--- a/src/HOL/Codegenerator_Test/Candidates.thy Fri Feb 26 11:57:36 2016 +0100
+++ b/src/HOL/Codegenerator_Test/Candidates.thy Fri Feb 26 14:58:07 2016 +0100
@@ -8,7 +8,7 @@
Complex_Main
"~~/src/HOL/Library/Library"
"~~/src/HOL/Library/Sublist_Order"
- "~~/src/HOL/Library/Polynomial_GCD_euclidean"
+ "~~/src/HOL/Number_Theory/Euclidean_Algorithm"
"~~/src/HOL/Data_Structures/Tree_Map"
"~~/src/HOL/Data_Structures/Tree_Set"
"~~/src/HOL/Number_Theory/Eratosthenes"
--- a/src/HOL/Number_Theory/Euclidean_Algorithm.thy Fri Feb 26 11:57:36 2016 +0100
+++ b/src/HOL/Number_Theory/Euclidean_Algorithm.thy Fri Feb 26 14:58:07 2016 +0100
@@ -1213,4 +1213,41 @@
instance by standard (simp_all only: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def)
end
+lemma poly_gcd_monic:
+ "lead_coeff (gcd x y) = (if x = 0 \<and> y = 0 then 0 else 1)"
+ using unit_factor_gcd[of x y]
+ by (simp add: unit_factor_poly_def monom_0 one_poly_def lead_coeff_def split: if_split_asm)
+
+lemma poly_dvd_antisym:
+ fixes p q :: "'a::idom poly"
+ assumes coeff: "coeff p (degree p) = coeff q (degree q)"
+ assumes dvd1: "p dvd q" and dvd2: "q dvd p" shows "p = q"
+proof (cases "p = 0")
+ case True with coeff show "p = q" by simp
+next
+ case False with coeff have "q \<noteq> 0" by auto
+ have degree: "degree p = degree q"
+ using \<open>p dvd q\<close> \<open>q dvd p\<close> \<open>p \<noteq> 0\<close> \<open>q \<noteq> 0\<close>
+ by (intro order_antisym dvd_imp_degree_le)
+
+ from \<open>p dvd q\<close> obtain a where a: "q = p * a" ..
+ with \<open>q \<noteq> 0\<close> have "a \<noteq> 0" by auto
+ with degree a \<open>p \<noteq> 0\<close> have "degree a = 0"
+ by (simp add: degree_mult_eq)
+ with coeff a show "p = q"
+ by (cases a, auto split: if_splits)
+qed
+
+lemma poly_gcd_unique:
+ fixes d x y :: "_ poly"
+ assumes dvd1: "d dvd x" and dvd2: "d dvd y"
+ and greatest: "\<And>k. k dvd x \<Longrightarrow> k dvd y \<Longrightarrow> k dvd d"
+ and monic: "coeff d (degree d) = (if x = 0 \<and> y = 0 then 0 else 1)"
+ shows "d = gcd x y"
+ using assms by (intro gcdI) (auto simp: normalize_poly_def split: if_split_asm)
+
+lemma poly_gcd_code [code]:
+ "gcd x y = (if y = 0 then normalize x else gcd y (x mod (y :: _ poly)))"
+ by (simp add: gcd_0 gcd_non_0)
+
end