author | nipkow |
Thu, 21 Dec 2017 20:15:04 +0100 | |
changeset 67239 | d0ca4e418839 |
parent 67238 | b2d2584ace51 |
child 67240 | 2c9694a8c000 |
--- a/src/HOL/Analysis/Path_Connected.thy Thu Dec 21 19:55:41 2017 +0100 +++ b/src/HOL/Analysis/Path_Connected.thy Thu Dec 21 20:15:04 2017 +0100 @@ -2282,7 +2282,7 @@ assumes 2: "2 \<le> DIM('N)" and pc: "path_connected {r. 0 \<le> r \<and> P r}" shows "path_connected {x. P(norm(x - a))}" proof - - have "{x. P(norm(x - a))} = op+a ` {x. P(norm x)}" + have "{x. P(norm(x - a))} = op+ a ` {x. P(norm x)}" by force moreover have "path_connected {x::'N. P(norm x)}" proof -