eventually P net \<Longrightarrow> eventually Q net"
+  apply (atomize(full))
+  unfolding imp_conjL[symmetric] eventually_and[symmetric]
+  by (auto simp add: eventually_def)
+
+lemma eventually_false: "eventually (\<lambda>x. False) net \<longleftrightarrow> trivial_limit net"
+  by (auto simp add: eventually_def)
+
+lemma not_eventually: "(\<forall>x. \<not> P x ) \<Longrightarrow> ~(trivial_limit net) ==> ~(eventually P net)"
+  by (auto simp add: eventually_def)
+
+subsection{* Limits, defined as vacuously true when the limit is trivial. *}
+
+definition tendsto:: "('a \<Rightarrow> real ^'n) \<Rightarrow> real ^'n \<Rightarrow> 'a net \<Rightarrow> bool" (infixr "--->" 55) where
+  tendsto_def: "(f ---> l) net  \<longleftrightarrow> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)"
+
+lemma tendstoD: "(f ---> l) net \<Longrightarrow> e>0 \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) net"
+  unfolding tendsto_def by auto
+
+  text{* Notation Lim to avoid collition with lim defined in analysis *}
+definition "Lim net f = (THE l. (f ---> l) net)"
+
+lemma Lim: 
+ "(f ---> l) net \<longleftrightarrow>
+        trivial_limit net \<or>
+        (\<forall>e>0. \<exists>y. (\<exists>x. netord net x y) \<and>
+                           (\<forall>x. netord(net) x y \<longrightarrow> dist (f x) l < e))"
+  by (auto simp add: tendsto_def eventually_def)
+
+
+text{* Show that they yield usual definitions in the various cases. *}
+
+lemma Lim_within_le: "(f ---> l)(at a within S) \<longleftrightarrow>
+           (\<forall>e>0. \<exists>d>0. \<forall>x\<in>S. 0 < dist x a  \<and> dist x a  <= d \<longrightarrow> dist (f x) l < e)"
+  by (auto simp add: tendsto_def eventually_within_le)
+
+lemma Lim_within: "(f ---> l) (at a within S) \<longleftrightarrow>
+        (\<forall>e >0. \<exists>d>0. \<forall>x \<in> S. 0 < dist x a  \<and> dist x a  < d  \<longrightarrow> dist (f x) l < e)"
+  by (auto simp add: tendsto_def eventually_within)
+
+lemma Lim_at: "(f ---> l) (at a) \<longleftrightarrow>
+        (\<forall>e >0. \<exists>d>0. \<forall>x. 0 < dist x a  \<and> dist x a  < d  \<longrightarrow> dist (f x) l < e)"
+  by (auto simp add: tendsto_def eventually_at)
+
+lemma Lim_at_infinity:
+  "(f ---> l) at_infinity \<longleftrightarrow> (\<forall>e>0. \<exists>b. \<forall>x::real^'n. norm x >= b \<longrightarrow> dist (f x) l < e)"
+  by (auto simp add: tendsto_def eventually_at_infinity)
+
+lemma Lim_sequentially: 
+ "(S ---> l) sequentially \<longleftrightarrow>
+          (\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (S n) l < e)"
+  by (auto simp add: tendsto_def eventually_sequentially)
+
+lemma Lim_eventually: "eventually (\<lambda>x. f x = l) net \<Longrightarrow> (f ---> l) net"
+  by (auto simp add: eventually_def Lim dist_refl)
+
+text{* The expected monotonicity property. *}
+
+lemma Lim_within_empty:  "(f ---> l) (at x within {})"
+  by (simp add: Lim_within_le)
+
+lemma Lim_within_subset: "(f ---> l) (at a within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f ---> l) (at a within T)"
+  apply (auto simp add: Lim_within_le)
+  by (metis subset_eq)
+
+lemma Lim_Un: assumes "(f ---> l) (at x within S)" "(f ---> l) (at x within T)"
+  shows "(f ---> l) (at x within (S \<union> T))"
+proof-
+  { fix e::real assume "e>0"
+    obtain d1 where d1:"d1>0" "\<forall>xa\<in>T. 0 < dist xa x \<and> dist xa x < d1 \<longrightarrow> dist (f xa) l < e" using assms unfolding Lim_within using `e>0` by auto
+    obtain d2 where d2:"d2>0" "\<forall>xa\<in>S. 0 < dist xa x \<and> dist xa x < d2 \<longrightarrow> dist (f xa) l < e" using assms unfolding Lim_within using `e>0` by auto
+    have "\<exists>d>0. \<forall>xa\<in>S \<union> T. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) l < e" using d1 d2
+      by (rule_tac x="min d1 d2" in exI)auto
+  }
+  thus ?thesis unfolding Lim_within by auto
+qed
+
+lemma Lim_Un_univ: 
+ "(f ---> l) (at x within S) \<Longrightarrow> (f ---> l) (at x within T) \<Longrightarrow>  S \<union> T = (UNIV::(real^'n) set)
+        ==> (f ---> l) (at x)"
+  by (metis Lim_Un within_UNIV)
+
+text{* Interrelations between restricted and unrestricted limits. *}
+
+lemma Lim_at_within: "(f ---> l)(at a) ==> (f ---> l)(at a within S)"
+  apply (simp add: Lim_at Lim_within)
+  by metis
+
+lemma Lim_within_open:
+  assumes"a \<in> S" "open S"
+  shows "(f ---> l)(at a within S) \<longleftrightarrow> (f ---> l)(at a)" (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume ?lhs
+  { fix e::real assume "e>0"
+    obtain d  where d:  "d >0" "\<forall>x\<in>S. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e" using `?lhs` `e>0` unfolding Lim_within by auto
+    obtain d' where d': "d'>0" "\<forall>x. dist x a < d' \<longrightarrow> x \<in> S" using assms  unfolding open_def by auto
+    from d d' have "\<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e" by (rule_tac x= "min d d'" in exI)auto
+  }
+  thus ?rhs unfolding Lim_at by auto
+next
+  assume ?rhs
+  { fix e::real assume "e>0"
+    then obtain d where "d>0" and d:"\<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e" using `?rhs` unfolding Lim_at by auto
+    hence "\<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e" using `d>0` by auto 
+  }
+  thus ?lhs using Lim_at_within[of f l a S] by (auto simp add: Lim_at)
+qed
+
+text{* Another limit point characterization. *}
+
+lemma islimpt_sequential: 
+ "x islimpt S \<longleftrightarrow> (\<exists>f. (\<forall>n::nat. f n \<in> S -{x}) \<and> (f ---> x) sequentially)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  then obtain f where f:"\<forall>y. y>0 \<longrightarrow> f y \<in> S \<and> f y \<noteq> x \<and> dist (f y) x < y" 
+    unfolding islimpt_approachable using choice[of "\<lambda>e y. e>0 \<longrightarrow> y\<in>S \<and> y\<noteq>x \<and> dist y x < e"] by auto
+  { fix n::nat
+    have "f (inverse (real n + 1)) \<in> S - {x}" using f by auto
+  }
+  moreover
+  { fix e::real assume "e>0"
+    hence "\<exists>N::nat. inverse (real (N + 1)) < e" using real_arch_inv[of e] apply (auto simp add: Suc_pred') apply(rule_tac x="n - 1" in exI) by auto
+    then obtain N::nat where "inverse (real (N + 1)) < e" by auto
+    hence "\<forall>n\<ge>N. inverse (real n + 1) < e" by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero)
+    moreover have "\<forall>n\<ge>N. dist (f (inverse (real n + 1))) x < (inverse (real n + 1))" using f `e>0` by auto
+    ultimately have "\<exists>N::nat. \<forall>n\<ge>N. dist (f (inverse (real n + 1))) x < e" apply(rule_tac x=N in exI) apply auto apply(erule_tac x=n in allE)+ by auto
+  }
+  hence " ((\<lambda>n. f (inverse (real n + 1))) ---> x) sequentially"
+    unfolding Lim_sequentially using f by auto
+  ultimately show ?rhs apply (rule_tac x="(\<lambda>n::nat. f (inverse (real n + 1)))" in exI) by auto 
+next
+  assume ?rhs
+  then obtain f::"nat\<Rightarrow>real^'a"  where f:"(\<forall>n. f n \<in> S - {x})" "(\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (f n) x < e)" unfolding Lim_sequentially by auto 
+  { fix e::real assume "e>0"
+    then obtain N where "dist (f N) x < e" using f(2) by auto
+    moreover have "f N\<in>S" "f N \<noteq> x" using f(1) by auto
+    ultimately have "\<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e" by auto
+  }
+  thus ?lhs unfolding islimpt_approachable by auto
+qed
+
+text{* Basic arithmetical combining theorems for limits. *}
+
+lemma Lim_linear: fixes f :: "('a \<Rightarrow> real^'n)" and h :: "(real^'n \<Rightarrow> real^'m)"
+  assumes "(f ---> l) net" "linear h" 
+  shows "((\<lambda>x. h (f x)) ---> h l) net"
+proof (cases "trivial_limit net")
+  case True
+  thus ?thesis unfolding tendsto_def unfolding eventually_def by auto
+next
+  case False note cas = this
+  obtain b where b: "b>0" "\<forall>x. norm (h x) \<le> b * norm x" using assms(2) using linear_bounded_pos[of h] by auto
+  { fix e::real assume "e >0"
+    hence "e/b > 0" using `b>0` by (metis divide_pos_pos)
+    then have "(\<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> dist (f x) l < e/b))" using assms `e>0` cas
+      unfolding tendsto_def unfolding eventually_def by auto
+    then obtain y where y: "\<exists>x. netord net x y" "\<forall>x. netord net x y \<longrightarrow> dist (f x) l < e/b" by auto
+    { fix x
+      have "netord net x y \<longrightarrow> dist (h (f x)) (h l) < e"
+	using y(2) b unfolding dist_def	using linear_sub[of h "f x" l] `linear h`
+	apply auto by (metis b(1) b(2) dist_def dist_sym less_le_not_le linorder_not_le mult_imp_div_pos_le real_mult_commute xt1(7))
+    }
+    hence " (\<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> dist (h (f x)) (h l) < e))" using y
+      by(rule_tac x="y" in exI) auto
+  }
+  thus ?thesis unfolding tendsto_def eventually_def using `b>0` by auto
+qed
+
+lemma Lim_const: "((\<lambda>x. a) ---> a) net"
+  by (auto simp add: Lim dist_refl trivial_limit_def)
+
+lemma Lim_cmul: "(f ---> l) net ==> ((\<lambda>x. c *s f x) ---> c *s l) net"
+  apply (rule Lim_linear[where f = f])
+  apply simp
+  apply (rule linear_compose_cmul)
+  apply (rule linear_id[unfolded id_def])
+  done
+
+lemma Lim_neg: "(f ---> l) net ==> ((\<lambda>x. -(f x)) ---> -l) net"
+  apply (simp add: Lim dist_def  group_simps)
+  apply (subst minus_diff_eq[symmetric])
+  unfolding norm_minus_cancel by simp
+
+lemma Lim_add: fixes f :: "'a \<Rightarrow> real^'n" shows
+ "(f ---> l) net \<Longrightarrow> (g ---> m) net \<Longrightarrow> ((\<lambda>x. f(x) + g(x)) ---> l + m) net"
+proof-
+  assume as:"(f ---> l) net" "(g ---> m) net"
+  { fix e::real 
+    assume "e>0"
+    hence *:"eventually (\<lambda>x. dist (f x) l < e/2) net"
+            "eventually (\<lambda>x. dist (g x) m < e/2) net" using as
+      by (auto intro: tendstoD simp del: Arith_Tools.less_divide_eq_number_of1)
+    hence "eventually (\<lambda>x. dist (f x + g x) (l + m) < e) net"
+    proof(cases "trivial_limit net")
+      case True
+      thus ?thesis unfolding eventually_def by auto
+    next
+      case False
+      hence fl:"(\<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> dist (f x) l < e / 2))" and
+	    gl:"(\<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> dist (g x) m < e / 2))"
+	using * unfolding eventually_def by auto
+      obtain c where c:"(\<exists>x. netord net x c)" "(\<forall>x. netord net x c \<longrightarrow> dist (f x) l < e / 2 \<and> dist (g x) m < e / 2)"
+	using net_dilemma[of net, OF fl gl] by auto
+      { fix x assume "netord net x c"
+	with c(2) have " dist (f x + g x) (l + m) < e" using dist_triangle_add[of "f x" "g x" l m] by auto
+      }
+      with c show ?thesis unfolding eventually_def by auto
+    qed
+  }
+  thus ?thesis unfolding tendsto_def by auto
+qed
+
+lemma Lim_sub: "(f ---> l) net \<Longrightarrow> (g ---> m) net \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) ---> l - m) net"
+  unfolding diff_minus
+  by (simp add: Lim_add Lim_neg)
+
+lemma Lim_null: "(f ---> l) net \<longleftrightarrow> ((\<lambda>x. f(x) - l) ---> 0) net" by (simp add: Lim dist_def)
+lemma Lim_null_norm: "(f ---> 0) net \<longleftrightarrow> ((\<lambda>x. vec1(norm(f x))) ---> 0) net"
+  by (simp add: Lim dist_def norm_vec1)
+
+lemma Lim_null_comparison: 
+  assumes "eventually (\<lambda>x. norm(f x) <= g x) net" "((\<lambda>x. vec1(g x)) ---> 0) net"
+  shows "(f ---> 0) net" 
+proof(simp add: tendsto_def, rule+)
+  fix e::real assume "0<e"
+  { fix x
+    assume "norm (f x) \<le> g x" "dist (vec1 (g x)) 0 < e"
+    hence "dist (f x) 0 < e"  unfolding vec_def using dist_vec1[of "g x" "0"]
+      by (vector dist_def norm_vec1 dist_refl real_vector_norm_def dot_def vec1_def)
+  }
+  thus "eventually (\<lambda>x. dist (f x) 0 < e) net" 
+    using eventually_and[of "\<lambda>x. norm(f x) <= g x" "\<lambda>x. dist (vec1 (g x)) 0 < e" net]
+    using eventually_mono[of "(\<lambda>x. norm (f x) \<le> g x \<and> dist (vec1 (g x)) 0 < e)" "(\<lambda>x. dist (f x) 0 < e)" net]
+    using assms `e>0` unfolding tendsto_def by auto
+qed
+
+lemma Lim_component: "(f ---> l) net \<Longrightarrow> i \<in> {1 .. dimindex(UNIV:: 'n set)}
+                      ==> ((\<lambda>a. vec1((f a :: real ^'n)$i)) ---> vec1(l$i)) net"
+  apply (simp add: Lim dist_def vec1_sub[symmetric] norm_vec1  vector_minus_component[symmetric] del: One_nat_def)
+  apply auto
+  apply (erule_tac x=e in allE)
+  apply clarify
+  apply (rule_tac x=y in exI)
+  apply auto
+  apply (rule order_le_less_trans)
+  apply (rule component_le_norm)
+  by auto
+
+lemma Lim_transform_bound: 
+  assumes "eventually (\<lambda>n. norm(f n) <= norm(g n)) net"  "(g ---> 0) net"
+  shows "(f ---> 0) net"
+proof(simp add: tendsto_def, rule+)
+  fix e::real assume "e>0"
+  { fix x
+    assume "norm (f x) \<le> norm (g x)" "dist (g x) 0 < e"
+    hence "dist (f x) 0 < e" by norm}
+  thus "eventually (\<lambda>x. dist (f x) 0 < e) net"
+    using eventually_and[of "\<lambda>x. norm (f x) \<le> norm (g x)" "\<lambda>x. dist (g x) 0 < e" net]
+    using eventually_mono[of "\<lambda>x. norm (f x) \<le> norm (g x) \<and> dist (g x) 0 < e" "\<lambda>x. dist (f x) 0 < e" net]
+    using assms `e>0` unfolding tendsto_def by blast
+qed
+
+text{* Deducing things about the limit from the elements. *}
+
+lemma Lim_in_closed_set:
+  assumes "closed S" "eventually (\<lambda>x. f(x) \<in> S) net"  "\<not>(trivial_limit net)" "(f ---> l) net"
+  shows "l \<in> S"
+proof-
+  { assume "l \<notin> S"
+    obtain e where e:"e>0" "ball l e \<subseteq> UNIV - S" using assms(1) `l \<notin> S` unfolding closed_def open_contains_ball by auto
+    hence *:"\<forall>x. dist l x < e \<longrightarrow> x \<notin> S" by auto
+    obtain y where "(\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> dist (f x) l < e)"
+      using assms(3,4) `e>0` unfolding tendsto_def eventually_def by blast
+    hence "(\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> f x \<notin> S)"  using * by (auto simp add: dist_sym)
+    hence False using assms(2,3)
+      using eventually_and[of "(\<lambda>x. f x \<in> S)" "(\<lambda>x. f x \<notin> S)"] not_eventually[of "(\<lambda>x. f x \<in> S \<and> f x \<notin> S)" net]
+      unfolding eventually_def by blast
+  }
+  thus ?thesis by blast
+qed
+
+text{* Need to prove closed(cball(x,e)) before deducing this as a corollary. *}
+
+lemma Lim_norm_ubound: 
+  assumes "\<not>(trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. norm(f x) <= e) net"
+  shows "norm(l) <= e"
+proof-
+  obtain y where y: "\<exists>x. netord net x y"  "\<forall>x. netord net x y \<longrightarrow> norm (f x) \<le> e" using assms(1,3) unfolding eventually_def by auto
+  show ?thesis
+  proof(rule ccontr)
+    assume "\<not> norm l \<le> e"
+    then obtain z where z: "\<exists>x. netord net x z"  "\<forall>x. netord net x z \<longrightarrow> dist (f x) l < norm l - e"
+      using assms(2)[unfolded Lim] using assms(1) apply simp apply(erule_tac x="norm l - e" in allE) by auto
+    obtain w where w:"netord net w z"  "netord net w y" using net[of net] using z(1) y(1) by blast
+    hence "dist (f w) l < norm l - e \<and> norm (f w) <= e" using z(2) y(2) by auto
+    thus False using `\<not> norm l \<le> e` by norm
+  qed
+qed
+
+lemma Lim_norm_lbound:
+  assumes "\<not> (trivial_limit net)"  "(f ---> l) net"  "eventually (\<lambda>x. e <= norm(f x)) net"
+  shows "e \<le> norm l"
+proof-
+  obtain y where y: "\<exists>x. netord net x y"  "\<forall>x. netord net x y \<longrightarrow> e \<le> norm (f x)" using assms(1,3) unfolding eventually_def by auto
+  show ?thesis
+  proof(rule ccontr)
+    assume "\<not> e \<le> norm l"
+    then obtain z where z: "\<exists>x. netord net x z"  "\<forall>x. netord net x z \<longrightarrow> dist (f x) l < e - norm l"
+      using assms(2)[unfolded Lim] using assms(1) apply simp apply(erule_tac x="e - norm l" in allE) by auto
+    obtain w where w:"netord net w z"  "netord net w y" using net[of net] using z(1) y(1) by blast
+    hence "dist (f w) l < e - norm l \<and> e \<le> norm (f w)" using z(2) y(2) by auto
+    thus False using `\<not> e \<le> norm l` by norm
+  qed
+qed
+
+text{* Uniqueness of the limit, when nontrivial. *}
+
+lemma Lim_unique:
+  fixes l::"real^'a" and net::"'b::zero_neq_one net"
+  assumes "\<not>(trivial_limit net)"  "(f ---> l) net"  "(f ---> l') net"
+  shows "l = l'"
+proof-
+  { fix e::real assume "e>0"
+    hence "eventually (\<lambda>x. norm (0::real^'a) \<le> e) net" unfolding norm_0 using always_eventually[of _ net] by auto
+    hence "norm (l - l') \<le> e" using Lim_norm_ubound[of net "\<lambda>x. 0" "l-l'"] using assms using Lim_sub[of f l net f l'] by auto
+  } note * = this
+  { assume "norm (l - l') > 0"
+    hence "norm (l - l') = 0" using *[of "(norm (l - l')) /2"] using norm_ge_zero[of "l - l'"] by simp
+  }
+  hence "l = l'" using norm_ge_zero[of "l - l'"] unfolding le_less and dist_nz[of l l', unfolded dist_def, THEN sym] by auto
+  thus ?thesis using assms using Lim_sub[of f l net f l'] by simp
+qed
+
+lemma tendsto_Lim: 
+ "~(trivial_limit (net::('b::zero_neq_one net))) \<Longrightarrow> (f ---> l) net ==> Lim net f = l"
+  unfolding Lim_def using Lim_unique[of net f] by auto
+
+text{* Limit under bilinear function (surprisingly tedious, but important) *}
+
+lemma norm_bound_lemma:
+  "0 < e \<Longrightarrow> \<exists>d>0. \<forall>(x'::real^'b) y'::real^'a. norm(x' - (x::real^'b)) < d \<and> norm(y' - y) < d \<longrightarrow> norm(x') * norm(y' - y) + norm(x' - x) * norm(y) < e" 
+proof- 
+  assume e: "0 < e"
+  have th1: "(2 * norm x + 2 * norm y + 2) > 0" using norm_ge_zero[of x] norm_ge_zero[of y] by norm 
+  hence th0: "0 < e / (2 * norm x + 2 * norm y + 2)"  using `e>0` using divide_pos_pos by auto
+  moreover 
+  { fix x' y'
+    assume h: "norm (x' - x) < 1" "norm (x' - x) < e / (2 * norm x + 2 * norm y + 2)"
+      "norm (y' - y) < 1" "norm (y' - y) < e / (2 * norm x + 2 * norm y + 2)"
+    have th: "\<And>a b (c::real). a \<ge> 0 \<Longrightarrow> c \<ge> 0 \<Longrightarrow> a + (b + c) < e ==> b < e " by arith
+    from h have thx: "norm (x' - x) * norm y < e / 2" 
+      using th0 th1 apply (simp add: field_simps)
+      apply (rule th) defer defer apply assumption
+      by (simp_all add: norm_ge_zero zero_le_mult_iff)
+
+    have "norm x' - norm x < 1" apply(rule le_less_trans)
+      using h(1) using norm_triangle_ineq2[of x' x] by auto
+    hence *:"norm x' < 1 + norm x"  by auto
+
+    have thy: "norm (y' - y) * norm x' < e / (2 * norm x + 2 * norm y + 2) * (1 + norm x)" 
+      using mult_strict_mono'[OF h(4) * norm_ge_zero norm_ge_zero] by auto
+    also have "\<dots> \<le> e/2" apply simp unfolding divide_le_eq
+      using th1 th0 `e>0` apply auto
+      unfolding mult_assoc and real_mult_le_cancel_iff2[OF `e>0`] by auto
+
+    finally have "norm x' * norm (y' - y) + norm (x' - x) * norm y < e"
+      using thx and e by (simp add: field_simps)  }
+  ultimately show ?thesis apply(rule_tac x="min 1 (e / 2 / (norm x + norm y + 1))" in exI) by auto
+qed
+
+lemma Lim_bilinear: 
+  fixes net :: "'a net" and h:: "real ^'m \<Rightarrow> real ^'n \<Rightarrow> real ^'p"
+  assumes "(f ---> l) net" and "(g ---> m) net" and "bilinear h"
+  shows "((\<lambda>x. h (f x) (g x)) ---> (h l m)) net"
+proof(cases "trivial_limit net")
+  case True thus "((\<lambda>x. h (f x) (g x)) ---> h l m) net" unfolding Lim ..
+next
+  case False note ntriv = this
+  obtain B where "B>0" and B:"\<forall>x y. norm (h x y) \<le> B * norm x * norm y" using bilinear_bounded_pos[OF assms(3)] by auto
+  { fix e::real assume "e>0"
+    obtain d where "d>0" and d:"\<forall>x' y'. norm (x' - l) < d \<and> norm (y' - m) < d \<longrightarrow> norm x' * norm (y' - m) + norm (x' - l) * norm m < e / B" using `B>0` `e>0`
+      using norm_bound_lemma[of "e / B" l m] using divide_pos_pos by auto
+
+    have *:"\<And>x y. h (f x) (g x) - h l m = h (f x) (g x - m) + h (f x - l) m"
+      unfolding bilinear_rsub[OF assms(3)]
+      unfolding bilinear_lsub[OF assms(3)] by auto
+
+    { fix x assume "dist (f x) l < d \<and> dist (g x) m < d"
+      hence **:"norm (f x) * norm (g x - m) + norm (f x - l) * norm m < e / B"
+	using d[THEN spec[where x="f x"], THEN spec[where x="g x"]] unfolding dist_def  by auto
+      have "norm (h (f x) (g x - m)) + norm (h (f x - l) m) \<le> B * norm (f x) * norm (g x - m) + B * norm (f x - l) * norm m"
+	using B[THEN spec[where x="f x"], THEN spec[where x="g x - m"]]
+	using B[THEN spec[where x="f x - l"], THEN spec[where x="m"]] by auto 
+      also have "\<dots> < e" using ** and `B>0` by(auto simp add: field_simps)
+      finally have "dist (h (f x) (g x)) (h l m) < e" unfolding dist_def and * using norm_triangle_lt by auto
+    }
+    moreover
+    obtain c where "(\<exists>x. netord net x c) \<and> (\<forall>x. netord net x c \<longrightarrow> dist (f x) l < d \<and> dist (g x) m < d)"
+      using net_dilemma[of net "\<lambda>x. dist (f x) l < d" "\<lambda>x. dist (g x) m < d"] using assms(1,2) unfolding Lim using False and `d>0` by (auto elim!: allE[where x=d])
+    ultimately have "\<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> dist (h (f x) (g x)) (h l m) < e)" by auto  }
+  thus "((\<lambda>x. h (f x) (g x)) ---> h l m) net" unfolding Lim by auto
+qed
+
+text{* These are special for limits out of the same vector space. *}
+
+lemma Lim_within_id: "(id ---> a) (at a within s)" by (auto simp add: Lim_within id_def)
+lemma Lim_at_id: "(id ---> a) (at a)"
+apply (subst within_UNIV[symmetric]) by (simp add: Lim_within_id)
+
+lemma Lim_at_zero: "(f ---> l) (at (a::real^'a)) \<longleftrightarrow> ((\<lambda>x. f(a + x)) ---> l) (at 0)" (is "?lhs = ?rhs")
+proof
+  assume "?lhs"
+  { fix e::real assume "e>0"
+    with `?lhs` obtain d where d:"d>0" "\<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e" unfolding Lim_at by auto
+    { fix x::"real^'a" assume "0 < dist x 0 \<and> dist x 0 < d"
+      hence "dist (f (a + x)) l < e" using d 
+      apply(erule_tac x="x+a" in allE) by(auto simp add: comm_monoid_add.mult_commute dist_def dist_sym)
+    }
+    hence "\<exists>d>0. \<forall>x. 0 < dist x 0 \<and> dist x 0 < d \<longrightarrow> dist (f (a + x)) l < e" using d(1) by auto 
+  }
+  thus "?rhs" unfolding Lim_at by auto
+next
+  assume "?rhs"
+  { fix e::real assume "e>0"
+    with `?rhs` obtain d where d:"d>0" "\<forall>x. 0 < dist x 0 \<and> dist x 0 < d \<longrightarrow> dist (f (a + x)) l < e"
+      unfolding Lim_at by auto
+    { fix x::"real^'a" assume "0 < dist x a \<and> dist x a < d"
+      hence "dist (f x) l < e" using d apply(erule_tac x="x-a" in allE)
+	by(auto simp add: comm_monoid_add.mult_commute dist_def dist_sym)
+    }
+    hence "\<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e" using d(1) by auto 
+  }
+  thus "?lhs" unfolding Lim_at by auto
+qed
+
+text{* It's also sometimes useful to extract the limit point from the net.  *}
+
+definition "netlimit net = (SOME a. \<forall>x. ~(netord net x a))"
+
+lemma netlimit_within: assumes"~(trivial_limit (at a within S))"
+  shows "(netlimit (at a within S) = a)"
+proof-
+  { fix x assume "x \<noteq> a"
+    then obtain y where y:"dist y a \<le> dist a a \<and> 0 < dist y a \<and> y \<in> S \<or> dist y a \<le> dist x a \<and> 0 < dist y a \<and> y \<in> S" using assms unfolding trivial_limit_def within at by blast
+    assume "\<forall>y. \<not> netord (at a within S) y x"
+    hence "x = a" using y unfolding within at by (auto simp add: dist_refl dist_nz) 
+  }
+  moreover
+  have "\<forall>y. \<not> netord (at a within S) y a"  using assms unfolding trivial_limit_def within at by (auto simp add: dist_refl)
+  ultimately show ?thesis unfolding netlimit_def using some_equality[of "\<lambda>x. \<forall>y. \<not> netord (at a within S) y x"] by blast
+qed
+
+lemma netlimit_at: "netlimit(at a) = a"
+  apply (subst within_UNIV[symmetric])
+  using netlimit_within[of a UNIV]
+  by (simp add: trivial_limit_at within_UNIV)
+
+text{* Transformation of limit. *}
+
+lemma Lim_transform: assumes "((\<lambda>x. f x - g x) ---> 0) net" "(f ---> l) net"
+  shows "(g ---> l) net"
+proof-
+  from assms have "((\<lambda>x. f x - g x - f x) ---> 0 - l) net" using Lim_sub[of "\<lambda>x. f x - g x" 0 net f l] by auto
+  thus "?thesis" using Lim_neg [of "\<lambda> x. - g x" "-l" net] by auto
+qed
+
+lemma Lim_transform_eventually:  "eventually (\<lambda>x. f x = g x) net \<Longrightarrow> (f ---> l) net ==> (g ---> l) net"
+  using Lim_eventually[of "\<lambda>x. f x - g x" 0 net] Lim_transform[of f g net l] by auto
+
+lemma Lim_transform_within: 
+  assumes "0 < d" "(\<forall>x'\<in>S. 0 < dist x' x \<and> dist x' x < d \<longrightarrow> f x' = g x')"
+          "(f ---> l) (at x within S)"
+  shows   "(g ---> l) (at x within S)"
+proof-
+  have "((\<lambda>x. f x - g x) ---> 0) (at x within S)" unfolding Lim_within[of "\<lambda>x. f x - g x" 0 x S] using assms(1,2) by auto
+  thus ?thesis using Lim_transform[of f g "at x within S" l] using assms(3) by auto
+qed
+
+lemma Lim_transform_at: "0 < d \<Longrightarrow> (\<forall>x'. 0 < dist x' x \<and> dist x' x < d \<longrightarrow> f x' = g x') \<Longrightarrow> 
+  (f ---> l) (at x) ==> (g ---> l) (at x)"
+  apply (subst within_UNIV[symmetric])
+  using Lim_transform_within[of d UNIV x f g l]
+  by (auto simp add: within_UNIV)
+
+text{* Common case assuming being away from some crucial point like 0. *}
+
+lemma Lim_transform_away_within: 
+  fixes f:: "real ^'m \<Rightarrow> real ^'n"
+  assumes "a\<noteq>b" "\<forall>x\<in> S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x" 
+  and "(f ---> l) (at a within S)"
+  shows "(g ---> l) (at a within S)"
+proof-
+  have "\<forall>x'\<in>S. 0 < dist x' a \<and> dist x' a < dist a b \<longrightarrow> f x' = g x'" using assms(2) 
+    apply auto apply(erule_tac x=x' in ballE) by (auto simp add: dist_sym dist_refl) 
+  thus ?thesis using Lim_transform_within[of "dist a b" S a f g l] using assms(1,3) unfolding dist_nz by auto
+qed
+
+lemma Lim_transform_away_at: 
+  fixes f:: "real ^'m \<Rightarrow> real ^'n"
+  assumes ab: "a\<noteq>b" and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x" 
+  and fl: "(f ---> l) (at a)"
+  shows "(g ---> l) (at a)"
+  using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl 
+  by (auto simp add: within_UNIV)
+
+text{* Alternatively, within an open set. *}
+
+lemma Lim_transform_within_open: 
+  fixes f:: "real ^'m \<Rightarrow> real ^'n"
+  assumes "open S"  "a \<in> S"  "\<forall>x\<in>S. x \<noteq> a \<longrightarrow> f x = g x"  "(f ---> l) (at a)"
+  shows "(g ---> l) (at a)"
+proof-
+  from assms(1,2) obtain e::real where "e>0" and e:"ball a e \<subseteq> S" unfolding open_contains_ball by auto
+  hence "\<forall>x'. 0 < dist x' a \<and> dist x' a < e \<longrightarrow> f x' = g x'" using assms(3) 
+    unfolding ball_def subset_eq apply auto apply(erule_tac x=x' in allE) apply(erule_tac x=x' in ballE) by(auto simp add: dist_refl dist_sym)
+  thus ?thesis using Lim_transform_at[of e a f g l] `e>0` assms(4) by auto
+qed
+
+text{* A congruence rule allowing us to transform limits assuming not at point. *}
+
+lemma Lim_cong_within[cong add]: 
+ "(\<And>x. x \<noteq> a \<Longrightarrow> f x = g x) ==> ((\<lambda>x. f x) ---> l) (at a within S) \<longleftrightarrow> ((g ---> l) (at a within S))"
+  by (simp add: Lim_within dist_nz[symmetric])
+
+lemma Lim_cong_at[cong add]: 
+ "(\<And>x. x \<noteq> a ==> f x = g x) ==> (((\<lambda>x. f x) ---> l) (at a) \<longleftrightarrow> ((g ---> l) (at a)))"
+  by (simp add: Lim_at dist_nz[symmetric])
+
+text{* Useful lemmas on closure and set of possible sequential limits.*}
+
+lemma closure_sequential: 
+ "l \<in> closure S \<longleftrightarrow> (\<exists>x. (\<forall>n. x n \<in> S) \<and> (x ---> l) sequentially)" (is "?lhs = ?rhs")
+proof
+  assume "?lhs" moreover
+  { assume "l \<in> S"
+    hence "?rhs" using Lim_const[of l sequentially] by auto
+  } moreover
+  { assume "l islimpt S"
+    hence "?rhs" unfolding islimpt_sequential by auto
+  } ultimately
+  show "?rhs" unfolding closure_def by auto
+next
+  assume "?rhs"
+  thus "?lhs" unfolding closure_def unfolding islimpt_sequential by auto
+qed
+
+lemma closed_sequential_limits: 
+ "closed S \<longleftrightarrow> (\<forall>x l. (\<forall>n. x n \<in> S) \<and> (x ---> l) sequentially \<longrightarrow> l \<in> S)"
+  unfolding closed_limpt
+  by (metis closure_sequential closure_closed closed_limpt islimpt_sequential mem_delete)
+
+lemma closure_approachable: "x \<in> closure S \<longleftrightarrow> (\<forall>e>0. \<exists>y\<in>S. dist y x < e)"
+  apply (auto simp add: closure_def islimpt_approachable)
+  by (metis dist_refl)
+
+lemma closed_approachable: "closed S ==> (\<forall>e>0. \<exists>y\<in>S. dist y x < e) \<longleftrightarrow> x \<in> S"
+  by (metis closure_closed closure_approachable)
+
+text{* Some other lemmas about sequences. *}
+
+lemma seq_offset: "(f ---> l) sequentially ==> ((\<lambda>i. f( i + k)) ---> l) sequentially"
+  apply (auto simp add: Lim_sequentially)
+  by (metis trans_le_add1 )
+
+lemma seq_offset_neg: "(f ---> l) sequentially ==> ((\<lambda>i. f(i - k)) ---> l) sequentially"
+  apply (simp add: Lim_sequentially)
+  apply (subgoal_tac "\<And>N k (n::nat). N + k <= n ==> N <= n - k")
+  apply metis
+  by arith
+
+lemma seq_offset_rev: "((\<lambda>i. f(i + k)) ---> l) sequentially ==> (f ---> l) sequentially"
+  apply (simp add: Lim_sequentially)
+  apply (subgoal_tac "\<And>N k (n::nat). N + k <= n ==> N <= n - k \<and> (n - k) + k = n")
+  by metis arith
+
+lemma seq_harmonic: "((\<lambda>n. vec1(inverse (real n))) ---> 0) sequentially"
+proof-
+  { fix e::real assume "e>0"
+    hence "\<exists>N::nat. \<forall>n::nat\<ge>N. inverse (real n) < e"
+      using real_arch_inv[of e] apply auto apply(rule_tac x=n in exI)
+      by (metis dlo_simps(4) le_imp_inverse_le linorder_not_less real_of_nat_gt_zero_cancel_iff real_of_nat_less_iff xt1(7))
+  }
+  thus ?thesis unfolding Lim_sequentially dist_def apply simp unfolding norm_vec1 by auto
+qed
+
+text{* More properties of closed balls. *}
+
+lemma closed_cball: "closed(cball x e)"
+proof-
+  { fix xa::"nat\<Rightarrow>real^'a" and l assume as: "\<forall>n. dist x (xa n) \<le> e" "(xa ---> l) sequentially"
+    from as(2) have "((\<lambda>n. x - xa n) ---> x - l) sequentially" using Lim_sub[of "\<lambda>n. x" x sequentially xa l] Lim_const[of x sequentially] by auto
+    moreover from as(1) have "eventually (\<lambda>n. norm (x - xa n) \<le> e) sequentially" unfolding eventually_sequentially dist_def by auto
+    ultimately have "dist x l \<le> e"
+      unfolding dist_def
+      using Lim_norm_ubound[of sequentially _ "x - l" e] using trivial_limit_sequentially by auto
+  }
+  thus ?thesis unfolding closed_sequential_limits by auto
+qed
+  
+lemma open_contains_cball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0.  cball x e \<subseteq> S)"
+proof-
+  { fix x and e::real assume "x\<in>S" "e>0" "ball x e \<subseteq> S"
+    hence "\<exists>d>0. cball x d \<subseteq> S" unfolding subset_eq by (rule_tac x="e/2" in exI, auto)
+  } moreover
+  { fix x and e::real assume "x\<in>S" "e>0" "cball x e \<subseteq> S"
+    hence "\<exists>d>0. ball x d \<subseteq> S" unfolding subset_eq apply(rule_tac x="e/2" in exI) by auto
+  } ultimately
+  show ?thesis unfolding open_contains_ball by auto
+qed
+
+lemma open_contains_cball_eq: "open S ==> (\<forall>x. x \<in> S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S))"
+  by (metis open_contains_cball subset_eq order_less_imp_le centre_in_cball mem_def)
+
+lemma mem_interior_cball: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S)"
+  apply (simp add: interior_def)
+  by (metis open_contains_cball subset_trans ball_subset_cball centre_in_ball open_ball)
+
+lemma islimpt_ball: "y islimpt ball x e \<longleftrightarrow> 0 < e \<and> y \<in> cball x e" (is "?lhs = ?rhs")
+proof
+  assume "?lhs"
+  { assume "e \<le> 0"
+    hence *:"ball x e = {}" using ball_eq_empty[of x e] by auto
+    have False using `?lhs` unfolding * using islimpt_EMPTY[of y] by auto 
+  }
+  hence "e > 0" by (metis dlo_simps(3))
+  moreover
+  have "y \<in> cball x e" using closed_cball[of x e] islimpt_subset[of y "ball x e" "cball x e"] ball_subset_cball[of x e] `?lhs` unfolding closed_limpt by auto
+  ultimately show "?rhs" by auto
+next
+  assume "?rhs" hence "e>0"  by auto
+  { fix d::real assume "d>0"
+    have "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
+    proof(cases "d \<le> dist x y")
+      case True thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
+      proof(cases "x=y")
+	case True hence False using `d \<le> dist x y` `d>0` dist_refl[of x] by auto
+	thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" by auto
+      next
+	case False
+
+	have "dist x (y - (d / (2 * dist y x)) *s (y - x))
+	      = norm (x - y + (d / (2 * norm (y - x))) *s (y - x))"  
+	  unfolding mem_cball mem_ball dist_def diff_diff_eq2 diff_add_eq[THEN sym] by auto
+	also have "\<dots> = \<bar>- 1 + d / (2 * norm (x - y))\<bar> * norm (x - y)"
+	  using vector_sadd_rdistrib[of "- 1" "d / (2 * norm (y - x))", THEN sym, of "y - x"]
+	  unfolding vector_smult_lneg vector_smult_lid
+	  by (auto simp add: dist_sym[unfolded dist_def] norm_mul)
+	also have "\<dots> = \<bar>- norm (x - y) + d / 2\<bar>"
+	  unfolding abs_mult_pos[of "norm (x - y)", OF norm_ge_zero[of "x - y"]]
+	  unfolding real_add_mult_distrib using `x\<noteq>y`[unfolded dist_nz, unfolded dist_def] by auto
+	also have "\<dots> \<le> e - d/2" using `d \<le> dist x y` and `d>0` and `?rhs` by(auto simp add: dist_def)
+	finally have "y - (d / (2 * dist y x)) *s (y - x) \<in> ball x e" using `d>0` by auto
+
+	moreover
+
+	have "(d / (2*dist y x)) *s (y - x) \<noteq> 0" 
+	  using `x\<noteq>y`[unfolded dist_nz] `d>0` unfolding vector_mul_eq_0 by (auto simp add: dist_sym dist_refl) 
+	moreover
+	have "dist (y - (d / (2 * dist y x)) *s (y - x)) y < d" unfolding dist_def apply simp unfolding norm_minus_cancel norm_mul
+	  using `d>0` `x\<noteq>y`[unfolded dist_nz] dist_sym[of x y]
+	  unfolding dist_def by auto
+	ultimately show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" by (rule_tac  x="y - (d / (2*dist y x)) *s (y - x)" in bexI) auto
+      qed
+    next
+      case False hence "d > dist x y" by auto
+      show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
+      proof(cases "x=y")
+	case True
+	obtain z where **:"dist y z = (min e d) / 2" using vector_choose_dist[of "(min e d) / 2" y]
+	  using `d > 0` `e>0` by (auto simp add: dist_refl)
+	show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" 
+	  apply(rule_tac x=z in bexI) unfolding `x=y` dist_sym dist_refl dist_nz using **  `d > 0` `e>0` by auto
+      next
+	case False thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
+	  using `d>0` `d > dist x y` `?rhs` by(rule_tac x=x in bexI, auto simp add: dist_refl)
+      qed
+    qed  }
+  thus "?lhs" unfolding mem_cball islimpt_approachable mem_ball by auto
+qed
+
+lemma closure_ball: "0 < e ==> (closure(ball x e) = cball x e)"
+  apply (simp add: closure_def islimpt_ball expand_set_eq)
+  by arith
+
+lemma interior_cball: "interior(cball x e) = ball x e" 
+proof(cases "e\<ge>0")
+  case False note cs = this
+  from cs have "ball x e = {}" using ball_empty[of e x] by auto moreover
+  { fix y assume "y \<in> cball x e"
+    hence False unfolding mem_cball using dist_nz[of x y] cs by (auto simp add: dist_refl)  }
+  hence "cball x e = {}" by auto
+  hence "interior (cball x e) = {}" using interior_empty by auto
+  ultimately show ?thesis by blast 
+next
+  case True note cs = this
+  have "ball x e \<subseteq> cball x e" using ball_subset_cball by auto moreover
+  { fix S y assume as: "S \<subseteq> cball x e" "open S" "y\<in>S"
+    then obtain d where "d>0" and d:"\<forall>x'. dist x' y < d \<longrightarrow> x' \<in> S" unfolding open_def by blast
+    
+    then obtain xa where xa:"dist y xa = d / 2" using vector_choose_dist[of "d/2" y] by auto 
+    hence xa_y:"xa \<noteq> y" using dist_nz[of y xa] using `d>0` by auto
+    have "xa\<in>S" using d[THEN spec[where x=xa]] using xa apply(auto simp add: dist_sym) unfolding dist_nz[THEN sym] using xa_y by auto
+    hence xa_cball:"xa \<in> cball x e" using as(1) by auto
+
+    hence "y \<in> ball x e" proof(cases "x = y")
+      case True
+      hence "e>0" using xa_y[unfolded dist_nz] xa_cball[unfolded mem_cball] by (auto simp add: dist_sym)
+      thus "y \<in> ball x e" using `x = y ` by simp
+    next
+      case False
+      have "dist (y + (d / 2 / dist y x) *s (y - x)) y < d" unfolding dist_def
+	using `d>0` norm_ge_zero[of "y - x"] `x \<noteq> y` by auto 
+      hence *:"y + (d / 2 / dist y x) *s (y - x) \<in> cball x e" using d as(1)[unfolded subset_eq] by blast
+      have "y - x \<noteq> 0" using `x \<noteq> y` by auto
+      hence **:"d / (2 * norm (y - x)) > 0" unfolding zero_less_norm_iff[THEN sym]
+	using `d>0` divide_pos_pos[of d "2*norm (y - x)"] by auto
+
+      have "dist (y + (d / 2 / dist y x) *s (y - x)) x = norm (y + (d / (2 * norm (y - x))) *s y - (d / (2 * norm (y - x))) *s x - x)"
+	by (auto simp add: dist_def vector_ssub_ldistrib add_diff_eq)
+      also have "\<dots> = norm ((1 + d / (2 * norm (y - x))) *s (y - x))"
+	by (auto simp add: vector_sadd_rdistrib vector_smult_lid ring_simps vector_sadd_rdistrib vector_ssub_ldistrib)
+      also have "\<dots> = \<bar>1 + d / (2 * norm (y - x))\<bar> * norm (y - x)" using ** by auto
+      also have "\<dots> = (dist y x) + d/2"using ** by (auto simp add: left_distrib dist_def)
+      finally have "e \<ge> dist x y +d/2" using *[unfolded mem_cball] by (auto simp add: dist_sym)
+      thus "y \<in> ball x e" unfolding mem_ball using `d>0` by auto
+    qed  }
+  hence "\<forall>S \<subseteq> cball x e. open S \<longrightarrow> S \<subseteq> ball x e" by auto
+  ultimately show ?thesis using interior_unique[of "ball x e" "cball x e"] using open_ball[of x e] by auto
+qed 
+
+lemma frontier_ball: "0 < e ==> frontier(ball a e) = {x. dist a x = e}"
+  apply (simp add: frontier_def closure_ball interior_open open_ball order_less_imp_le) 
+  apply (simp add: expand_set_eq)
+  by arith
+
+lemma frontier_cball: "frontier(cball a e) = {x. dist a x = e}"
+  apply (simp add: frontier_def interior_cball closed_cball closure_closed order_less_imp_le)
+  apply (simp add: expand_set_eq)
+  by arith
+
+lemma cball_eq_empty: "(cball x e = {}) \<longleftrightarrow> e < 0"
+  apply (simp add: expand_set_eq not_le)
+  by (metis dist_pos_le dist_refl order_less_le_trans)
+lemma cball_empty: "e < 0 ==> cball x e = {}" by (simp add: cball_eq_empty)
+
+lemma cball_eq_sing: "(cball x e = {x}) \<longleftrightarrow> e = 0"
+proof-
+  { assume as:"\<forall>xa. (dist x xa \<le> e) = (xa = x)"
+    hence "e \<ge> 0" apply (erule_tac x=x in allE) by (auto simp add: dist_pos_le dist_refl)
+    then obtain y where y:"dist x y = e" using vector_choose_dist[of e] by auto
+    hence "e = 0" using as apply(erule_tac x=y in allE) by (auto simp add: dist_pos_le dist_refl)
+  }
+  thus ?thesis unfolding expand_set_eq mem_cball by (auto simp add: dist_refl dist_nz dist_le_0)
+qed  
+
+lemma cball_sing:  "e = 0 ==> cball x e = {x}" by (simp add: cball_eq_sing)
+
+text{* For points in the interior, localization of limits makes no difference.   *}
+
+lemma eventually_within_interior: assumes "x \<in> interior S"
+  shows "eventually P (at x within S) \<longleftrightarrow> eventually P (at x)" (is "?lhs = ?rhs")
+proof-
+  from assms obtain e where e:"e>0" "\<forall>y. dist x y < e \<longrightarrow> y \<in> S" unfolding mem_interior ball_def subset_eq by auto
+  { assume "?lhs" then obtain d where "d>0" "\<forall>xa\<in>S. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> P xa" unfolding eventually_within by auto
+    hence "?rhs" unfolding eventually_at using e by (auto simp add: dist_sym intro!: add exI[of _ "min e d"])
+  } moreover
+  { assume "?rhs" hence "?lhs" unfolding eventually_within eventually_at by auto
+  } ultimately
+  show "?thesis" by auto
+qed
+
+lemma lim_within_interior: "x \<in> interior S  ==> ((f ---> l) (at x within S) \<longleftrightarrow> (f ---> l) (at x))"
+  by (simp add: tendsto_def eventually_within_interior)
+
+lemma netlimit_within_interior: assumes "x \<in> interior S"
+  shows "netlimit(at x within S) = x" (is "?lhs = ?rhs")
+proof-
+  from assms obtain e::real where e:"e>0" "ball x e \<subseteq> S" using open_interior[of S] unfolding open_contains_ball using interior_subset[of S] by auto
+  hence "\<not> trivial_limit (at x within S)" using islimpt_subset[of x "ball x e" S] unfolding trivial_limit_within islimpt_ball centre_in_cball by auto
+  thus ?thesis using netlimit_within by auto
+qed
+
+subsection{* Boundedness. *}
+
+  (* FIXME: This has to be unified with BSEQ!! *)
+definition "bounded S \<longleftrightarrow> (\<exists>a. \<forall>(x::real^'n) \<in> S. norm x <= a)"
+
+lemma bounded_empty[simp]: "bounded {}" by (simp add: bounded_def)
+lemma bounded_subset: "bounded T \<Longrightarrow> S \<subseteq> T ==> bounded S"
+  by (metis bounded_def subset_eq)
+
+lemma bounded_interior[intro]: "bounded S ==> bounded(interior S)"
+  by (metis bounded_subset interior_subset)
+
+lemma bounded_closure[intro]: assumes "bounded S" shows "bounded(closure S)"
+proof-
+  from assms obtain a where a:"\<forall>x\<in>S. norm x \<le> a" unfolding bounded_def by auto
+  { fix x assume "x\<in>closure S"
+    then obtain xa where xa:"\<forall>n. xa n \<in> S"  "(xa ---> x) sequentially" unfolding closure_sequential by auto
+    moreover have "\<exists>y. \<exists>x. netord sequentially x y" using trivial_limit_sequentially unfolding trivial_limit_def by blast
+    hence "\<exists>y. (\<exists>x. netord sequentially x y) \<and> (\<forall>x. netord sequentially x y \<longrightarrow> norm (xa x) \<le> a)" unfolding sequentially_def using a xa(1) by auto
+    ultimately have "norm x \<le> a" using Lim_norm_ubound[of sequentially xa x a] trivial_limit_sequentially unfolding eventually_def by auto 
+  }
+  thus ?thesis unfolding bounded_def by auto
+qed
+
+lemma bounded_cball[simp,intro]: "bounded (cball x e)"
+  apply (simp add: bounded_def)
+  apply (rule exI[where x="norm x + e"])
+  apply (simp add: Ball_def)
+  by norm
+
+lemma bounded_ball[simp,intro]: "bounded(ball x e)"
+  by (metis ball_subset_cball bounded_cball bounded_subset)
+
+lemma finite_imp_bounded[intro]: assumes "finite S" shows "bounded S"
+proof-
+  { fix x F assume as:"bounded F"
+    then obtain a where "\<forall>x\<in>F. norm x \<le> a" unfolding bounded_def by auto
+    hence "bounded (insert x F)" unfolding bounded_def by(auto intro!: add exI[of _ "max a (norm x)"])
+  }
+  thus ?thesis using finite_induct[of S bounded]  using bounded_empty assms by auto
+qed 
+
+lemma bounded_Un[simp]: "bounded (S \<union> T) \<longleftrightarrow> bounded S \<and> bounded T"
+  apply (auto simp add: bounded_def)
+  by (rule_tac x="max a aa" in exI, auto)
+
+lemma bounded_Union[intro]: "finite F \<Longrightarrow> (\<forall>S\<in>F. bounded S) \<Longrightarrow> bounded(\<Union>F)" 
+  by (induct rule: finite_induct[of F], auto)
+
+lemma bounded_pos: "bounded S \<longleftrightarrow> (\<exists>b>0. \<forall>x\<in> S. norm x <= b)"
+  apply (simp add: bounded_def)
+  apply (subgoal_tac "\<And>x (y::real). 0 < 1 + abs y \<and> (x <= y \<longrightarrow> x <= 1 + abs y)")
+  by metis arith
+
+lemma bounded_Int[intro]: "bounded S \<or> bounded T \<Longrightarrow> bounded (S \<inter> T)"
+  by (metis Int_lower1 Int_lower2 bounded_subset)
+
+lemma bounded_diff[intro]: "bounded S ==> bounded (S - T)"
+apply (metis Diff_subset bounded_subset)
+done
+
+lemma bounded_insert[intro]:"bounded(insert x S) \<longleftrightarrow> bounded S"
+  by (metis Diff_cancel Un_empty_right Un_insert_right bounded_Un bounded_subset finite.emptyI finite_imp_bounded infinite_remove subset_insertI)
+
+lemma bot_bounded_UNIV[simp, intro]: "~(bounded (UNIV:: (real^'n) set))"
+proof(auto simp add: bounded_pos not_le)
+  fix b::real  assume b: "b >0"
+  have b1: "b +1 \<ge> 0" using b by simp
+  then obtain x:: "real^'n" where "norm x = b + 1" using vector_choose_size[of "b+1"] by blast
+  hence "norm x > b" using b by simp
+  then show "\<exists>(x::real^'n). b < norm x"  by blast
+qed
+
+lemma bounded_linear_image: 
+  fixes f :: "real^'m \<Rightarrow> real^'n"
+  assumes "bounded S" "linear f" 
+  shows "bounded(f ` S)"
+proof-
+  from assms(1) obtain b where b:"b>0" "\<forall>x\<in>S. norm x \<le> b" unfolding bounded_pos by auto
+  from assms(2) obtain B where B:"B>0" "\<forall>x. norm (f x) \<le> B * norm x"  using linear_bounded_pos by auto
+  { fix x assume "x\<in>S"
+    hence "norm x \<le> b" using b by auto
+    hence "norm (f x) \<le> B * b" using B(2) apply(erule_tac x=x in allE)
+      by (metis B(1) B(2) real_le_trans real_mult_le_cancel_iff2)
+  }
+  thus ?thesis unfolding bounded_pos apply(rule_tac x="b*B" in exI)
+    using b B real_mult_order[of b B] by (auto simp add: real_mult_commute)
+qed
+
+lemma bounded_scaling: "bounded S \<Longrightarrow> bounded ((\<lambda>x. c *s x) ` S)"
+  apply (rule bounded_linear_image, assumption)
+  by (rule linear_compose_cmul, rule linear_id[unfolded id_def])
+
+lemma bounded_translation: assumes "bounded S" shows "bounded ((\<lambda>x. a + x) ` S)"
+proof-
+  from assms obtain b where b:"b>0" "\<forall>x\<in>S. norm x \<le> b" unfolding bounded_pos by auto
+  { fix x assume "x\<in>S"
+    hence "norm (a + x) \<le> b + norm a" using norm_triangle_ineq[of a x] b by auto
+  }
+  thus ?thesis unfolding bounded_pos using norm_ge_zero[of a] b(1) using add_strict_increasing[of b 0 "norm a"] 
+    by (auto intro!: add exI[of _ "b + norm a"])
+qed
+
+
+text{* Some theorems on sups and infs using the notion "bounded". *}
+
+lemma bounded_vec1: "bounded(vec1 ` S) \<longleftrightarrow>  (\<exists>a. \<forall>x\<in>S. abs x <= a)"
+  by (simp add: bounded_def forall_vec1 norm_vec1 vec1_in_image_vec1)
+
+lemma bounded_has_rsup: assumes "bounded(vec1 ` S)" "S \<noteq> {}" 
+  shows "\<forall>x\<in>S. x <= rsup S" and "\<forall>b. (\<forall>x\<in>S. x <= b) \<longrightarrow> rsup S <= b"
+proof
+  fix x assume "x\<in>S"
+  from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_vec1 by auto
+  hence *:"S *<= a" using setleI[of S a] by (metis abs_le_interval_iff mem_def)
+  thus "x \<le> rsup S" using rsup[OF `S\<noteq>{}`] using assms(1)[unfolded bounded_vec1] using isLubD2[of UNIV S "rsup S" x] using `x\<in>S` by auto
+next
+  show "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> rsup S \<le> b" using assms
+  using rsup[of S, unfolded isLub_def isUb_def leastP_def setle_def setge_def]
+  apply (auto simp add: bounded_vec1)
+  by (auto simp add: isLub_def isUb_def leastP_def setle_def setge_def)
+qed
+
+lemma rsup_insert: assumes "bounded (vec1 ` S)"
+  shows "rsup(insert x S) = (if S = {} then x else max x (rsup S))"
+proof(cases "S={}")
+  case True thus ?thesis using rsup_finite_in[of "{x}"] by auto
+next
+  let ?S = "insert x S"
+  case False
+  hence *:"\<forall>x\<in>S. x \<le> rsup S" using bounded_has_rsup(1)[of S] using assms by auto
+  hence "insert x S *<= max x (rsup S)" unfolding setle_def by auto
+  hence "isLub UNIV ?S (rsup ?S)" using rsup[of ?S] by auto
+  moreover
+  have **:"isUb UNIV ?S (max x (rsup S))" unfolding isUb_def setle_def using * by auto
+  { fix y assume as:"isUb UNIV (insert x S) y"
+    hence "max x (rsup S) \<le> y" unfolding isUb_def using rsup_le[OF `S\<noteq>{}`] 
+      unfolding setle_def by auto  }
+  hence "max x (rsup S) <=* isUb UNIV (insert x S)" unfolding setge_def Ball_def mem_def by auto
+  hence "isLub UNIV ?S (max x (rsup S))" using ** isLubI2[of UNIV ?S "max x (rsup S)"] unfolding Collect_def by auto
+  ultimately show ?thesis using real_isLub_unique[of UNIV ?S] using `S\<noteq>{}` by auto
+qed
+
+lemma sup_insert_finite: "finite S \<Longrightarrow> rsup(insert x S) = (if S = {} then x else max x (rsup S))"
+  apply (rule rsup_insert)
+  apply (rule finite_imp_bounded)
+  by simp
+
+lemma bounded_has_rinf:
+  assumes "bounded(vec1 ` S)"  "S \<noteq> {}"
+  shows "\<forall>x\<in>S. x >= rinf S" and "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> rinf S >= b"
+proof
+  fix x assume "x\<in>S"
+  from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_vec1 by auto
+  hence *:"- a <=* S" using setgeI[of S "-a"] unfolding abs_le_interval_iff by auto
+  thus "x \<ge> rinf S" using rinf[OF `S\<noteq>{}`] using isGlbD2[of UNIV S "rinf S" x] using `x\<in>S` by auto
+next
+  show "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> rinf S \<ge> b" using assms
+  using rinf[of S, unfolded isGlb_def isLb_def greatestP_def setle_def setge_def]
+  apply (auto simp add: bounded_vec1)
+  by (auto simp add: isGlb_def isLb_def greatestP_def setle_def setge_def)
+qed
+
+(* TODO: Move this to RComplete.thy -- would need to include Glb into RComplete *)
+lemma real_isGlb_unique: "[| isGlb R S x; isGlb R S y |] ==> x = (y::real)"
+  apply (frule isGlb_isLb)
+  apply (frule_tac x = y in isGlb_isLb)
+  apply (blast intro!: order_antisym dest!: isGlb_le_isLb)
+  done
+
+lemma rinf_insert: assumes "bounded (vec1 ` S)"
+  shows "rinf(insert x S) = (if S = {} then x else min x (rinf S))" (is "?lhs = ?rhs")
+proof(cases "S={}")
+  case True thus ?thesis using rinf_finite_in[of "{x}"] by auto
+next
+  let ?S = "insert x S"
+  case False
+  hence *:"\<forall>x\<in>S. x \<ge> rinf S" using bounded_has_rinf(1)[of S] using assms by auto
+  hence "min x (rinf S) <=* insert x S" unfolding setge_def by auto
+  hence "isGlb UNIV ?S (rinf ?S)" using rinf[of ?S] by auto
+  moreover
+  have **:"isLb UNIV ?S (min x (rinf S))" unfolding isLb_def setge_def using * by auto
+  { fix y assume as:"isLb UNIV (insert x S) y"
+    hence "min x (rinf S) \<ge> y" unfolding isLb_def using rinf_ge[OF `S\<noteq>{}`] 
+      unfolding setge_def by auto  }
+  hence "isLb UNIV (insert x S) *<= min x (rinf S)" unfolding setle_def Ball_def mem_def by auto
+  hence "isGlb UNIV ?S (min x (rinf S))" using ** isGlbI2[of UNIV ?S "min x (rinf S)"] unfolding Collect_def by auto
+  ultimately show ?thesis using real_isGlb_unique[of UNIV ?S] using `S\<noteq>{}` by auto
+qed
+
+lemma inf_insert_finite: "finite S ==> rinf(insert x S) = (if S = {} then x else min x (rinf S))"
+  by (rule rinf_insert, rule finite_imp_bounded, simp)
+
+subsection{* Compactness (the definition is the one based on convegent subsequences). *}
+
+definition "compact S \<longleftrightarrow> 
+   (\<forall>(f::nat \<Rightarrow> real^'n). (\<forall>n. f n \<in> S) \<longrightarrow> 
+       (\<exists>l\<in>S. \<exists>r. (\<forall>m n. m < n \<longrightarrow> r m < r n) \<and> ((f o r) ---> l) sequentially))"
+
+lemma monotone_bigger: fixes r::"nat\<Rightarrow>nat"
+  assumes "\<forall>m n::nat. m < n --> r m < r n"
+  shows "n \<le> r n"
+proof(induct n)
+  show "0 \<le> r 0" by auto
+next
+  fix n assume "n \<le> r n"
+  moreover have "r n < r (Suc n)" using assms by auto
+  ultimately show "Suc n \<le> r (Suc n)" by auto
+qed
+
+lemma lim_subsequence: "\<forall>m n. m < n \<longrightarrow> r m < r n \<Longrightarrow> (s ---> l) sequentially \<Longrightarrow> ((s o r) ---> l) sequentially"
+unfolding Lim_sequentially by (simp, metis  monotone_bigger le_trans)
+
+lemma num_Axiom: "EX! g. g 0 = e \<and> (\<forall>n. g (Suc n) = f n (g n))"
+  unfolding Ex1_def
+  apply (rule_tac x="nat_rec e f" in exI)
+  apply (rule conjI)+
+apply (rule def_nat_rec_0, simp)
+apply (rule allI, rule def_nat_rec_Suc, simp)
+apply (rule allI, rule impI, rule ext)
+apply (erule conjE)
+apply (induct_tac x)
+apply (simp add: nat_rec_0)
+apply (erule_tac x="n" in allE)
+apply (simp)
+done
+
+
+lemma convergent_bounded_increasing: fixes s ::"nat\<Rightarrow>real"
+  assumes "\<forall>m n. m \<le> n --> s m \<le> s n" and "\<forall>n. abs(s n) \<le> b"
+  shows "\<exists> l. \<forall>e::real>0. \<exists> N. \<forall>n \<ge> N.  abs(s n - l) < e"
+proof-
+  have "isUb UNIV (range s) b" using assms(2) and abs_le_D1 unfolding isUb_def and setle_def by auto
+  then obtain t where t:"isLub UNIV (range s) t" using reals_complete[of "range s" ] by auto
+  { fix e::real assume "e>0" and as:"\<forall>N. \<exists>n\<ge>N. \<not> \<bar>s n - t\<bar> < e" 
+    { fix n::nat
+      obtain N where "N\<ge>n" and n:"\<bar>s N - t\<bar> \<ge> e" using as[THEN spec[where x=n]] by auto
+      have "t \<ge> s N" using isLub_isUb[OF t, unfolded isUb_def setle_def] by auto
+      with n have "s N \<le> t - e" using `e>0` by auto 
+      hence "s n \<le> t - e" using assms(1)[THEN spec[where x=n], THEN spec[where x=N]] using `n\<le>N` by auto  }
+    hence "isUb UNIV (range s) (t - e)" unfolding isUb_def and setle_def by auto
+    hence False using isLub_le_isUb[OF t, of "t - e"] and `e>0` by auto  }
+  thus ?thesis by blast
+qed
+
+lemma convergent_bounded_monotone: fixes s::"nat \<Rightarrow> real"
+  assumes "\<forall>n. abs(s n) \<le> b" and "(\<forall>m n. m \<le> n --> s m \<le> s n) \<or> (\<forall>m n. m \<le> n --> s n \<le> s m)"
+  shows "\<exists>l. \<forall>e::real>0. \<exists>N. \<forall>n\<ge>N. abs(s n - l) < e"
+  using convergent_bounded_increasing[of s b] assms using convergent_bounded_increasing[of "\<lambda>n. - s n" b]
+  apply auto unfolding minus_add_distrib[THEN sym, unfolded diff_minus[THEN sym]]
+  unfolding abs_minus_cancel by(rule_tac x="-l" in exI)auto 
+
+lemma compact_real_lemma: 
+ assumes "\<forall>n::nat. abs(s n) \<le> b"
+  shows "\<exists>l r. (\<forall>m n::nat. m < n --> r m < r n) \<and>
+           (\<forall>e>0::real. \<exists>N. \<forall>n\<ge>N. (abs(s (r n) - l) < e))"
+proof-
+  obtain r where r:"\<forall>m n::nat. m < n \<longrightarrow> r m < r n" 
+    "(\<forall>m n. m \<le> n \<longrightarrow> s (r m) \<le> s (r n)) \<or> (\<forall>m n. m \<le> n \<longrightarrow> s (r n) \<le> s (r m))" 
+    using seq_monosub[of s] by (auto simp add: subseq_def monoseq_def)
+  thus ?thesis using convergent_bounded_monotone[of "s o r" b] and assms by auto
+qed
+
+lemma compact_lemma: 
+  assumes "bounded s" and "\<forall>n. (x::nat \<Rightarrow>real^'a) n \<in> s"
+  shows "\<forall>d\<in>{1.. dimindex(UNIV::'a set)}.
+        \<exists>l::(real^'a). \<exists> r. (\<forall>n m::nat. m < n --> r m < r n) \<and>
+        (\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>i\<in>{1..d}. \<bar>x (r n) $ i - l $ i\<bar> < e)"
+proof-
+  obtain b where b:"\<forall>x\<in>s. norm x \<le> b" using assms(1)[unfolded bounded_def] by auto
+  { { fix i assume i:"i\<in>{1.. dimindex(UNIV::'a set)}"
+      { fix n::nat
+	have "\<bar>x n $ i\<bar> \<le> b" using b[THEN bspec[where x="x n"]] and component_le_norm[of i "x n"] and assms(2)[THEN spec[where x=n]] and i by auto }
+      hence "\<forall>n. \<bar>x n $ i\<bar> \<le> b" by auto
+    } note b' = this
+
+    fix d assume "d\<in>{1.. dimindex(UNIV::'a set)}"
+    hence "\<exists>l::(real^'a). \<exists> r. (\<forall>n m::nat. m < n --> r m < r n) \<and>
+        (\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>i\<in>{1..d}. \<bar>x (r n) $ i - l $ i\<bar> < e)"
+    proof(induct d) case 0 thus ?case by auto
+      (* The induction really starts at Suc 0 *)
+    next case (Suc d)
+      show ?case proof(cases "d = 0")
+	case True hence "Suc d = Suc 0" by auto
+	obtain l r where r:"\<forall>m n::nat. m < n \<longrightarrow> r m < r n" and lr:"\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>x (r n) $ 1 - l\<bar> < e" using b' and dimindex_ge_1[of "UNIV::'a set"]
+	  using compact_real_lemma[of "\<lambda>i. (x i)$1" b] by auto
+	thus ?thesis apply(rule_tac x="vec l" in exI) apply(rule_tac x=r in exI)
+	  unfolding `Suc d = Suc 0` apply auto
+	  unfolding vec_component[OF Suc(2)[unfolded `Suc d = Suc 0`]] by auto
+      next
+	case False hence d:"d \<in>{1.. dimindex(UNIV::'a set)}" using Suc(2) by auto
+	obtain l1::"real^'a" and r1 where r1:"\<forall>n m::nat. m < n \<longrightarrow> r1 m < r1 n" and lr1:"\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>i\<in>{1..d}. \<bar>x (r1 n) $ i - l1 $ i\<bar> < e"
+	  using Suc(1)[OF d] by auto
+	obtain l2 r2 where r2:"\<forall>m n::nat. m < n \<longrightarrow> r2 m < r2 n" and lr2:"\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>(x \<circ> r1) (r2 n) $ (Suc d) - l2\<bar> < e"
+	  using b'[OF Suc(2)] and compact_real_lemma[of "\<lambda>i. ((x \<circ> r1) i)$(Suc d)" b] by auto 
+	def r \<equiv> "r1 \<circ> r2" have r:"\<forall>m n. m < n \<longrightarrow> r m < r n" unfolding r_def o_def using r1 and r2 by auto
+	moreover
+	def l \<equiv> "(\<chi> i. if i = Suc d then l2 else l1$i)::real^'a"
+	{ fix e::real assume "e>0"
+	  from lr1 obtain N1 where N1:"\<forall>n\<ge>N1. \<forall>i\<in>{1..d}. \<bar>x (r1 n) $ i - l1 $ i\<bar> < e" using `e>0` by blast
+	  from lr2 obtain N2 where N2:"\<forall>n\<ge>N2. \<bar>(x \<circ> r1) (r2 n) $ (Suc d) - l2\<bar> < e" using `e>0` by blast
+	  { fix n assume n:"n\<ge> N1 + N2"
+	    fix i assume i:"i\<in>{1..Suc d}" hence i':"i\<in>{1.. dimindex(UNIV::'a set)}" using Suc by auto
+	    hence "\<bar>x (r n) $ i - l $ i\<bar> < e"
+	      using N2[THEN spec[where x="n"]] and n
+ 	      using N1[THEN spec[where x="r2 n"]] and n
+	      using monotone_bigger[OF r] and i
+	      unfolding l_def and r_def and Cart_lambda_beta'[OF i']
+	      using monotone_bigger[OF r2, of n] by auto  }
+	  hence "\<exists>N. \<forall>n\<ge>N. \<forall>i\<in>{1..Suc d}. \<bar>x (r n) $ i - l $ i\<bar> < e" by blast	}
+	ultimately show ?thesis by auto
+      qed
+    qed  }
+  thus ?thesis by auto
+qed
+
+lemma bounded_closed_imp_compact: fixes s::"(real^'a) set"
+  assumes "bounded s" and "closed s"
+  shows "compact s"
+proof-
+  let ?d = "dimindex (UNIV::'a set)"
+  { fix f assume as:"\<forall>n::nat. f n \<in> s"
+    obtain l::"real^'a" and r where r:"\<forall>n m::nat. m < n \<longrightarrow> r m < r n"
+      and lr:"\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>i\<in>{1..?d}. \<bar>f (r n) $ i - l $ i\<bar> < e"
+      using compact_lemma[OF assms(1) as, THEN bspec[where x="?d"]] and dimindex_ge_1[of "UNIV::'a set"] by auto
+    { fix e::real assume "e>0"
+      hence "0 < e / (real_of_nat ?d)" using dimindex_nonzero[of "UNIV::'a set"] using divide_pos_pos[of e, of "real_of_nat ?d"] by auto
+      then obtain N::nat where N:"\<forall>n\<ge>N. \<forall>i\<in>{1..?d}. \<bar>f (r n) $ i - l $ i\<bar> < e / (real_of_nat ?d)" using lr[THEN spec[where x="e / (real_of_nat ?d)"]] by blast
+      { fix n assume n:"n\<ge>N"
+	have "1 \<in> {1..?d}" using dimindex_nonzero[of "UNIV::'a set"] by auto
+	hence "finite {1..?d}"  "{1..?d} \<noteq> {}" by auto
+	moreover
+	{ fix i assume i:"i \<in> {1..?d}"
+	  hence "\<bar>((f \<circ> r) n - l) $ i\<bar> < e / real_of_nat ?d" using `n\<ge>N` using N[THEN spec[where x=n]]
+	    apply auto apply(erule_tac x=i in ballE) unfolding vector_minus_component[OF i] by auto  }
+	ultimately have "(\<Sum>i = 1..?d. \<bar>((f \<circ> r) n - l) $ i\<bar>)
+	  < (\<Sum>i = 1..?d. e / real_of_nat ?d)" 
+	  using setsum_strict_mono[of "{1..?d}" "\<lambda>i. \<bar>((f \<circ> r) n - l) $ i\<bar>" "\<lambda>i. e / (real_of_nat ?d)"] by auto
+	hence "(\<Sum>i = 1..?d. \<bar>((f \<circ> r) n - l) $ i\<bar>) < e" unfolding setsum_constant using dimindex_nonzero[of "UNIV::'a set"] by auto 
+	hence "dist ((f \<circ> r) n) l < e" unfolding dist_def using norm_le_l1[of "(f \<circ> r) n - l"] by auto  }
+      hence "\<exists>N. \<forall>n\<ge>N. dist ((f \<circ> r) n) l < e" by auto  }
+    hence *:"((f \<circ> r) ---> l) sequentially" unfolding Lim_sequentially by auto
+    moreover have "l\<in>s" 
+      using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="f \<circ> r"], THEN spec[where x=l]] and * and as by auto
+    ultimately have "\<exists>l\<in>s. \<exists>r. (\<forall>m n. m < n \<longrightarrow> r m < r n) \<and> ((f \<circ> r) ---> l) sequentially" using r by auto  }
+  thus ?thesis unfolding compact_def by auto
+qed
+
+subsection{* Completeness. *}
+
+  (* FIXME: Unify this with Cauchy from SEQ!!!!!*)
+
+definition cauchy_def:"cauchy s \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>m n. m \<ge> N \<and> n \<ge> N --> dist(s m)(s n) < e)"
+
+definition complete_def:"complete s \<longleftrightarrow> (\<forall>f::(nat=>real^'a). (\<forall>n. f n \<in> s) \<and> cauchy f
+                      --> (\<exists>l \<in> s. (f ---> l) sequentially))"
+
+lemma cauchy: "cauchy s \<longleftrightarrow> (\<forall>e>0.\<exists> N::nat. \<forall>n\<ge>N. dist(s n)(s N) < e)" (is "?lhs = ?rhs")
+proof-
+  { assume ?rhs
+    { fix e::real
+      assume "e>0"
+      with `?rhs` obtain N where N:"\<forall>n\<ge>N. dist (s n) (s N) < e/2"
+	by (erule_tac x="e/2" in allE) auto
+      { fix n m
+	assume nm:"N \<le> m \<and> N \<le> n"
+	hence "dist (s m) (s n) < e" using N
+	  using dist_triangle_half_l[of "s m" "s N" "e" "s n"]
+	  by blast
+      }
+      hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e"
+	by blast
+    }
+    hence ?lhs
+      unfolding cauchy_def
+      by blast
+  }
+  thus ?thesis
+    unfolding cauchy_def
+    using dist_triangle_half_l
+    by blast
+qed
+
+lemma convergent_imp_cauchy: 
+ "(s ---> l) sequentially ==> cauchy s"
+proof(simp only: cauchy_def, rule, rule)
+  fix e::real assume "e>0" "(s ---> l) sequentially"
+  then obtain N::nat where N:"\<forall>n\<ge>N. dist (s n) l < e/2" unfolding Lim_sequentially by(erule_tac x="e/2" in allE) auto
+  thus "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e"  using dist_triangle_half_l[of _ l e _] by (rule_tac x=N in exI) auto
+qed
+
+lemma cauchy_imp_bounded: assumes "cauchy s" shows "bounded {y. (\<exists>n::nat. y = s n)}"
+proof-
+  from assms obtain N::nat where "\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < 1" unfolding cauchy_def apply(erule_tac x= 1 in allE) by auto
+  hence N:"\<forall>n. N \<le> n \<longrightarrow> dist (s N) (s n) < 1" by auto
+  { fix n::nat assume "n\<ge>N"
+    hence "norm (s n) \<le> norm (s N) + 1" using N apply(erule_tac x=n in allE) unfolding dist_def
+      using norm_triangle_sub[of "s N" "s n"] by (auto, metis dist_def dist_sym le_add_right_mono norm_triangle_sub real_less_def)
+  }
+  hence "\<forall>n\<ge>N. norm (s n) \<le> norm (s N) + 1" by auto
+  moreover
+  have "bounded (s ` {0..N})" using finite_imp_bounded[of "s ` {1..N}"] by auto
+  then obtain a where a:"\<forall>x\<in>s ` {0..N}. norm x \<le> a" unfolding bounded_def by auto
+  ultimately show "?thesis" unfolding bounded_def
+    apply(rule_tac x="max a (norm (s N) + 1)" in exI) apply auto
+    apply(erule_tac x=n in allE) apply(erule_tac x=n in ballE) by auto
+qed
+
+lemma compact_imp_complete: assumes "compact s" shows "complete s"
+proof-
+  { fix f assume as: "(\<forall>n::nat. f n \<in> s)" "cauchy f"
+    from as(1) obtain l r where lr: "l\<in>s" "(\<forall>m n. m < n \<longrightarrow> r m < r n)" "((f \<circ> r) ---> l) sequentially" using assms unfolding compact_def by blast 
+
+    { fix n :: nat have lr':"n \<le> r n"
+    proof (induct n)
+      show "0 \<le> r 0" using lr(2) by blast
+    next fix na assume "na \<le> r na" moreover have "na < Suc na \<longrightarrow> r na < r (Suc na)" using lr(2) by blast 
+      ultimately show "Suc na \<le> r (Suc na)" by auto
+    qed } note lr' = this
+
+    { fix e::real assume "e>0"
+      from as(2) obtain N where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (f m) (f n) < e/2" unfolding cauchy_def using `e>0` apply (erule_tac x="e/2" in allE) by auto
+      from lr(3)[unfolded Lim_sequentially, THEN spec[where x="e/2"]] obtain M where M:"\<forall>n\<ge>M. dist ((f \<circ> r) n) l < e/2" using `e>0` by auto 
+      { fix n::nat assume n:"n \<ge> max N M"
+	have "dist ((f \<circ> r) n) l < e/2" using n M by auto
+	moreover have "r n \<ge> N" using lr'[of n] n by auto
+	hence "dist (f n) ((f \<circ> r) n) < e / 2" using N using n by auto
+	ultimately have "dist (f n) l < e" using dist_triangle_half_r[of "f (r n)" "f n" e l] by (auto simp add: dist_sym)  }
+      hence "\<exists>N. \<forall>n\<ge>N. dist (f n) l < e" by blast  }
+    hence "\<exists>l\<in>s. (f ---> l) sequentially" using `l\<in>s` unfolding Lim_sequentially by auto  }
+  thus ?thesis unfolding complete_def by auto
+qed
+
+lemma complete_univ: 
+ "complete UNIV"
+proof(simp add: complete_def, rule, rule)
+  fix f::"nat \<Rightarrow> real^'n" assume "cauchy f"
+  hence "bounded (f`UNIV)" using cauchy_imp_bounded[of f] unfolding image_def by auto
+  hence "compact (closure (f`UNIV))"  using bounded_closed_imp_compact[of "closure (range f)"] by auto
+  hence "complete (closure (range f))" using compact_imp_complete by auto
+  thus "\<exists>l. (f ---> l) sequentially" unfolding complete_def[of "closure (range f)"] using `cauchy f` unfolding closure_def  by auto
+qed
+
+lemma complete_eq_closed: "complete s \<longleftrightarrow> closed s" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  { fix x assume "x islimpt s"
+    then obtain f where f:"\<forall>n. f n \<in> s - {x}" "(f ---> x) sequentially" unfolding islimpt_sequential by auto
+    then obtain l where l: "l\<in>s" "(f ---> l) sequentially" using `?lhs`[unfolded complete_def]  using convergent_imp_cauchy[of f x] by auto
+    hence "x \<in> s"  using Lim_unique[of sequentially f l x] trivial_limit_sequentially f(2) by auto  }
+  thus ?rhs unfolding closed_limpt by auto
+next
+  assume ?rhs
+  { fix f assume as:"\<forall>n::nat. f n \<in> s" "cauchy f"
+    then obtain l where "(f ---> l) sequentially" using complete_univ[unfolded complete_def, THEN spec[where x=f]] by auto
+    hence "\<exists>l\<in>s. (f ---> l) sequentially" using `?rhs`[unfolded closed_sequential_limits, THEN spec[where x=f], THEN spec[where x=l]] using as(1) by auto  }
+  thus ?lhs unfolding complete_def by auto
+qed
+
+lemma convergent_eq_cauchy: "(\<exists>l. (s ---> l) sequentially) \<longleftrightarrow> cauchy s" (is "?lhs = ?rhs")
+proof
+  assume ?lhs then obtain l where "(s ---> l) sequentially" by auto
+  thus ?rhs using convergent_imp_cauchy by auto
+next
+  assume ?rhs thus ?lhs using complete_univ[unfolded complete_def, THEN spec[where x=s]] by auto
+qed
+
+lemma convergent_imp_bounded: "(s ---> l) sequentially ==> bounded (s ` (UNIV::(nat set)))"
+  using convergent_eq_cauchy[of s]
+  using cauchy_imp_bounded[of s]
+  unfolding image_def
+  by auto
+
+subsection{* Total boundedness. *}
+
+fun helper_1::"((real^'n) set) \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real^'n" where
+  "helper_1 s e n = (SOME y::real^'n. y \<in> s \<and> (\<forall>m<n. \<not> (dist (helper_1 s e m) y < e)))"
+declare helper_1.simps[simp del]
+
+lemma compact_imp_totally_bounded: 
+  assumes "compact s"
+  shows "\<forall>e>0. \<exists>k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> (\<Union>((\<lambda>x. ball x e) ` k))"
+proof(rule, rule, rule ccontr)
+  fix e::real assume "e>0" and assm:"\<not> (\<exists>k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k)"
+  def x \<equiv> "helper_1 s e"
+  { fix n 
+    have "x n \<in> s \<and> (\<forall>m<n. \<not> dist (x m) (x n) < e)"
+    proof(induct_tac rule:nat_less_induct)
+      fix n  def Q \<equiv> "(\<lambda>y. y \<in> s \<and> (\<forall>m<n. \<not> dist (x m) y < e))"
+      assume as:"\<forall>m<n. x m \<in> s \<and> (\<forall>ma<m. \<not> dist (x ma) (x m) < e)"
+      have "\<not> s \<subseteq> (\<Union>x\<in>x ` {0..<n}. ball x e)" using assm apply simp apply(erule_tac x="x ` {0 ..< n}" in allE) using as by auto
+      then obtain z where z:"z\<in>s" "z \<notin> (\<Union>x\<in>x ` {0..<n}. ball x e)" unfolding subset_eq by auto
+      have "Q (x n)" unfolding x_def and helper_1.simps[of s e n]
+	apply(rule someI2[where a=z]) unfolding x_def[symmetric] and Q_def using z by auto
+      thus "x n \<in> s \<and> (\<forall>m<n. \<not> dist (x m) (x n) < e)" unfolding Q_def by auto
+    qed }
+  hence "\<forall>n::nat. x n \<in> s" and x:"\<forall>n. \<forall>m < n. \<not> (dist (x m) (x n) < e)" by blast+
+  then obtain l r where "l\<in>s" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and "((x \<circ> r) ---> l) sequentially" using assms(1)[unfolded compact_def, THEN spec[where x=x]] by auto
+  from this(3) have "cauchy (x \<circ> r)" using convergent_imp_cauchy by auto
+  then obtain N::nat where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist ((x \<circ> r) m) ((x \<circ> r) n) < e" unfolding cauchy_def using `e>0` by auto
+  show False
+    using N[THEN spec[where x=N], THEN spec[where x="N+1"]]
+    using r[THEN spec[where x=N], THEN spec[where x="N+1"]]
+    using x[THEN spec[where x="r (N+1)"], THEN spec[where x="r (N)"]] by auto
+qed
+
+subsection{* Heine-Borel theorem (following Burkill \& Burkill vol. 2) *}
+
+lemma heine_borel_lemma: fixes s::"(real^'n) set"
+  assumes "compact s"  "s \<subseteq> (\<Union> t)"  "\<forall>b \<in> t. open b"
+  shows "\<exists>e>0. \<forall>x \<in> s. \<exists>b \<in> t. ball x e \<subseteq> b"
+proof(rule ccontr)
+  assume "\<not> (\<exists>e>0. \<forall>x\<in>s. \<exists>b\<in>t. ball x e \<subseteq> b)"
+  hence cont:"\<forall>e>0. \<exists>x\<in>s. \<forall>xa\<in>t. \<not> (ball x e \<subseteq> xa)" by auto
+  { fix n::nat 
+    have "1 / real (n + 1) > 0" by auto
+    hence "\<exists>x. x\<in>s \<and> (\<forall>xa\<in>t. \<not> (ball x (inverse (real (n+1))) \<subseteq> xa))" using cont unfolding Bex_def by auto }
+  hence "\<forall>n::nat. \<exists>x. x \<in> s \<and> (\<forall>xa\<in>t. \<not> ball x (inverse (real (n + 1))) \<subseteq> xa)" by auto
+  then obtain f where f:"\<forall>n::nat. f n \<in> s \<and> (\<forall>xa\<in>t. \<not> ball (f n) (inverse (real (n + 1))) \<subseteq> xa)"
+    using choice[of "\<lambda>n::nat. \<lambda>x. x\<in>s \<and> (\<forall>xa\<in>t. \<not> ball x (inverse (real (n + 1))) \<subseteq> xa)"] by auto 
+
+  then obtain l r where l:"l\<in>s" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and lr:"((f \<circ> r) ---> l) sequentially"
+    using assms(1)[unfolded compact_def, THEN spec[where x=f]] by auto
+
+  obtain b where "l\<in>b" "b\<in>t" using assms(2) and l by auto
+  then obtain e where "e>0" and e:"\<forall>z. dist z l < e \<longrightarrow> z\<in>b"
+    using assms(3)[THEN bspec[where x=b]] unfolding open_def by auto
+
+  then obtain N1 where N1:"\<forall>n\<ge>N1. dist ((f \<circ> r) n) l < e / 2"
+    using lr[unfolded Lim_sequentially, THEN spec[where x="e/2"]] by auto
+  
+  obtain N2::nat where N2:"N2>0" "inverse (real N2) < e /2" using real_arch_inv[of "e/2"] and `e>0` by auto
+  have N2':"inverse (real (r (N1 + N2) +1 )) < e/2"
+    apply(rule order_less_trans) apply(rule less_imp_inverse_less) using N2 
+    using monotone_bigger[OF r, of "N1 + N2"] by auto
+
+  def x \<equiv> "(f (r (N1 + N2)))"
+  have x:"\<not> ball x (inverse (real (r (N1 + N2) + 1))) \<subseteq> b" unfolding x_def
+    using f[THEN spec[where x="r (N1 + N2)"]] using `b\<in>t` by auto
+  have "\<exists>y\<in>ball x (inverse (real (r (N1 + N2) + 1))). y\<notin>b" apply(rule ccontr) using x by auto
+  then obtain y where y:"y \<in> ball x (inverse (real (r (N1 + N2) + 1)))" "y \<notin> b" by auto
+  
+  have "dist x l < e/2" using N1 unfolding x_def o_def by auto
+  hence "dist y l < e" using y N2' using dist_triangle[of y l x]by (auto simp add:dist_sym)
+    
+  thus False using e and `y\<notin>b` by auto
+qed
+
+lemma compact_imp_heine_borel: "compact s ==> (\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f)
+               \<longrightarrow> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f')))"
+proof clarify
+  fix f assume "compact s" " \<forall>t\<in>f. open t" "s \<subseteq> \<Union>f"
+  then obtain e::real where "e>0" and "\<forall>x\<in>s. \<exists>b\<in>f. ball x e \<subseteq> b" using heine_borel_lemma[of s f] by auto
+  hence "\<forall>x\<in>s. \<exists>b. b\<in>f \<and> ball x e \<subseteq> b" by auto
+  hence "\<exists>bb. \<forall>x\<in>s. bb x \<in>f \<and> ball x e \<subseteq> bb x" using bchoice[of s "\<lambda>x b. b\<in>f \<and> ball x e \<subseteq> b"] by auto
+  then obtain  bb where bb:"\<forall>x\<in>s. (bb x) \<in> f \<and> ball x e \<subseteq> (bb x)" by blast
+
+  from `compact s` have  "\<exists> k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k" using compact_imp_totally_bounded[of s] `e>0` by auto
+  then obtain k where k:"finite k" "k \<subseteq> s" "s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k" by auto
+
+  have "finite (bb ` k)" using k(1) by auto
+  moreover
+  { fix x assume "x\<in>s"
+    hence "x\<in>\<Union>(\<lambda>x. ball x e) ` k" using k(3)  unfolding subset_eq by auto
+    hence "\<exists>X\<in>bb ` k. x \<in> X" using bb k(2) by blast
+    hence "x \<in> \<Union>(bb ` k)" using  Union_iff[of x "bb ` k"] by auto
+  }
+  ultimately show "\<exists>f'\<subseteq>f. finite f' \<and> s \<subseteq> \<Union>f'" using bb k(2) by (rule_tac x="bb ` k" in exI) auto
+qed
+
+subsection{* Bolzano-Weierstrass property. *}
+
+lemma heine_borel_imp_bolzano_weierstrass: 
+  assumes "\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f) --> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f'))"
+          "infinite t"  "t \<subseteq> s"
+  shows "\<exists>x \<in> s. x islimpt t"
+proof(rule ccontr)
+  assume "\<not> (\<exists>x \<in> s. x islimpt t)"
+  then obtain f where f:"\<forall>x\<in>s. x \<in> f x \<and> open (f x) \<and> (\<forall>y\<in>t. y \<in> f x \<longrightarrow> y = x)" unfolding islimpt_def 
+    using bchoice[of s "\<lambda> x T. x \<in> T \<and> open T \<and> (\<forall>y\<in>t. y \<in> T \<longrightarrow> y = x)"] by auto
+  obtain g where g:"g\<subseteq>{t. \<exists>x. x \<in> s \<and> t = f x}" "finite g" "s \<subseteq> \<Union>g"
+    using assms(1)[THEN spec[where x="{t. \<exists>x. x\<in>s \<and> t = f x}"]] using f by auto
+  from g(1,3) have g':"\<forall>x\<in>g. \<exists>xa \<in> s. x = f xa" by auto
+  { fix x y assume "x\<in>t" "y\<in>t" "f x = f y"
+    hence "x \<in> f x"  "y \<in> f x \<longrightarrow> y = x" using f[THEN bspec[where x=x]] and `t\<subseteq>s` by auto
+    hence "x = y" using `f x = f y` and f[THEN bspec[where x=y]] and `y\<in>t` and `t\<subseteq>s` by auto  }
+  hence "infinite (f ` t)" using assms(2) using finite_imageD[unfolded inj_on_def, of f t] by auto
+  moreover
+  { fix x assume "x\<in>t" "f x \<notin> g"
+    from g(3) assms(3) `x\<in>t` obtain h where "h\<in>g" and "x\<in>h" by auto
+    then obtain y where "y\<in>s" "h = f y" using g'[THEN bspec[where x=h]] by auto
+    hence "y = x" using f[THEN bspec[where x=y]] and `x\<in>t` and `x\<in>h`[unfolded `h = f y`] by auto
+    hence False using `f x \<notin> g` `h\<in>g` unfolding `h = f y` by auto  }
+  hence "f ` t \<subseteq> g" by auto 
+  ultimately show False using g(2) using finite_subset by auto 
+qed
+
+subsection{* Complete the chain of compactness variants. *}
+
+primrec helper_2::"(real \<Rightarrow> real^'n) \<Rightarrow> nat \<Rightarrow> real ^'n" where 
+  "helper_2 beyond 0 = beyond 0" |
+  "helper_2 beyond (Suc n) = beyond (norm (helper_2 beyond n) + 1 )"
+
+lemma bolzano_weierstrass_imp_bounded: fixes s::"(real^'n) set"
+  assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)"
+  shows "bounded s"
+proof(rule ccontr)
+  assume "\<not> bounded s"
+  then obtain beyond where "\<forall>a. beyond a \<in>s \<and> \<not> norm (beyond a) \<le> a"
+    unfolding bounded_def apply simp using choice[of "\<lambda>a x. x\<in>s \<and> \<not> norm x \<le> a"] by auto
+  hence beyond:"\<And>a. beyond a \<in>s" "\<And>a. norm (beyond a) > a" unfolding linorder_not_le by auto
+  def x \<equiv> "helper_2 beyond"
+
+  { fix m n ::nat assume "m<n"
+    hence "norm (x m) + 1 < norm (x n)"
+    proof(induct n)
+      case 0 thus ?case by auto
+    next
+      case (Suc n) 
+      have *:"norm (x n) + 1 < norm (x (Suc n))" unfolding x_def and helper_2.simps  
+	using beyond(2)[of "norm (helper_2 beyond n) + 1"] by auto
+      thus ?case proof(cases "m < n")
+	case True thus ?thesis using Suc and * by auto
+      next
+	case False hence "m = n" using Suc(2) by auto
+	thus ?thesis using * by auto
+      qed
+    qed  } note * = this
+  { fix m n ::nat assume "m\<noteq>n"
+    have "1 < dist (x m) (x n)"
+    proof(cases "m<n")
+      case True 
+      hence "1 < norm (x n) - norm (x m)" using *[of m n] by auto
+      thus ?thesis unfolding dist_sym[of "x m" "x n"] unfolding dist_def using norm_triangle_sub[of "x n" "x m"] by auto
+    next
+      case False hence "n<m" using `m\<noteq>n` by auto
+      hence "1 < norm (x m) - norm (x n)" using *[of n m] by auto
+      thus ?thesis unfolding dist_sym[of "x n" "x m"] unfolding dist_def using norm_triangle_sub[of "x m" "x n"] by auto
+    qed  } note ** = this
+  { fix a b assume "x a = x b" "a \<noteq> b"
+    hence False using **[of a b] unfolding dist_eq_0[THEN sym] by auto  }
+  hence "inj x" unfolding inj_on_def by auto
+  moreover
+  { fix n::nat
+    have "x n \<in> s"
+    proof(cases "n = 0")
+      case True thus ?thesis unfolding x_def using beyond by auto 
+    next
+      case False then obtain z where "n = Suc z" using not0_implies_Suc by auto
+      thus ?thesis unfolding x_def using beyond by auto 
+    qed  }
+  ultimately have "infinite (range x) \<and> range x \<subseteq> s" unfolding x_def using range_inj_infinite[of "helper_2 beyond"] using beyond(1) by auto
+
+  then obtain l where "l\<in>s" and l:"l islimpt range x" using assms[THEN spec[where x="range x"]] by auto
+  then obtain y where "x y \<noteq> l" and y:"dist (x y) l < 1/2" unfolding islimpt_approachable apply(erule_tac x="1/2" in allE) by auto
+  then obtain z where "x z \<noteq> l" and z:"dist (x z) l < dist (x y) l" using l[unfolded islimpt_approachable, THEN spec[where x="dist (x y) l"]]
+    unfolding dist_nz by auto
+  show False using y and z and dist_triangle_half_l[of "x y" l 1 "x z"] and **[of y z] by auto
+qed
+
+lemma sequence_infinite_lemma: 
+  assumes "\<forall>n::nat. (f n  \<noteq> l)"  "(f ---> l) sequentially"
+  shows "infinite {y::real^'a. (\<exists> n. y = f n)}"
+proof(rule ccontr)
+  let ?A = "(\<lambda>x. dist x l) ` {y. \<exists>n. y = f n}"
+  assume "\<not> infinite {y. \<exists>n. y = f n}"
+  hence **:"finite ?A" "?A \<noteq> {}" by auto
+  obtain k where k:"dist (f k) l = Min ?A" using Min_in[OF **] by auto
+  have "0 < Min ?A" using assms(1) unfolding dist_nz unfolding Min_gr_iff[OF **] by auto
+  then obtain N where "dist (f N) l < Min ?A" using assms(2)[unfolded Lim_sequentially, THEN spec[where x="Min ?A"]] by auto
+  moreover have "dist (f N) l \<in> ?A" by auto
+  ultimately show False using Min_le[OF **(1), of "dist (f N) l"] by auto  
+qed
+
+lemma sequence_unique_limpt: 
+  assumes "\<forall>n::nat. (f n \<noteq> l)"  "(f ---> l) sequentially"  "l' islimpt {y.  (\<exists>n. y = f n)}"
+  shows "l' = l"
+proof(rule ccontr)
+  def e \<equiv> "dist l' l"
+  assume "l' \<noteq> l" hence "e>0" unfolding dist_nz e_def by auto
+  then obtain N::nat where N:"\<forall>n\<ge>N. dist (f n) l < e / 2"
+    using assms(2)[unfolded Lim_sequentially, THEN spec[where x="e/2"]] by auto
+  def d \<equiv> "Min (insert (e/2) ((\<lambda>n. if dist (f n) l' = 0 then e/2 else dist (f n) l') ` {0 .. N}))"
+  have "d>0" using `e>0` unfolding d_def e_def using dist_pos_le[of _ l', unfolded order_le_less] by auto
+  obtain k where k:"f k \<noteq> l'"  "dist (f k) l' < d" using `d>0` and assms(3)[unfolded islimpt_approachable, THEN spec[where x="d"]] by auto 
+  have "k\<ge>N" using k(1)[unfolded dist_nz] using k(2)[unfolded d_def]
+    by force
+  hence "dist l' l < e" using N[THEN spec[where x=k]] using k(2)[unfolded d_def] and dist_triangle_half_r[of "f k" l' e l] by auto
+  thus False unfolding e_def by auto
+qed
+
+lemma bolzano_weierstrass_imp_closed: 
+  assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)"
+  shows "closed s"
+proof-
+  { fix x l assume as: "\<forall>n::nat. x n \<in> s" "(x ---> l) sequentially"
+    hence "l \<in> s"
+    proof(cases "\<forall>n. x n \<noteq> l")
+      case False thus "l\<in>s" using as(1) by auto
+    next
+      case True note cas = this
+      with as(2) have "infinite {y. \<exists>n. y = x n}" using sequence_infinite_lemma[of x l] by auto
+      then obtain l' where "l'\<in>s" "l' islimpt {y. \<exists>n. y = x n}" using assms[THEN spec[where x="{y. \<exists>n. y = x n}"]] as(1) by auto
+      thus "l\<in>s" using sequence_unique_limpt[of x l l'] using as cas by auto
+    qed  }
+  thus ?thesis unfolding closed_sequential_limits by auto
+qed
+
+text{* Hence express everything as an equivalence.   *}
+
+lemma compact_eq_heine_borel: "compact s \<longleftrightarrow>
+           (\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f)
+               --> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f')))" (is "?lhs = ?rhs")
+proof
+  assume ?lhs thus ?rhs using compact_imp_heine_borel[of s] by blast
+next
+  assume ?rhs
+  hence "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. x islimpt t)" using heine_borel_imp_bolzano_weierstrass[of s] by blast
+  thus ?lhs using bolzano_weierstrass_imp_bounded[of s] bolzano_weierstrass_imp_closed[of s] bounded_closed_imp_compact[of s] by blast
+qed
+
+lemma compact_eq_bolzano_weierstrass: 
+        "compact s \<longleftrightarrow> (\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t))" (is "?lhs = ?rhs")
+proof
+  assume ?lhs thus ?rhs unfolding compact_eq_heine_borel using heine_borel_imp_bolzano_weierstrass[of s] by auto
+next
+  assume ?rhs thus ?lhs using bolzano_weierstrass_imp_bounded bolzano_weierstrass_imp_closed bounded_closed_imp_compact by auto
+qed
+
+lemma compact_eq_bounded_closed: 
+ "compact s \<longleftrightarrow> bounded s \<and> closed s"  (is "?lhs = ?rhs")
+proof
+  assume ?lhs thus ?rhs unfolding compact_eq_bolzano_weierstrass using bolzano_weierstrass_imp_bounded bolzano_weierstrass_imp_closed by auto
+next
+  assume ?rhs thus ?lhs using bounded_closed_imp_compact by auto
+qed
+
+lemma compact_imp_bounded: 
+ "compact s ==> bounded s"
+  unfolding compact_eq_bounded_closed
+  by simp
+
+lemma compact_imp_closed: 
+ "compact s ==> closed s"
+  unfolding compact_eq_bounded_closed
+  by simp
+
+text{* In particular, some common special cases. *}
+
+lemma compact_empty[simp]: 
+ "compact {}"
+  unfolding compact_def
+  by simp
+
+  (* FIXME : Rename *)
+lemma compact_union[intro]: 
+ "compact s \<Longrightarrow> compact t ==> compact (s \<union> t)"
+  unfolding compact_eq_bounded_closed
+  using bounded_Un[of s t]
+  using closed_Un[of s t]
+  by simp
+
+lemma compact_inter[intro]: 
+ "compact s \<Longrightarrow> compact t ==> compact (s \<inter> t)"
+  unfolding compact_eq_bounded_closed
+  using bounded_Int[of s t]
+  using closed_Int[of s t]
+  by simp
+
+lemma compact_inter_closed[intro]: 
+ "compact s \<Longrightarrow> closed t ==> compact (s \<inter> t)"
+  unfolding compact_eq_bounded_closed
+  using closed_Int[of s t]
+  using bounded_subset[of "s \<inter> t" s]
+  by blast
+
+lemma closed_inter_compact[intro]: 
+ "closed s \<Longrightarrow> compact t ==> compact (s \<inter> t)"
+proof-
+  assume "closed s" "compact t"
+  moreover
+  have "s \<inter> t = t \<inter> s" by auto ultimately
+  show ?thesis
+    using compact_inter_closed[of t s]
+    by auto
+qed
+
+lemma finite_imp_closed: 
+ "finite s ==> closed s"
+proof-
+  assume "finite s" hence "\<not>( \<exists>t. t \<subseteq> s \<and> infinite t)" using finite_subset by auto
+  thus ?thesis using bolzano_weierstrass_imp_closed[of s] by auto
+qed
+
+lemma finite_imp_compact: 
+ "finite s ==> compact s"
+  unfolding compact_eq_bounded_closed
+  using finite_imp_closed finite_imp_bounded
+  by blast
+
+lemma compact_sing[simp]: 
+ "compact {a}"
+  using finite_imp_compact[of "{a}"]
+  by blast
+
+lemma closed_sing[simp]: 
+ "closed {a}"
+  using compact_eq_bounded_closed compact_sing[of a]
+  by blast
+
+lemma compact_cball[simp]: 
+ "compact(cball x e)"
+  using compact_eq_bounded_closed bounded_cball closed_cball
+  by blast
+
+lemma compact_frontier_bounded[intro]: 
+ "bounded s ==> compact(frontier s)"
+  unfolding frontier_def
+  using compact_eq_bounded_closed 
+  by blast
+
+lemma compact_frontier[intro]: 
+ "compact s ==> compact (frontier s)"
+  using compact_eq_bounded_closed compact_frontier_bounded
+  by blast
+
+lemma frontier_subset_compact: 
+ "compact s ==> frontier s \<subseteq> s"
+  using frontier_subset_closed compact_eq_bounded_closed
+  by blast
+
+lemma open_delete: 
+ "open s ==> open(s - {x})"
+  using open_diff[of s "{x}"] closed_sing
+  by blast
+
+text{* Finite intersection property. I could make it an equivalence in fact. *}
+
+lemma compact_imp_fip: 
+  assumes "compact s"  "\<forall>t \<in> f. closed t"
+        "\<forall>f'. finite f' \<and> f' \<subseteq> f --> (s \<inter> (\<Inter> f') \<noteq> {})"
+  shows "s \<inter> (\<Inter> f) \<noteq> {}"
+proof
+  assume as:"s \<inter> (\<Inter> f) = {}"
+  hence "s \<subseteq> \<Union>op - UNIV ` f" by auto
+  moreover have "Ball (op - UNIV ` f) open" using open_diff closed_diff using assms(2) by auto
+  ultimately obtain f' where f':"f' \<subseteq> op - UNIV ` f"  "finite f'"  "s \<subseteq> \<Union>f'" using assms(1)[unfolded compact_eq_heine_borel, THEN spec[where x="(\<lambda>t. UNIV - t) ` f"]] by auto
+  hence "finite (op - UNIV ` f') \<and> op - UNIV ` f' \<subseteq> f" by(auto simp add: Diff_Diff_Int)
+  hence "s \<inter> \<Inter>op - UNIV ` f' \<noteq> {}" using assms(3)[THEN spec[where x="op - UNIV ` f'"]] by auto
+  thus False using f'(3) unfolding subset_eq and Union_iff by blast
+qed
+
+subsection{* Bounded closed nest property (proof does not use Heine-Borel).            *}
+
+lemma bounded_closed_nest: 
+  assumes "\<forall>n. closed(s n)" "\<forall>n. (s n \<noteq> {})"
+  "(\<forall>m n. m \<le> n --> s n \<subseteq> s m)"  "bounded(s 0)"
+  shows "\<exists> a::real^'a. \<forall>n::nat. a \<in> s(n)"
+proof-
+  from assms(2) obtain x where x:"\<forall>n::nat. x n \<in> s n" using choice[of "\<lambda>n x. x\<in> s n"] by auto
+  from assms(4,1) have *:"compact (s 0)" using bounded_closed_imp_compact[of "s 0"] by auto
+  
+  then obtain l r where lr:"l\<in>s 0" "\<forall>m n. m < n \<longrightarrow> r m < r n" "((x \<circ> r) ---> l) sequentially"
+    unfolding compact_def apply(erule_tac x=x in allE)  using x using assms(3) by blast
+
+  { fix n::nat
+    { fix e::real assume "e>0"
+      with lr(3) obtain N where N:"\<forall>m\<ge>N. dist ((x \<circ> r) m) l < e" unfolding Lim_sequentially by auto
+      hence "dist ((x \<circ> r) (max N n)) l < e" by auto
+      moreover
+      have "r (max N n) \<ge> n" using lr(2) using monotone_bigger[of r "max N n"] by auto
+      hence "(x \<circ> r) (max N n) \<in> s n"
+	using x apply(erule_tac x=n in allE)
+	using x apply(erule_tac x="r (max N n)" in allE)
+	using assms(3) apply(erule_tac x=n in allE)apply( erule_tac x="r (max N n)" in allE) by auto 
+      ultimately have "\<exists>y\<in>s n. dist y l < e" by auto
+    }
+    hence "l \<in> s n" using closed_approachable[of "s n" l] assms(1) by blast
+  }
+  thus ?thesis by auto  
+qed
+
+text{* Decreasing case does not even need compactness, just completeness.        *}
+
+lemma decreasing_closed_nest: 
+  assumes "\<forall>n. closed(s n)"
+          "\<forall>n. (s n \<noteq> {})"
+          "\<forall>m n. m \<le> n --> s n \<subseteq> s m"
+          "\<forall>e>0. \<exists>n. \<forall>x \<in> (s n). \<forall> y \<in> (s n). dist x y < e"
+  shows "\<exists>a::real^'a. \<forall>n::nat. a \<in> s n" 
+proof-
+  have "\<forall>n. \<exists> x. x\<in>s n" using assms(2) by auto
+  hence "\<exists>t. \<forall>n. t n \<in> s n" using choice[of "\<lambda> n x. x \<in> s n"] by auto
+  then obtain t where t: "\<forall>n. t n \<in> s n" by auto
+  { fix e::real assume "e>0"
+    then obtain N where N:"\<forall>x\<in>s N. \<forall>y\<in>s N. dist x y < e" using assms(4) by auto
+    { fix m n ::nat assume "N \<le> m \<and> N \<le> n"
+      hence "t m \<in> s N" "t n \<in> s N" using assms(3) t unfolding  subset_eq t by blast+
+      hence "dist (t m) (t n) < e" using N by auto
+    }
+    hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (t m) (t n) < e" by auto
+  }
+  hence  "cauchy t" unfolding cauchy_def by auto
+  then obtain l where l:"(t ---> l) sequentially" using complete_univ unfolding complete_def by auto
+  { fix n::nat
+    { fix e::real assume "e>0"
+      then obtain N::nat where N:"\<forall>n\<ge>N. dist (t n) l < e" using l[unfolded Lim_sequentially] by auto
+      have "t (max n N) \<in> s n" using assms(3) unfolding subset_eq apply(erule_tac x=n in allE) apply (erule_tac x="max n N" in allE) using t by auto
+      hence "\<exists>y\<in>s n. dist y l < e" apply(rule_tac x="t (max n N)" in bexI) using N by auto
+    }
+    hence "l \<in> s n" using closed_approachable[of "s n" l] assms(1) by auto
+  }
+  then show ?thesis by auto
+qed
+
+text{* Strengthen it to the intersection actually being a singleton.             *}
+
+lemma decreasing_closed_nest_sing: 
+  assumes "\<forall>n. closed(s n)"
+          "\<forall>n. s n \<noteq> {}"
+          "\<forall>m n. m \<le> n --> s n \<subseteq> s m"
+          "\<forall>e>0. \<exists>n. \<forall>x \<in> (s n). \<forall> y\<in>(s n). dist x y < e"
+  shows "\<exists>a::real^'a. \<Inter> {t. (\<exists>n::nat. t = s n)} = {a}"
+proof-
+  obtain a where a:"\<forall>n. a \<in> s n" using decreasing_closed_nest[of s] using assms by auto
+  { fix b assume b:"b \<in> \<Inter>{t. \<exists>n. t = s n}"
+    { fix e::real assume "e>0"
+      hence "dist a b < e" using assms(4 )using b using a by blast
+    }
+    hence "dist a b = 0" by (metis dist_eq_0 dist_nz real_less_def)  
+  }
+  with a have "\<Inter>{t. \<exists>n. t = s n} = {a}"  unfolding dist_eq_0 by auto
+  thus ?thesis by auto
+qed
+
+text{* Cauchy-type criteria for uniform convergence. *}
+
+lemma uniformly_convergent_eq_cauchy: fixes s::"nat \<Rightarrow> 'b \<Rightarrow> real^'a" shows
+ "(\<exists>l. \<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x --> dist(s n x)(l x) < e) \<longleftrightarrow>
+  (\<forall>e>0. \<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x  --> dist (s m x) (s n x) < e)" (is "?lhs = ?rhs")
+proof(rule)
+  assume ?lhs
+  then obtain l where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l x) < e" by auto
+  { fix e::real assume "e>0"
+    then obtain N::nat where N:"\<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l x) < e / 2" using l[THEN spec[where x="e/2"]] by auto
+    { fix n m::nat and x::"'b" assume "N \<le> m \<and> N \<le> n \<and> P x"
+      hence "dist (s m x) (s n x) < e"
+	using N[THEN spec[where x=m], THEN spec[where x=x]]
+	using N[THEN spec[where x=n], THEN spec[where x=x]] 
+	using dist_triangle_half_l[of "s m x" "l x" e "s n x"] by auto  }
+    hence "\<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x  --> dist (s m x) (s n x) < e"  by auto  }
+  thus ?rhs by auto
+next
+  assume ?rhs
+  hence "\<forall>x. P x \<longrightarrow> cauchy (\<lambda>n. s n x)" unfolding cauchy_def apply auto by (erule_tac x=e in allE)auto
+  then obtain l where l:"\<forall>x. P x \<longrightarrow> ((\<lambda>n. s n x) ---> l x) sequentially" unfolding convergent_eq_cauchy[THEN sym]
+    using choice[of "\<lambda>x l. P x \<longrightarrow> ((\<lambda>n. s n x) ---> l) sequentially"] by auto
+  { fix e::real assume "e>0"
+    then obtain N where N:"\<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x \<longrightarrow> dist (s m x) (s n x) < e/2"
+      using `?rhs`[THEN spec[where x="e/2"]] by auto
+    { fix x assume "P x"
+      then obtain M where M:"\<forall>n\<ge>M. dist (s n x) (l x) < e/2"
+	using l[THEN spec[where x=x], unfolded Lim_sequentially] using `e>0` by(auto elim!: allE[where x="e/2"])
+      fix n::nat assume "n\<ge>N"
+      hence "dist(s n x)(l x) < e"  using `P x`and N[THEN spec[where x=n], THEN spec[where x="N+M"], THEN spec[where x=x]]
+	using M[THEN spec[where x="N+M"]] and dist_triangle_half_l[of "s n x" "s (N+M) x" e "l x"] by (auto simp add: dist_sym)  }
+    hence "\<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e" by auto }  
+  thus ?lhs by auto
+qed
+
+lemma uniformly_cauchy_imp_uniformly_convergent: 
+  assumes "\<forall>e>0.\<exists>N. \<forall>m (n::nat) x. N \<le> m \<and> N \<le> n \<and> P x --> dist(s m x)(s n x) < e"
+          "\<forall>x. P x --> (\<forall>e>0. \<exists>N. \<forall>n. N \<le> n --> dist(s n x)(l x) < e)"
+  shows "\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x --> dist(s n x)(l x) < e"
+proof-
+  obtain l' where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l' x) < e"
+    using assms(1) unfolding uniformly_convergent_eq_cauchy[THEN sym] by auto
+  moreover
+  { fix x assume "P x"
+    hence "l x = l' x" using Lim_unique[OF trivial_limit_sequentially, of "\<lambda>n. s n x" "l x" "l' x"]
+      using l and assms(2) unfolding Lim_sequentially by blast  }
+  ultimately show ?thesis by auto
+qed
+
+subsection{* Define continuity over a net to take in restrictions of the set. *}
+
+definition "continuous net f \<longleftrightarrow> (f ---> f(netlimit net)) net"
+
+lemma continuous_trivial_limit: 
+ "trivial_limit net ==> continuous net f"
+  unfolding continuous_def tendsto_def eventually_def by auto
+
+lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f ---> f(x)) (at x within s)"
+  unfolding continuous_def
+  unfolding tendsto_def
+  using netlimit_within[of x s]
+  unfolding eventually_def
+  by (cases "trivial_limit (at x within s)") auto
+
+lemma continuous_at: "continuous (at x) f \<longleftrightarrow> (f ---> f(x)) (at x)" using within_UNIV[of x]
+  using continuous_within[of x UNIV f] by auto
+
+lemma continuous_at_within: 
+  assumes "continuous (at x) f"  shows "continuous (at x within s) f"
+proof(cases "x islimpt s")
+  case True show ?thesis using assms unfolding continuous_def and netlimit_at
+    using Lim_at_within[of f "f x" x s]
+    unfolding netlimit_within[unfolded trivial_limit_within not_not, OF True] by blast
+next
+  case False thus ?thesis unfolding continuous_def and netlimit_at
+    unfolding Lim and trivial_limit_within by auto
+qed
+
+text{* Derive the epsilon-delta forms, which we often use as "definitions" *}
+
+lemma continuous_within_eps_delta:
+  "continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'\<in> s.  dist x' x < d --> dist (f x') (f x) < e)"
+  unfolding continuous_within and Lim_within 
+  apply auto unfolding dist_nz[THEN sym] apply(auto elim!:allE) apply(rule_tac x=d in exI) by auto 
+
+lemma continuous_at_eps_delta: "continuous (at x) f \<longleftrightarrow>  (\<forall>e>0. \<exists>d>0.
+                           \<forall>x'. dist x' x < d --> dist(f x')(f x) < e)"
+  using continuous_within_eps_delta[of x UNIV f]
+  unfolding within_UNIV by blast
+
+text{* Versions in terms of open balls. *}
+
+lemma continuous_within_ball: 
+ "continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0.
+                            f ` (ball x d \<inter> s) \<subseteq> ball (f x) e)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  { fix e::real assume "e>0"
+    then obtain d where d: "d>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e"
+      using `?lhs`[unfolded continuous_within Lim_within] by auto
+    { fix y assume "y\<in>f ` (ball x d \<inter> s)"
+      hence "y \<in> ball (f x) e" using d(2) unfolding dist_nz[THEN sym]
+	apply (auto simp add: dist_sym mem_ball) apply(erule_tac x=xa in ballE) apply auto unfolding dist_refl using `e>0` by auto
+    }
+    hence "\<exists>d>0. f ` (ball x d \<inter> s) \<subseteq> ball (f x) e" using `d>0` unfolding subset_eq ball_def by (auto simp add: dist_sym)  }
+  thus ?rhs by auto
+next
+  assume ?rhs thus ?lhs unfolding continuous_within Lim_within ball_def subset_eq 
+    apply (auto simp add: dist_sym) apply(erule_tac x=e in allE) by auto
+qed
+
+lemma continuous_at_ball: fixes f::"real^'a \<Rightarrow> real^'a"
+  shows "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. f ` (ball x d) \<subseteq> ball (f x) e)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs thus ?rhs unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
+    apply auto apply(erule_tac x=e in allE) apply auto apply(rule_tac x=d in exI) apply auto apply(erule_tac x=xa in allE) apply (auto simp add: dist_refl dist_sym dist_nz)
+    unfolding dist_nz[THEN sym] by (auto simp add: dist_refl)
+next 
+  assume ?rhs thus ?lhs unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
+    apply auto apply(erule_tac x=e in allE) apply auto apply(rule_tac x=d in exI) apply auto apply(erule_tac x="f xa" in allE) by (auto simp add: dist_refl dist_sym dist_nz)
+qed
+
+text{* For setwise continuity, just start from the epsilon-delta definitions. *}
+
+definition "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. \<forall>e>0. \<exists>d::real>0. \<forall>x' \<in> s. dist x' x < d --> dist (f x') (f x) < e)"
+
+
+definition "uniformly_continuous_on s f \<longleftrightarrow>
+        (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall> x'\<in>s. dist x' x < d
+                           --> dist (f x') (f x) < e)"
+
+text{* Some simple consequential lemmas. *}
+
+lemma uniformly_continuous_imp_continuous: 
+ " uniformly_continuous_on s f ==> continuous_on s f"
+  unfolding uniformly_continuous_on_def continuous_on_def by blast
+
+lemma continuous_at_imp_continuous_within: 
+ "continuous (at x) f ==> continuous (at x within s) f"
+  unfolding continuous_within continuous_at using Lim_at_within by auto
+
+lemma continuous_at_imp_continuous_on: assumes "(\<forall>x \<in> s. continuous (at x) f)"
+  shows "continuous_on s f"
+proof(simp add: continuous_at continuous_on_def, rule, rule, rule)
+  fix x and e::real assume "x\<in>s" "e>0"
+  hence "eventually (\<lambda>xa. dist (f xa) (f x) < e) (at x)" using assms unfolding continuous_at tendsto_def by auto
+  then obtain d where d:"d>0" "\<forall>xa. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" unfolding eventually_at by auto
+  { fix x' assume "\<not> 0 < dist x' x"
+    hence "x=x'"
+      using dist_nz[of x' x] by auto
+    hence "dist (f x') (f x) < e" using dist_refl[of "f x'"] `e>0` by auto 
+  }
+  thus "\<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e" using d by auto
+qed
+
+lemma continuous_on_eq_continuous_within: 
+ "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. continuous (at x within s) f)" (is "?lhs = ?rhs")
+proof
+  assume ?rhs
+  { fix x assume "x\<in>s"
+    fix e::real assume "e>0"
+    assume "\<exists>d>0. \<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e"
+    then obtain d where "d>0" and d:"\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" by auto
+    { fix x' assume as:"x'\<in>s" "dist x' x < d"
+      hence "dist (f x') (f x) < e" using dist_refl[of "f x'"] `e>0` d `x'\<in>s` dist_eq_0[of x' x] dist_pos_le[of x' x] as(2) by (metis dist_eq_0 dist_nz) }
+    hence "\<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e" using `d>0` by (auto simp add: dist_refl) 
+  }
+  thus ?lhs using `?rhs` unfolding continuous_on_def continuous_within Lim_within by auto
+next
+  assume ?lhs
+  thus ?rhs unfolding continuous_on_def continuous_within Lim_within by blast
+qed
+
+lemma continuous_on: 
+ "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. (f ---> f(x)) (at x within s))"
+  by (auto simp add: continuous_on_eq_continuous_within continuous_within)
+
+lemma continuous_on_eq_continuous_at: 
+ "open s ==> (continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. continuous (at x) f))"
+  by (auto simp add: continuous_on continuous_at Lim_within_open)
+
+lemma continuous_within_subset: 
+ "continuous (at x within s) f \<Longrightarrow> t \<subseteq> s
+             ==> continuous (at x within t) f"
+  unfolding continuous_within by(metis Lim_within_subset)
+
+lemma continuous_on_subset: 
+ "continuous_on s f \<Longrightarrow> t \<subseteq> s ==> continuous_on t f"
+  unfolding continuous_on by (metis subset_eq Lim_within_subset)
+
+lemma continuous_on_interior: 
+ "continuous_on s f \<Longrightarrow> x \<in> interior s ==> continuous (at x) f"
+unfolding interior_def
+apply simp
+by (meson continuous_on_eq_continuous_at continuous_on_subset)
+
+lemma continuous_on_eq: 
+ "(\<forall>x \<in> s. f x = g x) \<Longrightarrow> continuous_on s f
+           ==> continuous_on s g"
+  by (simp add: continuous_on_def)
+
+text{* Characterization of various kinds of continuity in terms of sequences.  *}
+
+lemma continuous_within_sequentially: 
+ "continuous (at a within s) f \<longleftrightarrow>
+                (\<forall>x. (\<forall>n::nat. x n \<in> s) \<and> (x ---> a) sequentially
+                     --> ((f o x) ---> f a) sequentially)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  { fix x::"nat \<Rightarrow> real^'a" assume x:"\<forall>n. x n \<in> s" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (x n) a < e"
+    fix e::real assume "e>0"
+    from `?lhs` obtain d where "d>0" and d:"\<forall>x\<in>s. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) (f a) < e" unfolding continuous_within Lim_within using `e>0` by auto
+    from x(2) `d>0` obtain N where N:"\<forall>n\<ge>N. dist (x n) a < d" by auto
+    hence "\<exists>N. \<forall>n\<ge>N. dist ((f \<circ> x) n) (f a) < e"
+      apply(rule_tac  x=N in exI) using N d  apply auto using x(1)
+      apply(erule_tac x=n in allE) apply(erule_tac x=n in allE)
+      apply(erule_tac x="x n" in ballE)  apply auto unfolding dist_nz[THEN sym] apply auto unfolding dist_refl using `e>0` by auto 
+  }
+  thus ?rhs unfolding continuous_within unfolding Lim_sequentially by simp
+next
+  assume ?rhs
+  { fix e::real assume "e>0"
+    assume "\<not> (\<exists>d>0. \<forall>x\<in>s. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) (f a) < e)"
+    hence "\<forall>d. \<exists>x. d>0 \<longrightarrow> x\<in>s \<and> (0 < dist x a \<and> dist x a < d \<and> \<not> dist (f x) (f a) < e)" by blast
+    then obtain x where x:"\<forall>d>0. x d \<in> s \<and> (0 < dist (x d) a \<and> dist (x d) a < d \<and> \<not> dist (f (x d)) (f a) < e)"
+      using choice[of "\<lambda>d x.0<d \<longrightarrow> x\<in>s \<and> (0 < dist x a \<and> dist x a < d \<and> \<not> dist (f x) (f a) < e)"] by auto
+    { fix d::real assume "d>0"
+      hence "\<exists>N::nat. inverse (real (N + 1)) < d" using real_arch_inv[of d] by (auto, rule_tac x="n - 1" in exI)auto
+      then obtain N::nat where N:"inverse (real (N + 1)) < d" by auto
+      { fix n::nat assume n:"n\<ge>N"
+	hence "dist (x (inverse (real (n + 1)))) a < inverse (real (n + 1))" using x[THEN spec[where x="inverse (real (n + 1))"]] by auto
+	moreover have "inverse (real (n + 1)) < d" using N n by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero)
+	ultimately have "dist (x (inverse (real (n + 1)))) a < d" by auto
+      }
+      hence "\<exists>N::nat. \<forall>n\<ge>N. dist (x (inverse (real (n + 1)))) a < d" by auto
+    }
+    hence "(\<forall>n::nat. x (inverse (real (n + 1))) \<in> s) \<and> (\<forall>e>0. \<exists>N::nat. \<forall>n\<ge>N. dist (x (inverse (real (n + 1)))) a < e)" using x by auto
+    hence "\<forall>e>0. \<exists>N::nat. \<forall>n\<ge>N. dist (f (x (inverse (real (n + 1))))) (f a) < e"  using `?rhs`[THEN spec[where x="\<lambda>n::nat. x (inverse (real (n+1)))"], unfolded Lim_sequentially] by auto
+    hence "False" apply(erule_tac x=e in allE) using `e>0` using x by auto
+  }
+  thus ?lhs  unfolding continuous_within unfolding Lim_within unfolding Lim_sequentially by blast
+qed
+
+lemma continuous_at_sequentially: 
+ "continuous (at a) f \<longleftrightarrow> (\<forall>x. (x ---> a) sequentially
+                  --> ((f o x) ---> f a) sequentially)"
+  using continuous_within_sequentially[of a UNIV f] unfolding within_UNIV by auto
+
+lemma continuous_on_sequentially: 
+ "continuous_on s f \<longleftrightarrow>  (\<forall>x. \<forall>a \<in> s. (\<forall>n. x(n) \<in> s) \<and> (x ---> a) sequentially
+                    --> ((f o x) ---> f(a)) sequentially)" (is "?lhs = ?rhs")
+proof
+  assume ?rhs thus ?lhs using continuous_within_sequentially[of _ s f] unfolding continuous_on_eq_continuous_within by auto
+next
+  assume ?lhs thus ?rhs unfolding continuous_on_eq_continuous_within using continuous_within_sequentially[of _ s f] by auto
+qed
+
+lemma uniformly_continuous_on_sequentially: 
+ "uniformly_continuous_on s f \<longleftrightarrow> (\<forall>x y. (\<forall>n. x n \<in> s) \<and> (\<forall>n. y n \<in> s) \<and>
+                    ((\<lambda>n. x n - y n) ---> 0) sequentially
+                    \<longrightarrow> ((\<lambda>n. f(x n) - f(y n)) ---> 0) sequentially)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  { fix x y assume x:"\<forall>n. x n \<in> s" and y:"\<forall>n. y n \<in> s" and xy:"((\<lambda>n. x n - y n) ---> 0) sequentially"    
+    { fix e::real assume "e>0"
+      then obtain d where "d>0" and d:"\<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e"
+	using `?lhs`[unfolded uniformly_continuous_on_def, THEN spec[where x=e]] by auto
+      obtain N where N:"\<forall>n\<ge>N. norm (x n - y n - 0) < d" using xy[unfolded Lim_sequentially dist_def] and `d>0` by auto
+      { fix n assume "n\<ge>N"
+	hence "norm (f (x n) - f (y n) - 0) < e"
+	  using N[THEN spec[where x=n]] using d[THEN bspec[where x="x n"], THEN bspec[where x="y n"]] using x and y
+	  unfolding dist_sym and dist_def by simp  }
+      hence "\<exists>N. \<forall>n\<ge>N. norm (f (x n) - f (y n) - 0) < e"  by auto  }
+    hence "((\<lambda>n. f(x n) - f(y n)) ---> 0) sequentially" unfolding Lim_sequentially and dist_def by auto  }
+  thus ?rhs by auto
+next
+  assume ?rhs
+  { assume "\<not> ?lhs"
+    then obtain e where "e>0" "\<forall>d>0. \<exists>x\<in>s. \<exists>x'\<in>s. dist x' x < d \<and> \<not> dist (f x') (f x) < e" unfolding uniformly_continuous_on_def by auto
+    then obtain fa where fa:"\<forall>x.  0 < x \<longrightarrow> fst (fa x) \<in> s \<and> snd (fa x) \<in> s \<and> dist (fst (fa x)) (snd (fa x)) < x \<and> \<not> dist (f (fst (fa x))) (f (snd (fa x))) < e"
+      using choice[of "\<lambda>d x. d>0 \<longrightarrow> fst x \<in> s \<and> snd x \<in> s \<and> dist (snd x) (fst x) < d \<and> \<not> dist (f (snd x)) (f (fst x)) < e"] unfolding Bex_def
+      by (auto simp add: dist_sym) 
+    def x \<equiv> "\<lambda>n::nat. fst (fa (inverse (real n + 1)))"
+    def y \<equiv> "\<lambda>n::nat. snd (fa (inverse (real n + 1)))"
+    have xyn:"\<forall>n. x n \<in> s \<and> y n \<in> s" and xy0:"\<forall>n. dist (x n) (y n) < inverse (real n + 1)" and fxy:"\<forall>n. \<not> dist (f (x n)) (f (y n)) < e"
+      unfolding x_def and y_def using fa by auto
+    have *:"\<And>x y. dist (x - y) 0 = dist x y" unfolding dist_def by auto
+    { fix e::real assume "e>0"
+      then obtain N::nat where "N \<noteq> 0" and N:"0 < inverse (real N) \<and> inverse (real N) < e" unfolding real_arch_inv[of e]   by auto
+      { fix n::nat assume "n\<ge>N"
+	hence "inverse (real n + 1) < inverse (real N)" using real_of_nat_ge_zero and `N\<noteq>0` by auto
+	also have "\<dots> < e" using N by auto
+	finally have "inverse (real n + 1) < e" by auto
+	hence "dist (x n - y n) 0 < e" unfolding * using xy0[THEN spec[where x=n]] by auto  }
+      hence "\<exists>N. \<forall>n\<ge>N. dist (x n - y n) 0 < e" by auto  }
+    hence "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (f (x n) - f (y n)) 0 < e" using `?rhs`[THEN spec[where x=x], THEN spec[where x=y]] and xyn unfolding Lim_sequentially by auto
+    hence False unfolding * using fxy and `e>0` by auto  }
+  thus ?lhs unfolding uniformly_continuous_on_def by blast
+qed
+
+text{* The usual transformation theorems. *}
+
+lemma continuous_transform_within: 
+  assumes "0 < d" "x \<in> s" "\<forall>x' \<in> s. dist x' x < d --> f x' = g x'"
+          "continuous (at x within s) f"
+  shows "continuous (at x within s) g"
+proof-
+  { fix e::real assume "e>0"
+    then obtain d' where d':"d'>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d' \<longrightarrow> dist (f xa) (f x) < e" using assms(4) unfolding continuous_within Lim_within by auto
+    { fix x' assume "x'\<in>s" "0 < dist x' x" "dist x' x < (min d d')"
+      hence "dist (f x') (g x) < e" using assms(2,3) apply(erule_tac x=x in ballE) unfolding dist_refl using d' by auto  }
+    hence "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < (min d d') \<longrightarrow> dist (f xa) (g x) < e" by blast
+    hence "\<exists>d>0. \<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (g x) < e" using `d>0` `d'>0` by(rule_tac x="min d d'" in exI)auto  }
+  hence "(f ---> g x) (at x within s)" unfolding Lim_within using assms(1) by auto 
+  thus ?thesis unfolding continuous_within using Lim_transform_within[of d s x f g "g x"] using assms by blast 
+qed
+
+lemma continuous_transform_at:
+  assumes "0 < d" "\<forall>x'. dist x' x < d --> f x' = g x'"
+          "continuous (at x) f"
+  shows "continuous (at x) g"
+proof-
+  { fix e::real assume "e>0"
+    then obtain d' where d':"d'>0" "\<forall>xa. 0 < dist xa x \<and> dist xa x < d' \<longrightarrow> dist (f xa) (f x) < e" using assms(3) unfolding continuous_at Lim_at by auto
+    { fix x' assume "0 < dist x' x" "dist x' x < (min d d')"
+      hence "dist (f x') (g x) < e" using assms(2) apply(erule_tac x=x in allE) unfolding dist_refl using d' by auto
+    }
+    hence "\<forall>xa. 0 < dist xa x \<and> dist xa x < (min d d') \<longrightarrow> dist (f xa) (g x) < e" by blast
+    hence "\<exists>d>0. \<forall>xa. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (g x) < e" using `d>0` `d'>0` by(rule_tac x="min d d'" in exI)auto
+  }
+  hence "(f ---> g x) (at x)" unfolding Lim_at using assms(1) by auto 
+  thus ?thesis unfolding continuous_at using Lim_transform_at[of d x f g "g x"] using assms by blast 
+qed
+
+text{* Combination results for pointwise continuity. *}
+
+lemma continuous_const: "continuous net (\<lambda>x::'a::zero_neq_one. c)"
+  by(auto simp add: continuous_def Lim_const)
+
+lemma continuous_cmul: 
+ "continuous net f ==> continuous net (\<lambda>x. c *s f x)"
+ by(auto simp add: continuous_def Lim_cmul)
+  
+lemma continuous_neg: 
+ "continuous net f ==> continuous net (\<lambda>x. -(f x))"
+ by(auto simp add: continuous_def Lim_neg)
+
+lemma continuous_add: 
+ "continuous net f \<Longrightarrow> continuous net g
+           ==> continuous net (\<lambda>x. f x + g x)"
+ by(auto simp add: continuous_def Lim_add)
+  
+lemma continuous_sub: 
+ "continuous net f \<Longrightarrow> continuous net g
+           ==> continuous net (\<lambda>x. f(x) - g(x))"
+ by(auto simp add: continuous_def Lim_sub)
+  
+text{* Same thing for setwise continuity. *}
+
+lemma continuous_on_const: 
+ "continuous_on s (\<lambda>x. c)"
+  unfolding continuous_on_eq_continuous_within using continuous_const by blast
+
+lemma continuous_on_cmul: 
+ "continuous_on s f ==>  continuous_on s (\<lambda>x. c *s (f x))"
+  unfolding continuous_on_eq_continuous_within using continuous_cmul by blast
+
+lemma continuous_on_neg: 
+ "continuous_on s f ==> continuous_on s (\<lambda>x. -(f x))"
+  unfolding continuous_on_eq_continuous_within using continuous_neg by blast
+
+lemma continuous_on_add: 
+ "continuous_on s f \<Longrightarrow> continuous_on s g
+           ==> continuous_on s (\<lambda>x. f x + g x)"
+  unfolding continuous_on_eq_continuous_within using continuous_add by blast
+
+lemma continuous_on_sub: 
+ "continuous_on s f \<Longrightarrow> continuous_on s g
+           ==> continuous_on s (\<lambda>x. f(x) - g(x))"
+  unfolding continuous_on_eq_continuous_within using continuous_sub by blast
+
+text{* Same thing for uniform continuity, using sequential formulations. *}
+
+lemma uniformly_continuous_on_const: 
+ "uniformly_continuous_on s (\<lambda>x. c)"
+  unfolding uniformly_continuous_on_sequentially using Lim_const[of 0] by auto
+
+lemma uniformly_continuous_on_cmul: 
+  assumes "uniformly_continuous_on s f"
+  shows "uniformly_continuous_on s (\<lambda>x. c *s f(x))"
+proof-
+  { fix x y assume "((\<lambda>n. f (x n) - f (y n)) ---> 0) sequentially"
+    hence "((\<lambda>n. c *s f (x n) - c *s f (y n)) ---> 0) sequentially"
+      using Lim_cmul[of "(\<lambda>n. f (x n) - f (y n))" 0 sequentially c]
+      unfolding  vector_smult_rzero vector_ssub_ldistrib[of c] by auto
+  }
+  thus ?thesis using assms unfolding uniformly_continuous_on_sequentially by auto
+qed
+
+lemma uniformly_continuous_on_neg: 
+ "uniformly_continuous_on s f
+         ==> uniformly_continuous_on s (\<lambda>x. -(f x))"
+  using uniformly_continuous_on_cmul[of s f "-1"] unfolding pth_3 by auto
+  
+lemma uniformly_continuous_on_add: 
+  assumes "uniformly_continuous_on s f" "uniformly_continuous_on s g"
+  shows "uniformly_continuous_on s (\<lambda>x. f(x) + g(x) ::real^'n)"
+proof-
+  have *:"\<And>fx fy gx gy::real^'n. fx - fy + (gx - gy) = fx + gx - (fy + gy)" by auto
+  {  fix x y assume "((\<lambda>n. f (x n) - f (y n)) ---> 0) sequentially"
+                    "((\<lambda>n. g (x n) - g (y n)) ---> 0) sequentially"
+    hence "((\<lambda>xa. f (x xa) - f (y xa) + (g (x xa) - g (y xa))) ---> 0 + 0) sequentially"
+      using Lim_add[of "\<lambda> n. f (x n) - f (y n)" 0  sequentially "\<lambda> n. g (x n) - g (y n)" 0] by auto
+    hence "((\<lambda>n. f (x n) + g (x n) - (f (y n) + g (y n))) ---> 0) sequentially" unfolding Lim_sequentially and * by auto  }
+  thus ?thesis using assms unfolding uniformly_continuous_on_sequentially by auto
+qed
+
+lemma uniformly_continuous_on_sub: 
+ "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s g
+           ==> uniformly_continuous_on s  (\<lambda>x. f x - g x)"
+  unfolding ab_diff_minus
+  using uniformly_continuous_on_add[of s f "\<lambda>x. - g x"]
+  using uniformly_continuous_on_neg[of s g] by auto
+
+text{* Identity function is continuous in every sense. *}
+
+lemma continuous_within_id: 
+ "continuous (at a within s) (\<lambda>x. x)"
+  unfolding continuous_within Lim_within by auto
+  
+lemma continuous_at_id: 
+ "continuous (at a) (\<lambda>x. x)"
+  unfolding continuous_at Lim_at by auto
+  
+lemma continuous_on_id: 
+ "continuous_on s (\<lambda>x. x)"
+  unfolding continuous_on Lim_within by auto
+
+lemma uniformly_continuous_on_id: 
+ "uniformly_continuous_on s (\<lambda>x. x)"
+  unfolding uniformly_continuous_on_def by auto
+  
+text{* Continuity of all kinds is preserved under composition. *}
+
+lemma continuous_within_compose: 
+  assumes "continuous (at x within s) f"   "continuous (at (f x) within f ` s) g"
+  shows "continuous (at x within s) (g o f)"
+proof-
+  { fix e::real assume "e>0"
+    with assms(2)[unfolded continuous_within Lim_within] obtain d  where "d>0" and d:"\<forall>xa\<in>f ` s. 0 < dist xa (f x) \<and> dist xa (f x) < d \<longrightarrow> dist (g xa) (g (f x)) < e" by auto
+    from assms(1)[unfolded continuous_within Lim_within] obtain d' where "d'>0" and d':"\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d' \<longrightarrow> dist (f xa) (f x) < d" using `d>0` by auto
+    { fix y assume as:"y\<in>s"  "0 < dist y x"  "dist y x < d'" 
+      hence "dist (f y) (f x) < d" using d'[THEN bspec[where x=y]] by (auto simp add:dist_sym)
+      hence "dist (g (f y)) (g (f x)) < e" using as(1) d[THEN bspec[where x="f y"]] unfolding dist_nz[THEN sym] using `e>0` by (auto simp add: dist_refl)   }
+    hence "\<exists>d>0. \<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (g (f xa)) (g (f x)) < e" using `d'>0` by auto  }
+  thus ?thesis unfolding continuous_within Lim_within by auto
+qed
+
+lemma continuous_at_compose: 
+  assumes "continuous (at x) f"  "continuous (at (f x)) g"  
+  shows "continuous (at x) (g o f)"
+proof-
+  have " continuous (at (f x) within range f) g" using assms(2) using continuous_within_subset[of "f x" UNIV g "range f", unfolded within_UNIV] by auto
+  thus ?thesis using assms(1) using continuous_within_compose[of x UNIV f g, unfolded within_UNIV] by auto
+qed
+
+lemma continuous_on_compose: 
+ "continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g o f)"
+  unfolding continuous_on_eq_continuous_within using continuous_within_compose[of _ s f g] by auto
+
+lemma uniformly_continuous_on_compose: 
+  assumes "uniformly_continuous_on s f"  "uniformly_continuous_on (f ` s) g"
+  shows "uniformly_continuous_on s (g o f)"
+proof-
+  { fix e::real assume "e>0"
+    then obtain d where "d>0" and d:"\<forall>x\<in>f ` s. \<forall>x'\<in>f ` s. dist x' x < d \<longrightarrow> dist (g x') (g x) < e" using assms(2) unfolding uniformly_continuous_on_def by auto
+    obtain d' where "d'>0" "\<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d' \<longrightarrow> dist (f x') (f x) < d" using `d>0` using assms(1) unfolding uniformly_continuous_on_def by auto
+    hence "\<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist ((g \<circ> f) x') ((g \<circ> f) x) < e" using `d>0` using d by auto  }
+  thus ?thesis using assms unfolding uniformly_continuous_on_def by auto
+qed
+
+text{* Continuity in terms of open preimages. *}
+
+lemma continuous_at_open: 
+ "continuous (at x) f \<longleftrightarrow> (\<forall>t. open t \<and> f x \<in> t --> (\<exists>s. open s \<and> x \<in> s \<and> (\<forall>x' \<in> s. (f x') \<in> t)))" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  { fix t assume as: "open t" "f x \<in> t"
+    then obtain e where "e>0" and e:"ball (f x) e \<subseteq> t" unfolding open_contains_ball by auto
+
+    obtain d where "d>0" and d:"\<forall>y. 0 < dist y x \<and> dist y x < d \<longrightarrow> dist (f y) (f x) < e" using `e>0` using `?lhs`[unfolded continuous_at Lim_at open_def] by auto
+    
+    have "open (ball x d)" using open_ball by auto
+    moreover have "x \<in> ball x d" unfolding centre_in_ball using `d>0` by simp
+    moreover
+    { fix x' assume "x'\<in>ball x d" hence "f x' \<in> t"
+	using e[unfolded subset_eq Ball_def mem_ball, THEN spec[where x="f x'"]]    d[THEN spec[where x=x']]
+	unfolding mem_ball apply (auto simp add: dist_sym)
+	unfolding dist_nz[THEN sym] using as(2) by auto  }
+    hence "\<forall>x'\<in>ball x d. f x' \<in> t" by auto 
+    ultimately have "\<exists>s. open s \<and> x \<in> s \<and> (\<forall>x'\<in>s. f x' \<in> t)" 
+      apply(rule_tac x="ball x d" in exI) by simp  }
+  thus ?rhs by auto
+next
+  assume ?rhs
+  { fix e::real assume "e>0"
+    then obtain s where s: "open s"  "x \<in> s"  "\<forall>x'\<in>s. f x' \<in> ball (f x) e" using `?rhs`[unfolded continuous_at Lim_at, THEN spec[where x="ball (f x) e"]]
+      unfolding centre_in_ball[of "f x" e, THEN sym] by auto
+    then obtain d where "d>0" and d:"ball x d \<subseteq> s" unfolding open_contains_ball by auto
+    { fix y assume "0 < dist y x \<and> dist y x < d"
+      hence "dist (f y) (f x) < e" using d[unfolded subset_eq Ball_def mem_ball, THEN spec[where x=y]]
+	using s(3)[THEN bspec[where x=y], unfolded mem_ball] by (auto simp add: dist_sym)  }
+    hence "\<exists>d>0. \<forall>xa. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" using `d>0` by auto  }
+  thus ?lhs unfolding continuous_at Lim_at by auto 
+qed
+
+lemma continuous_on_open: 
+ "continuous_on s f \<longleftrightarrow>
+        (\<forall>t. openin (subtopology euclidean (f ` s)) t
+            --> openin (subtopology euclidean s) {x \<in> s. f x \<in> t})" (is "?lhs = ?rhs")
+proof
+  assume ?lhs 
+  { fix t assume as:"openin (subtopology euclidean (f ` s)) t"
+    have "{x \<in> s. f x \<in> t} \<subseteq> s" using as[unfolded openin_euclidean_subtopology_iff] by auto
+    moreover 
+    { fix x assume as':"x\<in>{x \<in> s. f x \<in> t}" 
+      then obtain e where e: "e>0" "\<forall>x'\<in>f ` s. dist x' (f x) < e \<longrightarrow> x' \<in> t" using as[unfolded openin_euclidean_subtopology_iff, THEN conjunct2, THEN bspec[where x="f x"]] by auto
+      from this(1) obtain d where d: "d>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" using `?lhs`[unfolded continuous_on Lim_within, THEN bspec[where x=x]] using as' by auto
+      have "\<exists>e>0. \<forall>x'\<in>s. dist x' x < e \<longrightarrow> x' \<in> {x \<in> s. f x \<in> t}" using d e unfolding dist_nz[THEN sym] by (rule_tac x=d in exI, auto simp add: dist_refl)  }
+    ultimately have "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}" unfolding openin_euclidean_subtopology_iff by auto  }
+  thus ?rhs unfolding continuous_on Lim_within using openin by auto
+next
+  assume ?rhs
+  { fix e::real and x assume "x\<in>s" "e>0" 
+    { fix xa x' assume "dist (f xa) (f x) < e" "xa \<in> s" "x' \<in> s" "dist (f xa) (f x') < e - dist (f xa) (f x)"
+      hence "dist (f x') (f x) < e" using dist_triangle[of "f x'" "f x" "f xa"] 
+	by (auto simp add: dist_sym)  }
+    hence "ball (f x) e \<inter> f ` s \<subseteq> f ` s \<and> (\<forall>xa\<in>ball (f x) e \<inter> f ` s. \<exists>ea>0. \<forall>x'\<in>f ` s. dist x' xa < ea \<longrightarrow> x' \<in> ball (f x) e \<inter> f ` s)" apply auto 
+      apply(rule_tac x="e - dist (f xa) (f x)" in exI) using `e>0` by (auto simp add: dist_sym)
+    hence "\<forall>xa\<in>{xa \<in> s. f xa \<in> ball (f x) e \<inter> f ` s}. \<exists>ea>0. \<forall>x'\<in>s. dist x' xa < ea \<longrightarrow> x' \<in> {xa \<in> s. f xa \<in> ball (f x) e \<inter> f ` s}"
+      using `?rhs`[unfolded openin_euclidean_subtopology_iff, THEN spec[where x="ball (f x) e \<inter> f ` s"]] by auto
+    hence "\<exists>d>0. \<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" apply(erule_tac x=x in ballE) apply auto unfolding dist_refl using `e>0` `x\<in>s` by (auto simp add: dist_sym)  }
+  thus ?lhs unfolding continuous_on Lim_within by auto
+qed
+
+(* ------------------------------------------------------------------------- *)
+(* Similarly in terms of closed sets.                                        *)
+(* ------------------------------------------------------------------------- *)
+
+lemma continuous_on_closed: 
+ "continuous_on s f \<longleftrightarrow>  (\<forall>t. closedin (subtopology euclidean (f ` s)) t  --> closedin (subtopology euclidean s) {x \<in> s. f x \<in> t})" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  { fix t
+    have *:"s - {x \<in> s. f x \<in> f ` s - t} = {x \<in> s. f x \<in> t}" by auto
+    have **:"f ` s - (f ` s - (f ` s - t)) = f ` s - t" by auto
+    assume as:"closedin (subtopology euclidean (f ` s)) t"
+    hence "closedin (subtopology euclidean (f ` s)) (f ` s - (f ` s - t))" unfolding closedin_def topspace_euclidean_subtopology unfolding ** by auto
+    hence "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}" using `?lhs`[unfolded continuous_on_open, THEN spec[where x="(f ` s) - t"]]
+      unfolding openin_closedin_eq topspace_euclidean_subtopology unfolding * by auto  }
+  thus ?rhs by auto
+next
+  assume ?rhs
+  { fix t
+    have *:"s - {x \<in> s. f x \<in> f ` s - t} = {x \<in> s. f x \<in> t}" by auto
+    assume as:"openin (subtopology euclidean (f ` s)) t"
+    hence "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}" using `?rhs`[THEN spec[where x="(f ` s) - t"]]
+      unfolding openin_closedin_eq topspace_euclidean_subtopology *[THEN sym] closedin_subtopology by auto }
+  thus ?lhs unfolding continuous_on_open by auto
+qed
+
+text{* Half-global and completely global cases.                                  *}
+
+lemma continuous_open_in_preimage: 
+  assumes "continuous_on s f"  "open t"
+  shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
+proof-
+  have *:"\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)" by auto
+  have "openin (subtopology euclidean (f ` s)) (t \<inter> f ` s)"
+    using openin_open_Int[of t "f ` s", OF assms(2)] unfolding openin_open by auto
+  thus ?thesis using assms(1)[unfolded continuous_on_open, THEN spec[where x="t \<inter> f ` s"]] using * by auto
+qed
+
+lemma continuous_closed_in_preimage: 
+  assumes "continuous_on s f"  "closed t"
+  shows "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
+proof-
+  have *:"\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)" by auto
+  have "closedin (subtopology euclidean (f ` s)) (t \<inter> f ` s)"
+    using closedin_closed_Int[of t "f ` s", OF assms(2)] unfolding Int_commute by auto
+  thus ?thesis
+    using assms(1)[unfolded continuous_on_closed, THEN spec[where x="t \<inter> f ` s"]] using * by auto
+qed
+
+lemma continuous_open_preimage: 
+  assumes "continuous_on s f" "open s" "open t"
+  shows "open {x \<in> s. f x \<in> t}"
+proof-
+  obtain T where T: "open T" "{x \<in> s. f x \<in> t} = s \<inter> T" 
+    using continuous_open_in_preimage[OF assms(1,3)] unfolding openin_open by auto
+  thus ?thesis using open_inter[of s T, OF assms(2)] by auto
+qed
+
+lemma continuous_closed_preimage: 
+  assumes "continuous_on s f" "closed s" "closed t"
+  shows "closed {x \<in> s. f x \<in> t}"
+proof-
+  obtain T where T: "closed T" "{x \<in> s. f x \<in> t} = s \<inter> T" 
+    using continuous_closed_in_preimage[OF assms(1,3)] unfolding closedin_closed by auto
+  thus ?thesis using closed_Int[of s T, OF assms(2)] by auto
+qed
+
+lemma continuous_open_preimage_univ: 
+ "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open {x. f x \<in> s}"
+  using continuous_open_preimage[of UNIV f s] open_UNIV continuous_at_imp_continuous_on by auto
+
+lemma continuous_closed_preimage_univ: 
+ "(\<forall>x. continuous (at x) f) \<Longrightarrow> closed s ==> closed {x. f x \<in> s}"
+  using continuous_closed_preimage[of UNIV f s] closed_UNIV continuous_at_imp_continuous_on by auto
+
+text{* Equality of continuous functions on closure and related results.          *}
+
+lemma continuous_closed_in_preimage_constant: 
+ "continuous_on s f ==> closedin (subtopology euclidean s) {x \<in> s. f x = a}"
+  using continuous_closed_in_preimage[of s f "{a}"] closed_sing by auto
+
+lemma continuous_closed_preimage_constant: 
+ "continuous_on s f \<Longrightarrow> closed s ==> closed {x \<in> s. f x = a}"
+  using continuous_closed_preimage[of s f "{a}"] closed_sing by auto
+
+lemma continuous_constant_on_closure: 
+  assumes "continuous_on (closure s) f"
+          "\<forall>x \<in> s. f x = a"
+  shows "\<forall>x \<in> (closure s). f x = a"
+    using continuous_closed_preimage_constant[of "closure s" f a] 
+    assms closure_minimal[of s "{x \<in> closure s. f x = a}"] closure_subset unfolding subset_eq by auto
+
+lemma image_closure_subset: 
+  assumes "continuous_on (closure s) f"  "closed t"  "(f ` s) \<subseteq> t"
+  shows "f ` (closure s) \<subseteq> t"
+proof-
+  have "s \<subseteq> {x \<in> closure s. f x \<in> t}" using assms(3) closure_subset by auto
+  moreover have "closed {x \<in> closure s. f x \<in> t}"
+    using continuous_closed_preimage[OF assms(1)] and assms(2) by auto
+  ultimately have "closure s = {x \<in> closure s . f x \<in> t}"
+    using closure_minimal[of s "{x \<in> closure s. f x \<in> t}"] by auto
+  thus ?thesis by auto
+qed
+
+lemma continuous_on_closure_norm_le: 
+  assumes "continuous_on (closure s) f"  "\<forall>y \<in> s. norm(f y) \<le> b"  "x \<in> (closure s)"
+  shows "norm(f x) \<le> b"
+proof-
+  have *:"f ` s \<subseteq> cball 0 b" using assms(2)[unfolded mem_cball_0[THEN sym]] by auto
+  show ?thesis
+    using image_closure_subset[OF assms(1) closed_cball[of 0 b] *] assms(3)
+    unfolding subset_eq apply(erule_tac x="f x" in ballE) by (auto simp add: dist_def)
+qed
+
+text{* Making a continuous function avoid some value in a neighbourhood.         *}
+
+lemma continuous_within_avoid: 
+  assumes "continuous (at x within s) f"  "x \<in> s"  "f x \<noteq> a"
+  shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e --> f y \<noteq> a"
+proof-
+  obtain d where "d>0" and d:"\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < dist (f x) a"
+    using assms(1)[unfolded continuous_within Lim_within, THEN spec[where x="dist (f x) a"]] assms(3)[unfolded dist_nz] by auto
+  { fix y assume " y\<in>s"  "dist x y < d"
+    hence "f y \<noteq> a" using d[THEN bspec[where x=y]] assms(3)[unfolded dist_nz]
+      apply auto unfolding dist_nz[THEN sym] by (auto simp add: dist_sym) }
+  thus ?thesis using `d>0` by auto
+qed
+
+lemma continuous_at_avoid: 
+  assumes "continuous (at x) f"  "f x \<noteq> a"
+  shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
+using assms using continuous_within_avoid[of x UNIV f a, unfolded within_UNIV] by auto
+
+lemma continuous_on_avoid: 
+  assumes "continuous_on s f"  "x \<in> s"  "f x \<noteq> a"
+  shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e \<longrightarrow> f y \<noteq> a"
+using assms(1)[unfolded continuous_on_eq_continuous_within, THEN bspec[where x=x], OF assms(2)]  continuous_within_avoid[of x s f a]  assms(2,3) by auto
+
+lemma continuous_on_open_avoid: 
+  assumes "continuous_on s f"  "open s"  "x \<in> s"  "f x \<noteq> a"
+  shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
+using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN bspec[where x=x], OF assms(3)]  continuous_at_avoid[of x f a]  assms(3,4) by auto
+
+text{* Proving a function is constant by proving open-ness of level set.         *}
+
+lemma continuous_levelset_open_in_cases: 
+ "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
+        openin (subtopology euclidean s) {x \<in> s. f x = a}
+        ==> (\<forall>x \<in> s. f x \<noteq> a) \<or> (\<forall>x \<in> s. f x = a)"
+unfolding connected_clopen using continuous_closed_in_preimage_constant by auto
+
+lemma continuous_levelset_open_in: 
+ "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
+        openin (subtopology euclidean s) {x \<in> s. f x = a} \<Longrightarrow>
+        (\<exists>x \<in> s. f x = a)  ==> (\<forall>x \<in> s. f x = a)"
+using continuous_levelset_open_in_cases[of s f ]
+by meson
+
+lemma continuous_levelset_open: 
+  assumes "connected s"  "continuous_on s f"  "open {x \<in> s. f x = a}"  "\<exists>x \<in> s.  f x = a"
+  shows "\<forall>x \<in> s. f x = a"
+using continuous_levelset_open_in[OF assms(1,2), of a, unfolded openin_open] using assms (3,4) by auto
+
+text{* Some arithmetical combinations (more to prove).                           *}
+
+lemma open_scaling[intro]: 
+  assumes "c \<noteq> 0"  "open s"
+  shows "open((\<lambda>x. c *s x) ` s)"
+proof-
+  { fix x assume "x \<in> s"
+    then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> s" using assms(2)[unfolded open_def, THEN bspec[where x=x]] by auto
+    have "e * abs c > 0" using assms(1)[unfolded zero_less_abs_iff[THEN sym]] using real_mult_order[OF `e>0`] by auto
+    moreover
+    { fix y assume "dist y (c *s x) < e * \<bar>c\<bar>"
+      hence "norm ((1 / c) *s y - x) < e" unfolding dist_def 
+	using norm_mul[of c "(1 / c) *s y - x", unfolded vector_ssub_ldistrib, unfolded vector_smult_assoc] assms(1)
+	  mult_less_imp_less_left[of "abs c" "norm ((1 / c) *s y - x)" e, unfolded real_mult_commute[of "abs c" e]] assms(1)[unfolded zero_less_abs_iff[THEN sym]] by simp
+      hence "y \<in> op *s c ` s" using rev_image_eqI[of "(1 / c) *s y" s y "op *s c"]  e[THEN spec[where x="(1 / c) *s y"]]  assms(1) unfolding dist_def vector_smult_assoc by auto  }
+    ultimately have "\<exists>e>0. \<forall>x'. dist x' (c *s x) < e \<longrightarrow> x' \<in> op *s c ` s" apply(rule_tac x="e * abs c" in exI) by auto  }
+  thus ?thesis unfolding open_def by auto
+qed
+
+lemma open_negations: 
+ "open s ==> open ((\<lambda> x. -x) ` s)" unfolding pth_3 by auto
+  
+lemma open_translation: 
+  assumes "open s"  shows "open((\<lambda>x. a + x) ` s)"
+proof-
+  { fix x have "continuous (at x) (\<lambda>x. x - a)" using continuous_sub[of "at x" "\<lambda>x. x" "\<lambda>x. a"] continuous_at_id[of x] continuous_const[of "at x" a] by auto  }
+  moreover have "{x. x - a \<in> s}  = op + a ` s" apply auto unfolding image_iff apply(rule_tac x="x - a" in bexI) by auto
+  ultimately show ?thesis using continuous_open_preimage_univ[of "\<lambda>x. x - a" s] using assms by auto
+qed
+
+lemma open_affinity: 
+  assumes "open s"  "c \<noteq> 0"
+  shows "open ((\<lambda>x. a + c *s x) ` s)"
+proof-
+  have *:"(\<lambda>x. a + c *s x) = (\<lambda>x. a + x) \<circ> (\<lambda>x. c *s x)" unfolding o_def ..
+  have "op + a ` op *s c ` s = (op + a \<circ> op *s c) ` s" by auto
+  thus ?thesis using assms open_translation[of "op *s c ` s" a] unfolding * by auto
+qed
+
+lemma interior_translation: "interior ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (interior s)"
+proof (rule set_ext, rule)
+  fix x assume "x \<in> interior (op + a ` s)" 
+  then obtain e where "e>0" and e:"ball x e \<subseteq> op + a ` s" unfolding mem_interior by auto
+  hence "ball (x - a) e \<subseteq> s" unfolding subset_eq Ball_def mem_ball dist_def apply auto apply(erule_tac x="a + xa" in allE) unfolding ab_group_add_class.diff_diff_eq[THEN sym] by auto
+  thus "x \<in> op + a ` interior s" unfolding image_iff apply(rule_tac x="x - a" in bexI) unfolding mem_interior using `e > 0` by auto
+next
+  fix x assume "x \<in> op + a ` interior s" 
+  then obtain y e where "e>0" and e:"ball y e \<subseteq> s" and y:"x = a + y" unfolding image_iff Bex_def mem_interior by auto
+  { fix z have *:"a + y - z = y + a - z" by auto
+    assume "z\<in>ball x e"
+    hence "z - a \<in> s" using e[unfolded subset_eq, THEN bspec[where x="z - a"]] unfolding mem_ball dist_def y ab_group_add_class.diff_diff_eq2 * by auto
+    hence "z \<in> op + a ` s" unfolding image_iff by(auto intro!: bexI[where x="z - a"])  }
+  hence "ball x e \<subseteq> op + a ` s" unfolding subset_eq by auto
+  thus "x \<in> interior (op + a ` s)" unfolding mem_interior using `e>0` by auto
+qed
+
+subsection {* Preservation of compactness and connectedness under continuous function.  *}
+
+lemma compact_continuous_image: 
+  assumes "continuous_on s f"  "compact s"
+  shows "compact(f ` s)"
+proof-
+  { fix x assume x:"\<forall>n::nat. x n \<in> f ` s"
+    then obtain y where y:"\<forall>n. y n \<in> s \<and> x n = f (y n)" unfolding image_iff Bex_def using choice[of "\<lambda>n xa. xa \<in> s \<and> x n = f xa"] by auto
+    then obtain l r where "l\<in>s" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and lr:"((y \<circ> r) ---> l) sequentially" using assms(2)[unfolded compact_def, THEN spec[where x=y]] by auto
+    { fix e::real assume "e>0"
+      then obtain d where "d>0" and d:"\<forall>x'\<in>s. dist x' l < d \<longrightarrow> dist (f x') (f l) < e" using assms(1)[unfolded continuous_on_def, THEN bspec[where x=l], OF `l\<in>s`] by auto
+      then obtain N::nat where N:"\<forall>n\<ge>N. dist ((y \<circ> r) n) l < d" using lr[unfolded Lim_sequentially, THEN spec[where x=d]] by auto
+      { fix n::nat assume "n\<ge>N" hence "dist ((x \<circ> r) n) (f l) < e" using N[THEN spec[where x=n]] d[THEN bspec[where x="y (r n)"]] y[THEN spec[where x="r n"]] by auto  }
+      hence "\<exists>N. \<forall>n\<ge>N. dist ((x \<circ> r) n) (f l) < e" by auto  }
+    hence "\<exists>l\<in>f ` s. \<exists>r. (\<forall>m n. m < n \<longrightarrow> r m < r n) \<and> ((x \<circ> r) ---> l) sequentially" unfolding Lim_sequentially using r lr `l\<in>s` by auto  }
+  thus ?thesis unfolding compact_def by auto 
+qed
+
+lemma connected_continuous_image: 
+  assumes "continuous_on s f"  "connected s"
+  shows "connected(f ` s)"
+proof-
+  { fix T assume as: "T \<noteq> {}"  "T \<noteq> f ` s"  "openin (subtopology euclidean (f ` s)) T"  "closedin (subtopology euclidean (f ` s)) T"
+    have "{x \<in> s. f x \<in> T} = {} \<or> {x \<in> s. f x \<in> T} = s"
+      using assms(1)[unfolded continuous_on_open, THEN spec[where x=T]]
+      using assms(1)[unfolded continuous_on_closed, THEN spec[where x=T]]
+      using assms(2)[unfolded connected_clopen, THEN spec[where x="{x \<in> s. f x \<in> T}"]] as(3,4) by auto
+    hence False using as(1,2) 
+      using as(4)[unfolded closedin_def topspace_euclidean_subtopology] by auto }
+  thus ?thesis unfolding connected_clopen by auto
+qed
+
+text{* Continuity implies uniform continuity on a compact domain.                *}
+
+lemma compact_uniformly_continuous: 
+  assumes "continuous_on s f"  "compact s"
+  shows "uniformly_continuous_on s f"
+proof-
+    { fix x assume x:"x\<in>s"
+      hence "\<forall>xa. \<exists>y. 0 < xa \<longrightarrow> (y > 0 \<and> (\<forall>x'\<in>s. dist x' x < y \<longrightarrow> dist (f x') (f x) < xa))" using assms(1)[unfolded continuous_on_def, THEN bspec[where x=x]] by auto
+      hence "\<exists>fa. \<forall>xa>0. \<forall>x'\<in>s. fa xa > 0 \<and> (dist x' x < fa xa \<longrightarrow> dist (f x') (f x) < xa)" using choice[of "\<lambda>e d. e>0 \<longrightarrow> d>0 \<and>(\<forall>x'\<in>s. (dist x' x < d \<longrightarrow> dist (f x') (f x) < e))"] by auto  }
+    then have "\<forall>x\<in>s. \<exists>y. \<forall>xa. 0 < xa \<longrightarrow> (\<forall>x'\<in>s. y xa > 0 \<and> (dist x' x < y xa \<longrightarrow> dist (f x') (f x) < xa))" by auto
+    then obtain d where d:"\<forall>e>0. \<forall>x\<in>s. \<forall>x'\<in>s. d x e > 0 \<and> (dist x' x < d x e \<longrightarrow> dist (f x') (f x) < e)"  
+      using bchoice[of s "\<lambda>x fa. \<forall>xa>0. \<forall>x'\<in>s. fa xa > 0 \<and> (dist x' x < fa xa \<longrightarrow> dist (f x') (f x) < xa)"] by blast
+
+  { fix e::real assume "e>0"
+
+    { fix x assume "x\<in>s" hence "x \<in> ball x (d x (e / 2))" unfolding centre_in_ball using d[THEN spec[where x="e/2"]] using `e>0` by auto  }
+    hence "s \<subseteq> \<Union>{ball x (d x (e / 2)) |x. x \<in> s}" unfolding subset_eq by auto
+    moreover
+    { fix b assume "b\<in>{ball x (d x (e / 2)) |x. x \<in> s}" hence "open b" by auto  }
+    ultimately obtain ea where "ea>0" and ea:"\<forall>x\<in>s. \<exists>b\<in>{ball x (d x (e / 2)) |x. x \<in> s}. ball x ea \<subseteq> b" using heine_borel_lemma[OF assms(2), of "{ball x (d x (e / 2)) | x. x\<in>s }"] by auto
+
+    { fix x y assume "x\<in>s" "y\<in>s" and as:"dist y x < ea"
+      obtain z where "z\<in>s" and z:"ball x ea \<subseteq> ball z (d z (e / 2))" using ea[THEN bspec[where x=x]] and `x\<in>s` by auto
+      hence "x\<in>ball z (d z (e / 2))" using `ea>0` unfolding subset_eq by auto
+      hence "dist (f z) (f x) < e / 2" using d[THEN spec[where x="e/2"]] and `e>0` and `x\<in>s` and `z\<in>s`
+	by (auto  simp add: dist_sym)
+      moreover have "y\<in>ball z (d z (e / 2))" using as and `ea>0` and z[unfolded subset_eq] 
+	by (auto simp add: dist_sym)
+      hence "dist (f z) (f y) < e / 2" using d[THEN spec[where x="e/2"]] and `e>0` and `y\<in>s` and `z\<in>s` 
+	by (auto  simp add: dist_sym)
+      ultimately have "dist (f y) (f x) < e" using dist_triangle_half_r[of "f z" "f x" e "f y"] 
+	by (auto simp add: dist_sym)  }
+    then have "\<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e" using `ea>0` by auto  }
+  thus ?thesis unfolding uniformly_continuous_on_def by auto
+qed
+
+text{* Continuity of inverse function on compact domain. *}
+
+lemma continuous_on_inverse: 
+  assumes "continuous_on s f"  "compact s"  "\<forall>x \<in> s. g (f x) = x"
+  shows "continuous_on (f ` s) g"
+proof-
+  have *:"g ` f ` s = s" using assms(3) by (auto simp add: image_iff)
+  { fix t assume t:"closedin (subtopology euclidean (g ` f ` s)) t"
+    then obtain T where T: "closed T" "t = s \<inter> T" unfolding closedin_closed unfolding * by auto
+    have "continuous_on (s \<inter> T) f" using continuous_on_subset[OF assms(1), of "s \<inter> t"] 
+      unfolding T(2) and Int_left_absorb by auto
+    moreover have "compact (s \<inter> T)" 
+      using assms(2) unfolding compact_eq_bounded_closed
+      using bounded_subset[of s "s \<inter> T"] and T(1) by auto
+    ultimately have "closed (f ` t)" using T(1) unfolding T(2)
+      using compact_continuous_image unfolding compact_eq_bounded_closed by auto
+    moreover have "{x \<in> f ` s. g x \<in> t} = f ` s \<inter> f ` t" using assms(3) unfolding T(2) by auto
+    ultimately have "closedin (subtopology euclidean (f ` s)) {x \<in> f ` s. g x \<in> t}"
+      unfolding closedin_closed by auto  }
+  thus ?thesis unfolding continuous_on_closed by auto
+qed
+
+subsection{* A uniformly convergent limit of continuous functions is continuous.       *}
+
+lemma continuous_uniform_limit: 
+  assumes "\<not> (trivial_limit net)"  "eventually (\<lambda>n. continuous_on s (f n)) net"
+  "\<forall>e>0. eventually (\<lambda>n. \<forall>x \<in> s. norm(f n x - g x) < e) net"
+  shows "continuous_on s g"
+proof-
+  { fix x and e::real assume "x\<in>s" "e>0"
+    have "eventually (\<lambda>n. \<forall>x\<in>s. norm (f n x - g x) < e / 3) net" using `e>0` assms(3)[THEN spec[where x="e/3"]] by auto
+    then obtain n where n:"\<forall>xa\<in>s. norm (f n xa - g xa) < e / 3"  "continuous_on s (f n)"
+      using eventually_and[of "(\<lambda>n. \<forall>x\<in>s. norm (f n x - g x) < e / 3)" "(\<lambda>n. continuous_on s (f n))" net] assms(1,2) eventually_happens by blast
+    have "e / 3 > 0" using `e>0` by auto
+    then obtain d where "d>0" and d:"\<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f n x') (f n x) < e / 3"
+      using n(2)[unfolded continuous_on_def, THEN bspec[where x=x], OF `x\<in>s`, THEN spec[where x="e/3"]] by blast
+    { fix y assume "y\<in>s" "dist y x < d"
+      hence "dist (f n y) (f n x) < e / 3" using d[THEN bspec[where x=y]] by auto
+      hence "norm (f n y - g x) < 2 * e / 3" using norm_triangle_lt[of "f n y - f n x" "f n x - g x" "2*e/3"] 
+	using n(1)[THEN bspec[where x=x], OF `x\<in>s`] unfolding dist_def unfolding ab_group_add_class.ab_diff_minus by auto
+      hence "dist (g y) (g x) < e" unfolding dist_def using n(1)[THEN bspec[where x=y], OF `y\<in>s`]
+	unfolding norm_minus_cancel[of "f n y - g y", THEN sym] using norm_triangle_lt[of "f n y - g x" "g y - f n y" e] by (auto simp add: uminus_add_conv_diff)  }
+    hence "\<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (g x') (g x) < e" using `d>0` by auto  }
+  thus ?thesis unfolding continuous_on_def by auto
+qed
+
+subsection{* Topological properties of linear functions.                               *}
+
+lemma linear_lim_0: fixes f::"real^'a \<Rightarrow> real^'b"
+  assumes "linear f" shows "(f ---> 0) (at (0))"
+proof-
+  obtain B where "B>0" and B:"\<forall>x. norm (f x) \<le> B * norm x" using linear_bounded_pos[OF assms] by auto
+  { fix e::real assume "e>0"
+    { fix x::"real^'a" assume "norm x < e / B"
+      hence "B * norm x < e" using `B>0` using mult_strict_right_mono[of "norm x" " e / B" B] unfolding real_mult_commute by auto
+      hence "norm (f x) < e" using B[THEN spec[where x=x]] `B>0` using order_le_less_trans[of "norm (f x)" "B * norm x" e] by auto   }
+    moreover have "e / B > 0" using `e>0` `B>0` divide_pos_pos by auto 
+    ultimately have "\<exists>d>0. \<forall>x. 0 < dist x 0 \<and> dist x 0 < d \<longrightarrow> dist (f x) 0 < e" unfolding dist_def by auto  }
+  thus ?thesis unfolding Lim_at by auto
+qed
+
+lemma linear_continuous_at: 
+  assumes "linear f"  shows "continuous (at a) f"
+  unfolding continuous_at Lim_at_zero[of f "f a" a] using linear_lim_0[OF assms]
+  unfolding Lim_null[of "\<lambda>x. f (a + x)"] unfolding linear_sub[OF assms, THEN sym] by auto 
+
+lemma linear_continuous_within: 
+ "linear f ==> continuous (at x within s) f"
+  using continuous_at_imp_continuous_within[of x f s] using linear_continuous_at[of f] by auto
+
+lemma linear_continuous_on: 
+ "linear f ==> continuous_on s f"
+  using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f] by auto
+
+text{* Also bilinear functions, in composition form.                             *}
+
+lemma bilinear_continuous_at_compose: 
+ "continuous (at x) f \<Longrightarrow> continuous (at x) g \<Longrightarrow> bilinear h
+        ==> continuous (at x) (\<lambda>x. h (f x) (g x))"
+  unfolding continuous_at using Lim_bilinear[of f "f x" "(at x)" g "g x" h] by auto
+  
+lemma bilinear_continuous_within_compose: 
+ "continuous (at x within s) f \<Longrightarrow> continuous (at x within s) g \<Longrightarrow> bilinear h
+        ==> continuous (at x within s) (\<lambda>x. h (f x) (g x))"
+  unfolding continuous_within using Lim_bilinear[of f "f x"] by auto
+  
+lemma bilinear_continuous_on_compose: 
+ "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> bilinear h
+             ==> continuous_on s (\<lambda>x. h (f x) (g x))"
+  unfolding continuous_on_eq_continuous_within apply auto apply(erule_tac x=x in ballE) apply auto apply(erule_tac x=x in ballE) apply auto
+  using bilinear_continuous_within_compose[of _ s f g h] by auto
+
+subsection{* Topological stuff lifted from and dropped to R                            *}
+
+
+lemma open_vec1: 
+ "open(vec1 ` s) \<longleftrightarrow>
+        (\<forall>x \<in> s. \<exists>e>0. \<forall>x'. abs(x' - x) < e --> x' \<in> s)" (is "?lhs = ?rhs")
+  unfolding open_def apply simp unfolding forall_vec1 dist_vec1 vec1_in_image_vec1 by simp 
+  
+lemma islimpt_approachable_vec1: 
+ "(vec1 x) islimpt (vec1 ` s) \<longleftrightarrow>
+         (\<forall>e>0.  \<exists>x'\<in> s. x' \<noteq> x \<and> abs(x' - x) < e)"
+  by (auto simp add: islimpt_approachable dist_vec1 vec1_eq)
+
+lemma closed_vec1: 
+ "closed (vec1 ` s) \<longleftrightarrow>
+        (\<forall>x. (\<forall>e>0.  \<exists>x' \<in> s. x' \<noteq> x \<and> abs(x' - x) < e)
+            --> x \<in> s)"
+  unfolding closed_limpt islimpt_approachable forall_vec1 apply simp
+  unfolding dist_vec1 vec1_in_image_vec1 abs_minus_commute by auto
+
+lemma continuous_at_vec1_range: 
+ "continuous (at x) (vec1 o f) \<longleftrightarrow> (\<forall>e>0. \<exists>d>0.
+        \<forall>x'. norm(x' - x) < d --> abs(f x' - f x) < e)"
+  unfolding continuous_at unfolding Lim_at apply simp unfolding dist_vec1 unfolding dist_nz[THEN sym] unfolding dist_def apply auto
+  apply(erule_tac x=e in allE) apply auto apply (rule_tac x=d in exI) apply auto apply (erule_tac x=x' in allE) apply auto
+  apply(erule_tac x=e in allE) by auto
+
+lemma continuous_on_vec1_range: 
+ " continuous_on s (vec1 o f) \<longleftrightarrow> (\<forall>x \<in> s. \<forall>e>0. \<exists>d>0. (\<forall>x' \<in> s. norm(x' - x) < d --> abs(f x' - f x) < e))"
+  unfolding continuous_on_def apply (simp del: dist_sym) unfolding dist_vec1 unfolding dist_def ..
+  
+lemma continuous_at_vec1_norm: 
+ "\<forall>x. continuous (at x) (vec1 o norm)"
+  unfolding continuous_at_vec1_range using real_abs_sub_norm order_le_less_trans by blast
+
+lemma continuous_on_vec1_norm:
+ "\<forall>s. continuous_on s (vec1 o norm)"
+unfolding continuous_on_vec1_range norm_vec1[THEN sym] by (metis norm_vec1 order_le_less_trans real_abs_sub_norm) 
+
+lemma continuous_at_vec1_component: 
+  assumes "1 \<le> i" "i \<le> dimindex(UNIV::('a set))"
+  shows "continuous (at (a::real^'a)) (\<lambda> x. vec1(x$i))"
+proof-
+  { fix e::real and x assume "0 < dist x a" "dist x a < e" "e>0"
+    hence "\<bar>x $ i - a $ i\<bar> < e" using component_le_norm[of i "x - a"] vector_minus_component[of i x a] assms unfolding dist_def by auto  }
+  thus ?thesis unfolding continuous_at tendsto_def eventually_at dist_vec1 by auto
+qed
+
+lemma continuous_on_vec1_component: 
+  assumes "i \<in> {1..dimindex (UNIV::'a set)}"  shows "continuous_on s (\<lambda> x::real^'a. vec1(x$i))"
+proof-
+  { fix e::real and x xa assume "x\<in>s" "e>0" "xa\<in>s" "0 < norm (xa - x) \<and> norm (xa - x) < e"
+    hence "\<bar>xa $ i - x $ i\<bar> < e" using component_le_norm[of i "xa - x"] vector_minus_component[of i xa x] assms by auto  }
+  thus ?thesis unfolding continuous_on Lim_within dist_vec1 unfolding dist_def by auto
+qed
+
+lemma continuous_at_vec1_infnorm: 
+ "continuous (at x) (vec1 o infnorm)"
+  unfolding continuous_at Lim_at o_def unfolding dist_vec1 unfolding dist_def 
+  apply auto apply (rule_tac x=e in exI) apply auto
+  using order_trans[OF real_abs_sub_infnorm infnorm_le_norm, of _ x] by (metis xt1(7))
+
+text{* Hence some handy theorems on distance, diameter etc. of/from a set.       *}
+
+lemma compact_attains_sup: 
+  assumes "compact (vec1 ` s)"  "s \<noteq> {}"
+  shows "\<exists>x \<in> s. \<forall>y \<in> s. y \<le> x"
+proof-
+  from assms(1) have a:"bounded (vec1 ` s)" "closed (vec1 ` s)" unfolding compact_eq_bounded_closed by auto
+  { fix e::real assume as: "\<forall>x\<in>s. x \<le> rsup s" "rsup s \<notin> s"  "0 < e" "\<forall>x'\<in>s. x' = rsup s \<or> \<not> rsup s - x' < e"
+    have "isLub UNIV s (rsup s)" using rsup[OF assms(2)] unfolding setle_def using as(1) by auto
+    moreover have "isUb UNIV s (rsup s - e)" unfolding isUb_def unfolding setle_def using as(4,2) by auto
+    ultimately have False using isLub_le_isUb[of UNIV s "rsup s" "rsup s - e"] using `e>0` by auto  }
+  thus ?thesis using bounded_has_rsup(1)[OF a(1) assms(2)] using a(2)[unfolded closed_vec1, THEN spec[where x="rsup s"]]
+    apply(rule_tac x="rsup s" in bexI) by auto
+qed
+
+lemma compact_attains_inf: 
+  assumes "compact (vec1 ` s)" "s \<noteq> {}"  shows "\<exists>x \<in> s. \<forall>y \<in> s. x \<le> y"
+proof-
+  from assms(1) have a:"bounded (vec1 ` s)" "closed (vec1 ` s)" unfolding compact_eq_bounded_closed by auto
+  { fix e::real assume as: "\<forall>x\<in>s. x \<ge> rinf s"  "rinf s \<notin> s"  "0 < e"
+      "\<forall>x'\<in>s. x' = rinf s \<or> \<not> abs (x' - rinf s) < e"
+    have "isGlb UNIV s (rinf s)" using rinf[OF assms(2)] unfolding setge_def using as(1) by auto
+    moreover
+    { fix x assume "x \<in> s"
+      hence *:"abs (x - rinf s) = x - rinf s" using as(1)[THEN bspec[where x=x]] by auto
+      have "rinf s + e \<le> x" using as(4)[THEN bspec[where x=x]] using as(2) `x\<in>s` unfolding * by auto }
+    hence "isLb UNIV s (rinf s + e)" unfolding isLb_def and setge_def by auto 
+    ultimately have False using isGlb_le_isLb[of UNIV s "rinf s" "rinf s + e"] using `e>0` by auto  }
+  thus ?thesis using bounded_has_rinf(1)[OF a(1) assms(2)] using a(2)[unfolded closed_vec1, THEN spec[where x="rinf s"]]
+    apply(rule_tac x="rinf s" in bexI) by auto
+qed
+
+lemma continuous_attains_sup: 
+ "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s (vec1 o f)
+        ==> (\<exists>x \<in> s. \<forall>y \<in> s.  f y \<le> f x)"
+  using compact_attains_sup[of "f ` s"]
+  using compact_continuous_image[of s "vec1 \<circ> f"] unfolding image_compose by auto
+
+lemma continuous_attains_inf: 
+ "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s (vec1 o f) 
+        ==> (\<exists>x \<in> s. \<forall>y \<in> s. f x \<le> f y)"
+  using compact_attains_inf[of "f ` s"]
+  using compact_continuous_image[of s "vec1 \<circ> f"] unfolding image_compose by auto
+
+lemma distance_attains_sup: 
+  assumes "compact s" "s \<noteq> {}"
+  shows "\<exists>x \<in> s. \<forall>y \<in> s. dist a y \<le> dist a x"
+proof-
+  { fix x assume "x\<in>s" fix e::real assume "e>0"
+    { fix x' assume "x'\<in>s" and as:"norm (x' - x) < e"
+      hence "\<bar>norm (x' - a) - norm (x - a)\<bar> < e"
+	using real_abs_sub_norm[of "x' - a" "x - a"]  by auto  }
+    hence "\<exists>d>0. \<forall>x'\<in>s. norm (x' - x) < d \<longrightarrow> \<bar>dist x' a - dist x a\<bar> < e" using `e>0` unfolding dist_def by auto }
+  thus ?thesis using assms
+    using continuous_attains_sup[of s "\<lambda>x. dist a x"]
+    unfolding continuous_on_vec1_range by (auto simp add: dist_sym)
+qed
+
+text{* For *minimal* distance, we only need closure, not compactness.            *}
+
+lemma distance_attains_inf: 
+  assumes "closed s"  "s \<noteq> {}"
+  shows "\<exists>x \<in> s. \<forall>y \<in> s. dist a x \<le> dist a y"
+proof-
+  from assms(2) obtain b where "b\<in>s" by auto
+  let ?B = "cball a (dist b a) \<inter> s"
+  have "b \<in> ?B" using `b\<in>s` by (simp add: dist_sym)
+  hence "?B \<noteq> {}" by auto
+  moreover
+  { fix x assume "x\<in>?B"
+    fix e::real assume "e>0"
+    { fix x' assume "x'\<in>?B" and as:"norm (x' - x) < e"
+      hence "\<bar>norm (x' - a) - norm (x - a)\<bar> < e"
+	using real_abs_sub_norm[of "x' - a" "x - a"]  by auto  }
+    hence "\<exists>d>0. \<forall>x'\<in>?B. norm (x' - x) < d \<longrightarrow> \<bar>dist x' a - dist x a\<bar> < e" using `e>0` unfolding dist_def by auto }
+  hence "continuous_on (cball a (dist b a) \<inter> s) (vec1 \<circ> dist a)" unfolding continuous_on_vec1_range 
+    by (auto  simp add: dist_sym)
+  moreover have "compact ?B" using compact_cball[of a "dist b a"] unfolding compact_eq_bounded_closed using bounded_Int and closed_Int and assms(1) by auto
+  ultimately obtain x where "x\<in>cball a (dist b a) \<inter> s" "\<forall>y\<in>cball a (dist b a) \<inter> s. dist a x \<le> dist a y" using continuous_attains_inf[of ?B "dist a"] by fastsimp
+  thus ?thesis by fastsimp     
+qed
+
+subsection{* We can now extend limit compositions to consider the scalar multiplier.   *}
+
+lemma Lim_mul: 
+  assumes "((vec1 o c) ---> vec1 d) net"  "(f ---> l) net"
+  shows "((\<lambda>x. c(x) *s f x) ---> (d *s l)) net"
+proof-
+  have "bilinear (\<lambda>x. op *s (dest_vec1 (x::real^1)))" unfolding bilinear_def linear_def
+    unfolding dest_vec1_add dest_vec1_cmul
+    apply vector apply auto unfolding semiring_class.right_distrib semiring_class.left_distrib by auto
+  thus ?thesis using Lim_bilinear[OF assms, of "\<lambda>x y. (dest_vec1 x) *s y"] by auto
+qed
+
+lemma Lim_vmul: 
+ "((vec1 o c) ---> vec1 d) net ==> ((\<lambda>x. c(x) *s v) ---> d *s v) net"
+  using Lim_mul[of c d net "\<lambda>x. v" v] using Lim_const[of v] by auto
+
+lemma continuous_vmul: 
+ "continuous net (vec1 o c) ==> continuous net (\<lambda>x. c(x) *s v)"
+  unfolding continuous_def using Lim_vmul[of c] by auto
+  
+lemma continuous_mul: 
+ "continuous net (vec1 o c) \<Longrightarrow> continuous net f
+             ==> continuous net (\<lambda>x. c(x) *s f x) "
+  unfolding continuous_def using Lim_mul[of c] by auto
+
+lemma continuous_on_vmul: 
+ "continuous_on s (vec1 o c) ==> continuous_on s (\<lambda>x. c(x) *s v)"
+  unfolding continuous_on_eq_continuous_within using continuous_vmul[of _ c] by auto
+
+lemma continuous_on_mul: 
+ "continuous_on s (vec1 o c) \<Longrightarrow> continuous_on s f
+             ==> continuous_on s (\<lambda>x. c(x) *s f x)"
+  unfolding continuous_on_eq_continuous_within using continuous_mul[of _ c] by auto
+
+text{* And so we have continuity of inverse.                                     *}
+
+lemma Lim_inv: 
+  assumes "((vec1 o f) ---> vec1 l) (net::'a net)"  "l \<noteq> 0"
+  shows "((vec1 o inverse o f) ---> vec1(inverse l)) net"
+proof(cases "trivial_limit net")
+  case True thus ?thesis unfolding tendsto_def unfolding eventually_def by auto
+next
+  case False note ntriv = this
+  { fix e::real assume "e>0"
+    hence "0 < min (\<bar>l\<bar> / 2) (l\<twosuperior> * e / 2)" using `l\<noteq>0` mult_pos_pos[of "l^2" "e/2"] by auto
+    then obtain y where y1:"\<exists>x. netord net x y" and
+      y:"\<forall>x. netord net x y \<longrightarrow> dist ((vec1 \<circ> f) x) (vec1 l) < min (\<bar>l\<bar> / 2) (l\<twosuperior> * e / 2)" using ntriv
+      using assms(1)[unfolded tendsto_def eventually_def, THEN spec[where x="min (abs l / 2) (l ^ 2 * e / 2)"]] by auto
+    { fix x assume "netord net x y"
+      hence *:"\<bar>f x - l\<bar> < min (\<bar>l\<bar> / 2) (l\<twosuperior> * e / 2)" using y[THEN spec[where x=x]] unfolding o_def dist_vec1 by auto
+      hence fx0:"f x \<noteq> 0" using `l \<noteq> 0` by auto
+      hence fxl0: "(f x) * l \<noteq> 0" using `l \<noteq> 0` by auto
+      from * have **:"\<bar>f x - l\<bar> < l\<twosuperior> * e / 2" by auto
+      have "\<bar>f x\<bar> * 2 \<ge> \<bar>l\<bar>" using * by (auto simp del: Arith_Tools.less_divide_eq_number_of1)
+      hence "\<bar>f x\<bar> * 2 * \<bar>l\<bar>  \<ge> \<bar>l\<bar> * \<bar>l\<bar>" unfolding mult_le_cancel_right by auto
+      hence "\<bar>f x * l\<bar> * 2  \<ge> \<bar>l\<bar>^2" unfolding real_mult_commute and power2_eq_square by auto
+      hence ***:"inverse \<bar>f x * l\<bar> \<le> inverse (l\<twosuperior> / 2)" using fxl0 
+	using le_imp_inverse_le[of "l^2 / 2" "\<bar>f x * l\<bar>"]  by auto
+
+      have "dist ((vec1 \<circ> inverse \<circ> f) x) (vec1 (inverse l)) < e" unfolding o_def unfolding dist_vec1
+	unfolding inverse_diff_inverse[OF fx0 `l\<noteq>0`] apply simp
+	unfolding mult_commute[of "inverse (f x)"]
+	unfolding real_divide_def[THEN sym]
+	unfolding divide_divide_eq_left
+	unfolding nonzero_abs_divide[OF fxl0]
+	using mult_less_le_imp_less[OF **, of "inverse \<bar>f x * l\<bar>", of "inverse (l^2 / 2)"] using *** using fx0 `l\<noteq>0` 
+	unfolding inverse_eq_divide using `e>0` by auto   }
+    hence "(\<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> dist ((vec1 \<circ> inverse \<circ> f) x) (vec1 (inverse l)) < e))"
+      using y1 by auto  }
+  thus ?thesis unfolding tendsto_def eventually_def by auto
+qed
+
+lemma continuous_inv: 
+ "continuous net (vec1 o f) \<Longrightarrow> f(netlimit net) \<noteq> 0
+           ==> continuous net (vec1 o inverse o f)"
+  unfolding continuous_def using Lim_inv by auto
+  
+lemma continuous_at_within_inv: 
+  assumes "continuous (at a within s) (vec1 o f)" "f a \<noteq> 0"
+  shows "continuous (at a within s) (vec1 o inverse o f)"
+proof(cases "trivial_limit (at a within s)")
+  case True thus ?thesis unfolding continuous_def tendsto_def eventually_def by auto
+next
+  case False note cs = this
+  thus ?thesis using netlimit_within[OF cs] assms(2) continuous_inv[OF assms(1)] by auto
+qed
+
+lemma continuous_at_inv: 
+ "continuous (at a) (vec1 o f) \<Longrightarrow> f a \<noteq> 0
+         ==> continuous (at a) (vec1 o inverse o f) "
+  using within_UNIV[THEN sym, of a] using continuous_at_within_inv[of a UNIV] by auto
+
+subsection{* Preservation properties for pasted sets.                                  *}
+
+lemma bounded_pastecart:
+  assumes "bounded s" "bounded t"
+  shows "bounded { pastecart x y | x y . (x \<in> s \<and> y \<in> t)}"
+proof-
+  obtain a b where ab:"\<forall>x\<in>s. norm x \<le> a" "\<forall>x\<in>t. norm x \<le> b" using assms[unfolded bounded_def] by auto
+  { fix x y assume "x\<in>s" "y\<in>t"
+    hence "norm x \<le> a" "norm y \<le> b" using ab by auto 
+    hence "norm (pastecart x y) \<le> a + b" using norm_pastecart[of x y] by auto }
+  thus ?thesis unfolding bounded_def by auto
+qed
+
+lemma closed_pastecart: 
+  assumes "closed s"  "closed t"
+  shows "closed {pastecart x y | x y . x \<in> s \<and> y \<in> t}"
+proof-
+  { fix x l assume as:"\<forall>n::nat. x n \<in> {pastecart x y |x y. x \<in> s \<and> y \<in> t}"  "(x ---> l) sequentially"
+    { fix n::nat have "fstcart (x n) \<in> s" "sndcart (x n) \<in> t" using as(1)[THEN spec[where x=n]] by auto } note * = this
+    moreover
+    { fix e::real assume "e>0"
+      then obtain N::nat where N:"\<forall>n\<ge>N. dist (x n) l < e" using as(2)[unfolded Lim_sequentially, THEN spec[where x=e]] by auto
+      { fix n::nat assume "n\<ge>N"
+	hence "dist (fstcart (x n)) (fstcart l) < e" "dist (sndcart (x n)) (sndcart l) < e"
+	  using N[THEN spec[where x=n]] dist_fstcart[of "x n" l] dist_sndcart[of "x n" l] by auto   }
+      hence "\<exists>N. \<forall>n\<ge>N. dist (fstcart (x n)) (fstcart l) < e" "\<exists>N. \<forall>n\<ge>N. dist (sndcart (x n)) (sndcart l) < e" by auto  }
+    ultimately have "fstcart l \<in> s" "sndcart l \<in> t" 
+      using assms(1)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda>n. fstcart (x n)"], THEN spec[where x="fstcart l"]]
+      using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda>n. sndcart (x n)"], THEN spec[where x="sndcart l"]]
+      unfolding Lim_sequentially by auto
+    hence "l \<in> {pastecart x y |x y. x \<in> s \<and> y \<in> t}" using pastecart_fst_snd[THEN sym, of l] by auto  }
+  thus ?thesis unfolding closed_sequential_limits by auto
+qed
+
+lemma compact_pastecart: 
+ "compact s \<Longrightarrow> compact t ==> compact {pastecart x y | x y . x \<in> s \<and> y \<in> t}"
+  unfolding compact_eq_bounded_closed using bounded_pastecart[of s t] closed_pastecart[of s t] by auto
+
+text{* Hence some useful properties follow quite easily.                         *}
+
+lemma compact_scaling: 
+  assumes "compact s"  shows "compact ((\<lambda>x. c *s x) ` s)"
+proof-
+  let ?f = "\<lambda>x. c *s x"
+  have *:"linear ?f" unfolding linear_def vector_smult_assoc vector_add_ldistrib real_mult_commute by auto
+  show ?thesis using compact_continuous_image[of s ?f] continuous_at_imp_continuous_on[of s ?f]
+    using linear_continuous_at[OF *] assms by auto
+qed
+
+lemma compact_negations: 
+  assumes "compact s"  shows "compact ((\<lambda>x. -x) ` s)"
+proof-
+  have "uminus ` s = (\<lambda>x. -1 *s x) ` s" apply auto unfolding image_iff pth_3 by auto
+  thus ?thesis using compact_scaling[OF assms, of "-1"] by auto
+qed
+
+lemma compact_sums: 
+  assumes "compact s"  "compact t"  shows "compact {x + y | x y. x \<in> s \<and> y \<in> t}"
+proof-
+  have *:"{x + y | x y. x \<in> s \<and> y \<in> t} =(\<lambda>z. fstcart z + sndcart z) ` {pastecart x y | x y.  x \<in> s \<and> y \<in> t}"    
+    apply auto unfolding image_iff apply(rule_tac x="pastecart xa y" in bexI) unfolding fstcart_pastecart sndcart_pastecart by auto
+  have "linear (\<lambda>z::real^('a, 'a) finite_sum. fstcart z + sndcart z)" unfolding linear_def
+    unfolding fstcart_add sndcart_add apply auto
+    unfolding vector_add_ldistrib fstcart_cmul[THEN sym] sndcart_cmul[THEN sym] by auto
+  hence "continuous_on {pastecart x y |x y. x \<in> s \<and> y \<in> t} (\<lambda>z. fstcart z + sndcart z)"
+    using continuous_at_imp_continuous_on linear_continuous_at by auto 
+  thus ?thesis unfolding * using compact_continuous_image compact_pastecart[OF assms] by auto
+qed
+
+lemma compact_differences: 
+  assumes "compact s" "compact t"  shows "compact {x - y | x y. x \<in> s \<and> y \<in> t}"
+proof-
+  have "{x - y | x y::real^'a. x\<in>s \<and> y \<in> t} =  {x + y | x y. x \<in> s \<and> y \<in> (uminus ` t)}"
+    apply auto apply(rule_tac x= xa in exI) apply auto apply(rule_tac x=xa in exI) by auto
+  thus ?thesis using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto
+qed
+
+lemma compact_translation: 
+  assumes "compact s"  shows "compact ((\<lambda>x. a + x) ` s)"
+proof-
+  have "{x + y |x y. x \<in> s \<and> y \<in> {a}} = (\<lambda>x. a + x) ` s" by auto
+  thus ?thesis using compact_sums[OF assms compact_sing[of a]] by auto
+qed
+
+lemma compact_affinity: 
+ assumes "compact s"  shows "compact ((\<lambda>x. a + c *s x) ` s)"
+proof-
+  have "op + a ` op *s c ` s = (\<lambda>x. a + c *s x) ` s" by auto
+  thus ?thesis using compact_translation[OF compact_scaling[OF assms], of a c] by auto
+qed
+
+text{* Hence we get the following.                                               *}
+
+lemma compact_sup_maxdistance: 
+  assumes "compact s"  "s \<noteq> {}"
+  shows "\<exists>x\<in>s. \<exists>y\<in>s. \<forall>u\<in>s. \<forall>v\<in>s. norm(u - v) \<le> norm(x - y)"
+proof-
+  have "{x - y | x y . x\<in>s \<and> y\<in>s} \<noteq> {}" using `s \<noteq> {}` by auto
+  then obtain x where x:"x\<in>{x - y |x y. x \<in> s \<and> y \<in> s}"  "\<forall>y\<in>{x - y |x y. x \<in> s \<and> y \<in> s}. norm y \<le> norm x"
+    using compact_differences[OF assms(1) assms(1)]
+    using distance_attains_sup[unfolded dist_def, of "{x - y | x y . x\<in>s \<and> y\<in>s}" 0] by(auto simp add: norm_minus_cancel) 
+  from x(1) obtain a b where "a\<in>s" "b\<in>s" "x = a - b" by auto
+  thus ?thesis using x(2)[unfolded `x = a - b`] by blast    
+qed
+
+text{* We can state this in terms of diameter of a set.                          *}
+
+definition "diameter s = (if s = {} then 0::real else rsup {norm(x - y) | x y. x \<in> s \<and> y \<in> s})"
+
+lemma diameter_bounded: 
+  assumes "bounded s" 
+  shows "\<forall>x\<in>s. \<forall>y\<in>s. norm(x - y) \<le> diameter s"
+        "\<forall>d>0. d < diameter s --> (\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d)"
+proof-
+  let ?D = "{norm (x - y) |x y. x \<in> s \<and> y \<in> s}"
+  obtain a where a:"\<forall>x\<in>s. norm x \<le> a" using assms[unfolded bounded_def] by auto
+  { fix x y assume "x \<in> s" "y \<in> s" 
+    hence "norm (x - y) \<le> 2 * a" using norm_triangle_ineq[of x "-y", unfolded norm_minus_cancel] a[THEN bspec[where x=x]] a[THEN bspec[where x=y]] by (auto simp add: ring_simps)  }
+  note * = this
+  { fix x y assume "x\<in>s" "y\<in>s"  hence "s \<noteq> {}" by auto
+    have lub:"isLub UNIV ?D (rsup ?D)" using * rsup[of ?D] using `s\<noteq>{}` unfolding setle_def by auto
+    have "norm(x - y) \<le> diameter s" unfolding diameter_def using `s\<noteq>{}` *[OF `x\<in>s` `y\<in>s`] `x\<in>s` `y\<in>s` isLubD1[OF lub] unfolding setle_def by auto  }
+  moreover
+  { fix d::real assume "d>0" "d < diameter s"
+    hence "s\<noteq>{}" unfolding diameter_def by auto 
+    hence lub:"isLub UNIV ?D (rsup ?D)" using * rsup[of ?D] unfolding setle_def by auto
+    have "\<exists>d' \<in> ?D. d' > d"
+    proof(rule ccontr)
+      assume "\<not> (\<exists>d'\<in>{norm (x - y) |x y. x \<in> s \<and> y \<in> s}. d < d')"
+      hence as:"\<forall>d'\<in>?D. d' \<le> d" apply auto apply(erule_tac x="norm (x - y)" in allE) by auto
+      hence "isUb UNIV ?D d" unfolding isUb_def unfolding setle_def by auto
+      thus False using `d < diameter s` `s\<noteq>{}` isLub_le_isUb[OF lub, of d] unfolding diameter_def  by auto
+    qed
+    hence "\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d" by auto  }
+  ultimately show "\<forall>x\<in>s. \<forall>y\<in>s. norm(x - y) \<le> diameter s"
+        "\<forall>d>0. d < diameter s --> (\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d)" by auto
+qed
+
+lemma diameter_bounded_bound: 
+ "bounded s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s ==> norm(x - y) \<le> diameter s"
+  using diameter_bounded by blast
+
+lemma diameter_compact_attained: 
+  assumes "compact s"  "s \<noteq> {}"
+  shows "\<exists>x\<in>s. \<exists>y\<in>s. (norm(x - y) = diameter s)"
+proof-
+  have b:"bounded s" using assms(1) compact_eq_bounded_closed by auto
+  then obtain x y where xys:"x\<in>s" "y\<in>s" and xy:"\<forall>u\<in>s. \<forall>v\<in>s. norm (u - v) \<le> norm (x - y)" using compact_sup_maxdistance[OF assms] by auto
+  hence "diameter s \<le> norm (x - y)" using rsup_le[of "{norm (x - y) |x y. x \<in> s \<and> y \<in> s}" "norm (x - y)"]
+    unfolding setle_def and diameter_def by auto
+  thus ?thesis using diameter_bounded(1)[OF b, THEN bspec[where x=x], THEN bspec[where x=y], OF xys] and xys by auto 
+qed
+
+text{* Related results with closure as the conclusion.                           *}
+
+lemma closed_scaling: 
+  assumes "closed s" shows "closed ((\<lambda>x. c *s x) ` s)"
+proof(cases "s={}")
+  case True thus ?thesis by auto 
+next
+  case False
+  show ?thesis 
+  proof(cases "c=0")
+    have *:"(\<lambda>x. 0) ` s = {0}" using `s\<noteq>{}` by auto
+    case True thus ?thesis apply auto unfolding * using closed_sing by auto
+  next
+    case False
+    { fix x l assume as:"\<forall>n::nat. x n \<in> op *s c ` s"  "(x ---> l) sequentially"
+      { fix n::nat have "(1 / c) *s x n \<in> s" using as(1)[THEN spec[where x=n]] using `c\<noteq>0` by (auto simp add: vector_smult_assoc) }
+      moreover 
+      { fix e::real assume "e>0"
+	hence "0 < e *\<bar>c\<bar>"  using `c\<noteq>0` mult_pos_pos[of e "abs c"] by auto
+	then obtain N where "\<forall>n\<ge>N. dist (x n) l < e * \<bar>c\<bar>" using as(2)[unfolded Lim_sequentially, THEN spec[where x="e * abs c"]] by auto 
+	hence "\<exists>N. \<forall>n\<ge>N. dist ((1 / c) *s x n) ((1 / c) *s l) < e" unfolding dist_def unfolding vector_ssub_ldistrib[THEN sym] norm_mul
+	  using mult_imp_div_pos_less[of "abs c" _ e] `c\<noteq>0` by auto  }
+      hence "((\<lambda>n. (1 / c) *s x n) ---> (1 / c) *s l) sequentially" unfolding Lim_sequentially by auto
+      ultimately have "l \<in> op *s c ` s"  using assms[unfolded closed_sequential_limits, THEN spec[where x="\<lambda>n. (1/c) *s x n"], THEN spec[where x="(1/c) *s l"]]
+	unfolding image_iff using `c\<noteq>0` apply(rule_tac x="(1 / c) *s l" in bexI) apply auto unfolding vector_smult_assoc  by auto  }
+    thus ?thesis unfolding closed_sequential_limits by auto
+  qed
+qed
+
+lemma closed_negations: 
+  assumes "closed s"  shows "closed ((\<lambda>x. -x) ` s)"
+  using closed_scaling[OF assms, of "-1"] unfolding  pth_3 by auto
+
+lemma compact_closed_sums: 
+  assumes "compact s"  "closed t"  shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
+proof-
+  let ?S = "{x + y |x y. x \<in> s \<and> y \<in> t}"
+  { fix x l assume as:"\<forall>n. x n \<in> ?S"  "(x ---> l) sequentially"
+    from as(1) obtain f where f:"\<forall>n. x n = fst (f n) + snd (f n)"  "\<forall>n. fst (f n) \<in> s"  "\<forall>n. snd (f n) \<in> t"
+      using choice[of "\<lambda>n y. x n = (fst y) + (snd y) \<and> fst y \<in> s \<and> snd y \<in> t"] by auto
+    obtain l' r where "l'\<in>s" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and lr:"(((\<lambda>n. fst (f n)) \<circ> r) ---> l') sequentially"
+      using assms(1)[unfolded compact_def, THEN spec[where x="\<lambda> n. fst (f n)"]] using f(2) by auto
+    have "((\<lambda>n. snd (f (r n))) ---> l - l') sequentially"
+      using Lim_sub[OF lim_subsequence[OF r as(2)] lr] and f(1) unfolding o_def by auto
+    hence "l - l' \<in> t"
+      using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda> n. snd (f (r n))"], THEN spec[where x="l - l'"]] 
+      using f(3) by auto
+    hence "l \<in> ?S" using `l' \<in> s` apply auto apply(rule_tac x=l' in exI) apply(rule_tac x="l - l'" in exI) by auto
+  }
+  thus ?thesis unfolding closed_sequential_limits by auto
+qed
+
+lemma closed_compact_sums: 
+  assumes "closed s"  "compact t"  
+  shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
+proof-
+  have "{x + y |x y. x \<in> t \<and> y \<in> s} = {x + y |x y. x \<in> s \<and> y \<in> t}" apply auto 
+    apply(rule_tac x=y in exI) apply auto apply(rule_tac x=y in exI) by auto
+  thus ?thesis using compact_closed_sums[OF assms(2,1)] by simp
+qed
+
+lemma compact_closed_differences: 
+  assumes "compact s"  "closed t"
+  shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
+proof-
+  have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} =  {x - y |x y. x \<in> s \<and> y \<in> t}"
+    apply auto apply(rule_tac x=xa in exI) apply auto apply(rule_tac x=xa in exI) by auto
+  thus ?thesis using compact_closed_sums[OF assms(1) closed_negations[OF assms(2)]] by auto
+qed
+
+lemma closed_compact_differences: 
+  assumes "closed s" "compact t"
+  shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
+proof-
+  have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} = {x - y |x y. x \<in> s \<and> y \<in> t}" 
+    apply auto apply(rule_tac x=xa in exI) apply auto apply(rule_tac x=xa in exI) by auto
+ thus ?thesis using closed_compact_sums[OF assms(1) compact_negations[OF assms(2)]] by simp
+qed
+
+lemma closed_translation: 
+  assumes "closed s"  shows "closed ((\<lambda>x. a + x) ` s)"
+proof-
+  have "{a + y |y. y \<in> s} = (op + a ` s)" by auto
+  thus ?thesis using compact_closed_sums[OF compact_sing[of a] assms] by auto
+qed
+
+lemma translation_UNIV: 
+ "range (\<lambda>x::real^'a. a + x) = UNIV"
+  apply (auto simp add: image_iff) apply(rule_tac x="x - a" in exI) by auto
+
+lemma translation_diff: "(\<lambda>x::real^'a. a + x) ` (s - t) = ((\<lambda>x. a + x) ` s) - ((\<lambda>x. a + x) ` t)" by auto
+
+lemma closure_translation: 
+ "closure ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (closure s)"
+proof-
+  have *:"op + a ` (UNIV - s) = UNIV - op + a ` s"  apply auto unfolding image_iff apply(rule_tac x="x - a" in bexI) by auto
+  show ?thesis unfolding closure_interior translation_diff translation_UNIV using interior_translation[of a "UNIV - s"] unfolding * by auto
+qed
+
+lemma frontier_translation: 
+ "frontier((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (frontier s)"
+  unfolding frontier_def translation_diff interior_translation closure_translation by auto
+
+subsection{* Separation between points and sets.                                       *}
+
+lemma separate_point_closed: 
+ "closed s \<Longrightarrow> a \<notin> s  ==> (\<exists>d>0. \<forall>x\<in>s. d \<le> dist a x)"
+proof(cases "s = {}")
+  case True
+  thus ?thesis by(auto intro!: exI[where x=1])
+next
+  case False
+  assume "closed s" "a \<notin> s"
+  then obtain x where "x\<in>s" "\<forall>y\<in>s. dist a x \<le> dist a y" using `s \<noteq> {}` distance_attains_inf [of s a] by blast
+  with `x\<in>s` show ?thesis using dist_pos_lt[of a x] and`a \<notin> s` by blast
+qed
+
+lemma separate_compact_closed: 
+  assumes "compact s" and "closed t" and "s \<inter> t = {}"
+  shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
+proof-
+  have "0 \<notin> {x - y |x y. x \<in> s \<and> y \<in> t}" using assms(3) by auto
+  then obtain d where "d>0" and d:"\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. d \<le> dist 0 x" 
+    using separate_point_closed[OF compact_closed_differences[OF assms(1,2)], of 0] by auto
+  { fix x y assume "x\<in>s" "y\<in>t"
+    hence "x - y \<in> {x - y |x y. x \<in> s \<and> y \<in> t}" by auto
+    hence "d \<le> dist (x - y) 0" using d[THEN bspec[where x="x - y"]] using dist_sym 
+      by (auto  simp add: dist_sym)
+    hence "d \<le> dist x y" unfolding dist_def by auto  }
+  thus ?thesis using `d>0` by auto
+qed
+
+lemma separate_closed_compact: 
+  assumes "closed s" and "compact t" and "s \<inter> t = {}"
+  shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
+proof-
+  have *:"t \<inter> s = {}" using assms(3) by auto
+  show ?thesis using separate_compact_closed[OF assms(2,1) *]
+    apply auto apply(rule_tac x=d in exI) apply auto apply (erule_tac x=y in ballE) 
+    by (auto simp add: dist_sym)
+qed
+
+(* A cute way of denoting open and closed intervals using overloading.       *)
+
+lemma interval: fixes a :: "'a::ord^'n" shows
+  "{a <..< b} = {x::'a^'n. \<forall>i \<in> dimset a. a$i < x$i \<and> x$i < b$i}" and
+  "{a .. b} = {x::'a^'n. \<forall>i \<in> dimset a. a$i \<le> x$i \<and> x$i \<le> b$i}"
+  by (auto simp add: expand_set_eq vector_less_def vector_less_eq_def)
+
+lemma mem_interval:
+  "x \<in> {a<..<b} \<longleftrightarrow> (\<forall>i \<in> dimset a. a$i < x$i \<and> x$i < b$i)"
+  "x \<in> {a .. b} \<longleftrightarrow> (\<forall>i \<in> dimset a. a$i \<le> x$i \<and> x$i \<le> b$i)"
+  using interval[of a b]
+  by(auto simp add: expand_set_eq vector_less_def vector_less_eq_def)
+
+lemma interval_eq_empty: fixes a :: "real^'n" shows
+ "({a <..< b} = {} \<longleftrightarrow> (\<exists>i \<in> dimset a. b$i \<le> a$i))" (is ?th1) and
+ "({a  ..  b} = {} \<longleftrightarrow> (\<exists>i \<in> dimset a. b$i < a$i))" (is ?th2)
+proof-
+  { fix i x assume i:"i\<in>dimset a" and as:"b$i \<le> a$i" and x:"x\<in>{a <..< b}"
+    hence "a $ i < x $ i \<and> x $ i < b $ i" unfolding mem_interval by auto
+    hence "a$i < b$i" by auto
+    hence False using as by auto  }
+  moreover
+  { assume as:"\<forall>i \<in> dimset a. \<not> (b$i \<le> a$i)"
+    let ?x = "(1/2) *s (a + b)"
+    { fix i assume i:"i\<in>dimset a"
+      hence "a$i < b$i" using as[THEN bspec[where x=i]] by auto
+      hence "a$i < ((1/2) *s (a+b)) $ i" "((1/2) *s (a+b)) $ i < b$i" 
+	unfolding vector_smult_component[OF i] and vector_add_component[OF i]
+	by (auto simp add: Arith_Tools.less_divide_eq_number_of1)  }
+    hence "{a <..< b} \<noteq> {}" using mem_interval(1)[of "?x" a b] by auto  }
+  ultimately show ?th1 by blast
+
+  { fix i x assume i:"i\<in>dimset a" and as:"b$i < a$i" and x:"x\<in>{a .. b}"
+    hence "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" unfolding mem_interval by auto
+    hence "a$i \<le> b$i" by auto
+    hence False using as by auto  }
+  moreover
+  { assume as:"\<forall>i \<in> dimset a. \<not> (b$i < a$i)"
+    let ?x = "(1/2) *s (a + b)"
+    { fix i assume i:"i\<in>dimset a"
+      hence "a$i \<le> b$i" using as[THEN bspec[where x=i]] by auto
+      hence "a$i \<le> ((1/2) *s (a+b)) $ i" "((1/2) *s (a+b)) $ i \<le> b$i" 
+	unfolding vector_smult_component[OF i] and vector_add_component[OF i]
+	by (auto simp add: Arith_Tools.less_divide_eq_number_of1)  }
+    hence "{a .. b} \<noteq> {}" using mem_interval(2)[of "?x" a b] by auto  }
+  ultimately show ?th2 by blast
+qed
+
+lemma interval_ne_empty: fixes a :: "real^'n" shows
+  "{a  ..  b} \<noteq> {} \<longleftrightarrow> (\<forall>i \<in> dimset a. a$i \<le> b$i)" and
+  "{a <..< b} \<noteq> {} \<longleftrightarrow> (\<forall>i \<in> dimset a. a$i < b$i)"
+  unfolding interval_eq_empty[of a b] by auto
+
+lemma subset_interval_imp: fixes a :: "real^'n" shows
+ "(\<forall>i \<in> dimset a. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c .. d} \<subseteq> {a .. b}" and 
+ "(\<forall>i \<in> dimset a. a$i < c$i \<and> d$i < b$i) \<Longrightarrow> {c .. d} \<subseteq> {a<..<b}" and
+ "(\<forall>i \<in> dimset a. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a .. b}" and
+ "(\<forall>i \<in> dimset a. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a<..<b}"
+  unfolding subset_eq[unfolded Ball_def] unfolding mem_interval by(auto elim!: ballE)
+
+lemma interval_sing: fixes a :: "'a::linorder^'n" shows
+ "{a .. a} = {a} \<and> {a<..<a} = {}"
+apply(auto simp add: expand_set_eq vector_less_def vector_less_eq_def Cart_eq)
+apply (simp only: order_eq_iff)
+using dimindex_ge_1[of "UNIV :: 'n set"]
+apply (auto simp add: not_less )
+apply (erule_tac x= 1 in ballE)
+apply (rule bexI[where x=1])
+apply auto
+done
+
+
+lemma interval_open_subset_closed:  fixes a :: "'a::preorder^'n" shows
+ "{a<..<b} \<subseteq> {a .. b}"
+proof(simp add: subset_eq, rule)
+  fix x
+  assume x:"x \<in>{a<..<b}"
+  { fix i assume "i \<in> dimset a"
+    hence "a $ i \<le> x $ i"
+      using x order_less_imp_le[of "a$i" "x$i"]
+      by(simp add: expand_set_eq vector_less_def vector_less_eq_def Cart_eq)
+  }
+  moreover
+  { fix i assume "i \<in> dimset a"
+    hence "x $ i \<le> b $ i"
+      using x
+      using x order_less_imp_le[of "x$i" "b$i"]
+      by(simp add: expand_set_eq vector_less_def vector_less_eq_def Cart_eq)
+  }
+  ultimately
+  show "a \<le> x \<and> x \<le> b"
+    by(simp add: expand_set_eq vector_less_def vector_less_eq_def Cart_eq)
+qed
+
+lemma subset_interval: fixes a :: "real^'n" shows
+ "{c .. d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i \<in> dimset a. c$i \<le> d$i) --> (\<forall>i \<in> dimset a. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th1) and
+ "{c .. d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i \<in> dimset a. c$i \<le> d$i) --> (\<forall>i \<in> dimset a. a$i < c$i \<and> d$i < b$i)" (is ?th2) and 
+ "{c<..<d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i \<in> dimset a. c$i < d$i) --> (\<forall>i \<in> dimset a. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th3) and
+ "{c<..<d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i \<in> dimset a. c$i < d$i) --> (\<forall>i \<in> dimset a. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th4)
+proof-
+  show ?th1 unfolding subset_eq and Ball_def and mem_interval apply auto by(erule_tac x=xa in allE, simp)+
+  show ?th2 unfolding subset_eq and Ball_def and mem_interval apply auto by(erule_tac x=xa in allE, simp)+
+  { assume as: "{c<..<d} \<subseteq> {a .. b}" "\<forall>i \<in> dimset a. c$i < d$i"
+    hence "{c<..<d} \<noteq> {}" unfolding interval_eq_empty by auto
+    fix i assume i:"i \<in> dimset a"
+    (** TODO combine the following two parts as done in the HOL_light version. **)
+    { let ?x = "(\<chi> j. (if j=i then ((min (a$j) (d$j))+c$j)/2 else (c$j+d$j)/2))::real^'n"
+      assume as2: "a$i > c$i"
+      { fix j assume j:"j\<in>dimset a"
+	hence "c $ j < ?x $ j \<and> ?x $ j < d $ j" unfolding Cart_lambda_beta[THEN bspec[where x=j], OF j]
+	  apply(cases "j=i") using as(2)[THEN bspec[where x=j], OF j]
+	  by (auto simp add: Arith_Tools.less_divide_eq_number_of1 as2)  }
+      hence "?x\<in>{c<..<d}" unfolding mem_interval by auto
+      moreover
+      have "?x\<notin>{a .. b}"
+	unfolding mem_interval apply auto apply(rule_tac x=i in bexI)
+	unfolding Cart_lambda_beta[THEN bspec[where x=i], OF i]
+	using as(2)[THEN bspec[where x=i], OF i] and as2 and i
+	by (auto simp add: Arith_Tools.less_divide_eq_number_of1)
+      ultimately have False using as by auto  }
+    hence "a$i \<le> c$i" by(rule ccontr)auto
+    moreover
+    { let ?x = "(\<chi> j. (if j=i then ((max (b$j) (c$j))+d$j)/2 else (c$j+d$j)/2))::real^'n"
+      assume as2: "b$i < d$i"
+      { fix j assume j:"j\<in>dimset a"
+	hence "d $ j > ?x $ j \<and> ?x $ j > c $ j" unfolding Cart_lambda_beta[THEN bspec[where x=j], OF j]
+	  apply(cases "j=i") using as(2)[THEN bspec[where x=j], OF j]
+	  by (auto simp add: Arith_Tools.less_divide_eq_number_of1 as2)  }
+      hence "?x\<in>{c<..<d}" unfolding mem_interval by auto
+      moreover
+      have "?x\<notin>{a .. b}"
+	unfolding mem_interval apply auto apply(rule_tac x=i in bexI)
+	unfolding Cart_lambda_beta[THEN bspec[where x=i], OF i]
+	using as(2)[THEN bspec[where x=i], OF i] and as2 and i
+	by (auto simp add: Arith_Tools.less_divide_eq_number_of1)
+      ultimately have False using as by auto  }
+    hence "b$i \<ge> d$i" by(rule ccontr)auto
+    ultimately
+    have "a$i \<le> c$i \<and> d$i \<le> b$i" by auto
+  } note part1 = this
+  thus ?th3 unfolding subset_eq and Ball_def and mem_interval apply auto by(erule_tac x=xa in allE, simp)+ 
+  { assume as:"{c<..<d} \<subseteq> {a<..<b}" "\<forall>i \<in> dimset a. c$i < d$i"
+    fix i assume i:"i \<in> dimset a"
+    from as(1) have "{c<..<d} \<subseteq> {a..b}" using interval_open_subset_closed[of a b] by auto
+    hence "a$i \<le> c$i \<and> d$i \<le> b$i" using part1 and as(2) and i by auto  } note * = this
+  thus ?th4 unfolding subset_eq and Ball_def and mem_interval apply auto by(erule_tac x=xa in allE, simp)+ 
+qed
+
+lemma disjoint_interval: fixes a::"real^'n" shows
+  "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i \<in> dimset a. (b$i < a$i \<or> d$i < c$i \<or> b$i < c$i \<or> d$i < a$i))" (is ?th1) and
+  "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i \<in> dimset a. (b$i < a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th2) and
+  "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i \<in> dimset a. (b$i \<le> a$i \<or> d$i < c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th3) and
+  "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i \<in> dimset a. (b$i \<le> a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th4)
+proof-
+  let ?z = "(\<chi> i. ((max (a$i) (c$i)) + (min (b$i) (d$i))) / 2)::real^'n"
+  show ?th1 ?th2 ?th3 ?th4
+  unfolding expand_set_eq and Int_iff and empty_iff and mem_interval and ball_conj_distrib[THEN sym] and eq_False
+  by (auto simp add: Cart_lambda_beta' Arith_Tools.less_divide_eq_number_of1 intro!: bexI elim!: allE[where x="?z"]) 
+qed
+
+lemma inter_interval: fixes a :: "'a::linorder^'n" shows
+ "{a .. b} \<inter> {c .. d} =  {(\<chi> i. max (a$i) (c$i)) .. (\<chi> i. min (b$i) (d$i))}"
+  unfolding expand_set_eq and Int_iff and mem_interval
+  by (auto simp add: Cart_lambda_beta' Arith_Tools.less_divide_eq_number_of1 intro!: bexI) 
+
+(* Moved interval_open_subset_closed a bit upwards *)
+
+lemma open_interval_lemma: fixes x :: "real" shows
+ "a < x \<Longrightarrow> x < b ==> (\<exists>d>0. \<forall>x'. abs(x' - x) < d --> a < x' \<and> x' < b)"
+  by(rule_tac x="min (x - a) (b - x)" in exI, auto)
+
+lemma open_interval: fixes a :: "real^'n" shows "open {a<..<b}"
+proof-
+  { fix x assume x:"x\<in>{a<..<b}"
+    { fix i assume "i\<in>dimset x"
+      hence "\<exists>d>0. \<forall>x'. abs (x' - (x$i)) < d \<longrightarrow> a$i < x' \<and> x' < b$i"
+	using x[unfolded mem_interval, THEN bspec[where x=i]]
+	using open_interval_lemma[of "a$i" "x$i" "b$i"] by auto  }
+ 
+    hence "\<forall>i\<in>dimset x. \<exists>d>0. \<forall>x'. abs (x' - (x$i)) < d \<longrightarrow> a$i < x' \<and> x' < b$i" by auto
+    then obtain d where d:"\<forall>i\<in>dimset x. 0 < d i \<and> (\<forall>x'. \<bar>x' - x $ i\<bar> < d i \<longrightarrow> a $ i < x' \<and> x' < b $ i)"
+      using bchoice[of "dimset x" "\<lambda>i d. d>0 \<and> (\<forall>x'. \<bar>x' - x $ i\<bar> < d \<longrightarrow> a $ i < x' \<and> x' < b $ i)"] by auto
+
+    let ?d = "Min (d ` dimset x)"
+    have **:"finite (d ` dimset x)" "d ` dimset x \<noteq> {}" using dimindex_ge_1[of "UNIV::'n set"] by auto
+    have "?d>0" unfolding Min_gr_iff[OF **] using d by auto
+    moreover
+    { fix x' assume as:"dist x' x < ?d"
+      { fix i assume i:"i \<in> dimset x"
+	have "\<bar>x'$i - x $ i\<bar> < d i" 
+	  using norm_bound_component_lt[OF as[unfolded dist_def], THEN bspec[where x=i], OF i]
+	  unfolding vector_minus_component[OF i] and Min_gr_iff[OF **] using i by auto 
+	hence "a $ i < x' $ i" "x' $ i < b $ i" using d[THEN bspec[where x=i], OF i] by auto  }
+      hence "a < x' \<and> x' < b" unfolding vector_less_def by auto  }
+    ultimately have "\<exists>e>0. \<forall>x'. dist x' x < e \<longrightarrow> x' \<in> {a<..<b}" by auto
+  }
+  thus ?thesis unfolding open_def using open_interval_lemma by auto
+qed
+
+lemma closed_interval: fixes a :: "real^'n" shows "closed {a .. b}"
+proof-
+  { fix x i assume i:"i\<in>dimset x" and as:"\<forall>e>0. \<exists>x'\<in>{a..b}. x' \<noteq> x \<and> dist x' x < e"(* and xab:"a$i > x$i \<or> b$i < x$i"*)
+    { assume xa:"a$i > x$i"
+      with as obtain y where y:"y\<in>{a..b}" "y \<noteq> x" "dist y x < a$i - x$i" by(erule_tac x="a$i - x$i" in allE)auto
+      hence False unfolding mem_interval and dist_def
+	using component_le_norm[OF i, of "y-x", unfolded vector_minus_component[OF i]] and i and xa by(auto elim!: ballE[where x=i])
+    } hence "a$i \<le> x$i" by(rule ccontr)auto
+    moreover
+    { assume xb:"b$i < x$i"
+      with as obtain y where y:"y\<in>{a..b}" "y \<noteq> x" "dist y x < x$i - b$i" by(erule_tac x="x$i - b$i" in allE)auto
+      hence False unfolding mem_interval and dist_def
+	using component_le_norm[OF i, of "y-x", unfolded vector_minus_component[OF i]] and i and xb by(auto elim!: ballE[where x=i])
+    } hence "x$i \<le> b$i" by(rule ccontr)auto
+    ultimately 
+    have "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" by auto }
+  thus ?thesis unfolding closed_limpt islimpt_approachable mem_interval by auto
+qed
+
+lemma interior_closed_interval: fixes a :: "real^'n" shows
+ "interior {a .. b} = {a<..<b}" (is "?L = ?R")
+proof(rule subset_antisym)
+  show "?R \<subseteq> ?L" using interior_maximal[OF interval_open_subset_closed open_interval] by auto
+next
+  { fix x assume "\<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> {a..b}"
+    then obtain s where s:"open s" "x \<in> s" "s \<subseteq> {a..b}" by auto
+    then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> {a..b}" unfolding open_def and subset_eq by auto
+    { fix i assume i:"i\<in>dimset x"
+      have "dist (x - (e / 2) *s basis i) x < e"
+	   "dist (x + (e / 2) *s basis i) x < e"
+	unfolding dist_def apply auto
+	unfolding norm_minus_cancel and norm_mul using norm_basis[OF i] and `e>0` by auto
+      hence "a $ i \<le> (x - (e / 2) *s basis i) $ i"
+                    "(x + (e / 2) *s basis i) $ i \<le> b $ i"
+	using e[THEN spec[where x="x - (e/2) *s basis i"]]
+	and   e[THEN spec[where x="x + (e/2) *s basis i"]]
+	unfolding mem_interval using i by auto
+      hence "a $ i < x $ i" and "x $ i < b $ i" 
+	unfolding vector_minus_component[OF i] and vector_add_component[OF i] 
+	unfolding vector_smult_component[OF i] and basis_component[OF i] using `e>0` by auto   }
+    hence "x \<in> {a<..<b}" unfolding mem_interval by auto  }
+  thus "?L \<subseteq> ?R" unfolding interior_def and subset_eq by auto
+qed
+
+lemma bounded_closed_interval: fixes a :: "real^'n" shows
+ "bounded {a .. b}"
+proof-
+  let ?b = "\<Sum>i\<in>dimset a. \<bar>a$i\<bar> + \<bar>b$i\<bar>"
+  { fix x::"real^'n" assume x:"\<forall>i\<in>dimset a. a $ i \<le> x $ i \<and> x $ i \<le> b $ i"
+    { fix i assume "i\<in>dimset a"
+      hence "\<bar>x$i\<bar> \<le> \<bar>a$i\<bar> + \<bar>b$i\<bar>" using x[THEN bspec[where x=i]] by auto  }
+    hence "(\<Sum>i\<in>dimset a. \<bar>x $ i\<bar>) \<le> ?b" by(rule setsum_mono)auto
+    hence "norm x \<le> ?b" using norm_le_l1[of x] by auto  }
+  thus ?thesis unfolding interval and bounded_def by auto
+qed
+
+lemma bounded_interval: fixes a :: "real^'n" shows
+ "bounded {a .. b} \<and> bounded {a<..<b}"
+  using bounded_closed_interval[of a b]
+  using interval_open_subset_closed[of a b]
+  using bounded_subset[of "{a..b}" "{a<..<b}"]
+  by simp
+
+lemma not_interval_univ: fixes a :: "real^'n" shows
+ "({a .. b} \<noteq> UNIV) \<and> ({a<..<b} \<noteq> UNIV)"
+  using bounded_interval[of a b]
+  by auto
+
+lemma compact_interval: fixes a :: "real^'n" shows
+ "compact {a .. b}"
+  using bounded_closed_imp_compact using bounded_interval[of a b] using closed_interval[of a b] by auto
+
+lemma open_interval_midpoint: fixes a :: "real^'n"
+  assumes "{a<..<b} \<noteq> {}" shows "((1/2) *s (a + b)) \<in> {a<..<b}"
+proof- 
+  { fix i assume i:"i\<in>dimset a"
+    hence "a $ i < ((1 / 2) *s (a + b)) $ i \<and> ((1 / 2) *s (a + b)) $ i < b $ i" 
+      using assms[unfolded interval_ne_empty, THEN bspec[where x=i]]
+      unfolding vector_smult_component[OF i] and vector_add_component[OF i] 
+      by(auto simp add: Arith_Tools.less_divide_eq_number_of1)  }
+  thus ?thesis unfolding mem_interval by auto
+qed
+
+lemma open_closed_interval_convex: fixes x :: "real^'n"
+  assumes x:"x \<in> {a<..<b}" and y:"y \<in> {a .. b}" and e:"0 < e" "e \<le> 1"
+  shows "(e *s x + (1 - e) *s y) \<in> {a<..<b}"
+proof-
+  { fix i assume i:"i\<in>dimset a"
+    have "a $ i = e * a$i + (1 - e) * a$i" unfolding left_diff_distrib by simp
+    also have "\<dots> < e * x $ i + (1 - e) * y $ i" apply(rule add_less_le_mono)
+      using e unfolding mult_less_cancel_left and mult_le_cancel_left apply simp_all
+      using x i unfolding mem_interval  apply(erule_tac x=i in ballE) apply simp_all
+      using y i unfolding mem_interval  apply(erule_tac x=i in ballE) by simp_all
+    finally have "a $ i < (e *s x + (1 - e) *s y) $ i" using i by (auto simp add: vector_add_component vector_smult_component)
+    moreover {
+    have "b $ i = e * b$i + (1 - e) * b$i" unfolding left_diff_distrib by simp
+    also have "\<dots> > e * x $ i + (1 - e) * y $ i" apply(rule add_less_le_mono)
+      using e unfolding mult_less_cancel_left and mult_le_cancel_left apply simp_all
+      using x i unfolding mem_interval  apply(erule_tac x=i in ballE) apply simp_all
+      using y i unfolding mem_interval  apply(erule_tac x=i in ballE) by simp_all
+    finally have "(e *s x + (1 - e) *s y) $ i < b $ i" using i by (auto simp add: vector_add_component vector_smult_component)
+    } ultimately have "a $ i < (e *s x + (1 - e) *s y) $ i \<and> (e *s x + (1 - e) *s y) $ i < b $ i" by auto }
+  thus ?thesis unfolding mem_interval by auto
+qed
+
+lemma closure_open_interval: fixes a :: "real^'n" 
+  assumes "{a<..<b} \<noteq> {}" 
+  shows "closure {a<..<b} = {a .. b}"
+proof-
+  have ab:"a < b" using assms[unfolded interval_ne_empty] unfolding vector_less_def by auto
+  let ?c = "(1 / 2) *s (a + b)"
+  { fix x assume as:"x \<in> {a .. b}" 
+    def f == "\<lambda>n::nat. x + (inverse (real n + 1)) *s (?c - x)"
+    { fix n assume fn:"f n < b \<longrightarrow> a < f n \<longrightarrow> f n = x" and xc:"x \<noteq> ?c"
+      have *:"0 < inverse (real n + 1)" "inverse (real n + 1) \<le> 1" unfolding inverse_le_1_iff by auto
+      have "inverse (real n + 1) *s (1 / 2) *s (a + b) + (1 - inverse (real n + 1)) *s x = 
+	x + inverse (real n + 1) *s ((1 / 2) *s (a + b) - x)" by (auto simp add: vector_ssub_ldistrib vector_add_ldistrib field_simps vector_sadd_rdistrib[THEN sym])
+      hence "f n < b" and "a < f n" using open_closed_interval_convex[OF open_interval_midpoint[OF assms] as *] unfolding f_def by auto
+      hence False using fn unfolding f_def using xc by(auto simp add: vector_mul_lcancel vector_ssub_ldistrib)  }
+    moreover
+    { assume "\<not> (f ---> x) sequentially"
+      { fix e::real assume "e>0"
+	hence "\<exists>N::nat. inverse (real (N + 1)) < e" using real_arch_inv[of e] apply (auto simp add: Suc_pred') apply(rule_tac x="n - 1" in exI) by auto
+	then obtain N::nat where "inverse (real (N + 1)) < e" by auto
+	hence "\<forall>n\<ge>N. inverse (real n + 1) < e" by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero)
+	hence "\<exists>N::nat. \<forall>n\<ge>N. inverse (real n + 1) < e" by auto  }
+      hence "((vec1 \<circ> (\<lambda>n. inverse (real n + 1))) ---> vec1 0) sequentially"
+	unfolding Lim_sequentially by(auto simp add: dist_vec1)
+      hence "(f ---> x) sequentially" unfolding f_def
+	using Lim_add[OF Lim_const, of "\<lambda>n::nat. (inverse (real n + 1)) *s ((1 / 2) *s (a + b) - x)" 0 sequentially x] 
+	using Lim_vmul[of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *s (a + b) - x)"] by auto  }
+    ultimately have "x \<in> closure {a<..<b}"
+      using as and open_interval_midpoint[OF assms] unfolding closure_def unfolding islimpt_sequential by(cases "x=?c")auto  }
+  thus ?thesis using closure_minimal[OF interval_open_subset_closed closed_interval, of a b] by blast
+qed
+
+lemma bounded_subset_open_interval_symmetric: fixes s::"(real^'n) set"
+  assumes "bounded s"  shows "\<exists>a. s \<subseteq> {-a<..<a}"
+proof-
+  obtain b where "b>0" and b:"\<forall>x\<in>s. norm x \<le> b" using assms[unfolded bounded_pos] by auto
+  def a \<equiv> "(\<chi> i. b+1)::real^'n"
+  { fix x assume "x\<in>s" 
+    fix i assume i:"i\<in>dimset a"
+    have "(-a)$i < x$i" and "x$i < a$i" using b[THEN bspec[where x=x], OF `x\<in>s`] and component_le_norm[OF i, of x]
+      unfolding vector_uminus_component[OF i] and a_def and Cart_lambda_beta'[OF i] by auto
+  }
+  thus ?thesis by(auto intro: exI[where x=a] simp add: vector_less_def)
+qed
+
+lemma bounded_subset_open_interval: 
+  "bounded s ==> (\<exists>a b. s \<subseteq> {a<..<b})"
+  by(metis bounded_subset_open_interval_symmetric)
+
+lemma bounded_subset_closed_interval_symmetric: 
+  assumes "bounded s" shows "\<exists>a. s \<subseteq> {-a .. a}"
+proof-
+  obtain a where "s \<subseteq> {- a<..<a}" using bounded_subset_open_interval_symmetric[OF assms] by auto
+  thus ?thesis using interval_open_subset_closed[of "-a" a] by auto
+qed
+
+lemma bounded_subset_closed_interval: 
+  "bounded s ==> (\<exists>a b. s \<subseteq> {a .. b})"
+  using bounded_subset_closed_interval_symmetric[of s] by auto
+
+lemma frontier_closed_interval: 
+ "frontier {a .. b} = {a .. b} - {a<..<b}"
+  unfolding frontier_def unfolding interior_closed_interval and closure_closed[OF closed_interval] ..
+
+lemma frontier_open_interval: 
+ "frontier {a<..<b} = (if {a<..<b} = {} then {} else {a .. b} - {a<..<b})"
+proof(cases "{a<..<b} = {}")
+  case True thus ?thesis using frontier_empty by auto
+next
+  case False thus ?thesis unfolding frontier_def and closure_open_interval[OF False] and interior_open[OF open_interval] by auto
+qed
+
+lemma inter_interval_mixed_eq_empty: fixes a :: "real^'n"
+  assumes "{c<..<d} \<noteq> {}"  shows "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> {a<..<b} \<inter> {c<..<d} = {}"
+  unfolding closure_open_interval[OF assms, THEN sym] unfolding open_inter_closure_eq_empty[OF open_interval] ..
+
+
+(* Some special cases for intervals in R^1.                                  *)
+
+lemma dim1: "dimindex (UNIV::(1 set)) = 1"
+unfolding dimindex_def
+by simp
+
+lemma interval_cases_1: fixes x :: "real^1" shows
+ "x \<in> {a .. b} ==> x \<in> {a<..<b} \<or> (x = a) \<or> (x = b)"
+  by(simp add:  Cart_eq vector_less_def vector_less_eq_def dim1, auto)
+
+lemma in_interval_1: fixes x :: "real^1" shows
+ "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b) \<and>
+  (x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
+by(simp add: Cart_eq vector_less_def vector_less_eq_def dim1 dest_vec1_def)
+
+lemma interval_eq_empty_1: fixes a :: "real^1" shows
+  "{a .. b} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a"
+  "{a<..<b} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
+  unfolding interval_eq_empty and dim1 and dest_vec1_def by auto
+
+lemma subset_interval_1: fixes a :: "real^1" shows
+ "({a .. b} \<subseteq> {c .. d} \<longleftrightarrow>  dest_vec1 b < dest_vec1 a \<or>
+                dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
+ "({a .. b} \<subseteq> {c<..<d} \<longleftrightarrow>  dest_vec1 b < dest_vec1 a \<or>
+                dest_vec1 c < dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b < dest_vec1 d)"
+ "({a<..<b} \<subseteq> {c .. d} \<longleftrightarrow>  dest_vec1 b \<le> dest_vec1 a \<or>
+                dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
+ "({a<..<b} \<subseteq> {c<..<d} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or>
+                dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
+  unfolding subset_interval[of a b c d] unfolding forall_dimindex_1 and dest_vec1_def by auto
+
+lemma eq_interval_1: fixes a :: "real^1" shows
+ "{a .. b} = {c .. d} \<longleftrightarrow>
+          dest_vec1 b < dest_vec1 a \<and> dest_vec1 d < dest_vec1 c \<or>
+          dest_vec1 a = dest_vec1 c \<and> dest_vec1 b = dest_vec1 d"
+using set_eq_subset[of "{a .. b}" "{c .. d}"]
+using subset_interval_1(1)[of a b c d]
+using subset_interval_1(1)[of c d a b]
+by auto
+
+lemma disjoint_interval_1: fixes a :: "real^1" shows
+  "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d < dest_vec1 c  \<or>  dest_vec1 b < dest_vec1 c \<or> dest_vec1 d < dest_vec1 a"
+  "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
+  "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d < dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
+  "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c  \<or>  dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
+  unfolding disjoint_interval and dest_vec1_def and dim1 by auto
+
+lemma open_closed_interval_1: fixes a :: "real^1" shows
+ "{a<..<b} = {a .. b} - {a, b}"
+  unfolding expand_set_eq apply simp unfolding vector_less_def and vector_less_eq_def and dim1 and dest_vec1_eq[THEN sym] and dest_vec1_def by auto
+
+lemma closed_open_interval_1: "dest_vec1 (a::real^1) \<le> dest_vec1 b ==> {a .. b} = {a<..<b} \<union> {a,b}"
+  unfolding expand_set_eq apply simp unfolding vector_less_def and vector_less_eq_def and dim1 and dest_vec1_eq[THEN sym] and dest_vec1_def by auto 
+
+(* Some stuff for half-infinite intervals too; FIXME: notation?  *)
+
+lemma closed_interval_left: fixes b::"real^'n"
+  shows "closed {x::real^'n. \<forall>i \<in> dimset x. x$i \<le> b$i}"
+proof-
+  { fix i assume i:"i\<in>dimset b"
+    fix x::"real^'n" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i\<in>dimset b. x $ i \<le> b $ i}. x' \<noteq> x \<and> dist x' x < e"
+    { assume "x$i > b$i"
+      then obtain y where "y $ i \<le> b $ i"  "y \<noteq> x"  "dist y x < x$i - b$i" using x[THEN spec[where x="x$i - b$i"]] and i by (auto, erule_tac x=i in ballE)auto
+      hence False using component_le_norm[OF i, of "y - x"] unfolding dist_def and vector_minus_component[OF i] by auto   }
+    hence "x$i \<le> b$i" by(rule ccontr)auto  }
+  thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast
+qed
+
+lemma closed_interval_right: fixes a::"real^'n"
+  shows "closed {x::real^'n. \<forall>i \<in> dimset x. a$i \<le> x$i}"
+proof-
+  { fix i assume i:"i\<in>dimset a"
+    fix x::"real^'n" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i\<in>dimset a. a $ i \<le> x $ i}. x' \<noteq> x \<and> dist x' x < e"
+    { assume "a$i > x$i"
+      then obtain y where "a $ i \<le> y $ i"  "y \<noteq> x"  "dist y x < a$i - x$i" using x[THEN spec[where x="a$i - x$i"]] and i by(auto, erule_tac x=i in ballE)auto
+      hence False using component_le_norm[OF i, of "y - x"] unfolding dist_def and vector_minus_component[OF i] by auto   }
+    hence "a$i \<le> x$i" by(rule ccontr)auto  }
+  thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast
+qed
+
+subsection{* Intervals in general, including infinite and mixtures of open and closed. *}
+
+definition "is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> x \<in> s)"
+
+lemma is_interval_interval: fixes a::"real^'n" shows
+  "is_interval {a<..<b}" "is_interval {a .. b}"
+  unfolding is_interval_def apply(auto simp add: vector_less_def vector_less_eq_def)
+  apply(erule_tac x=i in ballE)+ apply simp+
+  apply(erule_tac x=i in ballE)+ apply simp+
+  apply(erule_tac x=i in ballE)+ apply simp+
+  apply(erule_tac x=i in ballE)+ apply simp+
+  done
+
+lemma is_interval_empty: 
+ "is_interval {}"
+  unfolding is_interval_def
+  by simp
+
+lemma is_interval_univ: 
+ "is_interval UNIV"
+  unfolding is_interval_def
+  by simp
+
+subsection{* Closure of halfspaces and hyperplanes.                                    *}
+
+lemma Lim_vec1_dot: fixes f :: "real^'m \<Rightarrow> real^'n"
+  assumes "(f ---> l) net"  shows "((vec1 o (\<lambda>y. a \<bullet> (f y))) ---> vec1(a \<bullet> l)) net"
+proof(cases "a = vec 0")
+  case True thus ?thesis using dot_lzero and Lim_const[of 0 net] unfolding vec1_vec and o_def by auto
+next
+  case False
+  { fix e::real
+    assume "0 < e"  "\<forall>e>0. \<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> dist l (f x) < e)"
+    then obtain x y where x:"netord net x y" and y:"\<forall>x. netord net x y \<longrightarrow> dist l (f x) < e / norm a" apply(erule_tac x="e / norm a" in allE) apply auto using False using norm_ge_zero[of a] apply auto
+      using divide_pos_pos[of e "norm a"] by auto
+    { fix z assume "netord net z y" hence "dist l (f z) < e / norm a" using y by blast
+      hence "norm a * norm (l - f z) < e" unfolding dist_def and 
+	pos_less_divide_eq[OF False[unfolded vec_0 zero_less_norm_iff[of a, THEN sym]]] and real_mult_commute by auto 
+      hence "\<bar>a \<bullet> l - a \<bullet> f z\<bar> < e" using order_le_less_trans[OF norm_cauchy_schwarz_abs[of a "l - f z"], of e] unfolding dot_rsub[symmetric] by auto  }
+    hence "\<exists>y. (\<exists>x. netord net x y) \<and> (\<forall>x. netord net x y \<longrightarrow> \<bar>a \<bullet> l - a \<bullet> f x\<bar> < e)" using x by auto  }
+  thus ?thesis using assms unfolding Lim apply (auto simp add: dist_sym) 
+    unfolding dist_vec1 by auto  
+qed
+
+lemma continuous_at_vec1_dot: 
+ "continuous (at x) (vec1 o (\<lambda>y. a \<bullet> y))"
+proof-
+  have "((\<lambda>x. x) ---> x) (at x)" unfolding Lim_at by auto
+  thus ?thesis unfolding continuous_at and o_def using Lim_vec1_dot[of "\<lambda>x. x" x "at x" a] by auto
+qed
+
+lemma continuous_on_vec1_dot: 
+ "continuous_on s (vec1 o (\<lambda>y. a \<bullet> y)) "
+  using continuous_at_imp_continuous_on[of s "vec1 o (\<lambda>y. a \<bullet> y)"]
+  using continuous_at_vec1_dot
+  by auto
+
+lemma closed_halfspace_le: fixes a::"real^'n"
+  shows "closed {x. a \<bullet> x \<le> b}"
+proof-
+  have *:"{x \<in> UNIV. (vec1 \<circ> op \<bullet> a) x \<in> vec1 ` {r. \<exists>x. a \<bullet> x = r \<and> r \<le> b}} = {x. a \<bullet> x \<le> b}" by auto
+  let ?T = "{x::real^1. (\<forall>i\<in>dimset x. x$i \<le> (vec1 b)$i)}"
+  have "closed ?T" using closed_interval_left[of "vec1 b"] by simp
+  moreover have "vec1 ` {r. \<exists>x. a \<bullet> x = r \<and> r \<le> b} = range (vec1 \<circ> op \<bullet> a) \<inter> ?T" unfolding dim1 
+    unfolding image_def apply auto unfolding vec1_component[unfolded One_nat_def] by auto 
+  ultimately have "\<exists>T. closed T \<and> vec1 ` {r. \<exists>x. a \<bullet> x = r \<and> r \<le> b} = range (vec1 \<circ> op \<bullet> a) \<inter> T" by auto 
+  hence "closedin euclidean {x \<in> UNIV. (vec1 \<circ> op \<bullet> a) x \<in> vec1 ` {r. \<exists>x. a \<bullet> x = r \<and> r \<le> b}}" 
+    using continuous_on_vec1_dot[of UNIV a, unfolded continuous_on_closed subtopology_UNIV] unfolding closedin_closed
+    by (auto elim!: allE[where x="vec1 ` {r. (\<exists>x. a \<bullet> x = r \<and> r \<le> b)}"]) 
+  thus ?thesis unfolding closed_closedin[THEN sym] and * by auto
+qed
+
+lemma closed_halfspace_ge: "closed {x. a \<bullet> x \<ge> b}"
+  using closed_halfspace_le[of "-a" "-b"] unfolding dot_lneg by auto
+
+lemma closed_hyperplane: "closed {x. a \<bullet> x = b}"
+proof-
+  have "{x. a \<bullet> x = b} = {x. a \<bullet> x \<ge> b} \<inter> {x. a \<bullet> x \<le> b}" by auto
+  thus ?thesis using closed_halfspace_le[of a b] and closed_halfspace_ge[of b a] using closed_Int by auto
+qed
+
+lemma closed_halfspace_component_le:
+  assumes "i \<in> {1 .. dimindex (UNIV::'n set)}" shows "closed {x::real^'n. x$i \<le> a}"
+  using closed_halfspace_le[of "(basis i)::real^'n" a] unfolding dot_basis[OF assms] by auto
+
+lemma closed_halfspace_component_ge: 
+  assumes "i \<in> {1 .. dimindex (UNIV::'n set)}" shows "closed {x::real^'n. x$i \<ge> a}"
+  using closed_halfspace_ge[of a "(basis i)::real^'n"] unfolding dot_basis[OF assms] by auto
+
+text{* Openness of halfspaces.                                                   *}
+
+lemma open_halfspace_lt: "open {x. a \<bullet> x < b}"
+proof-
+  have "UNIV - {x. b \<le> a \<bullet> x} = {x. a \<bullet> x < b}" by auto
+  thus ?thesis using closed_halfspace_ge[unfolded closed_def, of b a] by auto
+qed
+
+lemma open_halfspace_gt: "open {x. a \<bullet> x > b}"
+proof-
+  have "UNIV - {x. b \<ge> a \<bullet> x} = {x. a \<bullet> x > b}" by auto
+  thus ?thesis using closed_halfspace_le[unfolded closed_def, of a b] by auto
+qed
+
+lemma open_halfspace_component_lt: 
+  assumes "i \<in> {1 .. dimindex(UNIV::'n set)}" shows "open {x::real^'n. x$i < a}"
+  using open_halfspace_lt[of "(basis i)::real^'n" a] unfolding dot_basis[OF assms] by auto
+
+lemma open_halfspace_component_gt: 
+  assumes "i \<in> {1 .. dimindex(UNIV::'n set)}" shows "open {x::real^'n. x$i  > a}"
+  using open_halfspace_gt[of a "(basis i)::real^'n"] unfolding dot_basis[OF assms] by auto
+
+text{* This gives a simple derivation of limit component bounds.                 *}
+
+lemma Lim_component_le: fixes f :: "'a \<Rightarrow> real^'n"
+  assumes "(f ---> l) net" "\<not> (trivial_limit net)"  "eventually (\<lambda>x. f(x)$i \<le> b) net"
+  and i:"i\<in> {1 .. dimindex(UNIV::'n set)}"
+  shows "l$i \<le> b"
+proof-
+  { fix x have "x \<in> {x::real^'n. basis i \<bullet> x \<le> b} \<longleftrightarrow> x$i \<le> b" unfolding dot_basis[OF i] by auto } note * = this
+  show ?thesis using Lim_in_closed_set[of "{x. basis i \<bullet> x \<le> b}" f net l] unfolding *
+    using closed_halfspace_le[of "(basis i)::real^'n" b] and assms(1,2,3) by auto
+qed
+
+lemma Lim_component_ge: fixes f :: "'a \<Rightarrow> real^'n"
+  assumes "(f ---> l) net"  "\<not> (trivial_limit net)"  "eventually (\<lambda>x. b \<le> (f x)$i) net"
+  and i:"i\<in> {1 .. dimindex(UNIV::'n set)}"
+  shows "b \<le> l$i"
+proof-
+  { fix x have "x \<in> {x::real^'n. basis i \<bullet> x \<ge> b} \<longleftrightarrow> x$i \<ge> b" unfolding dot_basis[OF i] by auto } note * = this
+  show ?thesis using Lim_in_closed_set[of "{x. basis i \<bullet> x \<ge> b}" f net l] unfolding *
+    using closed_halfspace_ge[of b "(basis i)::real^'n"] and assms(1,2,3) by auto
+qed
+
+lemma Lim_component_eq: fixes f :: "'a \<Rightarrow> real^'n"
+  assumes net:"(f ---> l) net" "~(trivial_limit net)" and ev:"eventually (\<lambda>x. f(x)$i = b) net"
+  and i:"i\<in> {1 .. dimindex(UNIV::'n set)}"
+  shows "l$i = b"
+  using ev[unfolded order_eq_iff eventually_and] using Lim_component_ge[OF net, of b i] and Lim_component_le[OF net, of i b] using i by auto
+
+lemma Lim_drop_le: fixes f :: "'a \<Rightarrow> real^1" shows
+  "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. dest_vec1 (f x) \<le> b) net ==> dest_vec1 l \<le> b"
+  using Lim_component_le[of f l net 1 b] unfolding dest_vec1_def and dim1 by auto
+
+lemma Lim_drop_ge: fixes f :: "'a \<Rightarrow> real^1" shows
+ "(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. b \<le> dest_vec1 (f x)) net ==> b \<le> dest_vec1 l"
+  using Lim_component_ge[of f l net b 1] unfolding dest_vec1_def and dim1 by auto
+
+text{* Limits relative to a union.                                               *}
+
+lemma Lim_within_union: 
+ "(f ---> l) (at x within (s \<union> t)) \<longleftrightarrow>
+  (f ---> l) (at x within s) \<and> (f ---> l) (at x within t)"
+  unfolding Lim_within apply auto apply blast apply blast
+    apply(erule_tac x=e in allE)+ apply auto
+    apply(rule_tac x="min d da" in exI) by auto
+
+lemma continuous_on_union: 
+  assumes "closed s" "closed t" "continuous_on s f" "continuous_on t f"
+  shows "continuous_on (s \<union> t) f"
+  using assms unfolding continuous_on unfolding Lim_within_union
+  unfolding Lim unfolding trivial_limit_within unfolding closed_limpt by auto
+
+lemma continuous_on_cases: fixes g :: "real^'m \<Rightarrow> real ^'n"
+  assumes "closed s" "closed t" "continuous_on s f" "continuous_on t g"
+          "\<forall>x. (x\<in>s \<and> \<not> P x) \<or> (x \<in> t \<and> P x) \<longrightarrow> f x = g x"
+  shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)"
+proof-
+  let ?h = "(\<lambda>x. if P x then f x else g x)"
+  have "\<forall>x\<in>s. f x = (if P x then f x else g x)" using assms(5) by auto
+  hence "continuous_on s ?h" using continuous_on_eq[of s f ?h] using assms(3) by auto
+  moreover
+  have "\<forall>x\<in>t. g x = (if P x then f x else g x)" using assms(5) by auto
+  hence "continuous_on t ?h" using continuous_on_eq[of t g ?h] using assms(4) by auto
+  ultimately show ?thesis using continuous_on_union[OF assms(1,2), of ?h] by auto 
+qed
+
+
+text{* Some more convenient intermediate-value theorem formulations.             *}
+
+lemma connected_ivt_hyperplane: fixes y :: "real^'n"
+  assumes "connected s" "x \<in> s" "y \<in> s" "a \<bullet> x \<le> b" "b \<le> a \<bullet> y"
+  shows "\<exists>z \<in> s. a \<bullet> z = b"
+proof(rule ccontr)
+  assume as:"\<not> (\<exists>z\<in>s. a \<bullet> z = b)"
+  let ?A = "{x::real^'n. a \<bullet> x < b}"
+  let ?B = "{x::real^'n. a \<bullet> x > b}"
+  have "open ?A" "open ?B" using open_halfspace_lt and open_halfspace_gt by auto
+  moreover have "?A \<inter> ?B = {}" by auto
+  moreover have "s \<subseteq> ?A \<union> ?B" using as by auto
+  ultimately show False using assms(1)[unfolded connected_def not_ex, THEN spec[where x="?A"], THEN spec[where x="?B"]] and assms(2-5) by auto
+qed
+
+lemma connected_ivt_component: fixes x::"real^'n" shows
+ "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> k \<in> dimset x \<Longrightarrow> x$k \<le> a \<Longrightarrow> a \<le> y$k \<Longrightarrow> (\<exists>z\<in>s.  z$k = a)"
+  using connected_ivt_hyperplane[of s x y "(basis k)::real^'n" a] by (auto simp add: dot_basis)
+
+text{* Also more convenient formulations of monotone convergence.                *}
+
+lemma bounded_increasing_convergent: fixes s::"nat \<Rightarrow> real^1"
+  assumes "bounded {s n| n::nat. True}"  "\<forall>n. dest_vec1(s n) \<le> dest_vec1(s(Suc n))"
+  shows "\<exists>l. (s ---> l) sequentially"
+proof-
+  obtain a where a:"\<forall>n. \<bar>dest_vec1 (s n)\<bar> \<le>  a" using assms(1)[unfolded bounded_def abs_dest_vec1] by auto
+  { fix m::nat
+    have "\<And> n. n\<ge>m \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)"
+      apply(induct_tac n) apply simp using assms(2) apply(erule_tac x="na" in allE) by(auto simp add: not_less_eq_eq)  }
+  hence "\<forall>m n. m \<le> n \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)" by auto 
+  then obtain l where "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>dest_vec1 (s n) - l\<bar> < e" using convergent_bounded_monotone[OF a] by auto
+  thus ?thesis unfolding Lim_sequentially apply(rule_tac x="vec1 l" in exI)
+    unfolding dist_def unfolding abs_dest_vec1 and dest_vec1_sub by auto
+qed
+
+subsection{* Basic homeomorphism definitions.                                          *}
+
+definition "homeomorphism s t f g \<equiv>
+     (\<forall>x\<in>s. (g(f x) = x)) \<and> (f ` s = t) \<and> continuous_on s f \<and>
+     (\<forall>y\<in>t. (f(g y) = y)) \<and> (g ` t = s) \<and> continuous_on t g"
+
+definition homeomorphic :: "((real^'a) set) \<Rightarrow> ((real^'b) set) \<Rightarrow> bool" (infixr "homeomorphic" 60) where
+  homeomorphic_def: "s homeomorphic t \<equiv> (\<exists>f g. homeomorphism s t f g)"
+
+lemma homeomorphic_refl: "s homeomorphic s"
+  unfolding homeomorphic_def
+  unfolding homeomorphism_def
+  using continuous_on_id
+  apply(rule_tac x = "(\<lambda>x::real^'a.x)" in exI)
+  apply(rule_tac x = "(\<lambda>x::real^'b.x)" in exI)
+  by blast
+
+lemma homeomorphic_sym: 
+ "s homeomorphic t \<longleftrightarrow> t homeomorphic s"
+unfolding homeomorphic_def
+unfolding homeomorphism_def
+by blast
+
+lemma homeomorphic_trans: 
+  assumes "s homeomorphic t" "t homeomorphic u" shows "s homeomorphic u"
+proof-
+  obtain f1 g1 where fg1:"\<forall>x\<in>s. g1 (f1 x) = x"  "f1 ` s = t" "continuous_on s f1" "\<forall>y\<in>t. f1 (g1 y) = y" "g1 ` t = s" "continuous_on t g1"
+    using assms(1) unfolding homeomorphic_def homeomorphism_def by auto
+  obtain f2 g2 where fg2:"\<forall>x\<in>t. g2 (f2 x) = x"  "f2 ` t = u" "continuous_on t f2" "\<forall>y\<in>u. f2 (g2 y) = y" "g2 ` u = t" "continuous_on u g2"
+    using assms(2) unfolding homeomorphic_def homeomorphism_def by auto
+  
+  { fix x assume "x\<in>s" hence "(g1 \<circ> g2) ((f2 \<circ> f1) x) = x" using fg1(1)[THEN bspec[where x=x]] and fg2(1)[THEN bspec[where x="f1 x"]] and fg1(2) by auto }
+  moreover have "(f2 \<circ> f1) ` s = u" using fg1(2) fg2(2) by auto
+  moreover have "continuous_on s (f2 \<circ> f1)" using continuous_on_compose[OF fg1(3)] and fg2(3) unfolding fg1(2) by auto
+  moreover { fix y assume "y\<in>u" hence "(f2 \<circ> f1) ((g1 \<circ> g2) y) = y" using fg2(4)[THEN bspec[where x=y]] and fg1(4)[THEN bspec[where x="g2 y"]] and fg2(5) by auto }
+  moreover have "(g1 \<circ> g2) ` u = s" using fg1(5) fg2(5) by auto
+  moreover have "continuous_on u (g1 \<circ> g2)" using continuous_on_compose[OF fg2(6)] and fg1(6)  unfolding fg2(5) by auto
+  ultimately show ?thesis unfolding homeomorphic_def homeomorphism_def apply(rule_tac x="f2 \<circ> f1" in exI) apply(rule_tac x="g1 \<circ> g2" in exI) by auto
+qed
+
+lemma homeomorphic_minimal: 
+ "s homeomorphic t \<longleftrightarrow>
+    (\<exists>f g. (\<forall>x\<in>s. f(x) \<in> t \<and> (g(f(x)) = x)) \<and>
+           (\<forall>y\<in>t. g(y) \<in> s \<and> (f(g(y)) = y)) \<and>
+           continuous_on s f \<and> continuous_on t g)"
+unfolding homeomorphic_def homeomorphism_def
+apply auto apply (rule_tac x=f in exI) apply (rule_tac x=g in exI)
+apply auto apply (rule_tac x=f in exI) apply (rule_tac x=g in exI) apply auto 
+unfolding image_iff
+apply(erule_tac x="g x" in ballE) apply(erule_tac x="x" in ballE) 
+apply auto apply(rule_tac x="g x" in bexI) apply auto
+apply(erule_tac x="f x" in ballE) apply(erule_tac x="x" in ballE) 
+apply auto apply(rule_tac x="f x" in bexI) by auto
+
+subsection{* Relatively weak hypotheses if a set is compact.                           *}
+
+definition "inv_on f s = (\<lambda>x. SOME y. y\<in>s \<and> f y = x)"
+
+lemma assumes "inj_on f s" "x\<in>s" 
+  shows "inv_on f s (f x) = x" 
+ using assms unfolding inj_on_def inv_on_def by auto
+
+lemma homeomorphism_compact: 
+  assumes "compact s" "continuous_on s f"  "f ` s = t"  "inj_on f s"
+  shows "\<exists>g. homeomorphism s t f g"
+proof-
+  def g \<equiv> "\<lambda>x. SOME y. y\<in>s \<and> f y = x"
+  have g:"\<forall>x\<in>s. g (f x) = x" using assms(3) assms(4)[unfolded inj_on_def] unfolding g_def by auto
+  { fix y assume "y\<in>t"
+    then obtain x where x:"f x = y" "x\<in>s" using assms(3) by auto
+    hence "g (f x) = x" using g by auto
+    hence "f (g y) = y" unfolding x(1)[THEN sym] by auto  }
+  hence g':"\<forall>x\<in>t. f (g x) = x" by auto
+  moreover
+  { fix x
+    have "x\<in>s \<Longrightarrow> x \<in> g ` t" using g[THEN bspec[where x=x]] unfolding image_iff using assms(3) by(auto intro!: bexI[where x="f x"])
+    moreover 
+    { assume "x\<in>g ` t"
+      then obtain y where y:"y\<in>t" "g y = x" by auto
+      then obtain x' where x':"x'\<in>s" "f x' = y" using assms(3) by auto
+      hence "x \<in> s" unfolding g_def using someI2[of "\<lambda>b. b\<in>s \<and> f b = y" x' "\<lambda>x. x\<in>s"] unfolding y(2)[THEN sym] and g_def by auto }
+    ultimately have "x\<in>s \<longleftrightarrow> x \<in> g ` t" by auto  }
+  hence "g ` t = s" by auto
+  ultimately 
+  show ?thesis unfolding homeomorphism_def homeomorphic_def 
+    apply(rule_tac x=g in exI) using g and assms(3) and continuous_on_inverse[OF assms(2,1), of g, unfolded assms(3)] and assms(2) by auto 
+qed
+
+lemma homeomorphic_compact: 
+ "compact s \<Longrightarrow> continuous_on s f \<Longrightarrow> (f ` s = t) \<Longrightarrow> inj_on f s
+          \<Longrightarrow> s homeomorphic t"
+  unfolding homeomorphic_def by(metis homeomorphism_compact)
+
+text{* Preservation of topological properties.                                   *}
+
+lemma homeomorphic_compactness: 
+ "s homeomorphic t ==> (compact s \<longleftrightarrow> compact t)"
+unfolding homeomorphic_def homeomorphism_def
+by (metis compact_continuous_image)
+
+text{* Results on translation, scaling etc.                                      *}
+
+lemma homeomorphic_scaling: 
+  assumes "c \<noteq> 0"  shows "s homeomorphic ((\<lambda>x. c *s x) ` s)"
+  unfolding homeomorphic_minimal
+  apply(rule_tac x="\<lambda>x. c *s x" in exI)
+  apply(rule_tac x="\<lambda>x. (1 / c) *s x" in exI)
+  apply auto unfolding vector_smult_assoc using assms apply auto
+  using continuous_on_cmul[OF continuous_on_id] by auto
+
+lemma homeomorphic_translation: 
+ "s homeomorphic ((\<lambda>x. a + x) ` s)"
+  unfolding homeomorphic_minimal
+  apply(rule_tac x="\<lambda>x. a + x" in exI)
+  apply(rule_tac x="\<lambda>x. -a + x" in exI)
+  using continuous_on_add[OF continuous_on_const continuous_on_id] by auto
+
+lemma homeomorphic_affinity: 
+  assumes "c \<noteq> 0"  shows "s homeomorphic ((\<lambda>x. a + c *s x) ` s)"
+proof-
+  have *:"op + a ` op *s c ` s = (\<lambda>x. a + c *s x) ` s" by auto
+  show ?thesis
+    using homeomorphic_trans
+    using homeomorphic_scaling[OF assms, of s]
+    using homeomorphic_translation[of "(\<lambda>x. c *s x) ` s" a] unfolding * by auto
+qed
+
+lemma homeomorphic_balls: fixes a b ::"real^'a"
+  assumes "0 < d"  "0 < e"
+  shows "(ball a d) homeomorphic  (ball b e)" (is ?th)
+        "(cball a d) homeomorphic (cball b e)" (is ?cth)
+proof-
+  have *:"\<bar>e / d\<bar> > 0" "\<bar>d / e\<bar> >0" using assms using divide_pos_pos by auto
+  show ?th unfolding homeomorphic_minimal
+    apply(rule_tac x="\<lambda>x. b + (e/d) *s (x - a)" in exI)
+    apply(rule_tac x="\<lambda>x. a + (d/e) *s (x - b)" in exI)
+    apply (auto simp add: dist_sym) unfolding dist_def and vector_smult_assoc using assms apply auto
+    unfolding norm_minus_cancel and norm_mul
+    using continuous_on_add[OF continuous_on_const continuous_on_cmul[OF continuous_on_sub[OF continuous_on_id continuous_on_const]]] 
+    apply (auto simp add: dist_sym)
+    using pos_less_divide_eq[OF *(1), THEN sym] unfolding real_mult_commute[of _ "\<bar>e / d\<bar>"]
+    using pos_less_divide_eq[OF *(2), THEN sym] unfolding real_mult_commute[of _ "\<bar>d / e\<bar>"]
+    by (auto simp add: dist_sym)
+next
+  have *:"\<bar>e / d\<bar> > 0" "\<bar>d / e\<bar> >0" using assms using divide_pos_pos by auto
+  show ?cth unfolding homeomorphic_minimal
+    apply(rule_tac x="\<lambda>x. b + (e/d) *s (x - a)" in exI)
+    apply(rule_tac x="\<lambda>x. a + (d/e) *s (x - b)" in exI)
+    apply (auto simp add: dist_sym) unfolding dist_def and vector_smult_assoc using assms apply auto
+    unfolding norm_minus_cancel and norm_mul
+    using continuous_on_add[OF continuous_on_const continuous_on_cmul[OF continuous_on_sub[OF continuous_on_id continuous_on_const]]] 
+    apply auto
+    using pos_le_divide_eq[OF *(1), THEN sym] unfolding real_mult_commute[of _ "\<bar>e / d\<bar>"]
+    using pos_le_divide_eq[OF *(2), THEN sym] unfolding real_mult_commute[of _ "\<bar>d / e\<bar>"]
+    by auto
+qed
+
+text{* "Isometry" (up to constant bounds) of injective linear map etc.           *}
+
+lemma cauchy_isometric: 
+  assumes e:"0 < e" and s:"subspace s" and f:"linear f" and normf:"\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)" and xs:"\<forall>n::nat. x n \<in> s" and cf:"cauchy(f o x)"
+  shows "cauchy x"
+proof-
+  { fix d::real assume "d>0"
+    then obtain N where N:"\<forall>n\<ge>N. norm (f (x n) - f (x N)) < e * d" 
+      using cf[unfolded cauchy o_def dist_def, THEN spec[where x="e*d"]] and e and mult_pos_pos[of e d] by auto
+    { fix n assume "n\<ge>N"
+      hence "norm (f (x n - x N)) < e * d" using N[THEN spec[where x=n]] unfolding linear_sub[OF f, THEN sym] by auto
+      moreover have "e * norm (x n - x N) \<le> norm (f (x n - x N))"
+	using subspace_sub[OF s, of "x n" "x N"] using xs[THEN spec[where x=N]] and xs[THEN spec[where x=n]]
+	using normf[THEN bspec[where x="x n - x N"]] by auto
+      ultimately have "norm (x n - x N) < d" using `e>0` 
+	using mult_left_less_imp_less[of e "norm (x n - x N)" d] by auto   }
+    hence "\<exists>N. \<forall>n\<ge>N. norm (x n - x N) < d" by auto }
+  thus ?thesis unfolding cauchy and dist_def by auto
+qed
+
+lemma complete_isometric_image: 
+  assumes "0 < e" and s:"subspace s" and f:"linear f" and normf:"\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)" and cs:"complete s"
+  shows "complete(f ` s)"
+proof-
+  { fix g assume as:"\<forall>n::nat. g n \<in> f ` s" and cfg:"cauchy g"
+    then obtain x where "\<forall>n. x n \<in> s \<and> g n = f (x n)" unfolding image_iff and Bex_def
+      using choice[of "\<lambda> n xa. xa \<in> s \<and> g n = f xa"] by auto
+    hence x:"\<forall>n. x n \<in> s"  "\<forall>n. g n = f (x n)" by auto
+    hence "f \<circ> x = g" unfolding expand_fun_eq by auto
+    then obtain l where "l\<in>s" and l:"(x ---> l) sequentially"
+      using cs[unfolded complete_def, THEN spec[where x="x"]] 
+      using cauchy_isometric[OF `0<e` s f normf] and cfg and x(1) by auto
+    hence "\<exists>l\<in>f ` s. (g ---> l) sequentially"
+      using linear_continuous_at[OF f, unfolded continuous_at_sequentially, THEN spec[where x=x], of l] 
+      unfolding `f \<circ> x = g` by auto  }
+  thus ?thesis unfolding complete_def by auto
+qed
+
+lemma dist_0_norm:"dist 0 x = norm x" unfolding dist_def by(auto simp add: norm_minus_cancel)
+
+lemma injective_imp_isometric: fixes f::"real^'m \<Rightarrow> real^'n"
+  assumes s:"closed s"  "subspace s"  and f:"linear f" "\<forall>x\<in>s. (f x = 0) \<longrightarrow> (x = 0)"
+  shows "\<exists>e>0. \<forall>x\<in>s. norm (f x) \<ge> e * norm(x)"
+proof(cases "s \<subseteq> {0::real^'m}")
+  case True
+  { fix x assume "x \<in> s"
+    hence "x = 0" using True by auto
+    hence "norm x \<le> norm (f x)" by auto  }
+  thus ?thesis by(auto intro!: exI[where x=1])
+next
+  case False
+  then obtain a where a:"a\<noteq>0" "a\<in>s" by auto
+  from False have "s \<noteq> {}" by auto
+  let ?S = "{f x| x. (x \<in> s \<and> norm x = norm a)}"
+  let ?S' = "{x::real^'m. x\<in>s \<and> norm x = norm a}"
+  let ?S'' = "{x::real^'m. norm x = norm a}"
+
+  have "?S'' = frontier(cball 0 (norm a))" unfolding frontier_cball and dist_def by (auto simp add: norm_minus_cancel)
+  hence "compact ?S''" using compact_frontier[OF compact_cball, of 0 "norm a"] by auto
+  moreover have "?S' = s \<inter> ?S''" by auto
+  ultimately have "compact ?S'" using closed_inter_compact[of s ?S''] using s(1) by auto
+  moreover have *:"f ` ?S' = ?S" by auto
+  ultimately have "compact ?S" using compact_continuous_image[OF linear_continuous_on[OF f(1)], of ?S'] by auto
+  hence "closed ?S" using compact_imp_closed by auto
+  moreover have "?S \<noteq> {}" using a by auto
+  ultimately obtain b' where "b'\<in>?S" "\<forall>y\<in>?S. norm b' \<le> norm y" using distance_attains_inf[of ?S 0] unfolding dist_0_norm by auto
+  then obtain b where "b\<in>s" and ba:"norm b = norm a" and b:"\<forall>x\<in>{x \<in> s. norm x = norm a}. norm (f b) \<le> norm (f x)" unfolding *[THEN sym] unfolding image_iff by auto
+  
+  let ?e = "norm (f b) / norm b"
+  have "norm b > 0" using ba and a and norm_ge_zero by auto
+  moreover have "norm (f b) > 0" using f(2)[THEN bspec[where x=b], OF `b\<in>s`] using `norm b >0` unfolding zero_less_norm_iff by auto
+  ultimately have "0 < norm (f b) / norm b" by(simp only: divide_pos_pos)
+  moreover
+  { fix x assume "x\<in>s"
+    hence "norm (f b) / norm b * norm x \<le> norm (f x)"
+    proof(cases "x=0")
+      case True thus "norm (f b) / norm b * norm x \<le> norm (f x)" by auto
+    next
+      case False
+      hence *:"0 < norm a / norm x" using `a\<noteq>0` unfolding zero_less_norm_iff[THEN sym] by(simp only: divide_pos_pos) 
+      have "\<forall>c. \<forall>x\<in>s. c *s x \<in> s" using s[unfolded subspace_def] by auto
+      hence "(norm a / norm x) *s x \<in> {x \<in> s. norm x = norm a}" using `x\<in>s` and `x\<noteq>0` by auto
+      thus "norm (f b) / norm b * norm x \<le> norm (f x)" using b[THEN bspec[where x="(norm a / norm x) *s x"]] 
+	unfolding linear_cmul[OF f(1)] and norm_mul and ba using `x\<noteq>0` `a\<noteq>0`
+	by (auto simp add: real_mult_commute pos_le_divide_eq pos_divide_le_eq)
+    qed }
+  ultimately 
+  show ?thesis by auto
+qed
+
+lemma closed_injective_image_subspace: 
+  assumes "subspace s" "linear f" "\<forall>x\<in>s. f x = 0 --> x = 0" "closed s"
+  shows "closed(f ` s)"
+proof-
+  obtain e where "e>0" and e:"\<forall>x\<in>s. e * norm x \<le> norm (f x)" using injective_imp_isometric[OF assms(4,1,2,3)] by auto
+  show ?thesis using complete_isometric_image[OF `e>0` assms(1,2) e] and assms(4)
+    unfolding complete_eq_closed[THEN sym] by auto 
+qed
+
+subsection{* Some properties of a canonical subspace.                                  *}
+
+lemma subspace_substandard: 
+ "subspace {x::real^'n. (\<forall>i \<in> dimset x. d < i \<longrightarrow> x$i = 0)}"
+  unfolding subspace_def by(auto simp add: vector_add_component vector_smult_component elim!: ballE)
+
+lemma closed_substandard: 
+ "closed {x::real^'n. \<forall>i \<in> dimset x. d < i --> x$i = 0}" (is "closed ?A")
+proof-
+  let ?D = "{Suc d..dimindex(UNIV::('n set))}"
+  let ?Bs = "{{x::real^'n. basis i \<bullet> x = 0}| i. i \<in> ?D}"
+  { fix x
+    { assume "x\<in>?A"
+      hence x:"\<forall>i\<in>?D. d < i \<longrightarrow> x $ i = 0" by auto 
+      hence "x\<in> \<Inter> ?Bs" by(auto simp add: dot_basis x) }
+    moreover
+    { assume x:"x\<in>\<Inter>?Bs"
+      { fix i assume i:"i\<in>dimset x" and "d < i"
+	hence "i \<in> ?D" by auto
+	then obtain B where BB:"B \<in> ?Bs" and B:"B = {x::real^'n. basis i \<bullet> x = 0}" by auto
+	hence "x $ i = 0" unfolding B unfolding dot_basis[OF i] using x by auto  }
+      hence "x\<in>?A" by auto }
+    ultimately have "x\<in>?A \<longleftrightarrow> x\<in> \<Inter>?Bs" by auto }
+  hence "?A = \<Inter> ?Bs" by auto
+  thus ?thesis by(auto simp add: closed_Inter closed_hyperplane)
+qed
+
+lemma dim_substandard:
+  assumes "d \<le> dimindex(UNIV::'n set)"
+  shows "dim {x::real^'n. \<forall>i \<in> dimset x. d < i --> x$i = 0} = d" (is "dim ?A = d")
+proof-
+  let ?D = "{1..dimindex (UNIV::'n set)}"
+  let ?B = "(basis::nat\<Rightarrow>real^'n) ` {1..d}"
+    
+    let ?bas = "basis::nat \<Rightarrow> real^'n"
+
+  have "?B \<subseteq> ?A" by (auto simp add: basis_component)
+
+  moreover
+  { fix x::"real^'n" assume "x\<in>?A"
+    hence "x\<in> span ?B"
+    proof(induct d arbitrary: x)
+      case 0 hence "x=0" unfolding Cart_eq by auto
+      thus ?case using subspace_0[OF subspace_span[of "{}"]] by auto
+    next
+      case (Suc n)
+      hence *:"\<forall>i\<in>?D. Suc n < i \<longrightarrow> x $ i = 0" by auto 
+      have **:"{1..n} \<subseteq> {1..Suc n}" by auto
+      def y \<equiv> "x - x$(Suc n) *s basis (Suc n)"
+      have y:"x = y + (x$Suc n) *s basis (Suc n)" unfolding y_def by auto
+      { fix i assume i:"i\<in>?D" and i':"n < i"
+	hence "y $ i = 0" unfolding y_def unfolding vector_minus_component[OF i]
+	  and vector_smult_component[OF i] and basis_component[OF i] using i'
+	  using *[THEN bspec[where x=i]] by auto }
+      hence "y \<in> span (basis ` {1..Suc n})" using Suc(1)[of y]
+	using span_mono[of "?bas ` {1..n}" "?bas ` {1..Suc n}"]
+	using image_mono[OF **, of basis] by auto
+      moreover
+      have "basis (Suc n) \<in> span (?bas ` {1..Suc n})" by(rule span_superset, auto)  
+      hence "x$(Suc n) *s basis (Suc n) \<in> span (?bas ` {1..Suc n})" using span_mul by auto
+      ultimately 
+      have "y + x$(Suc n) *s basis (Suc n) \<in> span (?bas ` {1..Suc n})"
+	using span_add by auto
+      thus ?case using y by auto
+    qed
+  }
+  hence "?A \<subseteq> span ?B" by auto
+
+  moreover
+  { fix x assume "x \<in> ?B"
+    hence "x\<in>{(basis i)::real^'n |i. i \<in> ?D}" using assms by auto  }
+  hence "independent ?B" using independent_mono[OF independent_stdbasis, of ?B] and assms by auto
+
+  moreover
+  have "{1..d} \<subseteq> ?D" unfolding subset_eq using assms by auto
+  hence *:"inj_on (basis::nat\<Rightarrow>real^'n) {1..d}" using subset_inj_on[OF basis_inj, of "{1..d}"] using assms by auto
+  have "?B hassize d" unfolding hassize_def and card_image[OF *] by auto
+
+  ultimately show ?thesis using dim_unique[of "basis ` {1..d}" ?A] by auto
+qed
+
+text{* Hence closure and completeness of all subspaces.                          *}
+
+lemma closed_subspace: fixes s::"(real^'n) set"
+  assumes "subspace s" shows "closed s"
+proof-
+  let ?t = "{x::real^'n. \<forall>i\<in>{1..dimindex (UNIV :: 'n set)}. dim s<i \<longrightarrow> x$i = 0}"
+  have "dim s \<le> dimindex (UNIV :: 'n set)" using dim_subset_univ by auto
+  obtain f where f:"linear f"  "f ` ?t = s" "inj_on f ?t"
+    using subspace_isomorphism[OF subspace_substandard[of "dim s"] assms]
+    using dim_substandard[OF  dim_subset_univ[of s]] by auto
+  have "\<forall>x\<in>?t. f x = 0 \<longrightarrow> x = 0" using linear_0[OF f(1)] using f(3)[unfolded inj_on_def]
+    by(erule_tac x=0 in ballE) auto
+  moreover have "closed ?t" using closed_substandard by auto
+  moreover have "subspace ?t" using subspace_substandard by auto
+  ultimately show ?thesis using closed_injective_image_subspace[of ?t f] 
+    unfolding f(2) using f(1) by auto
+qed
+
+lemma complete_subspace: 
+  "subspace s ==> complete s"
+  using complete_eq_closed closed_subspace
+  by auto
+
+lemma dim_closure: 
+ "dim(closure s) = dim s" (is "?dc = ?d")
+proof-
+  have "?dc \<le> ?d" using closure_minimal[OF span_inc, of s]
+    using closed_subspace[OF subspace_span, of s] 
+    using dim_subset[of "closure s" "span s"] unfolding dim_span by auto
+  thus ?thesis using dim_subset[OF closure_subset, of s] by auto
+qed
+
+text{* Affine transformations of intervals.                                      *}
+
+lemma affinity_inverses: 
+  assumes m0: "m \<noteq> (0::'a::field)" 
+  shows "(\<lambda>x. m *s x + c) o (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
+  "(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) o (\<lambda>x. m *s x + c) = id"
+  using m0
+apply (auto simp add: expand_fun_eq vector_add_ldistrib vector_smult_assoc)
+by (simp add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1[symmetric])
+
+lemma real_affinity_le: 
+ "0 < (m::'a::ordered_field) ==> (m * x + c \<le> y \<longleftrightarrow> x \<le> inverse(m) * y + -(c / m))"
+  by (simp add: field_simps inverse_eq_divide)
+
+lemma real_le_affinity: 
+ "0 < (m::'a::ordered_field) ==> (y \<le> m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) \<le> x)"
+  by (simp add: field_simps inverse_eq_divide)
+
+lemma real_affinity_lt: 
+ "0 < (m::'a::ordered_field) ==> (m * x + c < y \<longleftrightarrow> x < inverse(m) * y + -(c / m))"
+  by (simp add: field_simps inverse_eq_divide)
+
+lemma real_lt_affinity: 
+ "0 < (m::'a::ordered_field) ==> (y < m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) < x)"
+  by (simp add: field_simps inverse_eq_divide)
+
+lemma real_affinity_eq: 
+ "(m::'a::ordered_field) \<noteq> 0 ==> (m * x + c = y \<longleftrightarrow> x = inverse(m) * y + -(c / m))"
+  by (simp add: field_simps inverse_eq_divide)
+
+lemma real_eq_affinity: 
+ "(m::'a::ordered_field) \<noteq> 0 ==> (y = m * x + c  \<longleftrightarrow> inverse(m) * y + -(c / m) = x)"
+  by (simp add: field_simps inverse_eq_divide)
+
+lemma vector_affinity_eq: 
+  assumes m0: "(m::'a::field) \<noteq> 0" 
+  shows "m *s x + c = y \<longleftrightarrow> x = inverse m *s y + -(inverse m *s c)"
+proof
+  assume h: "m *s x + c = y"
+  hence "m *s x = y - c" by (simp add: ring_simps)
+  hence "inverse m *s (m *s x) = inverse m *s (y - c)" by simp
+  then show "x = inverse m *s y + - (inverse m *s c)" 
+    using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
+next
+  assume h: "x = inverse m *s y + - (inverse m *s c)"
+  show "m *s x + c = y" unfolding h diff_minus[symmetric]
+    using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
+qed
+
+lemma vector_eq_affinity: 
+ "(m::'a::field) \<noteq> 0 ==> (y = m *s x + c \<longleftrightarrow> inverse(m) *s y + -(inverse(m) *s c) = x)"
+  using vector_affinity_eq[where m=m and x=x and y=y and c=c]
+  by metis
+
+lemma image_affinity_interval: fixes m::real
+  shows "(\<lambda>x. m *s x + c) ` {a .. b} =
+            (if {a .. b} = {} then {}
+            else (if 0 \<le> m then {m *s a + c .. m *s b + c}
+            else {m *s b + c .. m *s a + c}))"
+proof(cases "m=0")
+  { fix x assume "x \<le> c" "c \<le> x"
+    hence "x=c" unfolding vector_less_eq_def and Cart_eq by(auto elim!: ballE)  }
+  moreover case True
+  moreover have "c \<in> {m *s a + c..m *s b + c}" unfolding True by(auto simp add: vector_less_eq_def)
+  ultimately show ?thesis by auto
+next
+  case False
+  { fix y assume "a \<le> y" "y \<le> b" "m > 0"
+    hence "m *s a + c \<le> m *s y + c"  "m *s y + c \<le> m *s b + c"
+      unfolding vector_less_eq_def by(auto simp add: vector_smult_component vector_add_component) 
+  } moreover
+  { fix y assume "a \<le> y" "y \<le> b" "m < 0"
+    hence "m *s b + c \<le> m *s y + c"  "m *s y + c \<le> m *s a + c" 
+      unfolding vector_less_eq_def by(auto simp add: vector_smult_component vector_add_component mult_left_mono_neg elim!:ballE) 
+  } moreover
+  { fix y assume "m > 0"  "m *s a + c \<le> y"  "y \<le> m *s b + c"
+    hence "y \<in> (\<lambda>x. m *s x + c) ` {a..b}"
+      unfolding image_iff Bex_def mem_interval vector_less_eq_def
+      apply(auto simp add: vector_smult_component vector_add_component vector_minus_component vector_smult_assoc pth_3[symmetric]
+	intro!: exI[where x="(1 / m) *s (y - c)"])
+      by(auto elim!: ballE simp add: pos_le_divide_eq pos_divide_le_eq real_mult_commute) 
+  } moreover
+  { fix y assume "m *s b + c \<le> y" "y \<le> m *s a + c" "m < 0"
+    hence "y \<in> (\<lambda>x. m *s x + c) ` {a..b}"
+      unfolding image_iff Bex_def mem_interval vector_less_eq_def
+      apply(auto simp add: vector_smult_component vector_add_component vector_minus_component vector_smult_assoc pth_3[symmetric]
+	intro!: exI[where x="(1 / m) *s (y - c)"])
+      by(auto elim!: ballE simp add: neg_le_divide_eq neg_divide_le_eq real_mult_commute)
+  }
+  ultimately show ?thesis using False by auto
+qed
+
+subsection{* Banach fixed point theorem (not really topological...)                    *}
+
+lemma banach_fix: 
+  assumes s:"complete s" "s \<noteq> {}" and c:"0 \<le> c" "c < 1" and f:"(f ` s) \<subseteq> s" and
+          lipschitz:"\<forall>x\<in>s. \<forall>y\<in>s. dist (f x) (f y) \<le> c * dist x y"
+  shows "\<exists>! x\<in>s. (f x = x)"
+proof-
+  have "1 - c > 0" using c by auto 
+
+  from s(2) obtain z0 where "z0 \<in> s" by auto
+  def z \<equiv> "\<lambda> n::nat. fun_pow n f z0"
+  { fix n::nat
+    have "z n \<in> s" unfolding z_def
+    proof(induct n) case 0 thus ?case using `z0 \<in>s` by auto
+    next case Suc thus ?case using f by auto qed }
+  note z_in_s = this
+
+  def d \<equiv> "dist (z 0) (z 1)"
+
+  have fzn:"\<And>n. f (z n) = z (Suc n)" unfolding z_def by auto
+  { fix n::nat
+    have "dist (z n) (z (Suc n)) \<le> (c ^ n) * d"
+    proof(induct n)
+      case 0 thus ?case unfolding d_def by auto
+    next
+      case (Suc m)
+      hence "c * dist (z m) (z (Suc m)) \<le> c ^ Suc m * d"
+	using `0 \<le> c` using mult_mono1_class.mult_mono1[of "dist (z m) (z (Suc m))" "c ^ m * d" c] by auto
+      thus ?case using lipschitz[THEN bspec[where x="z m"], OF z_in_s, THEN bspec[where x="z (Suc m)"], OF z_in_s]
+	unfolding fzn and mult_le_cancel_left by auto
+    qed
+  } note cf_z = this
+
+  { fix n m::nat
+    have "(1 - c) * dist (z m) (z (m+n)) \<le> (c ^ m) * d * (1 - c ^ n)"
+    proof(induct n)
+      case 0 show ?case by auto
+    next
+      case (Suc k)
+      have "(1 - c) * dist (z m) (z (m + Suc k)) \<le> (1 - c) * (dist (z m) (z (m + k)) + dist (z (m + k)) (z (Suc (m + k))))"
+	using dist_triangle and c by(auto simp add: dist_triangle)
+      also have "\<dots> \<le> (1 - c) * (dist (z m) (z (m + k)) + c ^ (m + k) * d)"
+	using cf_z[of "m + k"] and c by auto
+      also have "\<dots> \<le> c ^ m * d * (1 - c ^ k) + (1 - c) * c ^ (m + k) * d"
+	using Suc by (auto simp add: ring_simps)
+      also have "\<dots> = (c ^ m) * (d * (1 - c ^ k) + (1 - c) * c ^ k * d)"
+	unfolding power_add by (auto simp add: ring_simps)
+      also have "\<dots> \<le> (c ^ m) * d * (1 - c ^ Suc k)"
+	using c by (auto simp add: ring_simps dist_pos_le) 
+      finally show ?case by auto
+    qed
+  } note cf_z2 = this
+  { fix e::real assume "e>0"
+    hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (z m) (z n) < e"
+    proof(cases "d = 0")
+      case True
+      hence "\<And>n. z n = z0" using cf_z2[of 0] and c unfolding z_def by (auto simp add: pos_prod_le[OF `1 - c > 0`] dist_le_0)
+      thus ?thesis using `e>0` by auto  
+    next
+      case False hence "d>0" unfolding d_def using dist_pos_le[of "z 0" "z 1"]
+	by (metis False d_def real_less_def) 
+      hence "0 < e * (1 - c) / d" using `e>0` and `1-c>0` 
+	using divide_pos_pos[of "e * (1 - c)" d] and mult_pos_pos[of e "1 - c"] by auto
+      then obtain N where N:"c ^ N < e * (1 - c) / d" using real_arch_pow_inv[of "e * (1 - c) / d" c] and c by auto
+      { fix m n::nat assume "m>n" and as:"m\<ge>N" "n\<ge>N"
+	have *:"c ^ n \<le> c ^ N" using `n\<ge>N` and c using power_decreasing[OF `n\<ge>N`, of c] by auto
+	have "1 - c ^ (m - n) > 0" using c and power_strict_mono[of c 1 "m - n"] using `m>n` by auto
+	hence **:"d * (1 - c ^ (m - n)) / (1 - c) > 0"
+	  using real_mult_order[OF `d>0`, of "1 - c ^ (m - n)"]
+	  using divide_pos_pos[of "d * (1 - c ^ (m - n))" "1 - c"]
+	  using `0 < 1 - c` by auto
+
+	have "dist (z m) (z n) \<le> c ^ n * d * (1 - c ^ (m - n)) / (1 - c)" 
+	  using cf_z2[of n "m - n"] and `m>n` unfolding pos_le_divide_eq[OF `1-c>0`] 
+	  by (auto simp add: real_mult_commute dist_sym)
+	also have "\<dots> \<le> c ^ N * d * (1 - c ^ (m - n)) / (1 - c)"
+	  using mult_right_mono[OF * order_less_imp_le[OF **]]
+	  unfolding real_mult_assoc by auto
+	also have "\<dots> < (e * (1 - c) / d) * d * (1 - c ^ (m - n)) / (1 - c)"
+	  using mult_strict_right_mono[OF N **] unfolding real_mult_assoc by auto
+	also have "\<dots> = e * (1 - c ^ (m - n))" using c and `d>0` and `1 - c > 0` by auto
+	also have "\<dots> \<le> e" using c and `1 - c ^ (m - n) > 0` and `e>0` using mult_right_le_one_le[of e "1 - c ^ (m - n)"] by auto
+	finally have  "dist (z m) (z n) < e" by auto
+      } note * = this
+      { fix m n::nat assume as:"N\<le>m" "N\<le>n"
+	hence "dist (z n) (z m) < e"
+	proof(cases "n = m")
+	  case True thus ?thesis using `e>0` by auto
+	next
+	  case False thus ?thesis using as and *[of n m] *[of m n] unfolding nat_neq_iff by (auto simp add: dist_sym)
+	qed }
+      thus ?thesis by auto 
+    qed
+  }
+  hence "cauchy z" unfolding cauchy_def by auto
+  then obtain x where "x\<in>s" and x:"(z ---> x) sequentially" using s(1)[unfolded compact_def complete_def, THEN spec[where x=z]] and z_in_s by auto
+  
+  def e \<equiv> "dist (f x) x"
+  have "e = 0" proof(rule ccontr)
+    assume "e \<noteq> 0" hence "e>0" unfolding e_def using dist_pos_le[of "f x" x]
+      by (metis dist_eq_0 dist_nz dist_sym e_def) 
+    then obtain N where N:"\<forall>n\<ge>N. dist (z n) x < e / 2"
+      using x[unfolded Lim_sequentially, THEN spec[where x="e/2"]] by auto
+    hence N':"dist (z N) x < e / 2" by auto
+
+    have *:"c * dist (z N) x \<le> dist (z N) x" unfolding mult_le_cancel_right2 
+      using dist_pos_le[of "z N" x] and c
+      by (metis dist_eq_0 dist_nz dist_sym order_less_asym real_less_def) 
+    have "dist (f (z N)) (f x) \<le> c * dist (z N) x" using lipschitz[THEN bspec[where x="z N"], THEN bspec[where x=x]]
+      using z_in_s[of N] `x\<in>s` using c by auto
+    also have "\<dots> < e / 2" using N' and c using * by auto
+    finally show False unfolding fzn
+      using N[THEN spec[where x="Suc N"]] and dist_triangle_half_r[of "z (Suc N)" "f x" e x]
+      unfolding e_def by auto
+  qed
+  hence "f x = x" unfolding e_def and dist_eq_0 by auto
+  moreover
+  { fix y assume "f y = y" "y\<in>s"
+    hence "dist x y \<le> c * dist x y" using lipschitz[THEN bspec[where x=x], THEN bspec[where x=y]]
+      using `x\<in>s` and `f x = x` by auto
+    hence "dist x y = 0" unfolding mult_le_cancel_right1
+      using c and dist_pos_le[of x y] by auto 
+    hence "y = x" unfolding dist_eq_0 by auto
+  }
+  ultimately show ?thesis unfolding Bex1_def using `x\<in>s` by blast+ 
+qed
+
+subsection{* Edelstein fixed point theorem.                                            *}
+
+lemma edelstein_fix: 
+  assumes s:"compact s" "s \<noteq> {}" and gs:"(g ` s) \<subseteq> s"
+      and dist:"\<forall>x\<in>s. \<forall>y\<in>s. x \<noteq> y \<longrightarrow> dist (g x) (g y) < dist x y"
+  shows "\<exists>! x::real^'a\<in>s. g x = x"
+proof(cases "\<exists>x\<in>s. g x \<noteq> x")
+  obtain x where "x\<in>s" using s(2) by auto
+  case False hence g:"\<forall>x\<in>s. g x = x" by auto
+  { fix y assume "y\<in>s"
+    hence "x = y" using `x\<in>s` and dist[THEN bspec[where x=x], THEN bspec[where x=y]] 
+      unfolding g[THEN bspec[where x=x], OF `x\<in>s`]
+      unfolding g[THEN bspec[where x=y], OF `y\<in>s`] by auto  }
+  thus ?thesis unfolding Bex1_def using `x\<in>s` and g by blast+ 
+next
+  case True
+  then obtain x where [simp]:"x\<in>s" and "g x \<noteq> x" by auto
+  { fix x y assume "x \<in> s" "y \<in> s"
+    hence "dist (g x) (g y) \<le> dist x y"
+      using dist[THEN bspec[where x=x], THEN bspec[where x=y]] by auto } note dist' = this
+  def y \<equiv> "g x"
+  have [simp]:"y\<in>s" unfolding y_def using gs[unfolded image_subset_iff] and `x\<in>s` by blast
+  def f \<equiv> "\<lambda> n. fun_pow n g"
+  have [simp]:"\<And>n z. g (f n z) = f (Suc n) z" unfolding f_def by auto
+  have [simp]:"\<And>z. f 0 z = z" unfolding f_def by auto
+  { fix n::nat and z assume "z\<in>s"
+    have "f n z \<in> s" unfolding f_def
+    proof(induct n)
+      case 0 thus ?case using `z\<in>s` by simp
+    next
+      case (Suc n) thus ?case using gs[unfolded image_subset_iff] by auto
+    qed } note fs = this
+  { fix m n ::nat assume "m\<le>n"
+    fix w z assume "w\<in>s" "z\<in>s"
+    have "dist (f n w) (f n z) \<le> dist (f m w) (f m z)" using `m\<le>n`
+    proof(induct n)
+      case 0 thus ?case by auto
+    next
+      case (Suc n)
+      thus ?case proof(cases "m\<le>n")
+	case True thus ?thesis using Suc(1)
+	  using dist'[OF fs fs, OF `w\<in>s` `z\<in>s`, of n n] by auto 
+      next
+	case False hence mn:"m = Suc n" using Suc(2) by simp
+	show ?thesis unfolding mn  by auto
+      qed
+    qed } note distf = this
+
+  def h \<equiv> "\<lambda>n. pastecart (f n x) (f n y)"
+  let ?s2 = "{pastecart x y |x y. x \<in> s \<and> y \<in> s}"
+  obtain l r where "l\<in>?s2" and r:"\<forall>m n. m < n \<longrightarrow> r m < r n" and lr:"((h \<circ> r) ---> l) sequentially"
+    using compact_pastecart[OF s(1) s(1), unfolded compact_def, THEN spec[where x=h]] unfolding  h_def
+    using fs[OF `x\<in>s`] and fs[OF `y\<in>s`] by blast
+  def a \<equiv> "fstcart l" def b \<equiv> "sndcart l"
+  have lab:"l = pastecart a b" unfolding a_def b_def and pastecart_fst_snd by simp
+  have [simp]:"a\<in>s" "b\<in>s" unfolding a_def b_def using `l\<in>?s2` by auto
+
+  have "continuous_on UNIV fstcart" and "continuous_on UNIV sndcart"
+    using linear_continuous_on using linear_fstcart and linear_sndcart by auto
+  hence lima:"((fstcart \<circ> (h \<circ> r)) ---> a) sequentially" and limb:"((sndcart \<circ> (h \<circ> r)) ---> b) sequentially"
+    unfolding atomize_conj unfolding continuous_on_sequentially
+    apply(erule_tac x="h \<circ> r" in allE) apply(erule_tac x="h \<circ> r" in allE) using lr
+    unfolding o_def and h_def a_def b_def  by auto
+
+  { fix n::nat
+    have *:"\<And>fx fy x y. dist fx fy \<le> dist x y \<Longrightarrow> \<not> (dist (fx - fy) (a - b) < dist a b - dist x y)" unfolding dist_def by norm
+    { fix x y ::"real^'a"
+      have "dist (-x) (-y) = dist x y" unfolding dist_def
+	using norm_minus_cancel[of "x - y"] by (auto simp add: uminus_add_conv_diff) } note ** = this
+    
+    { assume as:"dist a b > dist (f n x) (f n y)"
+      then obtain Na Nb where "\<forall>m\<ge>Na. dist (f (r m) x) a < (dist a b - dist (f n x) (f n y)) / 2"
+	and "\<forall>m\<ge>Nb. dist (f (r m) y) b < (dist a b - dist (f n x) (f n y)) / 2"
+	using lima limb unfolding h_def Lim_sequentially by (fastsimp simp del: Arith_Tools.less_divide_eq_number_of1)
+      hence "dist (f (r (Na + Nb + n)) x - f (r (Na + Nb + n)) y) (a - b) < dist a b - dist (f n x) (f n y)"
+	apply(erule_tac x="Na+Nb+n" in allE)
+	apply(erule_tac x="Na+Nb+n" in allE) apply simp
+	using dist_triangle_add_half[of a "f (r (Na + Nb + n)) x" "dist a b - dist (f n x) (f n y)"
+          "-b"  "- f (r (Na + Nb + n)) y"]
+	unfolding ** unfolding group_simps(12) by (auto simp add: dist_sym)
+      moreover
+      have "dist (f (r (Na + Nb + n)) x - f (r (Na + Nb + n)) y) (a - b) \<ge> dist a b - dist (f n x) (f n y)"
+	using distf[of n "r (Na+Nb+n)", OF _ `x\<in>s` `y\<in>s`]
+	using monotone_bigger[OF r, of "Na+Nb+n"]
+	using *[of "f (r (Na + Nb + n)) x" "f (r (Na + Nb + n)) y" "f n x" "f n y"] by auto
+      ultimately have False by simp
+    }
+    hence "dist a b \<le> dist (f n x) (f n y)" by(rule ccontr)auto }
+  note ab_fn = this
+
+  have [simp]:"a = b" proof(rule ccontr)
+    def e \<equiv> "dist a b - dist (g a) (g b)"
+    assume "a\<noteq>b" hence "e > 0" unfolding e_def using dist by fastsimp
+    hence "\<exists>n. dist (f n x) a < e/2 \<and> dist (f n y) b < e/2"
+      using lima limb unfolding Lim_sequentially
+      apply (auto elim!: allE[where x="e/2"]) apply(rule_tac x="r (max N Na)" in exI) unfolding h_def by fastsimp
+    then obtain n where n:"dist (f n x) a < e/2 \<and> dist (f n y) b < e/2" by auto
+    have "dist (f (Suc n) x) (g a) \<le> dist (f n x) a" 
+      using dist[THEN bspec[where x="f n x"], THEN bspec[where x="a"]] and fs by auto
+    moreover have "dist (f (Suc n) y) (g b) \<le> dist (f n y) b"
+      using dist[THEN bspec[where x="f n y"], THEN bspec[where x="b"]] and fs by auto
+    ultimately have "dist (f (Suc n) x) (g a) + dist (f (Suc n) y) (g b) < e" using n by auto
+    thus False unfolding e_def using ab_fn[of "Suc n"] by norm
+  qed
+
+  have [simp]:"\<And>n. f (Suc n) x = f n y" unfolding f_def y_def by(induct_tac n)auto
+  { fix x y assume "x\<in>s" "y\<in>s" moreover
+    fix e::real assume "e>0" ultimately
+    have "dist y x < e \<longrightarrow> dist (g y) (g x) < e" using dist by fastsimp }
+  hence "continuous_on s g" unfolding continuous_on_def by auto
+
+  hence "((sndcart \<circ> h \<circ> r) ---> g a) sequentially" unfolding continuous_on_sequentially
+    apply (rule allE[where x="\<lambda>n. (fstcart \<circ> h \<circ> r) n"]) apply (erule ballE[where x=a])
+    using lima unfolding h_def o_def using fs[OF `x\<in>s`] by (auto simp add: y_def)
+  hence "g a = a" using Lim_unique[OF trivial_limit_sequentially limb, of "g a"] 
+    unfolding `a=b` and o_assoc by auto
+  moreover
+  { fix x assume "x\<in>s" "g x = x" "x\<noteq>a"
+    hence "False" using dist[THEN bspec[where x=a], THEN bspec[where x=x]]
+      using `g a = a` and `a\<in>s` by auto  }
+  ultimately show "\<exists>!x\<in>s. g x = x" unfolding Bex1_def using `a\<in>s` by blast
+qed
+
+end 
\ No newline at end of file
--- a/src/HOL/Lim.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Lim.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -386,7 +386,7 @@
   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::{recpower,real_normed_algebra}"
   assumes f: "f -- a --> l"
   shows "(\<lambda>x. f x ^ n) -- a --> l ^ n"
-by (induct n, simp, simp add: power_Suc LIM_mult f)
+by (induct n, simp, simp add: LIM_mult f)
 
 subsubsection {* Derived theorems about @{term LIM} *}
 
--- a/src/HOL/Ln.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Ln.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -98,7 +98,7 @@
     also have "... = x ^ 2 / 2 * (1 / 2 * (1 / 2) ^ n)"
       by auto
     also have "(1::real) / 2 * (1 / 2) ^ n = (1 / 2) ^ (Suc n)"
-      by (rule realpow_Suc [THEN sym])
+      by (rule power_Suc [THEN sym])
     finally show ?thesis .
   qed
 qed
--- a/src/HOL/MacLaurin.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/MacLaurin.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -82,13 +82,13 @@
  apply (frule less_iff_Suc_add [THEN iffD1], clarify)
  apply (simp del: setsum_op_ivl_Suc)
  apply (insert sumr_offset4 [of "Suc 0"])
- apply (simp del: setsum_op_ivl_Suc fact_Suc realpow_Suc)
+ apply (simp del: setsum_op_ivl_Suc fact_Suc power_Suc)
  apply (rule lemma_DERIV_subst)
   apply (rule DERIV_add)
    apply (rule_tac [2] DERIV_const)
   apply (rule DERIV_sumr, clarify)
   prefer 2 apply simp
- apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc realpow_Suc)
+ apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc power_Suc)
  apply (rule DERIV_cmult)
  apply (rule lemma_DERIV_subst)
   apply (best intro: DERIV_chain2 intro!: DERIV_intros)
@@ -145,7 +145,7 @@
     apply (frule less_iff_Suc_add [THEN iffD1], clarify)
     apply (simp del: setsum_op_ivl_Suc)
     apply (insert sumr_offset4 [of "Suc 0"])
-    apply (simp del: setsum_op_ivl_Suc fact_Suc realpow_Suc)
+    apply (simp del: setsum_op_ivl_Suc fact_Suc)
     done
 
   have isCont_difg: "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> isCont (difg m) x"
@@ -205,7 +205,7 @@
       (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) +
       diff n t / real (fact n) * h ^ n"
       using `difg (Suc m) t = 0`
-      by (simp add: m f_h difg_def del: realpow_Suc fact_Suc)
+      by (simp add: m f_h difg_def del: fact_Suc)
   qed
 
 qed
--- a/src/HOL/NSA/HDeriv.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/NSA/HDeriv.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -386,7 +386,7 @@
   fixes x :: "'a::{real_normed_field,recpower}"
   shows "[| NSDERIV f x :> d; f(x) \<noteq> 0 |]
       ==> NSDERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))"
-by (simp add: NSDERIV_DERIV_iff DERIV_inverse_fun del: realpow_Suc)
+by (simp add: NSDERIV_DERIV_iff DERIV_inverse_fun del: power_Suc)
 
 text{*Derivative of quotient*}
 
@@ -395,7 +395,7 @@
   shows "[| NSDERIV f x :> d; NSDERIV g x :> e; g(x) \<noteq> 0 |]
        ==> NSDERIV (%y. f(y) / (g y)) x :> (d*g(x)
                             - (e*f(x))) / (g(x) ^ Suc (Suc 0))"
-by (simp add: NSDERIV_DERIV_iff DERIV_quotient del: realpow_Suc)
+by (simp add: NSDERIV_DERIV_iff DERIV_quotient del: power_Suc)
 
 lemma CARAT_NSDERIV: "NSDERIV f x :> l ==>
       \<exists>g. (\<forall>z. f z - f x = g z * (z-x)) & isNSCont g x & g x = l"
--- a/src/HOL/NSA/HSeries.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/NSA/HSeries.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -114,7 +114,7 @@
 lemma sumhr_minus_one_realpow_zero [simp]: 
      "!!N. sumhr(0, N + N, %i. (-1) ^ (i+1)) = 0"
 unfolding sumhr_app
-by transfer (simp del: realpow_Suc add: nat_mult_2 [symmetric])
+by transfer (simp del: power_Suc add: nat_mult_2 [symmetric])
 
 lemma sumhr_interval_const:
      "(\<forall>n. m \<le> Suc n --> f n = r) & m \<le> na  
--- a/src/HOL/NSA/HTranscendental.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/NSA/HTranscendental.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -38,7 +38,7 @@
 lemma hypreal_sqrt_pow2_iff: "(( *f* sqrt)(x) ^ 2 = x) = (0 \<le> x)"
 apply (cases x)
 apply (auto simp add: star_n_le star_n_zero_num starfun hrealpow star_n_eq_iff
-            simp del: hpowr_Suc realpow_Suc)
+            simp del: hpowr_Suc power_Suc)
 done
 
 lemma hypreal_sqrt_gt_zero_pow2: "!!x. 0 < x ==> ( *f* sqrt) (x) ^ 2 = x"
--- a/src/HOL/NSA/HyperDef.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/NSA/HyperDef.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -512,11 +512,11 @@
 
 lemma hyperpow_two_gt_one:
   "\<And>r::'a::{recpower,ordered_semidom} star. 1 < r \<Longrightarrow> 1 < r pow (1 + 1)"
-by transfer (simp add: power_gt1)
+by transfer (simp add: power_gt1 del: power_Suc)
 
 lemma hyperpow_two_ge_one:
   "\<And>r::'a::{recpower,ordered_semidom} star. 1 \<le> r \<Longrightarrow> 1 \<le> r pow (1 + 1)"
-by transfer (simp add: one_le_power)
+by transfer (simp add: one_le_power del: power_Suc)
 
 lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \<le> 2 pow n"
 apply (rule_tac y = "1 pow n" in order_trans)
--- a/src/HOL/NatBin.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/NatBin.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -419,13 +419,13 @@
      "(a::'a::{ordered_idom,recpower}) < 0 ==> a ^ Suc(2*n) < 0"
 proof (induct "n")
   case 0
-  then show ?case by (simp add: Power.power_Suc)
+  then show ?case by simp
 next
   case (Suc n)
-  have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" 
-    by (simp add: mult_ac power_add power2_eq_square Power.power_Suc)
+  have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"
+    by (simp add: mult_ac power_add power2_eq_square)
   thus ?case
-    by (simp add: prems mult_less_0_iff mult_neg_neg)
+    by (simp del: power_Suc add: prems mult_less_0_iff mult_neg_neg)
 qed
 
 lemma odd_0_le_power_imp_0_le:
--- a/src/HOL/Nominal/nominal_fresh_fun.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Nominal/nominal_fresh_fun.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -72,7 +72,7 @@
  let 
    val thy = theory_of_thm thm;
 (* the parsing function returns a qualified name, we get back the base name *)
-   val atom_basename = Sign.base_name atom_name;
+   val atom_basename = NameSpace.base_name atom_name;
    val goal = List.nth(prems_of thm, i-1);
    val ps = Logic.strip_params goal;
    val Ts = rev (map snd ps);
@@ -159,7 +159,7 @@
     NONE => all_tac thm
   | SOME atom_name  =>    
   let 
-    val atom_basename = Sign.base_name atom_name;
+    val atom_basename = NameSpace.base_name atom_name;
     val pt_name_inst = get_dyn_thm thy ("pt_"^atom_basename^"_inst") atom_basename;
     val at_name_inst = get_dyn_thm thy ("at_"^atom_basename^"_inst") atom_basename;
     fun inst_fresh vars params i st =
--- a/src/HOL/Nominal/nominal_inductive.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Nominal/nominal_inductive.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -199,7 +199,7 @@
     val atomTs = distinct op = (maps (map snd o #2) prems);
     val ind_sort = if null atomTs then HOLogic.typeS
       else Sign.certify_sort thy (map (fn T => Sign.intern_class thy
-        ("fs_" ^ Sign.base_name (fst (dest_Type T)))) atomTs);
+        ("fs_" ^ NameSpace.base_name (fst (dest_Type T)))) atomTs);
     val ([fs_ctxt_tyname], _) = Name.variants ["'n"] (Variable.names_of ctxt');
     val ([fs_ctxt_name], ctxt'') = Variable.variant_fixes ["z"] ctxt';
     val fsT = TFree (fs_ctxt_tyname, ind_sort);
@@ -273,7 +273,7 @@
 
     val perm_pi_simp = PureThy.get_thms thy "perm_pi_simp";
     val pt2_atoms = map (fn aT => PureThy.get_thm thy
-      ("pt_" ^ Sign.base_name (fst (dest_Type aT)) ^ "2")) atomTs;
+      ("pt_" ^ NameSpace.base_name (fst (dest_Type aT)) ^ "2")) atomTs;
     val eqvt_ss = Simplifier.theory_context thy HOL_basic_ss
       addsimps (eqvt_thms @ perm_pi_simp @ pt2_atoms)
       addsimprocs [mk_perm_bool_simproc ["Fun.id"],
@@ -281,7 +281,7 @@
     val fresh_bij = PureThy.get_thms thy "fresh_bij";
     val perm_bij = PureThy.get_thms thy "perm_bij";
     val fs_atoms = map (fn aT => PureThy.get_thm thy
-      ("fs_" ^ Sign.base_name (fst (dest_Type aT)) ^ "1")) atomTs;
+      ("fs_" ^ NameSpace.base_name (fst (dest_Type aT)) ^ "1")) atomTs;
     val exists_fresh' = PureThy.get_thms thy "exists_fresh'";
     val fresh_atm = PureThy.get_thms thy "fresh_atm";
     val swap_simps = PureThy.get_thms thy "swap_simps";
@@ -545,7 +545,7 @@
     ctxt'' |>
     Proof.theorem_i NONE (fn thss => fn ctxt =>
       let
-        val rec_name = space_implode "_" (map Sign.base_name names);
+        val rec_name = space_implode "_" (map NameSpace.base_name names);
         val rec_qualified = Binding.qualify false rec_name;
         val ind_case_names = RuleCases.case_names induct_cases;
         val induct_cases' = InductivePackage.partition_rules' raw_induct
@@ -575,7 +575,7 @@
              Attrib.internal (K (RuleCases.consumes 1))]),
            strong_inducts) |> snd |>
         LocalTheory.notes Thm.theoremK (map (fn ((name, elim), (_, cases)) =>
-            ((Binding.name (NameSpace.qualified (Sign.base_name name) "strong_cases"),
+            ((Binding.name (NameSpace.qualified (NameSpace.base_name name) "strong_cases"),
               [Attrib.internal (K (RuleCases.case_names (map snd cases))),
                Attrib.internal (K (RuleCases.consumes 1))]), [([elim], [])]))
           (strong_cases ~~ induct_cases')) |> snd
@@ -665,7 +665,7 @@
   in
     ctxt |>
     LocalTheory.notes Thm.theoremK (map (fn (name, ths) =>
-        ((Binding.name (NameSpace.qualified (Sign.base_name name) "eqvt"),
+        ((Binding.name (NameSpace.qualified (NameSpace.base_name name) "eqvt"),
           [Attrib.internal (K NominalThmDecls.eqvt_add)]), [(ths, [])]))
       (names ~~ transp thss)) |> snd
   end;
--- a/src/HOL/Nominal/nominal_inductive2.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Nominal/nominal_inductive2.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -229,7 +229,7 @@
     val atoms = map (fst o dest_Type) atomTs;
     val ind_sort = if null atomTs then HOLogic.typeS
       else Sign.certify_sort thy (map (fn a => Sign.intern_class thy
-        ("fs_" ^ Sign.base_name a)) atoms);
+        ("fs_" ^ NameSpace.base_name a)) atoms);
     val ([fs_ctxt_tyname], _) = Name.variants ["'n"] (Variable.names_of ctxt');
     val ([fs_ctxt_name], ctxt'') = Variable.variant_fixes ["z"] ctxt';
     val fsT = TFree (fs_ctxt_tyname, ind_sort);
@@ -296,7 +296,7 @@
 
     val perm_pi_simp = PureThy.get_thms thy "perm_pi_simp";
     val pt2_atoms = map (fn a => PureThy.get_thm thy
-      ("pt_" ^ Sign.base_name a ^ "2")) atoms;
+      ("pt_" ^ NameSpace.base_name a ^ "2")) atoms;
     val eqvt_ss = Simplifier.theory_context thy HOL_basic_ss
       addsimps (eqvt_thms @ perm_pi_simp @ pt2_atoms)
       addsimprocs [mk_perm_bool_simproc ["Fun.id"],
@@ -324,7 +324,7 @@
         val atom = fst (dest_Type T);
         val {at_inst, ...} = NominalAtoms.the_atom_info thy atom;
         val fs_atom = PureThy.get_thm thy
-          ("fs_" ^ Sign.base_name atom ^ "1");
+          ("fs_" ^ NameSpace.base_name atom ^ "1");
         val avoid_th = Drule.instantiate'
           [SOME (ctyp_of thy (fastype_of p))] [SOME (cterm_of thy p)]
           ([at_inst, fin, fs_atom] MRS @{thm at_set_avoiding});
@@ -452,7 +452,7 @@
     ctxt'' |>
     Proof.theorem_i NONE (fn thss => fn ctxt =>
       let
-        val rec_name = space_implode "_" (map Sign.base_name names);
+        val rec_name = space_implode "_" (map NameSpace.base_name names);
         val rec_qualified = Binding.qualify false rec_name;
         val ind_case_names = RuleCases.case_names induct_cases;
         val induct_cases' = InductivePackage.partition_rules' raw_induct
--- a/src/HOL/Nominal/nominal_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Nominal/nominal_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -49,9 +49,9 @@
 
 fun dt_cases (descr: descr) (_, args, constrs) =
   let
-    fun the_bname i = Sign.base_name (#1 (valOf (AList.lookup (op =) descr i)));
+    fun the_bname i = NameSpace.base_name (#1 (valOf (AList.lookup (op =) descr i)));
     val bnames = map the_bname (distinct op = (List.concat (map dt_recs args)));
-  in map (fn (c, _) => space_implode "_" (Sign.base_name c :: bnames)) constrs end;
+  in map (fn (c, _) => space_implode "_" (NameSpace.base_name c :: bnames)) constrs end;
 
 
 fun induct_cases descr =
@@ -364,7 +364,7 @@
         val pi2 = Free ("pi2", permT);
         val pt_inst = pt_inst_of thy2 a;
         val pt2' = pt_inst RS pt2;
-        val pt2_ax = PureThy.get_thm thy2 (NameSpace.map_base (fn s => "pt_" ^ s ^ "2") a);
+        val pt2_ax = PureThy.get_thm thy2 (NameSpace.map_base_name (fn s => "pt_" ^ s ^ "2") a);
       in List.take (map standard (split_conj_thm
         (Goal.prove_global thy2 [] []
            (augment_sort thy2 [pt_class_of thy2 a]
@@ -399,7 +399,7 @@
         val pt_inst = pt_inst_of thy2 a;
         val pt3' = pt_inst RS pt3;
         val pt3_rev' = at_inst RS (pt_inst RS pt3_rev);
-        val pt3_ax = PureThy.get_thm thy2 (NameSpace.map_base (fn s => "pt_" ^ s ^ "3") a);
+        val pt3_ax = PureThy.get_thm thy2 (NameSpace.map_base_name (fn s => "pt_" ^ s ^ "3") a);
       in List.take (map standard (split_conj_thm
         (Goal.prove_global thy2 [] []
           (augment_sort thy2 [pt_class_of thy2 a] (Logic.mk_implies
@@ -664,7 +664,7 @@
               asm_full_simp_tac (simpset_of thy addsimps
                 [Rep RS perm_closed RS Abs_inverse]) 1,
               asm_full_simp_tac (HOL_basic_ss addsimps [PureThy.get_thm thy
-                ("pt_" ^ Sign.base_name atom ^ "3")]) 1]) thy
+                ("pt_" ^ NameSpace.base_name atom ^ "3")]) 1]) thy
           end)
         (Abs_inverse_thms ~~ Rep_inverse_thms ~~ Rep_thms ~~ perm_defs ~~
            new_type_names ~~ tyvars ~~ perm_closed_thms);
@@ -798,7 +798,7 @@
         val def = Logic.mk_equals (lhs, Const (abs_name, T' --> T) $ rhs);
         val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
           (Const (rep_name, T --> T') $ lhs, rhs));
-        val def_name = (Sign.base_name cname) ^ "_def";
+        val def_name = (NameSpace.base_name cname) ^ "_def";
         val ([def_thm], thy') = thy |>
           Sign.add_consts_i [(cname', constrT, mx)] |>
           (PureThy.add_defs false o map Thm.no_attributes) [(Binding.name def_name, def)]
@@ -889,7 +889,7 @@
           map (fn ((cname, dts), constr_rep_thm) =>
         let
           val cname = Sign.intern_const thy8
-            (NameSpace.append tname (Sign.base_name cname));
+            (NameSpace.append tname (NameSpace.base_name cname));
           val permT = mk_permT (Type (atom, []));
           val pi = Free ("pi", permT);
 
@@ -945,7 +945,7 @@
         if null dts then NONE else SOME
         let
           val cname = Sign.intern_const thy8
-            (NameSpace.append tname (Sign.base_name cname));
+            (NameSpace.append tname (NameSpace.base_name cname));
 
           fun make_inj ((dts, dt), (j, args1, args2, eqs)) =
             let
@@ -987,7 +987,7 @@
       in List.concat (map (fn (cname, dts) => map (fn atom =>
         let
           val cname = Sign.intern_const thy8
-            (NameSpace.append tname (Sign.base_name cname));
+            (NameSpace.append tname (NameSpace.base_name cname));
           val atomT = Type (atom, []);
 
           fun process_constr ((dts, dt), (j, args1, args2)) =
@@ -1100,7 +1100,7 @@
            (fn _ => indtac dt_induct indnames 1 THEN
             ALLGOALS (asm_full_simp_tac (simpset_of thy8 addsimps
               (abs_supp @ supp_atm @
-               PureThy.get_thms thy8 ("fs_" ^ Sign.base_name atom ^ "1") @
+               PureThy.get_thms thy8 ("fs_" ^ NameSpace.base_name atom ^ "1") @
                List.concat supp_thms))))),
          length new_type_names))
       end) atoms;
@@ -1232,9 +1232,9 @@
     val fin_set_fresh = map (fn s =>
       at_inst_of thy9 s RS at_fin_set_fresh) dt_atoms;
     val pt1_atoms = map (fn Type (s, _) =>
-      PureThy.get_thm thy9 ("pt_" ^ Sign.base_name s ^ "1")) dt_atomTs;
+      PureThy.get_thm thy9 ("pt_" ^ NameSpace.base_name s ^ "1")) dt_atomTs;
     val pt2_atoms = map (fn Type (s, _) =>
-      PureThy.get_thm thy9 ("pt_" ^ Sign.base_name s ^ "2") RS sym) dt_atomTs;
+      PureThy.get_thm thy9 ("pt_" ^ NameSpace.base_name s ^ "2") RS sym) dt_atomTs;
     val exists_fresh' = PureThy.get_thms thy9 "exists_fresh'";
     val fs_atoms = PureThy.get_thms thy9 "fin_supp";
     val abs_supp = PureThy.get_thms thy9 "abs_supp";
@@ -1559,7 +1559,7 @@
 
     val rec_fin_supp_thms = map (fn aT =>
       let
-        val name = Sign.base_name (fst (dest_Type aT));
+        val name = NameSpace.base_name (fst (dest_Type aT));
         val fs_name = PureThy.get_thm thy11 ("fs_" ^ name ^ "1");
         val aset = HOLogic.mk_setT aT;
         val finite = Const ("Finite_Set.finite", aset --> HOLogic.boolT);
@@ -1598,7 +1598,7 @@
 
     val rec_fresh_thms = map (fn ((aT, eqvt_ths), finite_prems) =>
       let
-        val name = Sign.base_name (fst (dest_Type aT));
+        val name = NameSpace.base_name (fst (dest_Type aT));
         val fs_name = PureThy.get_thm thy11 ("fs_" ^ name ^ "1");
         val a = Free ("a", aT);
         val freshs = map (fn (f, fT) => HOLogic.mk_Trueprop
@@ -2012,10 +2012,10 @@
     val (reccomb_defs, thy12) =
       thy11
       |> Sign.add_consts_i (map (fn ((name, T), T') =>
-          (Sign.base_name name, rec_fn_Ts @ [T] ---> T', NoSyn))
+          (NameSpace.base_name name, rec_fn_Ts @ [T] ---> T', NoSyn))
           (reccomb_names ~~ recTs ~~ rec_result_Ts))
       |> (PureThy.add_defs false o map Thm.no_attributes) (map (fn ((((name, comb), set), T), T') =>
-          (Binding.name (Sign.base_name name ^ "_def"), Logic.mk_equals (comb, absfree ("x", T,
+          (Binding.name (NameSpace.base_name name ^ "_def"), Logic.mk_equals (comb, absfree ("x", T,
            Const ("The", (T' --> HOLogic.boolT) --> T') $ absfree ("y", T',
              set $ Free ("x", T) $ Free ("y", T'))))))
                (reccomb_names ~~ reccombs ~~ rec_sets ~~ recTs ~~ rec_result_Ts));
--- a/src/HOL/Nominal/nominal_permeq.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Nominal/nominal_permeq.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -110,7 +110,7 @@
           Type("fun",[Type("List.list",[Type("*",[Type(n,_),_])]),_])) $ pi $ (f $ x)) => 
             (if (applicable_app f) then
               let
-                val name = Sign.base_name n
+                val name = NameSpace.base_name n
                 val at_inst = PureThy.get_thm sg ("at_" ^ name ^ "_inst")
                 val pt_inst = PureThy.get_thm sg ("pt_" ^ name ^ "_inst")
               in SOME ((at_inst RS (pt_inst RS perm_eq_app)) RS eq_reflection) end
@@ -198,8 +198,8 @@
          Type ("fun", [Type ("List.list", [Type ("*", [U as Type (uname,_),_])]),_])) $ 
           pi2 $ t)) =>
     let
-      val tname' = Sign.base_name tname
-      val uname' = Sign.base_name uname
+      val tname' = NameSpace.base_name tname
+      val uname' = NameSpace.base_name uname
     in
       if pi1 <> pi2 then  (* only apply the composition rule in this case *)
         if T = U then    
--- a/src/HOL/Nominal/nominal_primrec.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Nominal/nominal_primrec.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -207,7 +207,7 @@
     val frees = ls @ x :: rs;
     val raw_rhs = list_abs_free (frees,
       list_comb (Const (rec_name, dummyT), fs @ [Free x]))
-    val def_name = Thm.def_name (Sign.base_name fname);
+    val def_name = Thm.def_name (NameSpace.base_name fname);
     val rhs = singleton (Syntax.check_terms ctxt) raw_rhs;
     val SOME var = get_first (fn ((b, _), mx) =>
       if Binding.name_of b = fname then SOME (b, mx) else NONE) fixes;
@@ -286,7 +286,7 @@
       fold_map (apfst (snd o snd) oo
         LocalTheory.define Thm.definitionK o fst) defs';
     val qualify = Binding.qualify false
-      (space_implode "_" (map (Sign.base_name o #1) defs));
+      (space_implode "_" (map (NameSpace.base_name o #1) defs));
     val names_atts' = map (apfst qualify) names_atts;
     val cert = cterm_of (ProofContext.theory_of lthy');
 
@@ -374,7 +374,9 @@
          in
            lthy''
            |> LocalTheory.note Thm.theoremK ((qualify (Binding.name "simps"),
-             [Attrib.internal (K Simplifier.simp_add)]), maps snd simps')
+                map (Attrib.internal o K)
+                    [Simplifier.simp_add, Nitpick_Const_Simp_Thms.add]),
+                maps snd simps')
            |> snd
          end)
       [goals] |>
--- a/src/HOL/Nominal/nominal_thmdecls.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Nominal/nominal_thmdecls.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -115,7 +115,7 @@
                (Var (n,ty))) =>
              let
                 (* FIXME: this should be an operation the library *)
-                val class_name = (NameSpace.map_base (fn s => "pt_"^s) tyatm)
+                val class_name = (NameSpace.map_base_name (fn s => "pt_"^s) tyatm)
              in
                 if (Sign.of_sort thy (ty,[class_name]))
                 then [(pi,typi)]
--- a/src/HOL/NthRoot.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/NthRoot.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -613,7 +613,7 @@
 apply (auto simp add: real_0_le_divide_iff power_divide)
 apply (rule_tac t = "u\<twosuperior>" in real_sum_of_halves [THEN subst])
 apply (rule add_mono)
-apply (auto simp add: four_x_squared simp del: realpow_Suc intro: power_mono)
+apply (auto simp add: four_x_squared intro: power_mono)
 done
 
 text "Legacy theorem names:"
--- a/src/HOL/Power.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Power.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -18,55 +18,50 @@
 
 class recpower = monoid_mult + power +
   assumes power_0 [simp]: "a ^ 0       = 1"
-  assumes power_Suc:      "a ^ Suc n = a * (a ^ n)"
+  assumes power_Suc [simp]: "a ^ Suc n = a * (a ^ n)"
 
 lemma power_0_Suc [simp]: "(0::'a::{recpower,semiring_0}) ^ (Suc n) = 0"
-  by (simp add: power_Suc)
+  by simp
 
 text{*It looks plausible as a simprule, but its effect can be strange.*}
 lemma power_0_left: "0^n = (if n=0 then 1 else (0::'a::{recpower,semiring_0}))"
   by (induct n) simp_all
 
 lemma power_one [simp]: "1^n = (1::'a::recpower)"
-  by (induct n) (simp_all add: power_Suc)
+  by (induct n) simp_all
 
 lemma power_one_right [simp]: "(a::'a::recpower) ^ 1 = a"
-  unfolding One_nat_def by (simp add: power_Suc)
+  unfolding One_nat_def by simp
 
 lemma power_commutes: "(a::'a::recpower) ^ n * a = a * a ^ n"
-  by (induct n) (simp_all add: power_Suc mult_assoc)
+  by (induct n) (simp_all add: mult_assoc)
 
 lemma power_Suc2: "(a::'a::recpower) ^ Suc n = a ^ n * a"
-  by (simp add: power_Suc power_commutes)
+  by (simp add: power_commutes)
 
 lemma power_add: "(a::'a::recpower) ^ (m+n) = (a^m) * (a^n)"
-  by (induct m) (simp_all add: power_Suc mult_ac)
+  by (induct m) (simp_all add: mult_ac)
 
 lemma power_mult: "(a::'a::recpower) ^ (m*n) = (a^m) ^ n"
-  by (induct n) (simp_all add: power_Suc power_add)
+  by (induct n) (simp_all add: power_add)
 
 lemma power_mult_distrib: "((a::'a::{recpower,comm_monoid_mult}) * b) ^ n = (a^n) * (b^n)"
-  by (induct n) (simp_all add: power_Suc mult_ac)
+  by (induct n) (simp_all add: mult_ac)
 
 lemma zero_less_power[simp]:
      "0 < (a::'a::{ordered_semidom,recpower}) ==> 0 < a^n"
-apply (induct "n")
-apply (simp_all add: power_Suc zero_less_one mult_pos_pos)
-done
+by (induct n) (simp_all add: mult_pos_pos)
 
 lemma zero_le_power[simp]:
      "0 \<le> (a::'a::{ordered_semidom,recpower}) ==> 0 \<le> a^n"
-apply (simp add: order_le_less)
-apply (erule disjE)
-apply (simp_all add: zero_less_one power_0_left)
-done
+by (induct n) (simp_all add: mult_nonneg_nonneg)
 
 lemma one_le_power[simp]:
      "1 \<le> (a::'a::{ordered_semidom,recpower}) ==> 1 \<le> a^n"
 apply (induct "n")
-apply (simp_all add: power_Suc)
+apply simp_all
 apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
-apply (simp_all add: zero_le_one order_trans [OF zero_le_one])
+apply (simp_all add: order_trans [OF zero_le_one])
 done
 
 lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semidom)"
@@ -85,11 +80,11 @@
 
 lemma one_less_power[simp]:
   "\<lbrakk>1 < (a::'a::{ordered_semidom,recpower}); 0 < n\<rbrakk> \<Longrightarrow> 1 < a ^ n"
-by (cases n, simp_all add: power_gt1_lemma power_Suc)
+by (cases n, simp_all add: power_gt1_lemma)
 
 lemma power_gt1:
      "1 < (a::'a::{ordered_semidom,recpower}) ==> 1 < a ^ (Suc n)"
-by (simp add: power_gt1_lemma power_Suc)
+by (simp add: power_gt1_lemma)
 
 lemma power_le_imp_le_exp:
   assumes gt1: "(1::'a::{recpower,ordered_semidom}) < a"
@@ -102,7 +97,7 @@
   show ?case
   proof (cases n)
     case 0
-    from prems have "a * a^m \<le> 1" by (simp add: power_Suc)
+    from prems have "a * a^m \<le> 1" by simp
     with gt1 show ?thesis
       by (force simp only: power_gt1_lemma
           linorder_not_less [symmetric])
@@ -110,7 +105,7 @@
     case (Suc n)
     from prems show ?thesis
       by (force dest: mult_left_le_imp_le
-          simp add: power_Suc order_less_trans [OF zero_less_one gt1])
+          simp add: order_less_trans [OF zero_less_one gt1])
   qed
 qed
 
@@ -130,7 +125,7 @@
 lemma power_mono:
      "[|a \<le> b; (0::'a::{recpower,ordered_semidom}) \<le> a|] ==> a^n \<le> b^n"
 apply (induct "n")
-apply (simp_all add: power_Suc)
+apply simp_all
 apply (auto intro: mult_mono order_trans [of 0 a b])
 done
 
@@ -138,15 +133,14 @@
      "[|a < b; (0::'a::{recpower,ordered_semidom}) \<le> a|]
       ==> 0 < n --> a^n < b^n"
 apply (induct "n")
-apply (auto simp add: mult_strict_mono power_Suc
-                      order_le_less_trans [of 0 a b])
+apply (auto simp add: mult_strict_mono order_le_less_trans [of 0 a b])
 done
 
 lemma power_eq_0_iff [simp]:
   "(a^n = 0) \<longleftrightarrow>
    (a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,recpower}) & n\<noteq>0)"
 apply (induct "n")
-apply (auto simp add: power_Suc zero_neq_one [THEN not_sym] no_zero_divisors)
+apply (auto simp add: no_zero_divisors)
 done
 
 
@@ -158,7 +152,7 @@
   fixes a :: "'a::{division_ring,recpower}"
   shows "a \<noteq> 0 ==> inverse (a ^ n) = (inverse a) ^ n"
 apply (induct "n")
-apply (auto simp add: power_Suc nonzero_inverse_mult_distrib power_commutes)
+apply (auto simp add: nonzero_inverse_mult_distrib power_commutes)
 done (* TODO: reorient or rename to nonzero_inverse_power *)
 
 text{*Perhaps these should be simprules.*}
@@ -189,18 +183,17 @@
 
 lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,recpower}) ^ n"
 apply (induct "n")
-apply (auto simp add: power_Suc abs_mult)
+apply (auto simp add: abs_mult)
 done
 
 lemma zero_less_power_abs_iff [simp,noatp]:
      "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_idom,recpower}) | n=0)"
 proof (induct "n")
   case 0
-    show ?case by (simp add: zero_less_one)
+    show ?case by simp
 next
   case (Suc n)
-    show ?case by (auto simp add: prems power_Suc zero_less_mult_iff
-      abs_zero)
+    show ?case by (auto simp add: prems zero_less_mult_iff)
 qed
 
 lemma zero_le_power_abs [simp]:
@@ -212,7 +205,7 @@
   case 0 show ?case by simp
 next
   case (Suc n) then show ?case
-    by (simp add: power_Suc2 mult_assoc)
+    by (simp del: power_Suc add: power_Suc2 mult_assoc)
 qed
 
 text{*Lemma for @{text power_strict_decreasing}*}
@@ -220,7 +213,7 @@
      "[|(0::'a::{ordered_semidom,recpower}) < a; a < 1|]
       ==> a * a^n < a^n"
 apply (induct n)
-apply (auto simp add: power_Suc mult_strict_left_mono)
+apply (auto simp add: mult_strict_left_mono)
 done
 
 lemma power_strict_decreasing:
@@ -228,11 +221,11 @@
       ==> a^N < a^n"
 apply (erule rev_mp)
 apply (induct "N")
-apply (auto simp add: power_Suc power_Suc_less less_Suc_eq)
+apply (auto simp add: power_Suc_less less_Suc_eq)
 apply (rename_tac m)
 apply (subgoal_tac "a * a^m < 1 * a^n", simp)
 apply (rule mult_strict_mono)
-apply (auto simp add: zero_less_one order_less_imp_le)
+apply (auto simp add: order_less_imp_le)
 done
 
 text{*Proof resembles that of @{text power_strict_decreasing}*}
@@ -241,11 +234,11 @@
       ==> a^N \<le> a^n"
 apply (erule rev_mp)
 apply (induct "N")
-apply (auto simp add: power_Suc  le_Suc_eq)
+apply (auto simp add: le_Suc_eq)
 apply (rename_tac m)
 apply (subgoal_tac "a * a^m \<le> 1 * a^n", simp)
 apply (rule mult_mono)
-apply (auto simp add: zero_le_one)
+apply auto
 done
 
 lemma power_Suc_less_one:
@@ -258,7 +251,7 @@
      "[|n \<le> N; (1::'a::{ordered_semidom,recpower}) \<le> a|] ==> a^n \<le> a^N"
 apply (erule rev_mp)
 apply (induct "N")
-apply (auto simp add: power_Suc le_Suc_eq)
+apply (auto simp add: le_Suc_eq)
 apply (rename_tac m)
 apply (subgoal_tac "1 * a^n \<le> a * a^m", simp)
 apply (rule mult_mono)
@@ -269,14 +262,14 @@
 lemma power_less_power_Suc:
      "(1::'a::{ordered_semidom,recpower}) < a ==> a^n < a * a^n"
 apply (induct n)
-apply (auto simp add: power_Suc mult_strict_left_mono order_less_trans [OF zero_less_one])
+apply (auto simp add: mult_strict_left_mono order_less_trans [OF zero_less_one])
 done
 
 lemma power_strict_increasing:
      "[|n < N; (1::'a::{ordered_semidom,recpower}) < a|] ==> a^n < a^N"
 apply (erule rev_mp)
 apply (induct "N")
-apply (auto simp add: power_less_power_Suc power_Suc less_Suc_eq)
+apply (auto simp add: power_less_power_Suc less_Suc_eq)
 apply (rename_tac m)
 apply (subgoal_tac "1 * a^n < a * a^m", simp)
 apply (rule mult_strict_mono)
@@ -324,7 +317,7 @@
 lemma power_eq_imp_eq_base:
   fixes a b :: "'a::{ordered_semidom,recpower}"
   shows "\<lbrakk>a ^ n = b ^ n; 0 \<le> a; 0 \<le> b; 0 < n\<rbrakk> \<Longrightarrow> a = b"
-by (cases n, simp_all, rule power_inject_base)
+by (cases n, simp_all del: power_Suc, rule power_inject_base)
 
 text {* The divides relation *}
 
@@ -360,11 +353,13 @@
   show "z^(Suc n) = z * (z^n)" by simp
 qed
 
+declare power_nat.simps [simp del]
+
 end
 
 lemma of_nat_power:
   "of_nat (m ^ n) = (of_nat m::'a::{semiring_1,recpower}) ^ n"
-by (induct n, simp_all add: power_Suc of_nat_mult)
+by (induct n, simp_all add: of_nat_mult)
 
 lemma nat_one_le_power [simp]: "Suc 0 \<le> i ==> Suc 0 \<le> i^n"
 by (rule one_le_power [of i n, unfolded One_nat_def])
@@ -397,7 +392,7 @@
   assumes nz: "a ~= 0"
   shows "n <= m ==> (a::'a::{recpower, field}) ^ (m-n) = (a^m) / (a^n)"
   by (induct m n rule: diff_induct)
-    (simp_all add: power_Suc nonzero_mult_divide_cancel_left nz)
+    (simp_all add: nonzero_mult_divide_cancel_left nz)
 
 
 text{*ML bindings for the general exponentiation theorems*}
--- a/src/HOL/Rational.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Rational.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -158,8 +158,8 @@
 
 primrec power_rat
 where
-  rat_power_0:     "q ^ 0 = (1\<Colon>rat)"
-  | rat_power_Suc: "q ^ Suc n = (q\<Colon>rat) * (q ^ n)"
+  "q ^ 0 = (1\<Colon>rat)"
+| "q ^ Suc n = (q\<Colon>rat) * (q ^ n)"
 
 instance proof
   fix q r s :: rat show "(q * r) * s = q * (r * s)" 
@@ -200,6 +200,8 @@
   show "q ^ (Suc n) = q * (q ^ n)" by simp
 qed
 
+declare power_rat.simps [simp del]
+
 end
 
 lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
@@ -666,7 +668,7 @@
 
 lemma of_rat_power:
   "(of_rat (a ^ n)::'a::{field_char_0,recpower}) = of_rat a ^ n"
-by (induct n) (simp_all add: of_rat_mult power_Suc)
+by (induct n) (simp_all add: of_rat_mult)
 
 lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
 apply (induct a, induct b)
--- a/src/HOL/RealPow.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/RealPow.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -16,8 +16,8 @@
 begin
 
 primrec power_real where
-  realpow_0:     "r ^ 0     = (1\<Colon>real)"
-  | realpow_Suc: "r ^ Suc n = (r\<Colon>real) * r ^ n"
+  "r ^ 0     = (1\<Colon>real)"
+| "r ^ Suc n = (r\<Colon>real) * r ^ n"
 
 instance proof
   fix z :: real
@@ -26,6 +26,8 @@
   show "z^(Suc n) = z * (z^n)" by simp
 qed
 
+declare power_real.simps [simp del]
+
 end
 
 
@@ -65,7 +67,7 @@
 lemma realpow_two_disj:
      "((x::real)^Suc (Suc 0) = y^Suc (Suc 0)) = (x = y | x = -y)"
 apply (cut_tac x = x and y = y in realpow_two_diff)
-apply (auto simp del: realpow_Suc)
+apply auto
 done
 
 lemma realpow_real_of_nat: "real (m::nat) ^ n = real (m ^ n)"
--- a/src/HOL/RealVector.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/RealVector.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -260,7 +260,7 @@
 
 lemma of_real_power [simp]:
   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n"
-by (induct n) (simp_all add: power_Suc)
+by (induct n) simp_all
 
 lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
 by (simp add: of_real_def scaleR_cancel_right)
@@ -624,13 +624,13 @@
   also from Suc have "\<dots> \<le> norm x * norm x ^ n"
     using norm_ge_zero by (rule mult_left_mono)
   finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
-    by (simp add: power_Suc)
+    by simp
 qed
 
 lemma norm_power:
   fixes x :: "'a::{real_normed_div_algebra,recpower}"
   shows "norm (x ^ n) = norm x ^ n"
-by (induct n) (simp_all add: power_Suc norm_mult)
+by (induct n) (simp_all add: norm_mult)
 
 
 subsection {* Sign function *}
--- a/src/HOL/SEQ.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/SEQ.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -476,7 +476,7 @@
 lemma LIMSEQ_pow:
   fixes a :: "'a::{real_normed_algebra,recpower}"
   shows "X ----> a \<Longrightarrow> (\<lambda>n. (X n) ^ m) ----> a ^ m"
-by (induct m) (simp_all add: power_Suc LIMSEQ_const LIMSEQ_mult)
+by (induct m) (simp_all add: LIMSEQ_const LIMSEQ_mult)
 
 lemma LIMSEQ_setsum:
   assumes n: "\<And>n. n \<in> S \<Longrightarrow> X n ----> L n"
--- a/src/HOL/SizeChange/Graphs.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/SizeChange/Graphs.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -351,7 +351,7 @@
 
 lemma in_tcl: 
   "has_edge (tcl G) a x b = (\<exists>n>0. has_edge (G ^ n) a x b)"
-  apply (auto simp: tcl_is_SUP in_SUP simp del: power_graph.simps)
+  apply (auto simp: tcl_is_SUP in_SUP simp del: power_graph.simps power_Suc)
   apply (rule_tac x = "n - 1" in exI, auto)
   done
 
--- a/src/HOL/SizeChange/Kleene_Algebras.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/SizeChange/Kleene_Algebras.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -128,7 +128,7 @@
     apply (rule plus_leI, simp)
     apply (simp add:star_cont[of 1 a a, simplified])
     apply (simp add:star_cont[of 1 a 1, simplified])
-    by (auto intro: SUP_leI le_SUPI UNIV_I simp add: power_Suc[symmetric] power_commutes)
+    by (auto intro: SUP_leI le_SUPI simp add: power_Suc[symmetric] power_commutes simp del: power_Suc)
 
   show "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
   proof -
@@ -138,13 +138,13 @@
       fix n
       have "a ^ (Suc n) * x \<le> a ^ n * x"
       proof (induct n)
-        case 0 thus ?case by (simp add:a power_Suc)
+        case 0 thus ?case by (simp add: a)
       next
         case (Suc n)
         hence "a * (a ^ Suc n * x) \<le> a * (a ^ n * x)"
           by (auto intro: mult_mono)
         thus ?case
-          by (simp add:power_Suc mult_assoc)
+          by (simp add: mult_assoc)
       qed
     }
     note a = this
@@ -173,13 +173,13 @@
       fix n
       have "x * a ^ (Suc n) \<le> x * a ^ n"
       proof (induct n)
-        case 0 thus ?case by (simp add:a power_Suc)
+        case 0 thus ?case by (simp add: a)
       next
         case (Suc n)
         hence "(x * a ^ Suc n) * a  \<le> (x * a ^ n) * a"
           by (auto intro: mult_mono)
         thus ?case
-          by (simp add:power_Suc power_commutes mult_assoc)
+          by (simp add: power_commutes mult_assoc)
       qed
     }
     note a = this
--- a/src/HOL/Statespace/distinct_tree_prover.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Statespace/distinct_tree_prover.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -352,14 +352,14 @@
   | distinctTree_tac _ _ _ = no_tac;
 
 fun distinctFieldSolver names = mk_solver' "distinctFieldSolver"
-     (fn ss => case #context (#1 (rep_ss ss)) of
+     (fn ss => case try Simplifier.the_context ss of
                  SOME ctxt => SUBGOAL (distinctTree_tac names ctxt)
                 | NONE => fn i => no_tac)
 
 fun distinct_simproc names =
   Simplifier.simproc @{theory HOL} "DistinctTreeProver.distinct_simproc" ["x = y"]
     (fn thy => fn ss => fn (Const ("op =",_)$x$y) =>
-        case #context (#1 (rep_ss ss)) of
+        case try Simplifier.the_context ss of
         SOME ctxt => Option.map (fn neq => neq_to_eq_False OF [neq]) 
                       (get_fst_success (neq_x_y ctxt x y) names)
        | NONE => NONE
--- a/src/HOL/Statespace/state_fun.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Statespace/state_fun.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -146,7 +146,7 @@
           
           val ct = cterm_of thy 
                     (Const ("StateFun.lookup",lT)$destr$n$(fst (mk_upds s)));
-          val ctxt = the (#context (#1 (rep_ss ss)));
+          val ctxt = Simplifier.the_context ss;
           val basic_ss = #1 (StateFunData.get (Context.Proof ctxt));
           val ss' = Simplifier.context 
                      (Config.map MetaSimplifier.simp_depth_limit (K 100) ctxt) basic_ss;
@@ -241,7 +241,7 @@
                       end
                | mk_updterm _ t = init_seed t;
 
-	     val ctxt = the (#context (#1 (rep_ss ss))) |>
+	     val ctxt = Simplifier.the_context ss |>
                         Config.map MetaSimplifier.simp_depth_limit (K 100);
              val ss1 = Simplifier.context ctxt ss';
              val ss2 = Simplifier.context ctxt 
@@ -336,17 +336,17 @@
     [] => ""
    | c::cs => String.implode (Char.toUpper c::cs ))
 
-fun mkName (Type (T,args)) = concat (map mkName args) ^ mkUpper (NameSpace.base T)
-  | mkName (TFree (x,_)) = mkUpper (NameSpace.base x)
-  | mkName (TVar ((x,_),_)) = mkUpper (NameSpace.base x);
+fun mkName (Type (T,args)) = concat (map mkName args) ^ mkUpper (NameSpace.base_name T)
+  | mkName (TFree (x,_)) = mkUpper (NameSpace.base_name x)
+  | mkName (TVar ((x,_),_)) = mkUpper (NameSpace.base_name x);
 
 fun is_datatype thy n = is_some (Symtab.lookup (DatatypePackage.get_datatypes thy) n);
 
-fun mk_map ("List.list") = Syntax.const "List.map"
-  | mk_map n = Syntax.const ("StateFun." ^  "map_" ^ NameSpace.base n);
+fun mk_map "List.list" = Syntax.const "List.map"
+  | mk_map n = Syntax.const ("StateFun.map_" ^ NameSpace.base_name n);
 
 fun gen_constr_destr comp prfx thy (Type (T,[])) = 
-      Syntax.const (deco prfx (mkUpper (NameSpace.base T)))
+      Syntax.const (deco prfx (mkUpper (NameSpace.base_name T)))
   | gen_constr_destr comp prfx thy (T as Type ("fun",_)) =
      let val (argTs,rangeT) = strip_type T;
      in comp 
@@ -360,11 +360,11 @@
      then (* datatype args are recursively embedded into val *)
          (case argTs of
            [argT] => comp 
-                     ((Syntax.const (deco prfx (mkUpper (NameSpace.base T)))))
+                     ((Syntax.const (deco prfx (mkUpper (NameSpace.base_name T)))))
                      ((mk_map T $ gen_constr_destr comp prfx thy argT))
           | _ => raise (TYPE ("StateFun.gen_constr_destr",[T'],[])))
      else (* type args are not recursively embedded into val *)
-           Syntax.const (deco prfx (concat (map mkName argTs) ^ mkUpper (NameSpace.base T)))
+           Syntax.const (deco prfx (concat (map mkName argTs) ^ mkUpper (NameSpace.base_name T)))
   | gen_constr_destr thy _ _ T = raise (TYPE ("StateFun.gen_constr_destr",[T],[]));
                    
 val mk_constr = gen_constr_destr (fn a => fn b => Syntax.const "Fun.comp" $ a $ b) ""
--- a/src/HOL/Statespace/state_space.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Statespace/state_space.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -236,14 +236,14 @@
   | distinctTree_tac _ _ = no_tac;
 
 val distinctNameSolver = mk_solver' "distinctNameSolver"
-     (fn ss => case #context (#1 (rep_ss ss)) of
+     (fn ss => case try Simplifier.the_context ss of
                  SOME ctxt => SUBGOAL (distinctTree_tac ctxt)
                 | NONE => fn i => no_tac)
 
 val distinct_simproc =
   Simplifier.simproc @{theory HOL} "StateSpace.distinct_simproc" ["x = y"]
     (fn thy => fn ss => (fn (Const ("op =",_)$(x as Free _)$(y as Free _)) =>
-        (case #context (#1 (rep_ss ss)) of
+        (case try Simplifier.the_context ss of
           SOME ctxt => Option.map (fn neq => DistinctTreeProver.neq_to_eq_False OF [neq])
                        (neq_x_y ctxt x y)
         | NONE => NONE)
@@ -611,7 +611,7 @@
            Syntax.const "StateFun.lookup"$Syntax.free (project_name T)$Syntax.free n$s
        | NONE =>
            if get_silent (Context.Proof ctxt)
-	   then Syntax.const "StateFun.lookup"$Syntax.const "arbitrary"$Syntax.free n$s
+	   then Syntax.const "StateFun.lookup" $ Syntax.const "undefined" $ Syntax.free n $ s
            else raise TERM ("StateSpace.gen_lookup_tr: component " ^ n ^ " not defined",[]));
 
 fun lookup_tr ctxt [s,Free (n,_)] = gen_lookup_tr ctxt s n;
@@ -637,15 +637,15 @@
       | NONE =>
          if get_silent (Context.Proof ctxt)
          then Syntax.const "StateFun.update"$
-                   Syntax.const "arbitrary"$Syntax.const "arbitrary"$
-                   Syntax.free n$(Syntax.const KN $ v)$s
+                   Syntax.const "undefined" $ Syntax.const "undefined" $
+                   Syntax.free n $ (Syntax.const KN $ v) $ s
          else raise TERM ("StateSpace.gen_update_tr: component " ^ n ^ " not defined",[]))
    end;
 
 fun update_tr ctxt [s,Free (n,_),v] = gen_update_tr false ctxt n v s;
 
 fun update_tr' ctxt [_$Free (prj,_),_$Free (inj,_),n as (_$Free (name,_)),(Const (k,_)$v),s] =
-     if NameSpace.base k = NameSpace.base KN then
+     if NameSpace.base_name k = NameSpace.base_name KN then
         (case get_comp (Context.Proof ctxt) name of
           SOME (T,_) => if inj=inject_name T andalso prj=project_name T then
                            Syntax.const "_statespace_update" $ s $ n $ v
--- a/src/HOL/Tools/TFL/post.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/TFL/post.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -223,7 +223,7 @@
  *---------------------------------------------------------------------------*)
 fun define_i strict thy cs ss congs wfs fid R eqs =
   let val {functional,pats} = Prim.mk_functional thy eqs
-      val (thy, def) = Prim.wfrec_definition0 thy (Sign.base_name fid) R functional
+      val (thy, def) = Prim.wfrec_definition0 thy (NameSpace.base_name fid) R functional
       val {induct, rules, tcs} = 
           simplify_defn strict thy cs ss congs wfs fid pats def
       val rules' = 
@@ -248,7 +248,7 @@
 
 fun defer_i thy congs fid eqs =
  let val {rules,R,theory,full_pats_TCs,SV,...} =
-             Prim.lazyR_def thy (Sign.base_name fid) congs eqs
+             Prim.lazyR_def thy (NameSpace.base_name fid) congs eqs
      val f = func_of_cond_eqn (concl (R.CONJUNCT1 rules handle U.ERR _ => rules));
      val dummy = writeln "Proving induction theorem ...";
      val induction = Prim.mk_induction theory
--- a/src/HOL/Tools/TFL/tfl.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/TFL/tfl.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -349,7 +349,7 @@
           | L => mk_functional_err
  ("The following clauses are redundant (covered by preceding clauses): " ^
                    commas (map (fn i => Int.toString (i + 1)) L))
- in {functional = Abs(Sign.base_name fname, ftype,
+ in {functional = Abs(NameSpace.base_name fname, ftype,
                       abstract_over (atom,
                                      absfree(aname,atype, case_tm))),
      pats = patts2}
--- a/src/HOL/Tools/datatype_abs_proofs.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/datatype_abs_proofs.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -235,10 +235,10 @@
     val (reccomb_defs, thy2) =
       thy1
       |> Sign.add_consts_i (map (fn ((name, T), T') =>
-          (Sign.base_name name, reccomb_fn_Ts @ [T] ---> T', NoSyn))
+          (NameSpace.base_name name, reccomb_fn_Ts @ [T] ---> T', NoSyn))
           (reccomb_names ~~ recTs ~~ rec_result_Ts))
       |> (PureThy.add_defs false o map Thm.no_attributes) (map (fn ((((name, comb), set), T), T') =>
-          (Binding.name (Sign.base_name name ^ "_def"), Logic.mk_equals (comb, absfree ("x", T,
+          (Binding.name (NameSpace.base_name name ^ "_def"), Logic.mk_equals (comb, absfree ("x", T,
            Const ("The", (T' --> HOLogic.boolT) --> T') $ absfree ("y", T',
              set $ Free ("x", T) $ Free ("y", T'))))))
                (reccomb_names ~~ reccombs ~~ rec_sets ~~ recTs ~~ rec_result_Ts))
@@ -316,8 +316,8 @@
           val fns = (List.concat (Library.take (i, case_dummy_fns))) @
             fns2 @ (List.concat (Library.drop (i + 1, case_dummy_fns)));
           val reccomb = Const (recname, (map fastype_of fns) @ [T] ---> T');
-          val decl = ((Binding.name (Sign.base_name name), caseT), NoSyn);
-          val def = (Binding.name (Sign.base_name name ^ "_def"),
+          val decl = ((Binding.name (NameSpace.base_name name), caseT), NoSyn);
+          val def = (Binding.name (NameSpace.base_name name ^ "_def"),
             Logic.mk_equals (list_comb (Const (name, caseT), fns1),
               list_comb (reccomb, (List.concat (Library.take (i, case_dummy_fns))) @
                 fns2 @ (List.concat (Library.drop (i + 1, case_dummy_fns))) )));
--- a/src/HOL/Tools/datatype_aux.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/datatype_aux.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -224,7 +224,7 @@
   | mk_fun_dtyp (T :: Ts) U = DtType ("fun", [T, mk_fun_dtyp Ts U]);
 
 fun name_of_typ (Type (s, Ts)) =
-      let val s' = Sign.base_name s
+      let val s' = NameSpace.base_name s
       in space_implode "_" (List.filter (not o equal "") (map name_of_typ Ts) @
         [if Syntax.is_identifier s' then s' else "x"])
       end
--- a/src/HOL/Tools/datatype_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/datatype_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -174,9 +174,9 @@
 
 fun dt_cases (descr: descr) (_, args, constrs) =
   let
-    fun the_bname i = Sign.base_name (#1 (the (AList.lookup (op =) descr i)));
+    fun the_bname i = NameSpace.base_name (#1 (the (AList.lookup (op =) descr i)));
     val bnames = map the_bname (distinct (op =) (maps dt_recs args));
-  in map (fn (c, _) => space_implode "_" (Sign.base_name c :: bnames)) constrs end;
+  in map (fn (c, _) => space_implode "_" (NameSpace.base_name c :: bnames)) constrs end;
 
 
 fun induct_cases descr =
@@ -519,7 +519,7 @@
     val cs = map (apsnd (map norm_constr)) raw_cs;
     val dtyps_of_typ = map (dtyp_of_typ (map (rpair (map fst vs) o fst) cs))
       o fst o strip_type;
-    val new_type_names = map NameSpace.base (the_default (map fst cs) alt_names);
+    val new_type_names = map NameSpace.base_name (the_default (map fst cs) alt_names);
 
     fun mk_spec (i, (tyco, constr)) = (i, (tyco,
       map (DtTFree o fst) vs,
@@ -629,14 +629,6 @@
 
 (** a datatype antiquotation **)
 
-local
-
-val sym_datatype = Pretty.command "datatype";
-val sym_binder = Pretty.str "\\ {\\isacharequal}"; (*FIXME use proper symbol*)
-val sym_sep = Pretty.str "{\\isacharbar}\\ ";
-
-in
-
 fun args_datatype (ctxt, args) =
   let
     val (tyco, (ctxt', args')) = Args.tyname (ctxt, args);
@@ -654,26 +646,19 @@
       in if member (op =) s " " then Pretty.enclose "(" ")" [p]
         else p
       end;
-    fun pretty_constr (co, []) =
-          Syntax.pretty_term ctxt (Const (co, ty))
-      | pretty_constr (co, [ty']) =
-          (Pretty.block o Pretty.breaks)
-            [Syntax.pretty_term ctxt (Const (co, ty' --> ty)),
-              pretty_typ_br ty']
-      | pretty_constr (co, tys) =
-          (Pretty.block o Pretty.breaks)
-            (Syntax.pretty_term ctxt (Const (co, tys ---> ty)) ::
-              map pretty_typ_br tys);
+    fun pretty_constr (co, tys) =
+      (Pretty.block o Pretty.breaks)
+        (Syntax.pretty_term ctxt (Const (co, tys ---> ty)) ::
+          map pretty_typ_br tys);
   in
     Pretty.block
-      (sym_datatype :: Pretty.brk 1 ::
+      (Pretty.command "datatype" :: Pretty.brk 1 ::
        Syntax.pretty_typ ctxt ty ::
-       sym_binder :: Pretty.brk 1 ::
-       flat (separate [Pretty.brk 1, sym_sep]
+       Pretty.str " =" :: Pretty.brk 1 ::
+       flat (separate [Pretty.brk 1, Pretty.str "| "]
          (map (single o pretty_constr) cos)))
   end
 
-end;
 
 (** package setup **)
 
--- a/src/HOL/Tools/datatype_prop.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/datatype_prop.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -47,7 +47,7 @@
   let
     fun type_name (TFree (name, _)) = implode (tl (explode name))
       | type_name (Type (name, _)) = 
-          let val name' = Sign.base_name name
+          let val name' = NameSpace.base_name name
           in if Syntax.is_identifier name' then name' else "x" end;
   in indexify_names (map type_name Ts) end;
 
--- a/src/HOL/Tools/datatype_realizer.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/datatype_realizer.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -168,7 +168,7 @@
         val Ts = map (typ_of_dtyp descr sorts) cargs;
         val frees = Name.variant_list ["P", "y"] (DatatypeProp.make_tnames Ts) ~~ Ts;
         val free_ts = map Free frees;
-        val r = Free ("r" ^ NameSpace.base cname, Ts ---> rT)
+        val r = Free ("r" ^ NameSpace.base_name cname, Ts ---> rT)
       in (r, list_all_free (frees, Logic.mk_implies (HOLogic.mk_Trueprop
         (HOLogic.mk_eq (Free ("y", T), list_comb (Const (cname, Ts ---> T), free_ts))),
           HOLogic.mk_Trueprop (Free ("P", rT --> HOLogic.boolT) $
--- a/src/HOL/Tools/datatype_rep_proofs.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/datatype_rep_proofs.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -236,7 +236,7 @@
         val lhs = list_comb (Const (cname, constrT), l_args);
         val rhs = mk_univ_inj r_args n i;
         val def = Logic.mk_equals (lhs, Const (abs_name, Univ_elT --> T) $ rhs);
-        val def_name = Sign.base_name cname ^ "_def";
+        val def_name = NameSpace.base_name cname ^ "_def";
         val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
           (Const (rep_name, T --> Univ_elT) $ lhs, rhs));
         val ([def_thm], thy') =
@@ -343,7 +343,7 @@
         
         val (fs, eqns, isos) = Library.foldl process_dt (([], [], []), ds);
         val fTs = map fastype_of fs;
-        val defs = map (fn (rec_name, (T, iso_name)) => (Binding.name (Sign.base_name iso_name ^ "_def"),
+        val defs = map (fn (rec_name, (T, iso_name)) => (Binding.name (NameSpace.base_name iso_name ^ "_def"),
           Logic.mk_equals (Const (iso_name, T --> Univ_elT),
             list_comb (Const (rec_name, fTs @ [T] ---> Univ_elT), fs)))) (rec_names ~~ isos);
         val (def_thms, thy') =
--- a/src/HOL/Tools/function_package/size.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/function_package/size.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -87,7 +87,7 @@
       recTs1 ~~ alt_names' |>
       map (fn (T as Type (s, _), optname) =>
         let
-          val s' = the_default (Sign.base_name s) optname ^ "_size";
+          val s' = the_default (NameSpace.base_name s) optname ^ "_size";
           val s'' = Sign.full_bname thy s'
         in
           (s'',
@@ -140,7 +140,7 @@
     val ((size_def_thms, size_def_thms'), thy') =
       thy
       |> Sign.add_consts_i (map (fn (s, T) =>
-           (Sign.base_name s, param_size_fTs @ [T] ---> HOLogic.natT, NoSyn))
+           (NameSpace.base_name s, param_size_fTs @ [T] ---> HOLogic.natT, NoSyn))
            (size_names ~~ recTs1))
       |> PureThy.add_defs false
         (map (Thm.no_attributes o apsnd (Logic.mk_equals o apsnd (app fs)))
@@ -221,8 +221,8 @@
 fun add_size_thms (new_type_names as name :: _) thy =
   let
     val info as {descr, alt_names, ...} = DatatypePackage.the_datatype thy name;
-    val prefix = NameSpace.map_base (K (space_implode "_"
-      (the_default (map Sign.base_name new_type_names) alt_names))) name;
+    val prefix = NameSpace.map_base_name (K (space_implode "_"
+      (the_default (map NameSpace.base_name new_type_names) alt_names))) name;
     val no_size = exists (fn (_, (_, _, constrs)) => exists (fn (_, cargs) => exists (fn dt =>
       is_rec_type dt andalso not (null (fst (strip_dtyp dt)))) cargs) constrs) descr
   in if no_size then thy
--- a/src/HOL/Tools/inductive_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/inductive_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -698,7 +698,7 @@
       ctxt1 |>
       LocalTheory.note kind ((rec_qualified (Binding.name "intros"), []), intrs') ||>>
       fold_map (fn (name, (elim, cases)) =>
-        LocalTheory.note kind ((Binding.name (NameSpace.qualified (Sign.base_name name) "cases"),
+        LocalTheory.note kind ((Binding.name (NameSpace.qualified (NameSpace.base_name name) "cases"),
           [Attrib.internal (K (RuleCases.case_names cases)),
            Attrib.internal (K (RuleCases.consumes 1)),
            Attrib.internal (K (Induct.cases_pred name)),
--- a/src/HOL/Tools/inductive_realizer.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/inductive_realizer.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -68,8 +68,8 @@
     val (Const (s, _), ts) = strip_comb (HOLogic.dest_Trueprop
       (Logic.strip_imp_concl (prop_of (hd intrs))));
     val params = map dest_Var (Library.take (nparms, ts));
-    val tname = space_implode "_" (Sign.base_name s ^ "T" :: vs);
-    fun constr_of_intr intr = (Sign.base_name (name_of_thm intr),
+    val tname = space_implode "_" (NameSpace.base_name s ^ "T" :: vs);
+    fun constr_of_intr intr = (NameSpace.base_name (name_of_thm intr),
       map (Logic.unvarifyT o snd) (rev (Term.add_vars (prop_of intr) []) \\ params) @
         filter_out (equal Extraction.nullT) (map
           (Logic.unvarifyT o Extraction.etype_of thy vs []) (prems_of intr)),
@@ -112,7 +112,7 @@
     val rT = if n then Extraction.nullT
       else Type (space_implode "_" (s ^ "T" :: vs),
         map (fn a => TVar (("'" ^ a, 0), HOLogic.typeS)) vs @ Tvs);
-    val r = if n then Extraction.nullt else Var ((Sign.base_name s, 0), rT);
+    val r = if n then Extraction.nullt else Var ((NameSpace.base_name s, 0), rT);
     val S = list_comb (h, params @ xs);
     val rvs = relevant_vars S;
     val vs' = map fst rvs \\ vs;
@@ -195,7 +195,7 @@
           in if conclT = Extraction.nullT
             then list_abs_free (map dest_Free xs, HOLogic.unit)
             else list_abs_free (map dest_Free xs, list_comb
-              (Free ("r" ^ Sign.base_name (name_of_thm intr),
+              (Free ("r" ^ NameSpace.base_name (name_of_thm intr),
                 map fastype_of (rev args) ---> conclT), rev args))
           end
 
@@ -217,7 +217,7 @@
       end) (premss ~~ dummies);
     val frees = fold Term.add_frees fs [];
     val Ts = map fastype_of fs;
-    fun name_of_fn intr = "r" ^ Sign.base_name (name_of_thm intr)
+    fun name_of_fn intr = "r" ^ NameSpace.base_name (name_of_thm intr)
   in
     fst (fold_map (fn concl => fn names =>
       let val T = Extraction.etype_of thy vs [] concl
@@ -245,7 +245,7 @@
       |-> (fn dtinfo => pair ((map fst dts), SOME dtinfo))
     handle DatatypeAux.Datatype_Empty name' =>
       let
-        val name = Sign.base_name name';
+        val name = NameSpace.base_name name';
         val dname = Name.variant used "Dummy"
       in
         thy
@@ -296,7 +296,7 @@
 
     val thy1' = thy1 |>
       Theory.copy |>
-      Sign.add_types (map (fn s => (Sign.base_name s, ar, NoSyn)) tnames) |>
+      Sign.add_types (map (fn s => (NameSpace.base_name s, ar, NoSyn)) tnames) |>
       fold (fn s => AxClass.axiomatize_arity
         (s, replicate ar HOLogic.typeS, HOLogic.typeS)) tnames |>
         Extraction.add_typeof_eqns_i ty_eqs;
@@ -335,7 +335,7 @@
         let
           val Const (s, T) = head_of (HOLogic.dest_Trueprop
             (Logic.strip_assums_concl rintr));
-          val s' = Sign.base_name s;
+          val s' = NameSpace.base_name s;
           val T' = Logic.unvarifyT T
         in (((Binding.name s', T'), NoSyn), (Const (s, T'), Free (s', T'))) end) rintrs));
     val rlzparams = map (fn Var ((s, _), T) => (s, Logic.unvarifyT T))
@@ -349,7 +349,7 @@
         {quiet_mode = false, verbose = false, kind = Thm.theoremK, alt_name = Binding.empty,
           coind = false, no_elim = false, no_ind = false, skip_mono = false, fork_mono = false}
         rlzpreds rlzparams (map (fn (rintr, intr) =>
-          ((Binding.name (Sign.base_name (name_of_thm intr)), []),
+          ((Binding.name (NameSpace.base_name (name_of_thm intr)), []),
            subst_atomic rlzpreds' (Logic.unvarify rintr)))
              (rintrs ~~ maps snd rss)) [] ||>
       Sign.absolute_path;
--- a/src/HOL/Tools/old_primrec_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/old_primrec_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -212,7 +212,7 @@
                     ((map snd ls) @ [dummyT])
                     (list_comb (Const (rec_name, dummyT),
                                 fs @ map Bound (0 ::(length ls downto 1))))
-    val def_name = Sign.base_name fname ^ "_" ^ Sign.base_name tname ^ "_def";
+    val def_name = NameSpace.base_name fname ^ "_" ^ NameSpace.base_name tname ^ "_def";
     val def_prop =
       singleton (Syntax.check_terms (ProofContext.init thy))
         (Logic.mk_equals (Const (fname, dummyT), rhs));
@@ -269,7 +269,7 @@
             else primrec_err ("functions " ^ commas_quote (map fst nameTs2) ^
               "\nare not mutually recursive");
     val primrec_name =
-      if alt_name = "" then (space_implode "_" (map (Sign.base_name o #1) defs)) else alt_name;
+      if alt_name = "" then (space_implode "_" (map (NameSpace.base_name o #1) defs)) else alt_name;
     val (defs_thms', thy') =
       thy
       |> Sign.add_path primrec_name
--- a/src/HOL/Tools/primrec_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/primrec_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -191,7 +191,7 @@
                     (map snd ls @ [dummyT])
                     (list_comb (Const (rec_name, dummyT),
                                 fs @ map Bound (0 :: (length ls downto 1))))
-    val def_name = Thm.def_name (Sign.base_name fname);
+    val def_name = Thm.def_name (NameSpace.base_name fname);
     val rhs = singleton (Syntax.check_terms ctxt) raw_rhs;
     val SOME var = get_first (fn ((b, _), mx) =>
       if Binding.name_of b = fname then SOME (b, mx) else NONE) fixes;
@@ -247,7 +247,7 @@
     val _ = if gen_eq_set (op =) (names1, names2) then ()
       else primrec_error ("functions " ^ commas_quote names2 ^
         "\nare not mutually recursive");
-    val prefix = space_implode "_" (map (Sign.base_name o #1) defs);
+    val prefix = space_implode "_" (map (NameSpace.base_name o #1) defs);
     val qualify = Binding.qualify false prefix;
     val spec' = (map o apfst)
       (fn (b, attrs) => (qualify b, Code.add_default_eqn_attrib :: attrs)) spec;
--- a/src/HOL/Tools/recdef_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/recdef_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -193,7 +193,7 @@
     val _ = requires_recdef thy;
 
     val name = Sign.intern_const thy raw_name;
-    val bname = Sign.base_name name;
+    val bname = NameSpace.base_name name;
     val _ = writeln ("Defining recursive function " ^ quote name ^ " ...");
 
     val ((eq_names, eqs), raw_eq_atts) = apfst split_list (split_list eq_srcs);
@@ -233,7 +233,7 @@
 fun gen_defer_recdef tfl_fn eval_thms raw_name eqs raw_congs thy =
   let
     val name = Sign.intern_const thy raw_name;
-    val bname = Sign.base_name name;
+    val bname = NameSpace.base_name name;
 
     val _ = requires_recdef thy;
     val _ = writeln ("Deferred recursive function " ^ quote name ^ " ...");
--- a/src/HOL/Tools/record_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/record_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -122,7 +122,7 @@
 (* syntax *)
 
 fun prune n xs = Library.drop (n, xs);
-fun prefix_base s = NameSpace.map_base (fn bname => s ^ bname);
+fun prefix_base s = NameSpace.map_base_name (fn bname => s ^ bname);
 
 val Trueprop = HOLogic.mk_Trueprop;
 fun All xs t = Term.list_all_free (xs, t);
@@ -702,7 +702,7 @@
                      SOME flds
                      => (let
                           val (f::fs) = but_last (map fst flds);
-                          val flds' = Sign.extern_const thy f :: map NameSpace.base fs;
+                          val flds' = Sign.extern_const thy f :: map NameSpace.base_name fs;
                           val (args',more) = split_last args;
                          in (flds'~~args')@field_lst more end
                          handle Library.UnequalLengths => [("",t)])
@@ -804,7 +804,7 @@
                            => (let
                                 val (f :: fs) = but_last flds;
                                 val flds' = apfst (Sign.extern_const thy) f
-                                  :: map (apfst NameSpace.base) fs;
+                                  :: map (apfst NameSpace.base_name) fs;
                                 val (args', more) = split_last args;
                                 val alphavars = map varifyT (but_last alphas);
                                 val subst = fold2 (curry (Sign.typ_match thy))
@@ -1069,7 +1069,7 @@
              val {sel_upd={selectors,updates,...},extfields,...} = RecordsData.get thy;
 
              (*fun mk_abs_var x t = (x, fastype_of t);*)
-             fun sel_name u = NameSpace.base (unsuffix updateN u);
+             fun sel_name u = NameSpace.base_name (unsuffix updateN u);
 
              fun seed s (upd as Const (more,Type(_,[mT,_]))$ k $ r) =
                   if has_field extfields s (domain_type' mT) then upd else seed s r
@@ -1463,7 +1463,7 @@
       in map rewrite_rule [abs_inject, abs_inverse, abs_induct] end;
   in
     thy
-    |> TypecopyPackage.add_typecopy (suffix ext_typeN (Sign.base_name name), alphas) repT NONE
+    |> TypecopyPackage.add_typecopy (suffix ext_typeN (NameSpace.base_name name), alphas) repT NONE
     |-> (fn (name, _) => `(fn thy => get_thms thy name))
   end;
 
@@ -1474,7 +1474,7 @@
 
 fun extension_definition full name fields names alphas zeta moreT more vars thy =
   let
-    val base = Sign.base_name;
+    val base = NameSpace.base_name;
     val fieldTs = (map snd fields);
     val alphas_zeta = alphas@[zeta];
     val alphas_zetaTs = map (fn n => TFree (n, HOLogic.typeS)) alphas_zeta;
@@ -1760,7 +1760,7 @@
     val alphas = map fst args;
     val name = Sign.full_bname thy bname;
     val full = Sign.full_bname_path thy bname;
-    val base = Sign.base_name;
+    val base = NameSpace.base_name;
 
     val (bfields, field_syntax) = split_list (map (fn (x, T, mx) => ((x, T), mx)) raw_fields);
 
--- a/src/HOL/Tools/refute.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/refute.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -63,6 +63,7 @@
 
   val close_form : Term.term -> Term.term
   val get_classdef : theory -> string -> (string * Term.term) option
+  val norm_rhs : Term.term -> Term.term
   val get_def : theory -> string * Term.typ -> (string * Term.term) option
   val get_typedef : theory -> Term.typ -> (string * Term.term) option
   val is_IDT_constructor : theory -> string * Term.typ -> bool
@@ -548,6 +549,20 @@
   end;
 
 (* ------------------------------------------------------------------------- *)
+(* norm_rhs: maps  f ?t1 ... ?tn == rhs  to  %t1...tn. rhs                   *)
+(* ------------------------------------------------------------------------- *)
+
+  fun norm_rhs eqn =
+  let
+    fun lambda (v as Var ((x, _), T)) t = Abs (x, T, abstract_over (v, t))
+      | lambda v t                      = raise TERM ("lambda", [v, t])
+    val (lhs, rhs) = Logic.dest_equals eqn
+    val (_, args)  = Term.strip_comb lhs
+  in
+    fold lambda (rev args) rhs
+  end
+
+(* ------------------------------------------------------------------------- *)
 (* get_def: looks up the definition of a constant, as created by "constdefs" *)
 (* ------------------------------------------------------------------------- *)
 
@@ -555,16 +570,6 @@
 
   fun get_def thy (s, T) =
   let
-    (* maps  f ?t1 ... ?tn == rhs  to  %t1...tn. rhs *)
-    fun norm_rhs eqn =
-    let
-      fun lambda (v as Var ((x, _), T)) t = Abs (x, T, abstract_over (v, t))
-        | lambda v t                      = raise TERM ("lambda", [v, t])
-      val (lhs, rhs) = Logic.dest_equals eqn
-      val (_, args)  = Term.strip_comb lhs
-    in
-      fold lambda (rev args) rhs
-    end
     (* (string * Term.term) list -> (string * Term.term) option *)
     fun get_def_ax [] = NONE
       | get_def_ax ((axname, ax) :: axioms) =
--- a/src/HOL/Tools/res_atp.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/res_atp.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -34,8 +34,6 @@
 val convergence = 3.2;    (*Higher numbers allow longer inference chains*)
 val follow_defs = false;  (*Follow definitions. Makes problems bigger.*)
 val include_all = true;
-val include_simpset = false;
-val include_claset = false;
 val include_atpset = true;
   
 (***************************************************************)
@@ -380,7 +378,7 @@
 
 (*Ignore blacklisted basenames*)
 fun add_multi_names ((a, ths), pairs) =
-  if (Sign.base_name a) mem_string ResAxioms.multi_base_blacklist  then pairs
+  if (NameSpace.base_name a) mem_string ResAxioms.multi_base_blacklist  then pairs
   else add_single_names ((a, ths), pairs);
 
 fun is_multi (a, ths) = length ths > 1 orelse String.isSuffix ".axioms" a;
@@ -409,17 +407,11 @@
                      (fn () => ("Including all " ^ Int.toString (length ths) ^ " theorems")))
                   (name_thm_pairs ctxt))
         else
-        let val claset_thms =
-                if include_claset then ResAxioms.claset_rules_of ctxt
-                else []
-            val simpset_thms =
-                if include_simpset then ResAxioms.simpset_rules_of ctxt
-                else []
-            val atpset_thms =
+        let val atpset_thms =
                 if include_atpset then ResAxioms.atpset_rules_of ctxt
                 else []
             val _ = (Output.debug (fn () => "ATP theorems: ");  app display_thm atpset_thms)
-        in  claset_thms @ simpset_thms @ atpset_thms  end
+        in  atpset_thms  end
       val user_rules = filter check_named
                          (map ResAxioms.pairname
                            (if null user_thms then whitelist else user_thms))
--- a/src/HOL/Tools/res_axioms.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/res_axioms.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -15,8 +15,6 @@
   val expand_defs_tac: thm -> tactic
   val combinators: thm -> thm
   val neg_conjecture_clauses: thm -> int -> thm list * (string * typ) list
-  val claset_rules_of: Proof.context -> (string * thm) list   (*FIXME DELETE*)
-  val simpset_rules_of: Proof.context -> (string * thm) list  (*FIXME DELETE*)
   val atpset_rules_of: Proof.context -> (string * thm) list
   val suppress_endtheory: bool ref     (*for emergency use where endtheory causes problems*)
   val setup: theory -> theory
@@ -342,7 +340,7 @@
 
 (*Skolemize a named theorem, with Skolem functions as additional premises.*)
 fun skolem_thm (s, th) =
-  if member (op =) multi_base_blacklist (Sign.base_name s) orelse bad_for_atp th then []
+  if member (op =) multi_base_blacklist (NameSpace.base_name s) orelse bad_for_atp th then []
   else
     let
       val ctxt0 = Variable.thm_context th
@@ -378,24 +376,10 @@
   end;
 
 
-(**** Extract and Clausify theorems from a theory's claset and simpset ****)
+(**** Rules from the context ****)
 
 fun pairname th = (Thm.get_name_hint th, th);
 
-fun rules_of_claset cs =
-  let val {safeIs,safeEs,hazIs,hazEs,...} = rep_cs cs
-      val intros = safeIs @ hazIs
-      val elims  = map Classical.classical_rule (safeEs @ hazEs)
-  in map pairname (intros @ elims) end;
-
-fun rules_of_simpset ss =
-  let val ({rules,...}, _) = rep_ss ss
-      val simps = Net.entries rules
-  in map (fn r => (#name r, #thm r)) simps end;
-
-fun claset_rules_of ctxt = rules_of_claset (local_claset_of ctxt);
-fun simpset_rules_of ctxt = rules_of_simpset (local_simpset_of ctxt);
-
 fun atpset_rules_of ctxt = map pairname (ResAtpset.get ctxt);
 
 
@@ -444,7 +428,7 @@
     val new_facts = (PureThy.facts_of thy, []) |-> Facts.fold_static (fn (name, ths) =>
       if already_seen thy name then I else cons (name, ths));
     val new_thms = (new_facts, []) |-> fold (fn (name, ths) =>
-      if member (op =) multi_base_blacklist (Sign.base_name name) then I
+      if member (op =) multi_base_blacklist (NameSpace.base_name name) then I
       else fold_index (fn (i, th) =>
         if bad_for_atp th orelse is_some (lookup_cache thy th) then I
         else cons (name ^ "_" ^ string_of_int (i + 1), Thm.transfer thy th)) ths);
--- a/src/HOL/Tools/sat_solver.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/sat_solver.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -914,10 +914,6 @@
   fun zchaff fm =
   let
     val _          = if (getenv "ZCHAFF_HOME") = "" then raise SatSolver.NOT_CONFIGURED else ()
-    val _          = if (getenv "ZCHAFF_VERSION") <> "2004.5.13" andalso
-                        (getenv "ZCHAFF_VERSION") <> "2004.11.15" then raise SatSolver.NOT_CONFIGURED else ()
-      (* both versions of zChaff appear to have the same interface, so we do *)
-      (* not actually need to distinguish between them in the following code *)
     val serial_str = serial_string ()
     val inpath     = File.tmp_path (Path.explode ("isabelle" ^ serial_str ^ ".cnf"))
     val outpath    = File.tmp_path (Path.explode ("result" ^ serial_str))
@@ -943,11 +939,12 @@
 let
   fun berkmin fm =
   let
-    val _          = if (getenv "BERKMIN_HOME") = "" orelse (getenv "BERKMIN_EXE") = "" then raise SatSolver.NOT_CONFIGURED else ()
+    val _          = if (getenv "BERKMIN_HOME") = "" then raise SatSolver.NOT_CONFIGURED else ()
     val serial_str = serial_string ()
     val inpath     = File.tmp_path (Path.explode ("isabelle" ^ serial_str ^ ".cnf"))
     val outpath    = File.tmp_path (Path.explode ("result" ^ serial_str))
-    val cmd        = (getenv "BERKMIN_HOME") ^ "/" ^ (getenv "BERKMIN_EXE") ^ " " ^ (Path.implode inpath) ^ " > " ^ (Path.implode outpath)
+    val exec       = getenv "BERKMIN_EXE"
+    val cmd        = (getenv "BERKMIN_HOME") ^ "/" ^ (if exec = "" then "BerkMin561" else exec) ^ " " ^ (Path.implode inpath) ^ " > " ^ (Path.implode outpath)
     fun writefn fm = SatSolver.write_dimacs_cnf_file inpath (PropLogic.defcnf fm)
     fun readfn ()  = SatSolver.read_std_result_file outpath ("Satisfiable          !!", "solution =", "UNSATISFIABLE          !!")
     val _          = if File.exists inpath then warning ("overwriting existing file " ^ quote (Path.implode inpath)) else ()
--- a/src/HOL/Tools/specification_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Tools/specification_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -24,7 +24,7 @@
                 val ctype = domain_type (type_of P)
                 val cname_full = Sign.intern_const thy cname
                 val cdefname = if thname = ""
-                               then Thm.def_name (Sign.base_name cname)
+                               then Thm.def_name (NameSpace.base_name cname)
                                else thname
                 val def_eq = Logic.mk_equals (Const(cname_full,ctype),
                                               HOLogic.choice_const ctype $  P)
@@ -50,7 +50,7 @@
                         val ctype = domain_type (type_of P)
                         val cname_full = Sign.intern_const thy cname
                         val cdefname = if thname = ""
-                                       then Thm.def_name (Sign.base_name cname)
+                                       then Thm.def_name (NameSpace.base_name cname)
                                        else thname
                         val co = Const(cname_full,ctype)
                         val thy' = Theory.add_finals_i covld [co] thy
@@ -154,7 +154,7 @@
         fun mk_exist (c,prop) =
             let
                 val T = type_of c
-                val cname = Sign.base_name (fst (dest_Const c))
+                val cname = NameSpace.base_name (fst (dest_Const c))
                 val vname = if Syntax.is_identifier cname
                             then cname
                             else "x"
--- a/src/HOL/Transcendental.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/Transcendental.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -19,7 +19,7 @@
 proof -
   assume "p \<le> n"
   hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le)
-  thus ?thesis by (simp add: power_Suc power_commutes)
+  thus ?thesis by (simp add: power_commutes)
 qed
 
 lemma lemma_realpow_diff_sumr:
@@ -33,14 +33,14 @@
   fixes y :: "'a::{recpower,comm_ring}" shows
      "x ^ (Suc n) - y ^ (Suc n) =  
       (x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"
-apply (induct n, simp add: power_Suc)
-apply (simp add: power_Suc del: setsum_op_ivl_Suc)
+apply (induct n, simp)
+apply (simp del: setsum_op_ivl_Suc)
 apply (subst setsum_op_ivl_Suc)
 apply (subst lemma_realpow_diff_sumr)
 apply (simp add: right_distrib del: setsum_op_ivl_Suc)
 apply (subst mult_left_commute [where a="x - y"])
 apply (erule subst)
-apply (simp add: power_Suc algebra_simps)
+apply (simp add: algebra_simps)
 done
 
 lemma lemma_realpow_rev_sumr:
@@ -368,7 +368,7 @@
 apply (cases "n", simp)
 apply (simp add: lemma_realpow_diff_sumr2 h
                  right_diff_distrib [symmetric] mult_assoc
-            del: realpow_Suc setsum_op_ivl_Suc of_nat_Suc)
+            del: power_Suc setsum_op_ivl_Suc of_nat_Suc)
 apply (subst lemma_realpow_rev_sumr)
 apply (subst sumr_diff_mult_const2)
 apply simp
@@ -377,7 +377,7 @@
 apply (simp add: diff_minus [symmetric] less_iff_Suc_add)
 apply (clarify)
 apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac
-            del: setsum_op_ivl_Suc realpow_Suc)
+            del: setsum_op_ivl_Suc power_Suc)
 apply (subst mult_assoc [symmetric], subst power_add [symmetric])
 apply (simp add: mult_ac)
 done
@@ -831,7 +831,7 @@
   shows "summable S"
 proof -
   have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)"
-    unfolding S_def by (simp add: power_Suc del: mult_Suc)
+    unfolding S_def by (simp del: mult_Suc)
   obtain r :: real where r0: "0 < r" and r1: "r < 1"
     using dense [OF zero_less_one] by fast
   obtain N :: nat where N: "norm x < real N * r"
@@ -928,7 +928,7 @@
 next
   case (Suc n)
   have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
-    unfolding S_def by (simp add: power_Suc del: mult_Suc)
+    unfolding S_def by (simp del: mult_Suc)
   hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
     by simp
 
@@ -1471,22 +1471,22 @@
 
 lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1"
 apply (subst add_commute)
-apply (simp (no_asm) del: realpow_Suc)
+apply (rule sin_cos_squared_add)
 done
 
 lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
 apply (cut_tac x = x in sin_cos_squared_add2)
-apply (auto simp add: numeral_2_eq_2)
+apply (simp add: power2_eq_square)
 done
 
 lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>"
 apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1])
-apply (simp del: realpow_Suc)
+apply simp
 done
 
 lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>"
 apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1])
-apply (simp del: realpow_Suc)
+apply simp
 done
 
 lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
@@ -1642,6 +1642,7 @@
   thus ?thesis unfolding One_nat_def by (simp add: mult_ac)
 qed
 
+text {* FIXME: This is a long, ugly proof! *}
 lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x"
 apply (subgoal_tac 
        "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
@@ -1652,11 +1653,11 @@
 apply (rotate_tac 2)
 apply (drule sin_paired [THEN sums_unique, THEN ssubst])
 unfolding One_nat_def
-apply (auto simp del: fact_Suc realpow_Suc)
+apply (auto simp del: fact_Suc)
 apply (frule sums_unique)
-apply (auto simp del: fact_Suc realpow_Suc)
+apply (auto simp del: fact_Suc)
 apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans])
-apply (auto simp del: fact_Suc realpow_Suc)
+apply (auto simp del: fact_Suc)
 apply (erule sums_summable)
 apply (case_tac "m=0")
 apply (simp (no_asm_simp))
@@ -1721,7 +1722,7 @@
 apply (rule_tac y =
  "\<Sum>n=0..< Suc(Suc(Suc 0)). - (-1 ^ n / (real(fact (2*n))) * 2 ^ (2*n))"
        in order_less_trans)
-apply (simp (no_asm) add: fact_num_eq_if realpow_num_eq_if del: fact_Suc realpow_Suc)
+apply (simp (no_asm) add: fact_num_eq_if realpow_num_eq_if del: fact_Suc)
 apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc)
 apply (rule sumr_pos_lt_pair)
 apply (erule sums_summable, safe)
@@ -2456,8 +2457,7 @@
 apply (rule_tac c1 = "(cos x)\<twosuperior>" in real_mult_right_cancel [THEN iffD1])
 apply (auto dest: field_power_not_zero
         simp add: power_mult_distrib left_distrib power_divide tan_def 
-                  mult_assoc power_inverse [symmetric] 
-        simp del: realpow_Suc)
+                  mult_assoc power_inverse [symmetric])
 done
 
 lemma isCont_inverse_function2:
--- a/src/HOL/ex/Quickcheck_Generators.thy	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOL/ex/Quickcheck_Generators.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -138,7 +138,7 @@
     let
       val this_ty = Type (hd tycos, map TFree vs);
       val this_ty' = StateMonad.liftT (term_ty this_ty) @{typ seed};
-      val random_name = NameSpace.base @{const_name random};
+      val random_name = NameSpace.base_name @{const_name random};
       val random'_name = random_name ^ "_" ^ Class.type_name (hd tycos) ^ "'";
       fun random ty = Sign.mk_const thy (@{const_name random}, [ty]);
       val random' = Free (random'_name,
--- a/src/HOLCF/Tools/domain/domain_axioms.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOLCF/Tools/domain/domain_axioms.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -22,7 +22,7 @@
   val dc_rep = %%:(dname^"_rep");
   val x_name'= "x";
   val x_name = idx_name eqs x_name' (n+1);
-  val dnam = Sign.base_name dname;
+  val dnam = NameSpace.base_name dname;
 
   val abs_iso_ax = ("abs_iso", mk_trp(dc_rep`(dc_abs`%x_name') === %:x_name'));
   val rep_iso_ax = ("rep_iso", mk_trp(dc_abs`(dc_rep`%x_name') === %:x_name'));
--- a/src/HOLCF/Tools/domain/domain_extender.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOLCF/Tools/domain/domain_extender.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -103,7 +103,7 @@
 			 (Sign.full_bname thy''' dname, map (Syntax.read_typ_global thy''') vs))
                    o fst) eqs''';
     val cons''' = map snd eqs''';
-    fun thy_type  (dname,tvars)  = (Sign.base_name dname, length tvars, NoSyn);
+    fun thy_type  (dname,tvars)  = (NameSpace.base_name dname, length tvars, NoSyn);
     fun thy_arity (dname,tvars)  = (dname, map (snd o dest_TFree) tvars, pcpoS);
     val thy'' = thy''' |> Sign.add_types     (map thy_type  dtnvs)
 		       |> fold (AxClass.axiomatize_arity o thy_arity) dtnvs;
@@ -114,7 +114,7 @@
     val new_dts = map (fn ((s,Ts),_) => (s, map (fst o dest_TFree) Ts)) eqs';
     fun strip ss = Library.drop (find_index_eq "'" ss +1, ss);
     fun typid (Type  (id,_)) =
-          let val c = hd (Symbol.explode (Sign.base_name id))
+          let val c = hd (Symbol.explode (NameSpace.base_name id))
           in if Symbol.is_letter c then c else "t" end
       | typid (TFree (id,_)   ) = hd (strip (tl (Symbol.explode id)))
       | typid (TVar ((id,_),_)) = hd (tl (Symbol.explode id));
@@ -133,7 +133,7 @@
       ||>> Domain_Theorems.comp_theorems (comp_dnam, eqs);
   in
     theorems_thy
-    |> Sign.add_path (Sign.base_name comp_dnam)
+    |> Sign.add_path (NameSpace.base_name comp_dnam)
     |> (snd o (PureThy.add_thmss [((Binding.name "rews", List.concat rewss @ take_rews), [])]))
     |> Sign.parent_path
   end;
--- a/src/HOLCF/Tools/domain/domain_syntax.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOLCF/Tools/domain/domain_syntax.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -25,7 +25,7 @@
 in
   val dtype  = Type(dname,typevars);
   val dtype2 = foldr1 mk_ssumT (map prod cons');
-  val dnam = Sign.base_name dname;
+  val dnam = NameSpace.base_name dname;
   val const_rep  = (dnam^"_rep" ,              dtype  ->> dtype2, NoSyn);
   val const_abs  = (dnam^"_abs" ,              dtype2 ->> dtype , NoSyn);
   val const_when = (dnam^"_when", List.foldr (op ->>) (dtype ->> freetvar "t") (map when_type cons'), NoSyn);
--- a/src/HOLCF/Tools/domain/domain_theorems.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOLCF/Tools/domain/domain_theorems.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -606,7 +606,7 @@
 
 in
   thy
-    |> Sign.add_path (Sign.base_name dname)
+    |> Sign.add_path (NameSpace.base_name dname)
     |> (snd o (PureThy.add_thmss (map (Thm.no_attributes o apfst Binding.name) [
         ("iso_rews" , iso_rews  ),
         ("exhaust"  , [exhaust] ),
--- a/src/HOLCF/Tools/fixrec_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/HOLCF/Tools/fixrec_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -181,7 +181,7 @@
     val fixpoint = mk_fix (lambda_ctuple lhss (mk_ctuple rhss));
     
     fun one_def (l as Free(n,_)) r =
-          let val b = Sign.base_name n
+          let val b = NameSpace.base_name n
           in ((Binding.name (b^"_def"), []), r) end
       | one_def _ _ = fixrec_err "fixdefs: lhs not of correct form";
     fun defs [] _ = []
@@ -230,7 +230,7 @@
 
 fun taken_names (t : term) : bstring list =
   let
-    fun taken (Const(a,_), bs) = insert (op =) (Sign.base_name a) bs
+    fun taken (Const(a,_), bs) = insert (op =) (NameSpace.base_name a) bs
       | taken (Free(a,_) , bs) = insert (op =) a bs
       | taken (f $ u     , bs) = taken (f, taken (u, bs))
       | taken (Abs(a,_,t), bs) = taken (t, insert (op =) a bs)
--- a/src/Pure/General/binding.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/General/binding.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -10,17 +10,18 @@
 signature BINDING =
 sig
   type binding
-  val dest: binding -> (string * bool) list * (string * bool) list * bstring
+  val dest: binding -> (string * bool) list * bstring
   val verbose: bool ref
   val str_of: binding -> string
   val make: bstring * Position.T -> binding
+  val pos_of: binding -> Position.T
   val name: bstring -> binding
-  val pos_of: binding -> Position.T
   val name_of: binding -> string
   val map_name: (bstring -> bstring) -> binding -> binding
   val empty: binding
   val is_empty: binding -> bool
   val qualify: bool -> string -> binding -> binding
+  val prefix_of: binding -> (string * bool) list
   val map_prefix: ((string * bool) list -> (string * bool) list) -> binding -> binding
   val add_prefix: bool -> string -> binding -> binding
 end;
@@ -32,13 +33,11 @@
 
 (* datatype *)
 
-type component = string * bool;   (*name with mandatory flag*)
-
 datatype binding = Binding of
- {prefix: component list,         (*system prefix*)
-  qualifier: component list,      (*user qualifier*)
-  name: bstring,                  (*base name*)
-  pos: Position.T};               (*source position*)
+ {prefix: (string * bool) list,     (*system prefix*)
+  qualifier: (string * bool) list,  (*user qualifier*)
+  name: bstring,                    (*base name*)
+  pos: Position.T};                 (*source position*)
 
 fun make_binding (prefix, qualifier, name, pos) =
   Binding {prefix = prefix, qualifier = qualifier, name = name, pos = pos};
@@ -46,7 +45,7 @@
 fun map_binding f (Binding {prefix, qualifier, name, pos}) =
   make_binding (f (prefix, qualifier, name, pos));
 
-fun dest (Binding {prefix, qualifier, name, ...}) = (prefix, qualifier, name);
+fun dest (Binding {prefix, qualifier, name, ...}) = (prefix @ qualifier, name);
 
 
 (* diagnostic output *)
@@ -92,6 +91,8 @@
 
 (* system prefix *)
 
+fun prefix_of (Binding {prefix, ...}) = prefix;
+
 fun map_prefix f = map_binding (fn (prefix, qualifier, name, pos) =>
   (f prefix, qualifier, name, pos));
 
--- a/src/Pure/General/graph.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/General/graph.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -21,7 +21,6 @@
   val maximals: 'a T -> key list
   val subgraph: (key -> bool) -> 'a T -> 'a T
   val map_nodes: ('a -> 'b) -> 'a T -> 'b T
-  val fold_map_nodes: (key * 'a -> 'b -> 'c * 'b) -> 'a T -> 'b -> 'c T * 'b
   val get_node: 'a T -> key -> 'a                                     (*exception UNDEF*)
   val map_node: key -> ('a -> 'a) -> 'a T -> 'a T
   val map_node_yield: key -> ('a -> 'b * 'a) -> 'a T -> 'b * 'a T
@@ -116,9 +115,6 @@
 
 fun map_nodes f (Graph tab) = Graph (Table.map (fn (i, ps) => (f i, ps)) tab);
 
-fun fold_map_nodes f (Graph tab) =
-  apfst Graph o Table.fold_map (fn (k, (i, ps)) => f (k, i) #> apfst (rpair ps)) tab;
-
 fun get_node G = #1 o get_entry G;
 
 fun map_node x f = map_entry x (fn (i, ps) => (f i, ps));
--- a/src/Pure/General/name_space.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/General/name_space.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -25,9 +25,9 @@
   val explode: string -> string list
   val append: string -> string -> string
   val qualified: string -> string -> string
-  val base: string -> string
+  val base_name: string -> string
   val qualifier: string -> string
-  val map_base: (string -> string) -> string -> string
+  val map_base_name: (string -> string) -> string -> string
   type T
   val empty: T
   val intern: T -> xstring -> string
@@ -78,14 +78,14 @@
   if path = "" orelse name = "" then name
   else path ^ separator ^ name;
 
-fun base "" = ""
-  | base name = List.last (explode_name name);
+fun base_name "" = ""
+  | base_name name = List.last (explode_name name);
 
 fun qualifier "" = ""
   | qualifier name = implode_name (#1 (split_last (explode_name name)));
 
-fun map_base _ "" = ""
-  | map_base f name =
+fun map_base_name _ "" = ""
+  | map_base_name f name =
       let val names = explode_name name
       in implode_name (nth_map (length names - 1) f names) end;
 
@@ -123,7 +123,7 @@
 datatype T =
   NameSpace of
     (string list * string list) Symtab.table *   (*internals, hidden internals*)
-    string list Symtab.table;                    (*externals*)
+    xstring list Symtab.table;                   (*externals*)
 
 val empty = NameSpace (Symtab.empty, Symtab.empty);
 
@@ -153,15 +153,15 @@
 
 fun extern_flags {long_names, short_names, unique_names} space name =
   let
-    fun valid unique xname =
-      let val (name', uniq) = lookup space xname
-      in name = name' andalso (uniq orelse not unique) end;
+    fun valid require_unique xname =
+      let val (name', is_unique) = lookup space xname
+      in name = name' andalso (not require_unique orelse is_unique) end;
 
     fun ext [] = if valid false name then name else hidden name
       | ext (nm :: nms) = if valid unique_names nm then nm else ext nms;
   in
     if long_names then name
-    else if short_names then base name
+    else if short_names then base_name name
     else ext (get_accesses space name)
   end;
 
@@ -204,7 +204,7 @@
     let val names = valid_accesses space name in
       space
       |> add_name' name name
-      |> fold (del_name name) (if fully then names else names inter_string [base name])
+      |> fold (del_name name) (if fully then names else names inter_string [base_name name])
       |> fold (del_name_extra name) (get_accesses space name)
     end;
 
@@ -278,8 +278,8 @@
 
 fun full_name naming binding =
   let
-    val (prefix, qualifier, bname) = Binding.dest binding;
-    val naming' = apply_prefix (prefix @ qualifier) naming;
+    val (prfx, bname) = Binding.dest binding;
+    val naming' = apply_prefix prfx naming;
   in full naming' bname end;
 
 
@@ -287,8 +287,8 @@
 
 fun declare naming binding space =
   let
-    val (prefix, qualifier, bname) = Binding.dest binding;
-    val naming' = apply_prefix (prefix @ qualifier) naming;
+    val (prfx, bname) = Binding.dest binding;
+    val naming' = apply_prefix prfx naming;
     val name = full naming' bname;
     val names = explode_name name;
 
--- a/src/Pure/General/table.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/General/table.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -24,7 +24,6 @@
   val map': (key -> 'a -> 'b) -> 'a table -> 'b table
   val fold: (key * 'b -> 'a -> 'a) -> 'b table -> 'a -> 'a
   val fold_rev: (key * 'b -> 'a -> 'a) -> 'b table -> 'a -> 'a
-  val fold_map: (key * 'b -> 'a -> 'c * 'a) -> 'b table -> 'a -> 'c table * 'a
   val dest: 'a table -> (key * 'a) list
   val keys: 'a table -> key list
   val exists: (key * 'a -> bool) -> 'a table -> bool
@@ -112,25 +111,6 @@
           fold left (f p1 (fold mid (f p2 (fold right x))));
   in fold end;
 
-fun fold_map_table f =
-  let
-    fun fold_map Empty s = (Empty, s)
-      | fold_map (Branch2 (left, p as (k, x), right)) s =
-          s
-          |> fold_map left
-          ||>> f p
-          ||>> fold_map right
-          |-> (fn ((l, e), r) => pair (Branch2 (l, (k, e), r)))
-      | fold_map (Branch3 (left, p1 as (k1, x1), mid, p2 as (k2, x2), right)) s =
-          s
-          |> fold_map left
-          ||>> f p1
-          ||>> fold_map mid
-          ||>> f p2
-          ||>> fold_map right
-          |-> (fn ((((l, e1), m), e2), r) => pair (Branch3 (l, (k1, e1), m, (k2, e2), r)))
-  in fold_map end;
-
 fun dest tab = fold_rev_table cons tab [];
 fun keys tab = fold_rev_table (cons o #1) tab [];
 
@@ -366,7 +346,7 @@
 
 fun join f (table1, table2) =
   let fun add (key, y) tab = modify key (fn NONE => y | SOME x => f key (x, y)) tab;
-  in fold_table add table2 table1 end;
+  in if pointer_eq (table1, table2) then table1 else fold_table add table2 table1 end;
 
 fun merge eq = join (fn key => fn xy => if eq xy then raise SAME else raise DUP key);
 
@@ -398,7 +378,6 @@
 val map' = map_table;
 val fold = fold_table;
 val fold_rev = fold_rev_table;
-val fold_map = fold_map_table;
 
 end;
 
--- a/src/Pure/Isar/calculation.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/calculation.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -114,7 +114,7 @@
 
 fun print_calculation false _ _ = ()
   | print_calculation true ctxt calc = Pretty.writeln
-      (ProofContext.pretty_fact ctxt (ProofContext.full_bname ctxt calculationN, calc));
+      (ProofContext.pretty_fact ctxt (ProofContext.full_name ctxt (Binding.name calculationN), calc));
 
 
 (* also and finally *)
--- a/src/Pure/Isar/class_target.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/class_target.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -300,7 +300,7 @@
   map (fn (c, (_, (ty, t))) => (t, Const (c, ty))) o these_operations thy;
 
 fun redeclare_const thy c =
-  let val b = Sign.base_name c
+  let val b = NameSpace.base_name c
   in Sign.intern_const thy b = c ? Variable.declare_const (b, c) end;
 
 fun synchronize_class_syntax sort base_sort ctxt =
@@ -358,7 +358,7 @@
 
 (* class target *)
 
-val class_prefix = Logic.const_of_class o Sign.base_name;
+val class_prefix = Logic.const_of_class o NameSpace.base_name;
 
 fun declare class pos ((c, mx), dict) thy =
   let
@@ -475,7 +475,7 @@
 
 fun type_name "*" = "prod"
   | type_name "+" = "sum"
-  | type_name s = sanatize_name (NameSpace.base s);
+  | type_name s = sanatize_name (NameSpace.base_name s);
 
 fun resort_terms pp algebra consts constraints ts =
   let
--- a/src/Pure/Isar/element.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/element.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -202,7 +202,7 @@
   let val head =
     if Thm.has_name_hint th then
       Pretty.block [Pretty.command kind,
-        Pretty.brk 1, Pretty.str (Sign.base_name (Thm.get_name_hint th) ^ ":")]
+        Pretty.brk 1, Pretty.str (NameSpace.base_name (Thm.get_name_hint th) ^ ":")]
     else Pretty.command kind
   in Pretty.block (Pretty.fbreaks (head :: prts)) end;
 
--- a/src/Pure/Isar/isar_cmd.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/isar_cmd.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -150,10 +150,12 @@
     val oracle = SymbolPos.content (SymbolPos.explode (oracle_txt, pos));
     val txt =
       "local\n\
-      \  val name = " ^ quote name ^ ";\n\
+      \  val name = " ^ ML_Syntax.print_string name ^ ";\n\
+      \  val pos = " ^ ML_Syntax.print_position pos ^ ";\n\
+      \  val binding = Binding.make (name, pos);\n\
       \  val oracle = " ^ oracle ^ ";\n\
       \in\n\
-      \  val " ^ name ^ " = snd (Context.>>> (Context.map_theory_result (Thm.add_oracle (name, oracle))));\n\
+      \  val " ^ name ^ " = snd (Context.>>> (Context.map_theory_result (Thm.add_oracle (binding, oracle))));\n\
       \end;\n";
   in Context.theory_map (ML_Context.exec (fn () => ML_Context.eval false pos txt)) end;
 
--- a/src/Pure/Isar/proof.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/proof.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -1006,7 +1006,7 @@
     fun after_local' [[th]] = put_thms false (AutoBind.thisN, SOME [th]);
     fun after_global' [[th]] = ProofContext.put_thms false (AutoBind.thisN, SOME [th]);
     val after_qed' = (after_local', after_global');
-    val this_name = ProofContext.full_bname goal_ctxt AutoBind.thisN;
+    val this_name = ProofContext.full_name goal_ctxt (Binding.name AutoBind.thisN);
 
     val result_ctxt =
       state
--- a/src/Pure/Isar/proof_context.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/proof_context.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -23,7 +23,6 @@
   val set_stmt: bool -> Proof.context -> Proof.context
   val naming_of: Proof.context -> NameSpace.naming
   val full_name: Proof.context -> binding -> string
-  val full_bname: Proof.context -> bstring -> string
   val consts_of: Proof.context -> Consts.T
   val const_syntax_name: Proof.context -> string -> string
   val the_const_constraint: Proof.context -> string -> typ
@@ -243,9 +242,7 @@
   map_mode (fn (_, pattern, schematic, abbrev) => (stmt, pattern, schematic, abbrev));
 
 val naming_of = #naming o rep_context;
-
 val full_name = NameSpace.full_name o naming_of;
-fun full_bname thy = NameSpace.full_name (naming_of thy) o Binding.name;
 
 val syntax_of = #syntax o rep_context;
 val syn_of = LocalSyntax.syn_of o syntax_of;
@@ -266,11 +263,9 @@
 
 fun transfer_syntax thy =
   map_syntax (LocalSyntax.rebuild thy) #>
-  map_consts (fn consts as (local_consts, global_consts) =>
-    let val thy_consts = Sign.consts_of thy in
-      if Consts.eq_consts (thy_consts, global_consts) then consts
-      else (Consts.merge (local_consts, thy_consts), thy_consts)
-    end);
+  map_consts (fn (local_consts, _) =>
+    let val thy_consts = Sign.consts_of thy
+    in (Consts.merge (local_consts, thy_consts), thy_consts) end);
 
 fun transfer thy = Context.transfer_proof thy #> transfer_syntax thy;
 
--- a/src/Pure/Isar/proof_display.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/proof_display.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -75,7 +75,7 @@
 
 fun pretty_fact_name (kind, "") = Pretty.str kind
   | pretty_fact_name (kind, name) = Pretty.block [Pretty.str kind, Pretty.brk 1,
-      Pretty.str (NameSpace.base name), Pretty.str ":"];
+      Pretty.str (NameSpace.base_name name), Pretty.str ":"];
 
 fun pretty_facts ctxt =
   flat o (separate [Pretty.fbrk, Pretty.str "and "]) o
--- a/src/Pure/Isar/skip_proof.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/skip_proof.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -20,7 +20,7 @@
 (* oracle setup *)
 
 val (_, skip_proof) = Context.>>> (Context.map_theory_result
-  (Thm.add_oracle ("skip_proof", fn (thy, prop) =>
+  (Thm.add_oracle (Binding.name "skip_proof", fn (thy, prop) =>
     if ! quick_and_dirty then Thm.cterm_of thy prop
     else error "Proof may be skipped in quick_and_dirty mode only!")));
 
--- a/src/Pure/Isar/theory_target.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Isar/theory_target.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -188,7 +188,7 @@
     val arg = (b', Term.close_schematic_term rhs');
     val similar_body = Type.similar_types (rhs, rhs');
     (* FIXME workaround based on educated guess *)
-    val (prefix', _, _) = Binding.dest b';
+    val prefix' = Binding.prefix_of b';
     val class_global = Binding.name_of b = Binding.name_of b'
       andalso not (null prefix')
       andalso (fst o snd o split_last) prefix' = Class_Target.class_prefix target;
@@ -330,7 +330,7 @@
 
 fun init_lthy (ta as Target {target, instantiation, overloading, ...}) =
   Data.put ta #>
-  LocalTheory.init (NameSpace.base target)
+  LocalTheory.init (NameSpace.base_name target)
    {pretty = pretty ta,
     abbrev = abbrev ta,
     define = define ta,
--- a/src/Pure/ML/ml_antiquote.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/ML/ml_antiquote.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -110,7 +110,7 @@
 
 fun type_ syn = (Args.context -- Scan.lift Args.name_source >> (fn (ctxt, c) =>
     #1 (Term.dest_Type (ProofContext.read_tyname ctxt c))
-    |> syn ? Sign.base_name
+    |> syn ? NameSpace.base_name
     |> ML_Syntax.print_string));
 
 val _ = inline "type_name" (type_ false);
--- a/src/Pure/ML/ml_thms.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/ML/ml_thms.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -48,25 +48,30 @@
 
 (* ad-hoc goals *)
 
+val and_ = Args.$$$ "and";
 val by = Args.$$$ "by";
-val goal = Scan.unless (Scan.lift by) Args.prop;
+val goal = Scan.unless (by || and_) Args.name;
 
 val _ = ML_Context.add_antiq "lemma"
-  (fn pos => Args.context -- Args.mode "open" -- Scan.repeat1 goal --
-      Scan.lift (by |-- Method.parse -- Scan.option Method.parse) >>
-    (fn (((ctxt, is_open), props), methods) => fn {struct_name, background} =>
+  (fn pos => Args.context -- Args.mode "open" --
+      Scan.lift (OuterParse.and_list1 (Scan.repeat1 goal) --
+        (by |-- Method.parse -- Scan.option Method.parse)) >>
+    (fn ((ctxt, is_open), (raw_propss, methods)) => fn {struct_name, background} =>
       let
+        val propss = burrow (map (rpair []) o Syntax.read_props ctxt) raw_propss;
         val i = serial ();
         val prep_result =
           Goal.norm_result #> Thm.default_position pos #> not is_open ? Thm.close_derivation;
-        fun after_qed [res] goal_ctxt =
-          put_thms (i, map prep_result (ProofContext.export goal_ctxt ctxt res)) goal_ctxt;
+        fun after_qed res goal_ctxt =
+          put_thms (i, map prep_result (ProofContext.export goal_ctxt ctxt (flat res))) goal_ctxt;
         val ctxt' = ctxt
-          |> Proof.theorem_i NONE after_qed [map (rpair []) props]
+          |> Proof.theorem_i NONE after_qed propss
           |> Proof.global_terminal_proof methods;
         val (a, background') = background
           |> ML_Antiquote.variant "lemma" ||> put_thms (i, the_thms ctxt' i);
-        val ml = (thm_bind (if length props = 1 then "thm" else "thms") a i, struct_name ^ "." ^ a);
+        val ml =
+         (thm_bind (if length (flat propss) = 1 then "thm" else "thms") a i,
+          struct_name ^ "." ^ a);
       in (K ml, background') end));
 
 end;
--- a/src/Pure/ProofGeneral/proof_general_emacs.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/ProofGeneral/proof_general_emacs.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -39,7 +39,7 @@
           then XML.output_markup (name, props)
           else Markup.no_output;
         val (bg2, en2) =
-          if (case ts of [XML.Text _] => false | _ => true) then Markup.no_output
+          if null ts then Markup.no_output
           else if name = Markup.stateN then (special "O" ^ "\n", "\n" ^ special "P")
           else if name = Markup.sendbackN then (special "W", special "X")
           else if name = Markup.hiliteN then (special "0", special "1")
--- a/src/Pure/Thy/thm_deps.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/Thy/thm_deps.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -33,7 +33,7 @@
                | _ => ["global"]);
             val parents = filter_out (fn s => s = "") (map (#1 o #2) thms');
             val entry =
-              {name = Sign.base_name name,
+              {name = NameSpace.base_name name,
                ID = name,
                dir = space_implode "/" (session @ prefix),
                unfold = false,
--- a/src/Pure/axclass.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/axclass.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -158,7 +158,7 @@
 
 (* maintain instances *)
 
-fun instance_name (a, c) = NameSpace.base c ^ "_" ^ NameSpace.base a;
+fun instance_name (a, c) = NameSpace.base_name c ^ "_" ^ NameSpace.base_name a;
 
 val get_instances = #1 o #2 o AxClassData.get;
 val map_instances = AxClassData.map o apsnd o apfst;
@@ -367,7 +367,7 @@
       | NONE => error ("Illegal type for instantiation of class parameter: "
         ^ quote (c ^ " :: " ^ Syntax.string_of_typ_global thy T));
     val name_inst = instance_name (tyco, class) ^ "_inst";
-    val c' = NameSpace.base c ^ "_" ^ NameSpace.base tyco;
+    val c' = NameSpace.base_name c ^ "_" ^ NameSpace.base_name tyco;
     val T' = Type.strip_sorts T;
   in
     thy
@@ -391,7 +391,7 @@
     val (c', eq) = get_inst_param thy (c, tyco);
     val prop = Logic.mk_equals (Const (c', T), t);
     val name' = Thm.def_name_optional
-      (NameSpace.base c ^ "_" ^ NameSpace.base tyco) name;
+      (NameSpace.base_name c ^ "_" ^ NameSpace.base_name tyco) name;
   in
     thy
     |> Thm.add_def false false (Binding.name name', prop)
--- a/src/Pure/codegen.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/codegen.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -938,7 +938,7 @@
   in e () end;
 
 val (_, evaluation_conv) = Context.>>> (Context.map_theory_result
-  (Thm.add_oracle ("evaluation", fn ct =>
+  (Thm.add_oracle (Binding.name "evaluation", fn ct =>
     let
       val thy = Thm.theory_of_cterm ct;
       val t = Thm.term_of ct;
--- a/src/Pure/consts.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/consts.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -8,7 +8,6 @@
 signature CONSTS =
 sig
   type T
-  val eq_consts: T * T -> bool
   val abbrevs_of: T -> string list -> (term * term) list
   val dest: T ->
    {constants: (typ * term option) NameSpace.table,
@@ -52,23 +51,21 @@
 datatype T = Consts of
  {decls: ((decl * abbrev option) * serial) NameSpace.table,
   constraints: typ Symtab.table,
-  rev_abbrevs: (term * term) list Symtab.table} * stamp;
-
-fun eq_consts (Consts (_, s1), Consts (_, s2)) = s1 = s2;
+  rev_abbrevs: (term * term) list Symtab.table};
 
 fun make_consts (decls, constraints, rev_abbrevs) =
-  Consts ({decls = decls, constraints = constraints, rev_abbrevs = rev_abbrevs}, stamp ());
+  Consts {decls = decls, constraints = constraints, rev_abbrevs = rev_abbrevs};
 
-fun map_consts f (Consts ({decls, constraints, rev_abbrevs}, _)) =
+fun map_consts f (Consts {decls, constraints, rev_abbrevs}) =
   make_consts (f (decls, constraints, rev_abbrevs));
 
-fun abbrevs_of (Consts ({rev_abbrevs, ...}, _)) modes =
+fun abbrevs_of (Consts {rev_abbrevs, ...}) modes =
   maps (Symtab.lookup_list rev_abbrevs) modes;
 
 
 (* dest consts *)
 
-fun dest (Consts ({decls = (space, decls), constraints, ...}, _)) =
+fun dest (Consts {decls = (space, decls), constraints, ...}) =
  {constants = (space,
     Symtab.fold (fn (c, (({T, ...}, abbr), _)) =>
       Symtab.update (c, (T, Option.map #rhs abbr))) decls Symtab.empty),
@@ -77,7 +74,7 @@
 
 (* lookup consts *)
 
-fun the_const (Consts ({decls = (_, tab), ...}, _)) c =
+fun the_const (Consts {decls = (_, tab), ...}) c =
   (case Symtab.lookup tab c of
     SOME (decl, _) => decl
   | NONE => raise TYPE ("Unknown constant: " ^ quote c, [], []));
@@ -99,7 +96,7 @@
 
 val is_monomorphic = null oo type_arguments;
 
-fun the_constraint (consts as Consts ({constraints, ...}, _)) c =
+fun the_constraint (consts as Consts {constraints, ...}) c =
   (case Symtab.lookup constraints c of
     SOME T => T
   | NONE => type_scheme consts c);
@@ -107,7 +104,7 @@
 
 (* name space and syntax *)
 
-fun space_of (Consts ({decls = (space, _), ...}, _)) = space;
+fun space_of (Consts {decls = (space, _), ...}) = space;
 
 val intern = NameSpace.intern o space_of;
 val extern = NameSpace.extern o space_of;
@@ -120,7 +117,7 @@
 fun syntax consts (c, mx) =
   let
     val ({T, authentic, ...}, _) = the_const consts c handle TYPE (msg, _, _) => error msg;
-    val c' = if authentic then Syntax.constN ^ c else NameSpace.base c;
+    val c' = if authentic then Syntax.constN ^ c else NameSpace.base_name c;
   in (c', T, mx) end;
 
 fun syntax_name consts c = #1 (syntax consts (c, NoSyn));
@@ -267,17 +264,16 @@
     val expand_term = certify pp tsig true consts;
     val force_expand = mode = PrintMode.internal;
 
+    val _ = Term.exists_subterm Term.is_Var raw_rhs andalso
+      error ("Illegal schematic variables on rhs of abbreviation: " ^ Binding.str_of b);
+
     val rhs = raw_rhs
       |> Term.map_types (Type.cert_typ tsig)
-      |> cert_term;
+      |> cert_term
+      |> Term.close_schematic_term;
     val normal_rhs = expand_term rhs;
     val T = Term.fastype_of rhs;
     val lhs = Const (NameSpace.full_name naming b, T);
-
-    fun err msg = (warning (* FIXME should be error *) (msg ^ " on rhs of abbreviation:\n" ^
-      Pretty.string_of_term pp (Logic.mk_equals (lhs, rhs))); true);
-    val _ = Term.exists_subterm Term.is_Var rhs andalso err "Illegal schematic variables";
-    val _ = null (Term.hidden_polymorphism rhs) orelse err "Extra type variables";
   in
     consts |> map_consts (fn (decls, constraints, rev_abbrevs) =>
       let
@@ -307,8 +303,8 @@
 val empty = make_consts (NameSpace.empty_table, Symtab.empty, Symtab.empty);
 
 fun merge
-   (Consts ({decls = decls1, constraints = constraints1, rev_abbrevs = rev_abbrevs1}, _),
-    Consts ({decls = decls2, constraints = constraints2, rev_abbrevs = rev_abbrevs2}, _)) =
+   (Consts {decls = decls1, constraints = constraints1, rev_abbrevs = rev_abbrevs1},
+    Consts {decls = decls2, constraints = constraints2, rev_abbrevs = rev_abbrevs2}) =
   let
     val decls' = NameSpace.merge_tables (eq_snd (op =)) (decls1, decls2)
       handle Symtab.DUP c => err_dup_const c;
--- a/src/Pure/logic.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/logic.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -230,7 +230,7 @@
 (* class relations *)
 
 fun name_classrel (c1, c2) =
-  NameSpace.base c1 ^ "_" ^ NameSpace.base c2;
+  NameSpace.base_name c1 ^ "_" ^ NameSpace.base_name c2;
 
 fun mk_classrel (c1, c2) = mk_inclass (Term.aT [c1], c2);
 
@@ -243,8 +243,8 @@
 (* type arities *)
 
 fun name_arities (t, _, S) =
-  let val b = NameSpace.base t
-  in S |> map (fn c => NameSpace.base c ^ "_" ^ b) end;
+  let val b = NameSpace.base_name t
+  in S |> map (fn c => NameSpace.base_name c ^ "_" ^ b) end;
 
 fun name_arity (t, dom, c) = hd (name_arities (t, dom, [c]));
 
--- a/src/Pure/old_term.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/old_term.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -39,7 +39,7 @@
 
 (*Accumulates the names in the term, suppressing duplicates.
   Includes Frees and Consts.  For choosing unambiguous bound var names.*)
-fun add_term_names (Const(a,_), bs) = insert (op =) (NameSpace.base a) bs
+fun add_term_names (Const(a,_), bs) = insert (op =) (NameSpace.base_name a) bs
   | add_term_names (Free(a,_), bs) = insert (op =) a bs
   | add_term_names (f$u, bs) = add_term_names (f, add_term_names(u, bs))
   | add_term_names (Abs(_,_,t), bs) = add_term_names(t,bs)
--- a/src/Pure/primitive_defs.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/primitive_defs.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -81,7 +81,7 @@
 fun mk_defpair (lhs, rhs) =
   (case Term.head_of lhs of
     Const (name, _) =>
-      (NameSpace.base name ^ "_def", Logic.mk_equals (lhs, rhs))
+      (NameSpace.base_name name ^ "_def", Logic.mk_equals (lhs, rhs))
   | _ => raise TERM ("Malformed definition: head of lhs not a constant", [lhs, rhs]));
 
 end;
--- a/src/Pure/sign.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/sign.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -14,7 +14,6 @@
     consts: Consts.T}
   val naming_of: theory -> NameSpace.naming
   val full_name: theory -> binding -> string
-  val base_name: string -> bstring
   val full_bname: theory -> bstring -> string
   val full_bname_path: theory -> string -> bstring -> string
   val syn_of: theory -> Syntax.syntax
@@ -185,7 +184,6 @@
 (* naming *)
 
 val naming_of = #naming o rep_sg;
-val base_name = NameSpace.base;
 
 val full_name = NameSpace.full_name o naming_of;
 fun full_bname thy = NameSpace.full_name (naming_of thy) o Binding.name;
--- a/src/Pure/term.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/term.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -490,7 +490,7 @@
 
 fun declare_term_names tm =
   fold_aterms
-    (fn Const (a, _) => Name.declare (NameSpace.base a)
+    (fn Const (a, _) => Name.declare (NameSpace.base_name a)
       | Free (a, _) => Name.declare a
       | _ => I) tm #>
   fold_types declare_typ_names tm;
@@ -721,7 +721,7 @@
 fun lambda v t =
   let val x =
     (case v of
-      Const (x, _) => NameSpace.base x
+      Const (x, _) => NameSpace.base_name x
     | Free (x, _) => x
     | Var ((x, _), _) => x
     | _ => Name.uu)
@@ -805,8 +805,8 @@
 fun close_schematic_term t =
   let
     val extra_types = map (fn v => Const ("TYPE", itselfT (TVar v))) (hidden_polymorphism t);
-    val extra_terms = map Var (rev (add_vars t []));
-  in fold_rev lambda (extra_types @ extra_terms) t end;
+    val extra_terms = map Var (add_vars t []);
+  in fold lambda (extra_terms @ extra_types) t end;
 
 
 
--- a/src/Pure/thm.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Pure/thm.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -151,7 +151,7 @@
   val proof_of: thm -> proof
   val join_proof: thm -> unit
   val extern_oracles: theory -> xstring list
-  val add_oracle: bstring * ('a -> cterm) -> theory -> (string * ('a -> thm)) * theory
+  val add_oracle: binding * ('a -> cterm) -> theory -> (string * ('a -> thm)) * theory
 end;
 
 structure Thm:> THM =
@@ -1698,7 +1698,7 @@
 
 structure Oracles = TheoryDataFun
 (
-  type T = stamp NameSpace.table;
+  type T = serial NameSpace.table;
   val empty = NameSpace.empty_table;
   val copy = I;
   val extend = I;
@@ -1708,13 +1708,12 @@
 
 val extern_oracles = map #1 o NameSpace.extern_table o Oracles.get;
 
-fun add_oracle (bname, oracle) thy =
+fun add_oracle (b, oracle) thy =
   let
     val naming = Sign.naming_of thy;
-    val name = NameSpace.full_name naming (Binding.name bname);
-    val thy' = thy |> Oracles.map (fn (space, tab) =>
-      (NameSpace.declare naming (Binding.name bname) space |> snd,
-        Symtab.update_new (name, stamp ()) tab handle Symtab.DUP dup => err_dup_ora dup));
+    val (name, tab') = NameSpace.bind naming (b, serial ()) (Oracles.get thy)
+      handle Symtab.DUP _ => err_dup_ora (Binding.str_of b);
+    val thy' = Oracles.put tab' thy;
   in ((name, invoke_oracle (Theory.check_thy thy') name oracle), thy') end;
 
 end;
--- a/src/Tools/Compute_Oracle/compute.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Tools/Compute_Oracle/compute.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -371,7 +371,7 @@
 fun merge_shyps shyps1 shyps2 = Sorttab.keys (add_shyps shyps2 (add_shyps shyps1 Sorttab.empty))
 
 val (_, export_oracle) = Context.>>> (Context.map_theory_result
-  (Thm.add_oracle ("compute", fn (thy, hyps, shyps, prop) =>
+  (Thm.add_oracle (Binding.name "compute", fn (thy, hyps, shyps, prop) =>
     let
         val shyptab = add_shyps shyps Sorttab.empty
         fun delete s shyptab = Sorttab.delete s shyptab handle Sorttab.UNDEF _ => shyptab
--- a/src/Tools/code/code_haskell.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Tools/code/code_haskell.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -34,7 +34,7 @@
 fun pr_haskell_stmt naming labelled_name syntax_class syntax_tyco syntax_const
     init_syms deresolve is_cons contr_classparam_typs deriving_show =
   let
-    val deresolve_base = NameSpace.base o deresolve;
+    val deresolve_base = NameSpace.base_name o deresolve;
     fun class_name class = case syntax_class class
      of NONE => deresolve class
       | SOME class => class;
@@ -143,7 +143,7 @@
                 @ str "="
                 :: str "error"
                 @@ (str o (fn s => s ^ ";") o ML_Syntax.print_string
-                    o NameSpace.base o NameSpace.qualifier) name
+                    o NameSpace.base_name o NameSpace.qualifier) name
               )
             ]
           end
@@ -155,7 +155,7 @@
               let
                 val consts = map_filter
                   (fn c => if (is_some o syntax_const) c
-                    then NONE else (SOME o NameSpace.base o deresolve) c)
+                    then NONE else (SOME o NameSpace.base_name o deresolve) c)
                     ((fold o Code_Thingol.fold_constnames) (insert (op =)) (t :: ts) []);
                 val vars = init_syms
                   |> Code_Name.intro_vars consts
@@ -255,7 +255,7 @@
                   let
                     val (c_inst_name, (_, tys)) = c_inst;
                     val const = if (is_some o syntax_const) c_inst_name
-                      then NONE else (SOME o NameSpace.base o deresolve) c_inst_name;
+                      then NONE else (SOME o NameSpace.base_name o deresolve) c_inst_name;
                     val proto_rhs = Code_Thingol.eta_expand k (c_inst, []);
                     val (vs, rhs) = unfold_abs_pure proto_rhs;
                     val vars = init_syms
@@ -360,7 +360,7 @@
     val reserved_names = Code_Name.make_vars reserved_names;
     fun pr_stmt qualified = pr_haskell_stmt naming labelled_name
       syntax_class syntax_tyco syntax_const reserved_names
-      (if qualified then deresolver else NameSpace.base o deresolver)
+      (if qualified then deresolver else NameSpace.base_name o deresolver)
       is_cons contr_classparam_typs
       (if string_classes then deriving_show else K false);
     fun pr_module name content =
@@ -379,7 +379,7 @@
           |> map_filter (try deresolver);
         val qualified = is_none module_name andalso
           map deresolver stmt_names @ deps'
-          |> map NameSpace.base
+          |> map NameSpace.base_name
           |> has_duplicates (op =);
         val imports = deps'
           |> map NameSpace.qualifier
--- a/src/Tools/code/code_ml.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Tools/code/code_ml.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -47,7 +47,7 @@
   let
     val pr_label_classrel = translate_string (fn "." => "__" | c => c)
       o NameSpace.qualifier;
-    val pr_label_classparam = NameSpace.base o NameSpace.qualifier;
+    val pr_label_classparam = NameSpace.base_name o NameSpace.qualifier;
     fun pr_dicts fxy ds =
       let
         fun pr_dictvar (v, (_, 1)) = Code_Name.first_upper v ^ "_"
@@ -163,7 +163,7 @@
     fun pr_stmt (MLExc (name, n)) =
           let
             val exc_str =
-              (ML_Syntax.print_string o NameSpace.base o NameSpace.qualifier) name;
+              (ML_Syntax.print_string o NameSpace.base_name o NameSpace.qualifier) name;
           in
             concat (
               str (if n = 0 then "val" else "fun")
@@ -179,7 +179,7 @@
           let
             val consts = map_filter
               (fn c => if (is_some o syntax_const) c
-                then NONE else (SOME o NameSpace.base o deresolve) c)
+                then NONE else (SOME o NameSpace.base_name o deresolve) c)
                 (Code_Thingol.fold_constnames (insert (op =)) t []);
             val vars = reserved_names
               |> Code_Name.intro_vars consts;
@@ -204,7 +204,7 @@
                   let
                     val consts = map_filter
                       (fn c => if (is_some o syntax_const) c
-                        then NONE else (SOME o NameSpace.base o deresolve) c)
+                        then NONE else (SOME o NameSpace.base_name o deresolve) c)
                         ((fold o Code_Thingol.fold_constnames) (insert (op =)) (t :: ts) []);
                     val vars = reserved_names
                       |> Code_Name.intro_vars consts
@@ -473,7 +473,7 @@
     fun pr_stmt (MLExc (name, n)) =
           let
             val exc_str =
-              (ML_Syntax.print_string o NameSpace.base o NameSpace.qualifier) name;
+              (ML_Syntax.print_string o NameSpace.base_name o NameSpace.qualifier) name;
           in
             concat (
               str "let"
@@ -488,7 +488,7 @@
           let
             val consts = map_filter
               (fn c => if (is_some o syntax_const) c
-                then NONE else (SOME o NameSpace.base o deresolve) c)
+                then NONE else (SOME o NameSpace.base_name o deresolve) c)
                 (Code_Thingol.fold_constnames (insert (op =)) t []);
             val vars = reserved_names
               |> Code_Name.intro_vars consts;
@@ -508,7 +508,7 @@
               let
                 val consts = map_filter
                   (fn c => if (is_some o syntax_const) c
-                    then NONE else (SOME o NameSpace.base o deresolve) c)
+                    then NONE else (SOME o NameSpace.base_name o deresolve) c)
                     ((fold o Code_Thingol.fold_constnames) (insert (op =)) (t :: ts) []);
                 val vars = reserved_names
                   |> Code_Name.intro_vars consts
@@ -524,7 +524,7 @@
                   let
                     val consts = map_filter
                       (fn c => if (is_some o syntax_const) c
-                        then NONE else (SOME o NameSpace.base o deresolve) c)
+                        then NONE else (SOME o NameSpace.base_name o deresolve) c)
                         ((fold o Code_Thingol.fold_constnames) (insert (op =)) (t :: ts) []);
                     val vars = reserved_names
                       |> Code_Name.intro_vars consts
@@ -552,7 +552,7 @@
                   let
                     val consts = map_filter
                       (fn c => if (is_some o syntax_const) c
-                        then NONE else (SOME o NameSpace.base o deresolve) c)
+                        then NONE else (SOME o NameSpace.base_name o deresolve) c)
                         ((fold o Code_Thingol.fold_constnames)
                           (insert (op =)) (map (snd o fst) eqs) []);
                     val vars = reserved_names
--- a/src/Tools/code/code_thingol.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Tools/code/code_thingol.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -246,15 +246,15 @@
     in NameSpace.append prefix base end;
 in
 
-fun namify_class thy = namify thy NameSpace.base thyname_of_class;
+fun namify_class thy = namify thy NameSpace.base_name thyname_of_class;
 fun namify_classrel thy = namify thy (fn (class1, class2) => 
-  NameSpace.base class2 ^ "_" ^ NameSpace.base class1) (fn thy => thyname_of_class thy o fst);
+  NameSpace.base_name class2 ^ "_" ^ NameSpace.base_name class1) (fn thy => thyname_of_class thy o fst);
   (*order fits nicely with composed projections*)
 fun namify_tyco thy "fun" = "Pure.fun"
-  | namify_tyco thy tyco = namify thy NameSpace.base thyname_of_tyco tyco;
+  | namify_tyco thy tyco = namify thy NameSpace.base_name thyname_of_tyco tyco;
 fun namify_instance thy = namify thy (fn (class, tyco) => 
-  NameSpace.base class ^ "_" ^ NameSpace.base tyco) thyname_of_instance;
-fun namify_const thy = namify thy NameSpace.base thyname_of_const;
+  NameSpace.base_name class ^ "_" ^ NameSpace.base_name tyco) thyname_of_instance;
+fun namify_const thy = namify thy NameSpace.base_name thyname_of_const;
 
 end; (* local *)
 
--- a/src/Tools/nbe.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/Tools/nbe.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -466,7 +466,7 @@
 (* evaluation oracle *)
 
 val (_, norm_oracle) = Context.>>> (Context.map_theory_result
-  (Thm.add_oracle ("norm", fn (thy, t, naming, program, vs_ty_t, deps) =>
+  (Thm.add_oracle (Binding.name "norm", fn (thy, t, naming, program, vs_ty_t, deps) =>
     Thm.cterm_of thy (Logic.mk_equals (t, eval thy t naming program vs_ty_t deps)))));
 
 fun add_triv_classes thy =
--- a/src/ZF/Tools/datatype_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/ZF/Tools/datatype_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -74,7 +74,7 @@
                    Syntax.string_of_term_global thy t);
 
   val rec_names = map (#1 o dest_Const) rec_hds
-  val rec_base_names = map Sign.base_name rec_names
+  val rec_base_names = map NameSpace.base_name rec_names
   val big_rec_base_name = space_implode "_" rec_base_names
 
   val thy_path = thy |> Sign.add_path big_rec_base_name
--- a/src/ZF/Tools/induct_tacs.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/ZF/Tools/induct_tacs.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -157,7 +157,7 @@
 
   in
     thy
-    |> Sign.add_path (Sign.base_name big_rec_name)
+    |> Sign.add_path (NameSpace.base_name big_rec_name)
     |> PureThy.add_thmss [((Binding.name "simps", simps), [Simplifier.simp_add])] |> snd
     |> DatatypesData.put (Symtab.update (big_rec_name, dt_info) (DatatypesData.get thy))
     |> ConstructorsData.put (fold_rev Symtab.update con_pairs (ConstructorsData.get thy))
--- a/src/ZF/Tools/inductive_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/ZF/Tools/inductive_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -80,7 +80,7 @@
   val rec_names = map (#1 o dest_Const) rec_hds
   and (Const(_,recT),rec_params) = strip_comb (hd rec_tms);
 
-  val rec_base_names = map Sign.base_name rec_names;
+  val rec_base_names = map NameSpace.base_name rec_names;
   val dummy = assert_all Syntax.is_identifier rec_base_names
     (fn a => "Base name of recursive set not an identifier: " ^ a);
 
@@ -377,7 +377,7 @@
        mutual recursion to invariably be a disjoint sum.*)
      fun mk_predpair rec_tm =
        let val rec_name = (#1 o dest_Const o head_of) rec_tm
-           val pfree = Free(pred_name ^ "_" ^ Sign.base_name rec_name,
+           val pfree = Free(pred_name ^ "_" ^ NameSpace.base_name rec_name,
                             elem_factors ---> FOLogic.oT)
            val qconcl =
              List.foldr FOLogic.mk_all
--- a/src/ZF/Tools/primrec_package.ML	Fri Mar 06 09:35:29 2009 +0100
+++ b/src/ZF/Tools/primrec_package.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -139,7 +139,7 @@
     (** make definition **)
 
     (*the recursive argument*)
-    val rec_arg = Free (Name.variant (map #1 (ls@rs)) (Sign.base_name big_rec_name),
+    val rec_arg = Free (Name.variant (map #1 (ls@rs)) (NameSpace.base_name big_rec_name),
                         Ind_Syntax.iT)
 
     val def_tm = Logic.mk_equals
@@ -153,7 +153,7 @@
             writeln ("primrec def:\n" ^
                      Syntax.string_of_term_global thy def_tm)
       else();
-      (Sign.base_name fname ^ "_" ^ Sign.base_name big_rec_name ^ "_def",
+      (NameSpace.base_name fname ^ "_" ^ NameSpace.base_name big_rec_name ^ "_def",
        def_tm)
   end;
 
@@ -168,7 +168,7 @@
     val def = process_fun thy (fname, ftype, ls, rs, con_info, eqns);
 
     val ([def_thm], thy1) = thy
-      |> Sign.add_path (Sign.base_name fname)
+      |> Sign.add_path (NameSpace.base_name fname)
       |> PureThy.add_defs false [Thm.no_attributes (apfst Binding.name def)];
 
     val rewrites = def_thm :: map mk_meta_eq (#rec_rewrites con_info)