--- a/src/HOL/ex/NatSum.thy Wed Feb 01 13:50:20 2017 +0100
+++ b/src/HOL/ex/NatSum.thy Mon Jan 30 16:47:20 2017 +0100
@@ -1,124 +1,120 @@
-(* Title: HOL/ex/NatSum.thy
- Author: Tobias Nipkow
+(* Title: HOL/ex/NatSum.thy
+ Author: Tobias Nipkow
*)
section \<open>Summing natural numbers\<close>
-theory NatSum imports Main begin
+theory NatSum
+ imports Main
+begin
text \<open>
Summing natural numbers, squares, cubes, etc.
Thanks to Sloane's On-Line Encyclopedia of Integer Sequences,
- \<^url>\<open>http://www.research.att.com/~njas/sequences\<close>.
+ \<^url>\<open>http://oeis.org\<close>.
\<close>
lemmas [simp] =
ring_distribs
diff_mult_distrib diff_mult_distrib2 \<comment>\<open>for type nat\<close>
-text \<open>
- \medskip The sum of the first \<open>n\<close> odd numbers equals \<open>n\<close>
- squared.
-\<close>
+
+text \<open>\<^medskip> The sum of the first \<open>n\<close> odd numbers equals \<open>n\<close> squared.\<close>
lemma sum_of_odds: "(\<Sum>i=0..<n. Suc (i + i)) = n * n"
by (induct n) auto
-text \<open>
- \medskip The sum of the first \<open>n\<close> odd squares.
-\<close>
+text \<open>\<^medskip> The sum of the first \<open>n\<close> odd squares.\<close>
lemma sum_of_odd_squares:
"3 * (\<Sum>i=0..<n. Suc(2*i) * Suc(2*i)) = n * (4 * n * n - 1)"
by (induct n) auto
-text \<open>
- \medskip The sum of the first \<open>n\<close> odd cubes
-\<close>
+text \<open>\<^medskip> The sum of the first \<open>n\<close> odd cubes.\<close>
lemma sum_of_odd_cubes:
"(\<Sum>i=0..<n. Suc (2*i) * Suc (2*i) * Suc (2*i)) =
n * n * (2 * n * n - 1)"
by (induct n) auto
-text \<open>
- \medskip The sum of the first \<open>n\<close> positive integers equals
- \<open>n (n + 1) / 2\<close>.\<close>
+
+text \<open>\<^medskip> The sum of the first \<open>n\<close> positive integers equals \<open>n (n + 1) / 2\<close>.\<close>
-lemma sum_of_naturals:
- "2 * (\<Sum>i=0..n. i) = n * Suc n"
+lemma sum_of_naturals: "2 * (\<Sum>i=0..n. i) = n * Suc n"
+ by (induct n) auto
+
+lemma sum_of_squares: "6 * (\<Sum>i=0..n. i * i) = n * Suc n * Suc (2 * n)"
by (induct n) auto
-lemma sum_of_squares:
- "6 * (\<Sum>i=0..n. i * i) = n * Suc n * Suc (2 * n)"
+lemma sum_of_cubes: "4 * (\<Sum>i=0..n. i * i * i) = n * n * Suc n * Suc n"
by (induct n) auto
-lemma sum_of_cubes:
- "4 * (\<Sum>i=0..n. i * i * i) = n * n * Suc n * Suc n"
- by (induct n) auto
+
+text \<open>\<^medskip> A cute identity:\<close>
-text\<open>\medskip A cute identity:\<close>
-
-lemma sum_squared: "(\<Sum>i=0..n. i)^2 = (\<Sum>i=0..n::nat. i^3)"
-proof(induct n)
- case 0 show ?case by simp
+lemma sum_squared: "(\<Sum>i=0..n. i)^2 = (\<Sum>i=0..n. i^3)" for n :: nat
+proof (induct n)
+ case 0
+ show ?case by simp
next
case (Suc n)
have "(\<Sum>i = 0..Suc n. i)^2 =
(\<Sum>i = 0..n. i^3) + (2*(\<Sum>i = 0..n. i)*(n+1) + (n+1)^2)"
(is "_ = ?A + ?B")
- using Suc by(simp add:eval_nat_numeral)
+ using Suc by (simp add: eval_nat_numeral)
also have "?B = (n+1)^3"
- using sum_of_naturals by(simp add:eval_nat_numeral)
+ using sum_of_naturals by (simp add: eval_nat_numeral)
also have "?A + (n+1)^3 = (\<Sum>i=0..Suc n. i^3)" by simp
finally show ?case .
qed
-text \<open>
- \medskip Sum of fourth powers: three versions.
-\<close>
+
+text \<open>\<^medskip> Sum of fourth powers: three versions.\<close>
lemma sum_of_fourth_powers:
"30 * (\<Sum>i=0..n. i * i * i * i) =
n * Suc n * Suc (2 * n) * (3 * n * n + 3 * n - 1)"
- apply (induct n)
- apply simp_all
- apply (case_tac n) \<comment> \<open>eliminates the subtraction\<close>
- apply (simp_all (no_asm_simp))
- done
+proof (induct n)
+ case 0
+ show ?case by simp
+next
+ case (Suc n)
+ then show ?case
+ by (cases n) \<comment> \<open>eliminates the subtraction\<close>
+ simp_all
+qed
text \<open>
Two alternative proofs, with a change of variables and much more
- subtraction, performed using the integers.\<close>
+ subtraction, performed using the integers.
+\<close>
lemma int_sum_of_fourth_powers:
"30 * int (\<Sum>i=0..<m. i * i * i * i) =
int m * (int m - 1) * (int(2 * m) - 1) *
(int(3 * m * m) - int(3 * m) - 1)"
- by (induct m) (simp_all add: of_nat_mult)
+ by (induct m) simp_all
lemma of_nat_sum_of_fourth_powers:
"30 * of_nat (\<Sum>i=0..<m. i * i * i * i) =
of_nat m * (of_nat m - 1) * (of_nat (2 * m) - 1) *
(of_nat (3 * m * m) - of_nat (3 * m) - (1::int))"
- by (induct m) (simp_all add: of_nat_mult)
+ by (induct m) simp_all
-text \<open>
- \medskip Sums of geometric series: \<open>2\<close>, \<open>3\<close> and the
- general case.
-\<close>
+text \<open>\<^medskip> Sums of geometric series: \<open>2\<close>, \<open>3\<close> and the general case.\<close>
lemma sum_of_2_powers: "(\<Sum>i=0..<n. 2^i) = 2^n - (1::nat)"
- by (induct n) (auto split: nat_diff_split)
+ by (induct n) auto
lemma sum_of_3_powers: "2 * (\<Sum>i=0..<n. 3^i) = 3^n - (1::nat)"
by (induct n) auto
-lemma sum_of_powers: "0 < k ==> (k - 1) * (\<Sum>i=0..<n. k^i) = k^n - (1::nat)"
+lemma sum_of_powers: "0 < k \<Longrightarrow> (k - 1) * (\<Sum>i=0..<n. k^i) = k^n - 1"
+ for k :: nat
by (induct n) auto
end