class instances for nonstandard types
authorhuffman
Tue, 06 Sep 2005 23:11:46 +0200
changeset 17296 d0e0905d548e
parent 17295 fadf6e1faa16
child 17297 17256fe71aca
class instances for nonstandard types
src/HOL/Hyperreal/StarClasses.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Hyperreal/StarClasses.thy	Tue Sep 06 23:11:46 2005 +0200
@@ -0,0 +1,257 @@
+(*  Title       : HOL/Hyperreal/StarClasses.thy
+    ID          : $Id$
+    Author      : Brian Huffman
+*)
+
+header {* Class Instances *}
+
+theory StarClasses
+imports Transfer
+begin
+
+subsection "HOL.thy"
+
+instance star :: (order) order
+apply (intro_classes)
+apply (transfer, rule order_refl)
+apply (transfer, erule (1) order_trans)
+apply (transfer, erule (1) order_antisym)
+apply (transfer, rule order_less_le)
+done
+
+instance star :: (linorder) linorder
+by (intro_classes, transfer, rule linorder_linear)
+
+
+subsection "LOrder.thy"
+
+text {*
+  Some extra trouble is necessary because the class axioms 
+  for @{term meet} and @{term join} use quantification over
+  function spaces.
+*}
+
+lemma ex_star_fun:
+  "\<exists>f::('a \<Rightarrow> 'b) star. P (Ifun f)
+   \<Longrightarrow> \<exists>f::'a star \<Rightarrow> 'b star. P f"
+by (erule exE, erule exI)
+
+lemma ex_star_fun2:
+  "\<exists>f::('a \<Rightarrow> 'b \<Rightarrow> 'c) star. P (Ifun2 f)
+   \<Longrightarrow> \<exists>f::'a star \<Rightarrow> 'b star \<Rightarrow> 'c star. P f"
+by (erule exE, erule exI)
+
+instance star :: (join_semilorder) join_semilorder
+apply (intro_classes)
+apply (rule ex_star_fun2)
+apply (transfer is_join_def)
+apply (rule join_exists)
+done
+
+instance star :: (meet_semilorder) meet_semilorder
+apply (intro_classes)
+apply (rule ex_star_fun2)
+apply (transfer is_meet_def)
+apply (rule meet_exists)
+done
+
+instance star :: (lorder) lorder ..
+
+lemma star_join_def: "join \<equiv> Ifun2_of join"
+ apply (rule is_join_unique[OF is_join_join, THEN eq_reflection])
+ apply (transfer is_join_def, rule is_join_join)
+done
+
+lemma star_meet_def: "meet \<equiv> Ifun2_of meet"
+ apply (rule is_meet_unique[OF is_meet_meet, THEN eq_reflection])
+ apply (transfer is_meet_def, rule is_meet_meet)
+done
+
+subsection "OrderedGroup.thy"
+
+instance star :: (semigroup_add) semigroup_add
+by (intro_classes, transfer, rule add_assoc)
+
+instance star :: (ab_semigroup_add) ab_semigroup_add
+by (intro_classes, transfer, rule add_commute)
+
+instance star :: (semigroup_mult) semigroup_mult
+by (intro_classes, transfer, rule mult_assoc)
+
+instance star :: (ab_semigroup_mult) ab_semigroup_mult
+by (intro_classes, transfer, rule mult_commute)
+
+instance star :: (comm_monoid_add) comm_monoid_add
+by (intro_classes, transfer, rule comm_monoid_add_class.add_0)
+
+instance star :: (monoid_mult) monoid_mult
+apply (intro_classes)
+apply (transfer, rule mult_1_left)
+apply (transfer, rule mult_1_right)
+done
+
+instance star :: (comm_monoid_mult) comm_monoid_mult
+by (intro_classes, transfer, rule mult_1)
+
+instance star :: (cancel_semigroup_add) cancel_semigroup_add
+apply (intro_classes)
+apply (transfer, erule add_left_imp_eq)
+apply (transfer, erule add_right_imp_eq)
+done
+
+instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
+by (intro_classes, transfer, rule add_imp_eq)
+
+instance star :: (ab_group_add) ab_group_add
+apply (intro_classes)
+apply (transfer, rule left_minus)
+apply (transfer, rule diff_minus)
+done
+
+instance star :: (pordered_ab_semigroup_add) pordered_ab_semigroup_add
+by (intro_classes, transfer, rule add_left_mono)
+
+instance star :: (pordered_cancel_ab_semigroup_add) pordered_cancel_ab_semigroup_add ..
+
+instance star :: (pordered_ab_semigroup_add_imp_le) pordered_ab_semigroup_add_imp_le
+by (intro_classes, transfer, rule add_le_imp_le_left)
+
+instance star :: (pordered_ab_group_add) pordered_ab_group_add ..
+instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..
+instance star :: (lordered_ab_group_meet) lordered_ab_group_meet ..
+instance star :: (lordered_ab_group_meet) lordered_ab_group_meet ..
+instance star :: (lordered_ab_group) lordered_ab_group ..
+
+instance star :: (lordered_ab_group_abs) lordered_ab_group_abs
+apply (intro_classes)
+apply (transfer star_join_def, rule abs_lattice)
+done
+
+text "Ring-and-Field.thy"
+
+instance star :: (semiring) semiring
+apply (intro_classes)
+apply (transfer, rule left_distrib)
+apply (transfer, rule right_distrib)
+done
+
+instance star :: (semiring_0) semiring_0 ..
+instance star :: (semiring_0_cancel) semiring_0_cancel ..
+
+instance star :: (comm_semiring) comm_semiring
+by (intro_classes, transfer, rule distrib)
+
+instance star :: (comm_semiring_0) comm_semiring_0 ..
+instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
+
+instance star :: (axclass_0_neq_1) axclass_0_neq_1
+by (intro_classes, transfer, rule zero_neq_one)
+
+instance star :: (semiring_1) semiring_1 ..
+instance star :: (comm_semiring_1) comm_semiring_1 ..
+
+instance star :: (axclass_no_zero_divisors) axclass_no_zero_divisors
+by (intro_classes, transfer, rule no_zero_divisors)
+
+instance star :: (semiring_1_cancel) semiring_1_cancel ..
+instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel ..
+instance star :: (ring) ring ..
+instance star :: (comm_ring) comm_ring ..
+instance star :: (ring_1) ring_1 ..
+instance star :: (comm_ring_1) comm_ring_1 ..
+instance star :: (idom) idom .. 
+
+instance star :: (field) field
+apply (intro_classes)
+apply (transfer, erule left_inverse)
+apply (transfer, rule divide_inverse)
+done
+
+instance star :: (division_by_zero) division_by_zero
+by (intro_classes, transfer, rule inverse_zero)
+
+instance star :: (pordered_semiring) pordered_semiring
+apply (intro_classes)
+apply (transfer, erule (1) mult_left_mono)
+apply (transfer, erule (1) mult_right_mono)
+done
+
+instance star :: (pordered_cancel_semiring) pordered_cancel_semiring ..
+
+instance star :: (ordered_semiring_strict) ordered_semiring_strict
+apply (intro_classes)
+apply (transfer, erule (1) mult_strict_left_mono)
+apply (transfer, erule (1) mult_strict_right_mono)
+done
+
+instance star :: (pordered_comm_semiring) pordered_comm_semiring
+by (intro_classes, transfer, rule pordered_comm_semiring_class.mult_mono)
+
+instance star :: (pordered_cancel_comm_semiring) pordered_cancel_comm_semiring ..
+
+instance star :: (ordered_comm_semiring_strict) ordered_comm_semiring_strict
+by (intro_classes, transfer, rule ordered_comm_semiring_strict_class.mult_strict_mono)
+
+instance star :: (pordered_ring) pordered_ring ..
+instance star :: (lordered_ring) lordered_ring ..
+
+instance star :: (axclass_abs_if) axclass_abs_if
+by (intro_classes, transfer, rule abs_if)
+
+instance star :: (ordered_ring_strict) ordered_ring_strict ..
+instance star :: (pordered_comm_ring) pordered_comm_ring ..
+
+instance star :: (ordered_semidom) ordered_semidom
+by (intro_classes, transfer, rule zero_less_one)
+
+instance star :: (ordered_idom) ordered_idom ..
+instance star :: (ordered_field) ordered_field ..
+
+subsection "Power.thy"
+
+text {*
+  Proving the class axiom @{thm [source] power_Suc} for type
+  @{typ "'a star"} is a little tricky, because it quantifies
+  over values of type @{typ nat}. The transfer principle does
+  not handle quantification over non-star types in general,
+  but we can work around this by fixing an arbitrary @{typ nat}
+  value, and then applying the transfer principle.
+*}
+
+instance star :: (recpower) recpower
+proof
+  show "\<And>a::'a star. a ^ 0 = 1"
+    by transfer (rule power_0)
+next
+  fix n show "\<And>a::'a star. a ^ Suc n = a * a ^ n"
+    by transfer (rule power_Suc)
+qed
+
+subsection "Integ/Number.thy"
+
+lemma star_of_nat_def: "of_nat n \<equiv> star_of (of_nat n)"
+by (rule eq_reflection, induct_tac n, simp_all)
+
+lemma int_diff_cases:
+assumes prem: "\<And>m n. z = int m - int n \<Longrightarrow> P" shows "P"
+ apply (rule_tac z=z in int_cases)
+  apply (rule_tac m=n and n=0 in prem, simp)
+ apply (rule_tac m=0 and n="Suc n" in prem, simp)
+done -- "Belongs in Integ/IntDef.thy"
+
+lemma star_of_int_def: "of_int z \<equiv> star_of (of_int z)"
+ apply (rule eq_reflection)
+ apply (rule_tac z=z in int_diff_cases)
+ apply (simp add: star_of_nat_def)
+done
+
+instance star :: (number_ring) number_ring
+by (intro_classes, simp only: star_number_def star_of_int_def number_of_eq)
+
+lemma star_of_of_nat [simp]: "star_of (of_nat n) = of_nat n"
+by (simp add: star_of_nat_def)
+
+lemma star_of_of_int [simp]: "star_of (of_int z) = of_int z"
+by (simp add: star_of_int_def)
+
+end