combined Lfp and Gfp to FixedPoint
authoravigad
Wed, 03 Aug 2005 14:47:51 +0200
changeset 17006 cffca870816a
parent 17005 69c415d44883
child 17007 332c28b2844e
combined Lfp and Gfp to FixedPoint
src/HOL/FixedPoint.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/FixedPoint.thy	Wed Aug 03 14:47:51 2005 +0200
@@ -0,0 +1,220 @@
+(*  Title:      HOL/FixedPoint.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+*)
+
+header{* Fixed Points and the Knaster-Tarski Theorem*}
+
+theory FixedPoint
+imports Product_Type
+begin
+
+constdefs
+  lfp :: "['a set \<Rightarrow> 'a set] \<Rightarrow> 'a set"
+    "lfp(f) == Inter({u. f(u) \<subseteq> u})"    --{*least fixed point*}
+
+  gfp :: "['a set=>'a set] => 'a set"
+    "gfp(f) == Union({u. u \<subseteq> f(u)})"
+
+
+subsection{*Proof of Knaster-Tarski Theorem using @{term lfp}*}
+
+
+text{*@{term "lfp f"} is the least upper bound of 
+      the set @{term "{u. f(u) \<subseteq> u}"} *}
+
+lemma lfp_lowerbound: "f(A) \<subseteq> A ==> lfp(f) \<subseteq> A"
+by (auto simp add: lfp_def)
+
+lemma lfp_greatest: "[| !!u. f(u) \<subseteq> u ==> A\<subseteq>u |] ==> A \<subseteq> lfp(f)"
+by (auto simp add: lfp_def)
+
+lemma lfp_lemma2: "mono(f) ==> f(lfp(f)) \<subseteq> lfp(f)"
+by (rules intro: lfp_greatest subset_trans monoD lfp_lowerbound)
+
+lemma lfp_lemma3: "mono(f) ==> lfp(f) \<subseteq> f(lfp(f))"
+by (rules intro: lfp_lemma2 monoD lfp_lowerbound)
+
+lemma lfp_unfold: "mono(f) ==> lfp(f) = f(lfp(f))"
+by (rules intro: equalityI lfp_lemma2 lfp_lemma3)
+
+subsection{*General induction rules for greatest fixed points*}
+
+lemma lfp_induct: 
+  assumes lfp: "a: lfp(f)"
+      and mono: "mono(f)"
+      and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
+  shows "P(a)"
+apply (rule_tac a=a in Int_lower2 [THEN subsetD, THEN CollectD]) 
+apply (rule lfp [THEN [2] lfp_lowerbound [THEN subsetD]]) 
+apply (rule Int_greatest)
+ apply (rule subset_trans [OF Int_lower1 [THEN mono [THEN monoD]]
+                              mono [THEN lfp_lemma2]]) 
+apply (blast intro: indhyp) 
+done
+
+
+text{*Version of induction for binary relations*}
+lemmas lfp_induct2 =  lfp_induct [of "(a,b)", split_format (complete)]
+
+
+lemma lfp_ordinal_induct: 
+  assumes mono: "mono f"
+  shows "[| !!S. P S ==> P(f S); !!M. !S:M. P S ==> P(Union M) |] 
+         ==> P(lfp f)"
+apply(subgoal_tac "lfp f = Union{S. S \<subseteq> lfp f & P S}")
+ apply (erule ssubst, simp) 
+apply(subgoal_tac "Union{S. S \<subseteq> lfp f & P S} \<subseteq> lfp f")
+ prefer 2 apply blast
+apply(rule equalityI)
+ prefer 2 apply assumption
+apply(drule mono [THEN monoD])
+apply (cut_tac mono [THEN lfp_unfold], simp)
+apply (rule lfp_lowerbound, auto) 
+done
+
+
+text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
+    to control unfolding*}
+
+lemma def_lfp_unfold: "[| h==lfp(f);  mono(f) |] ==> h = f(h)"
+by (auto intro!: lfp_unfold)
+
+lemma def_lfp_induct: 
+    "[| A == lfp(f);  mono(f);   a:A;                    
+        !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
+     |] ==> P(a)"
+by (blast intro: lfp_induct)
+
+(*Monotonicity of lfp!*)
+lemma lfp_mono: "[| !!Z. f(Z)\<subseteq>g(Z) |] ==> lfp(f) \<subseteq> lfp(g)"
+by (rule lfp_lowerbound [THEN lfp_greatest], blast)
+
+
+subsection{*Proof of Knaster-Tarski Theorem using @{term gfp}*}
+
+
+text{*@{term "gfp f"} is the greatest lower bound of 
+      the set @{term "{u. u \<subseteq> f(u)}"} *}
+
+lemma gfp_upperbound: "[| X \<subseteq> f(X) |] ==> X \<subseteq> gfp(f)"
+by (auto simp add: gfp_def)
+
+lemma gfp_least: "[| !!u. u \<subseteq> f(u) ==> u\<subseteq>X |] ==> gfp(f) \<subseteq> X"
+by (auto simp add: gfp_def)
+
+lemma gfp_lemma2: "mono(f) ==> gfp(f) \<subseteq> f(gfp(f))"
+by (rules intro: gfp_least subset_trans monoD gfp_upperbound)
+
+lemma gfp_lemma3: "mono(f) ==> f(gfp(f)) \<subseteq> gfp(f)"
+by (rules intro: gfp_lemma2 monoD gfp_upperbound)
+
+lemma gfp_unfold: "mono(f) ==> gfp(f) = f(gfp(f))"
+by (rules intro: equalityI gfp_lemma2 gfp_lemma3)
+
+subsection{*Coinduction rules for greatest fixed points*}
+
+text{*weak version*}
+lemma weak_coinduct: "[| a: X;  X \<subseteq> f(X) |] ==> a : gfp(f)"
+by (rule gfp_upperbound [THEN subsetD], auto)
+
+lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
+apply (erule gfp_upperbound [THEN subsetD])
+apply (erule imageI)
+done
+
+lemma coinduct_lemma:
+     "[| X \<subseteq> f(X Un gfp(f));  mono(f) |] ==> X Un gfp(f) \<subseteq> f(X Un gfp(f))"
+by (blast dest: gfp_lemma2 mono_Un)
+
+text{*strong version, thanks to Coen and Frost*}
+lemma coinduct: "[| mono(f);  a: X;  X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
+by (blast intro: weak_coinduct [OF _ coinduct_lemma])
+
+lemma gfp_fun_UnI2: "[| mono(f);  a: gfp(f) |] ==> a: f(X Un gfp(f))"
+by (blast dest: gfp_lemma2 mono_Un)
+
+subsection{*Even Stronger Coinduction Rule, by Martin Coen*}
+
+text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
+  @{term lfp} and @{term gfp}*}
+
+lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
+by (rules intro: subset_refl monoI Un_mono monoD)
+
+lemma coinduct3_lemma:
+     "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)));  mono(f) |]
+      ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
+apply (rule subset_trans)
+apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
+apply (rule Un_least [THEN Un_least])
+apply (rule subset_refl, assumption)
+apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
+apply (rule monoD, assumption)
+apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
+done
+
+lemma coinduct3: 
+  "[| mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
+apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
+apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto)
+done
+
+
+text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
+    to control unfolding*}
+
+lemma def_gfp_unfold: "[| A==gfp(f);  mono(f) |] ==> A = f(A)"
+by (auto intro!: gfp_unfold)
+
+lemma def_coinduct:
+     "[| A==gfp(f);  mono(f);  a:X;  X \<subseteq> f(X Un A) |] ==> a: A"
+by (auto intro!: coinduct)
+
+(*The version used in the induction/coinduction package*)
+lemma def_Collect_coinduct:
+    "[| A == gfp(%w. Collect(P(w)));  mono(%w. Collect(P(w)));   
+        a: X;  !!z. z: X ==> P (X Un A) z |] ==>  
+     a : A"
+apply (erule def_coinduct, auto) 
+done
+
+lemma def_coinduct3:
+    "[| A==gfp(f); mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
+by (auto intro!: coinduct3)
+
+text{*Monotonicity of @{term gfp}!*}
+lemma gfp_mono: "[| !!Z. f(Z)\<subseteq>g(Z) |] ==> gfp(f) \<subseteq> gfp(g)"
+by (rule gfp_upperbound [THEN gfp_least], blast)
+
+
+ML
+{*
+val lfp_def = thm "lfp_def";
+val lfp_lowerbound = thm "lfp_lowerbound";
+val lfp_greatest = thm "lfp_greatest";
+val lfp_unfold = thm "lfp_unfold";
+val lfp_induct = thm "lfp_induct";
+val lfp_induct2 = thm "lfp_induct2";
+val lfp_ordinal_induct = thm "lfp_ordinal_induct";
+val def_lfp_unfold = thm "def_lfp_unfold";
+val def_lfp_induct = thm "def_lfp_induct";
+val lfp_mono = thm "lfp_mono";
+val gfp_def = thm "gfp_def";
+val gfp_upperbound = thm "gfp_upperbound";
+val gfp_least = thm "gfp_least";
+val gfp_unfold = thm "gfp_unfold";
+val weak_coinduct = thm "weak_coinduct";
+val weak_coinduct_image = thm "weak_coinduct_image";
+val coinduct = thm "coinduct";
+val gfp_fun_UnI2 = thm "gfp_fun_UnI2";
+val coinduct3 = thm "coinduct3";
+val def_gfp_unfold = thm "def_gfp_unfold";
+val def_coinduct = thm "def_coinduct";
+val def_Collect_coinduct = thm "def_Collect_coinduct";
+val def_coinduct3 = thm "def_coinduct3";
+val gfp_mono = thm "gfp_mono";
+*}
+
+end