--- a/src/FOL/ex/First_Order_Logic.thy Thu Jul 23 13:28:34 2015 +0200
+++ b/src/FOL/ex/First_Order_Logic.thy Thu Jul 23 14:20:51 2015 +0200
@@ -51,17 +51,14 @@
from `A \<and> B` show B by (rule conjD2)
qed
-definition
- true :: o ("\<top>") where
- "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
+definition true :: o ("\<top>")
+ where "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
-definition
- not :: "o \<Rightarrow> o" ("\<not> _" [40] 40) where
- "\<not> A \<equiv> A \<longrightarrow> \<bottom>"
+definition not :: "o \<Rightarrow> o" ("\<not> _" [40] 40)
+ where "\<not> A \<equiv> A \<longrightarrow> \<bottom>"
-definition
- iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longleftrightarrow>" 25) where
- "A \<longleftrightarrow> B \<equiv> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
+definition iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longleftrightarrow>" 25)
+ where "A \<longleftrightarrow> B \<equiv> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
theorem trueI [intro]: \<top>
@@ -78,7 +75,8 @@
theorem notE [elim]: "\<not> A \<Longrightarrow> A \<Longrightarrow> B"
proof (unfold not_def)
assume "A \<longrightarrow> \<bottom>" and A
- then have \<bottom> .. then show B ..
+ then have \<bottom> ..
+ then show B ..
qed
theorem iffI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<longleftrightarrow> B"
--- a/src/HOL/ex/Higher_Order_Logic.thy Thu Jul 23 13:28:34 2015 +0200
+++ b/src/HOL/ex/Higher_Order_Logic.thy Thu Jul 23 14:20:51 2015 +0200
@@ -4,7 +4,9 @@
section \<open>Foundations of HOL\<close>
-theory Higher_Order_Logic imports Pure begin
+theory Higher_Order_Logic
+imports Pure
+begin
text \<open>
The following theory development demonstrates Higher-Order Logic
@@ -28,8 +30,7 @@
subsubsection \<open>Basic logical connectives\<close>
-judgment
- Trueprop :: "o \<Rightarrow> prop" ("_" 5)
+judgment Trueprop :: "o \<Rightarrow> prop" ("_" 5)
axiomatization
imp :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longrightarrow>" 25) and
@@ -115,9 +116,8 @@
theorem notE [elim]: "\<not> A \<Longrightarrow> A \<Longrightarrow> B"
proof (unfold not_def)
- assume "A \<longrightarrow> \<bottom>"
- also assume A
- finally have \<bottom> ..
+ assume "A \<longrightarrow> \<bottom>" and A
+ then have \<bottom> ..
then show B ..
qed
@@ -202,11 +202,13 @@
from c have "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C" ..
also have "A \<longrightarrow> C"
proof
- assume A then show C by (rule r1)
+ assume A
+ then show C by (rule r1)
qed
also have "B \<longrightarrow> C"
proof
- assume B then show C by (rule r2)
+ assume B
+ then show C by (rule r2)
qed
finally show C .
qed
@@ -248,8 +250,7 @@
locale classical =
assumes classical: "(\<not> A \<Longrightarrow> A) \<Longrightarrow> A"
-theorem (in classical)
- Peirce's_Law: "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
+theorem (in classical) Peirce's_Law: "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
proof
assume a: "(A \<longrightarrow> B) \<longrightarrow> A"
show A
@@ -264,8 +265,7 @@
qed
qed
-theorem (in classical)
- double_negation: "\<not> \<not> A \<Longrightarrow> A"
+theorem (in classical) double_negation: "\<not> \<not> A \<Longrightarrow> A"
proof -
assume "\<not> \<not> A"
show A
@@ -275,8 +275,7 @@
qed
qed
-theorem (in classical)
- tertium_non_datur: "A \<or> \<not> A"
+theorem (in classical) tertium_non_datur: "A \<or> \<not> A"
proof (rule double_negation)
show "\<not> \<not> (A \<or> \<not> A)"
proof
@@ -291,8 +290,7 @@
qed
qed
-theorem (in classical)
- classical_cases: "(A \<Longrightarrow> C) \<Longrightarrow> (\<not> A \<Longrightarrow> C) \<Longrightarrow> C"
+theorem (in classical) classical_cases: "(A \<Longrightarrow> C) \<Longrightarrow> (\<not> A \<Longrightarrow> C) \<Longrightarrow> C"
proof -
assume r1: "A \<Longrightarrow> C" and r2: "\<not> A \<Longrightarrow> C"
from tertium_non_datur show C