--- a/src/HOL/Analysis/Abstract_Topology.thy Thu Feb 09 13:50:09 2023 +0100
+++ b/src/HOL/Analysis/Abstract_Topology.thy Sun Feb 12 20:49:39 2023 +0000
@@ -166,23 +166,13 @@
assumes oS: "openin U S"
and cT: "closedin U T"
shows "openin U (S - T)"
-proof -
- have "S - T = S \<inter> (topspace U - T)" using openin_subset[of U S] oS cT
- by (auto simp: topspace_def openin_subset)
- then show ?thesis using oS cT
- by (auto simp: closedin_def)
-qed
+ by (metis Int_Diff cT closedin_def inf.orderE oS openin_Int openin_subset)
lemma closedin_diff[intro]:
assumes oS: "closedin U S"
and cT: "openin U T"
shows "closedin U (S - T)"
-proof -
- have "S - T = S \<inter> (topspace U - T)"
- using closedin_subset[of U S] oS cT by (auto simp: topspace_def)
- then show ?thesis
- using oS cT by (auto simp: openin_closedin_eq)
-qed
+ by (metis Int_Diff cT closedin_Int closedin_subset inf.orderE oS openin_closedin_eq)
subsection\<open>The discrete topology\<close>
@@ -209,11 +199,8 @@
assume R: ?rhs
then have "openin X S" if "S \<subseteq> U" for S
using openin_subopen subsetD that by fastforce
- moreover have "x \<in> topspace X" if "openin X S" and "x \<in> S" for x S
- using openin_subset that by blast
- ultimately
- show ?lhs
- using R by (auto simp: topology_eq)
+ then show ?lhs
+ by (metis R openin_discrete_topology openin_subset topology_eq)
qed auto
lemma discrete_topology_unique_alt:
@@ -232,8 +219,8 @@
subsection \<open>Subspace topology\<close>
-definition\<^marker>\<open>tag important\<close> subtopology :: "'a topology \<Rightarrow> 'a set \<Rightarrow> 'a topology" where
-"subtopology U V = topology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)"
+definition\<^marker>\<open>tag important\<close> subtopology :: "'a topology \<Rightarrow> 'a set \<Rightarrow> 'a topology"
+ where "subtopology U V = topology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)"
lemma istopology_subtopology: "istopology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)"
(is "istopology ?L")
@@ -326,24 +313,11 @@
assumes UV: "topspace U \<subseteq> V"
shows "subtopology U V = U"
proof -
- {
- fix S
- {
- fix T
- assume T: "openin U T" "S = T \<inter> V"
- from T openin_subset[OF T(1)] UV have eq: "S = T"
- by blast
- have "openin U S"
- unfolding eq using T by blast
- }
- moreover
- {
- assume S: "openin U S"
- then have "\<exists>T. openin U T \<and> S = T \<inter> V"
- using openin_subset[OF S] UV by auto
- }
- ultimately have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S"
- by blast
+ { fix S
+ have "openin U S" if "openin U T" "S = T \<inter> V" for T
+ by (metis Int_subset_iff assms inf.orderE openin_subset that)
+ then have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S"
+ by (metis assms inf.orderE inf_assoc openin_subset)
}
then show ?thesis
unfolding topology_eq openin_subtopology by blast
@@ -360,16 +334,16 @@
by (metis subtopology_subtopology subtopology_topspace)
lemma openin_subtopology_empty:
- "openin (subtopology U {}) S \<longleftrightarrow> S = {}"
-by (metis Int_empty_right openin_empty openin_subtopology)
+ "openin (subtopology U {}) S \<longleftrightarrow> S = {}"
+ by (metis Int_empty_right openin_empty openin_subtopology)
lemma closedin_subtopology_empty:
- "closedin (subtopology U {}) S \<longleftrightarrow> S = {}"
-by (metis Int_empty_right closedin_empty closedin_subtopology)
+ "closedin (subtopology U {}) S \<longleftrightarrow> S = {}"
+ by (metis Int_empty_right closedin_empty closedin_subtopology)
lemma closedin_subtopology_refl [simp]:
- "closedin (subtopology U X) X \<longleftrightarrow> X \<subseteq> topspace U"
-by (metis closedin_def closedin_topspace inf.absorb_iff2 le_inf_iff topspace_subtopology)
+ "closedin (subtopology U X) X \<longleftrightarrow> X \<subseteq> topspace U"
+ by (metis closedin_def closedin_topspace inf.absorb_iff2 le_inf_iff topspace_subtopology)
lemma closedin_topspace_empty: "topspace T = {} \<Longrightarrow> (closedin T S \<longleftrightarrow> S = {})"
by (simp add: closedin_def)
@@ -379,12 +353,12 @@
by (simp add: openin_closedin_eq)
lemma openin_imp_subset:
- "openin (subtopology U S) T \<Longrightarrow> T \<subseteq> S"
-by (metis Int_iff openin_subtopology subsetI)
+ "openin (subtopology U S) T \<Longrightarrow> T \<subseteq> S"
+ by (metis Int_iff openin_subtopology subsetI)
lemma closedin_imp_subset:
- "closedin (subtopology U S) T \<Longrightarrow> T \<subseteq> S"
-by (simp add: closedin_def)
+ "closedin (subtopology U S) T \<Longrightarrow> T \<subseteq> S"
+ by (simp add: closedin_def)
lemma openin_open_subtopology:
"openin X S \<Longrightarrow> openin (subtopology X S) T \<longleftrightarrow> openin X T \<and> T \<subseteq> S"
@@ -418,7 +392,7 @@
where "top_of_set \<equiv> subtopology (topology open)"
lemma open_openin: "open S \<longleftrightarrow> openin euclidean S"
- by (simp add: istopology_open topology_inverse')
+ by simp
declare open_openin [symmetric, simp]
@@ -543,14 +517,10 @@
assume s_sub: "S \<subseteq> A \<union> B" "B \<inter> S \<noteq> {}"
and disj: "A \<inter> B \<inter> S = {}"
and cl: "closed A" "closed B"
- have "S \<inter> (A \<union> B) = S"
- using s_sub(1) by auto
have "S - A = B \<inter> S"
using Diff_subset_conv Un_Diff_Int disj s_sub(1) by auto
- then have "S \<inter> A = {}"
- by (metis Diff_Diff_Int Diff_disjoint Un_Diff_Int R cl closedin_closed_Int inf_commute order_refl s_sub(2))
then show "A \<inter> S = {}"
- by blast
+ by (metis Int_Diff_Un Int_Diff_disjoint R cl closedin_closed_Int dual_order.refl inf_commute s_sub(2))
qed
qed
@@ -665,8 +635,14 @@
by (simp add: subtopology_eq_discrete_topology_eq)
lemma subtopology_eq_discrete_topology_gen:
- "S \<inter> X derived_set_of S = {} \<Longrightarrow> subtopology X S = discrete_topology(topspace X \<inter> S)"
- by (metis Int_lower1 derived_set_of_restrict inf_assoc inf_bot_right subtopology_eq_discrete_topology_eq subtopology_subtopology subtopology_topspace)
+ assumes "S \<inter> X derived_set_of S = {}"
+ shows "subtopology X S = discrete_topology(topspace X \<inter> S)"
+proof -
+ have "subtopology X S = subtopology X (topspace X \<inter> S)"
+ by (simp add: subtopology_restrict)
+ then show ?thesis
+ using assms by (simp add: inf.assoc subtopology_eq_discrete_topology_eq)
+qed
lemma subtopology_discrete_topology [simp]:
"subtopology (discrete_topology U) S = discrete_topology(U \<inter> S)"
@@ -676,6 +652,7 @@
then show ?thesis
by (simp add: subtopology_def) (simp add: discrete_topology_def)
qed
+
lemma openin_Int_derived_set_of_subset:
"openin X S \<Longrightarrow> S \<inter> X derived_set_of T \<subseteq> X derived_set_of (S \<inter> T)"
by (auto simp: derived_set_of_def)
@@ -774,15 +751,7 @@
qed
lemma closure_of_eq: "X closure_of S = S \<longleftrightarrow> closedin X S"
-proof (cases "S \<subseteq> topspace X")
- case True
- then show ?thesis
- by (metis closure_of_subset closure_of_subset_eq set_eq_subset)
-next
- case False
- then show ?thesis
- using closure_of closure_of_subset_eq by fastforce
-qed
+ by (metis closure_of_subset closure_of_subset_eq closure_of_subset_topspace subset_antisym)
lemma closedin_contains_derived_set:
"closedin X S \<longleftrightarrow> X derived_set_of S \<subseteq> S \<and> S \<subseteq> topspace X"
@@ -797,7 +766,7 @@
lemma derived_set_subset_gen:
"X derived_set_of S \<subseteq> S \<longleftrightarrow> closedin X (topspace X \<inter> S)"
- by (simp add: closedin_contains_derived_set derived_set_of_restrict derived_set_of_subset_topspace)
+ by (simp add: closedin_contains_derived_set derived_set_of_subset_topspace)
lemma derived_set_subset: "S \<subseteq> topspace X \<Longrightarrow> (X derived_set_of S \<subseteq> S \<longleftrightarrow> closedin X S)"
by (simp add: closedin_contains_derived_set)
@@ -825,15 +794,7 @@
lemma closure_of_hull:
assumes "S \<subseteq> topspace X" shows "X closure_of S = (closedin X) hull S"
-proof (rule hull_unique [THEN sym])
- show "S \<subseteq> X closure_of S"
- by (simp add: closure_of_subset assms)
-next
- show "closedin X (X closure_of S)"
- by simp
- show "\<And>T. \<lbrakk>S \<subseteq> T; closedin X T\<rbrakk> \<Longrightarrow> X closure_of S \<subseteq> T"
- by (metis closure_of_eq closure_of_mono)
-qed
+ by (metis assms closedin_closure_of closure_of_eq closure_of_mono closure_of_subset hull_unique)
lemma closure_of_minimal:
"\<lbrakk>S \<subseteq> T; closedin X T\<rbrakk> \<Longrightarrow> (X closure_of S) \<subseteq> T"
@@ -876,7 +837,7 @@
by (simp add: assms closure_of_minimal openin_Int_closure_of_subset)
next
show "X closure_of (S \<inter> T) \<subseteq> X closure_of (S \<inter> X closure_of T)"
- by (metis Int_lower1 Int_subset_iff assms closedin_closure_of closure_of_minimal_eq closure_of_mono inf_le2 le_infI1 openin_subset)
+ by (metis Int_subset_iff assms closure_of_alt closure_of_mono inf_mono openin_subset subset_refl sup.coboundedI1)
qed
lemma openin_Int_closure_of_eq:
@@ -909,7 +870,7 @@
proof
obtain S0 where S0: "openin X S0" "S = S0 \<inter> U"
using assms by (auto simp: openin_subtopology)
- show "?lhs \<subseteq> ?rhs"
+ then show "?lhs \<subseteq> ?rhs"
proof -
have "S0 \<inter> X closure_of T = S0 \<inter> X closure_of (S0 \<inter> T)"
by (meson S0(1) openin_Int_closure_of_eq)
@@ -926,7 +887,7 @@
have "T \<inter> S \<subseteq> T \<union> X derived_set_of T"
by force
then show ?thesis
- by (metis Int_subset_iff S closure_of closure_of_mono inf.cobounded2 inf.coboundedI2 inf_commute openin_closedin_eq topspace_subtopology)
+ by (smt (verit, del_insts) Int_iff in_closure_of inf.orderE openin_subset subsetI)
qed
qed
@@ -1062,16 +1023,12 @@
lemma interior_of_subtopology_open:
assumes "openin X U"
- shows "(subtopology X U) interior_of S = U \<inter> X interior_of S"
-proof -
- have "\<forall>A. U \<inter> X closure_of (U \<inter> A) = U \<inter> X closure_of A"
- using assms openin_Int_closure_of_eq by blast
- then have "topspace X \<inter> U - U \<inter> X closure_of (topspace X \<inter> U - S) = U \<inter> (topspace X - X closure_of (topspace X - S))"
- by (metis (no_types) Diff_Int_distrib Int_Diff inf_commute)
- then show ?thesis
- unfolding interior_of_closure_of closure_of_subtopology_open topspace_subtopology
- using openin_Int_closure_of_eq [OF assms]
- by (metis assms closure_of_subtopology_open)
+ shows "(subtopology X U) interior_of S = U \<inter> X interior_of S" (is "?lhs = ?rhs")
+proof
+ show "?lhs \<subseteq> ?rhs"
+ by (meson assms interior_of_maximal interior_of_subset le_infI openin_interior_of openin_open_subtopology)
+ show "?rhs \<subseteq> ?lhs"
+ by (simp add: interior_of_subtopology_subset)
qed
lemma dense_intersects_open:
@@ -1399,7 +1356,7 @@
assume "x \<in> topspace X" and "\<Union>\<A> \<subseteq> topspace X"
then obtain V where V: "openin X V" "x \<in> V" and fin: "finite {U \<in> \<A>. U \<inter> V \<noteq> {}}"
using \<A> unfolding locally_finite_in_def by blast
- have eq: "{y \<in> f ` \<A>. Q y} = f ` {x. x \<in> \<A> \<and> Q(f x)}" for f Q
+ have eq: "{y \<in> f ` \<A>. Q y} = f ` {x. x \<in> \<A> \<and> Q(f x)}" for f and Q :: "'a set \<Rightarrow> bool"
by blast
have eq2: "{A \<in> \<A>. X closure_of A \<inter> V \<noteq> {}} = {A \<in> \<A>. A \<inter> V \<noteq> {}}"
using openin_Int_closure_of_eq_empty V by blast
@@ -1466,13 +1423,11 @@
proof (intro iffI allI impI)
fix C
assume "\<forall>U. openin Y U \<longrightarrow> openin X {x \<in> topspace X. f x \<in> U}" and "closedin Y C"
- then have "openin X {x \<in> topspace X. f x \<in> topspace Y - C}" by blast
then show "closedin X {x \<in> topspace X. f x \<in> C}"
by (auto simp add: closedin_def eq)
next
fix U
assume "\<forall>C. closedin Y C \<longrightarrow> closedin X {x \<in> topspace X. f x \<in> C}" and "openin Y U"
- then have "closedin X {x \<in> topspace X. f x \<in> topspace Y - U}" by blast
then show "openin X {x \<in> topspace X. f x \<in> U}"
by (auto simp add: openin_closedin_eq eq)
qed
@@ -1517,7 +1472,8 @@
proof -
have *: "f ` (topspace X) \<subseteq> topspace Y"
by (meson assms continuous_map)
- have "X closure_of T \<subseteq> {x \<in> X closure_of T. f x \<in> Y closure_of (f ` T)}" if "T \<subseteq> topspace X" for T
+ have "X closure_of T \<subseteq> {x \<in> X closure_of T. f x \<in> Y closure_of (f ` T)}"
+ if "T \<subseteq> topspace X" for T
proof (rule closure_of_minimal)
show "T \<subseteq> {x \<in> X closure_of T. f x \<in> Y closure_of f ` T}"
using closure_of_subset * that by (fastforce simp: in_closure_of)
@@ -1525,13 +1481,8 @@
show "closedin X {x \<in> X closure_of T. f x \<in> Y closure_of f ` T}"
using assms closedin_continuous_map_preimage_gen by fastforce
qed
- then have "f ` (X closure_of (topspace X \<inter> S)) \<subseteq> Y closure_of (f ` (topspace X \<inter> S))"
- by blast
- also have "\<dots> \<subseteq> Y closure_of (topspace Y \<inter> f ` S)"
- using * by (blast intro!: closure_of_mono)
- finally have "f ` (X closure_of (topspace X \<inter> S)) \<subseteq> Y closure_of (topspace Y \<inter> f ` S)" .
then show ?thesis
- by (metis closure_of_restrict)
+ by (smt (verit, ccfv_threshold) assms continuous_map image_eqI image_subset_iff in_closure_of mem_Collect_eq)
qed
lemma continuous_map_subset_aux1: "continuous_map X Y f \<Longrightarrow>
@@ -1561,10 +1512,8 @@
by simp
moreover have "Y closure_of f ` {a \<in> topspace X. f a \<in> C} \<subseteq> C"
by (simp add: \<open>closedin Y C\<close> closure_of_minimal image_subset_iff)
- ultimately have "f ` (X closure_of {a \<in> topspace X. f a \<in> C}) \<subseteq> C"
- using assms by blast
- then show "f x \<in> C"
- using x by auto
+ ultimately show "f x \<in> C"
+ using x assms by blast
qed
qed
@@ -1656,7 +1605,8 @@
qed
lemma continuous_map_eq:
- assumes "continuous_map X X' f" and "\<And>x. x \<in> topspace X \<Longrightarrow> f x = g x" shows "continuous_map X X' g"
+ assumes "continuous_map X X' f" and "\<And>x. x \<in> topspace X \<Longrightarrow> f x = g x"
+ shows "continuous_map X X' g"
proof -
have eq: "{x \<in> topspace X. f x \<in> U} = {x \<in> topspace X. g x \<in> U}" for U
using assms by auto
@@ -1678,7 +1628,7 @@
have "\<And>A. f ` (X closure_of A) \<subseteq> subtopology X' S closure_of f ` A"
by (meson L continuous_map_image_closure_subset)
then show ?thesis
- by (metis (no_types) closure_of_subset_subtopology closure_of_subtopology_subset closure_of_topspace continuous_map_eq_image_closure_subset dual_order.trans)
+ by (metis (no_types) closure_of_subset_subtopology closure_of_subtopology_subset closure_of_topspace continuous_map_eq_image_closure_subset order.trans)
qed
next
assume R: ?rhs
@@ -1784,15 +1734,7 @@
lemma closed_map_const:
"closed_map X Y (\<lambda>x. c) \<longleftrightarrow> topspace X = {} \<or> closedin Y {c}"
-proof (cases "topspace X = {}")
- case True
- then show ?thesis
- by (simp add: closed_map_on_empty)
-next
- case False
- then show ?thesis
- by (auto simp: closed_map_def image_constant_conv)
-qed
+ by (metis closed_map_def closed_map_on_empty closedin_empty closedin_topspace image_constant_conv)
lemma open_map_imp_subset:
"\<lbrakk>open_map X1 X2 f; S \<subseteq> topspace X1\<rbrakk> \<Longrightarrow> f ` S \<subseteq> topspace X2"
@@ -1812,17 +1754,7 @@
lemma open_map_inclusion_eq:
"open_map (subtopology X S) X id \<longleftrightarrow> openin X (topspace X \<inter> S)"
-proof -
- have *: "openin X (T \<inter> S)" if "openin X (S \<inter> topspace X)" "openin X T" for T
- proof -
- have "T \<subseteq> topspace X"
- using that by (simp add: openin_subset)
- with that show "openin X (T \<inter> S)"
- by (metis inf.absorb1 inf.left_commute inf_commute openin_Int)
- qed
- show ?thesis
- by (fastforce simp add: open_map_def Int_commute openin_subtopology_alt intro: *)
-qed
+ by (metis openin_topspace openin_trans_full subtopology_restrict topology_finer_open_id topspace_subtopology)
lemma open_map_inclusion:
"openin X S \<Longrightarrow> open_map (subtopology X S) X id"
@@ -1861,13 +1793,8 @@
closedin X (topspace X \<inter> S)"
proof -
have *: "closedin X (T \<inter> S)" if "closedin X (S \<inter> topspace X)" "closedin X T" for T
- proof -
- have "T \<subseteq> topspace X"
- using that by (simp add: closedin_subset)
- with that show "closedin X (T \<inter> S)"
- by (metis inf.absorb1 inf.left_commute inf_commute closedin_Int)
- qed
- show ?thesis
+ by (smt (verit, best) closedin_Int closure_of_subset_eq inf_sup_aci le_iff_inf that)
+ then show ?thesis
by (fastforce simp add: closed_map_def Int_commute closedin_subtopology_alt intro: *)
qed
@@ -1950,14 +1877,7 @@
lemma quotient_map_eq:
assumes "quotient_map X X' f" "\<And>x. x \<in> topspace X \<Longrightarrow> f x = g x"
shows "quotient_map X X' g"
-proof -
- have eq: "{x \<in> topspace X. f x \<in> U} = {x \<in> topspace X. g x \<in> U}" for U
- using assms by auto
- show ?thesis
- using assms
- unfolding quotient_map_def
- by (metis (mono_tags, lifting) eq image_cong)
-qed
+ by (smt (verit) Collect_cong assms image_cong quotient_map_def)
lemma quotient_map_compose:
assumes f: "quotient_map X X' f" and g: "quotient_map X' X'' g"
@@ -1968,19 +1888,16 @@
using assms by (simp only: image_comp [symmetric]) (simp add: quotient_map_def)
next
fix U''
- assume "U'' \<subseteq> topspace X''"
+ assume U'': "U'' \<subseteq> topspace X''"
define U' where "U' \<equiv> {y \<in> topspace X'. g y \<in> U''}"
have "U' \<subseteq> topspace X'"
by (auto simp add: U'_def)
then have U': "openin X {x \<in> topspace X. f x \<in> U'} = openin X' U'"
using assms unfolding quotient_map_def by simp
- have eq: "{x \<in> topspace X. f x \<in> topspace X' \<and> g (f x) \<in> U''} = {x \<in> topspace X. (g \<circ> f) x \<in> U''}"
+ have "{x \<in> topspace X. f x \<in> topspace X' \<and> g (f x) \<in> U''} = {x \<in> topspace X. (g \<circ> f) x \<in> U''}"
using f quotient_map_def by fastforce
- have "openin X {x \<in> topspace X. (g \<circ> f) x \<in> U''} = openin X {x \<in> topspace X. f x \<in> U'}"
- using assms by (simp add: quotient_map_def U'_def eq)
- also have "\<dots> = openin X'' U''"
- using U'_def \<open>U'' \<subseteq> topspace X''\<close> U' g quotient_map_def by fastforce
- finally show "openin X {x \<in> topspace X. (g \<circ> f) x \<in> U''} = openin X'' U''" .
+ then show "openin X {x \<in> topspace X. (g \<circ> f) x \<in> U''} = openin X'' U''"
+ by (smt (verit, best) Collect_cong U' U'_def U'' g mem_Collect_eq quotient_map_def)
qed
lemma quotient_map_from_composition:
@@ -2078,7 +1995,7 @@
(is "?lhs = ?rhs")
proof
assume L: ?lhs
- have "open_map X X' f"
+ have om: "open_map X X' f"
proof (clarsimp simp add: open_map_def)
fix U
assume "openin X U"
@@ -2090,20 +2007,10 @@
using L unfolding quotient_map_def
by (metis (no_types, lifting) Collect_cong \<open>openin X U\<close> image_mono)
qed
- moreover have "closed_map X X' f"
- proof (clarsimp simp add: closed_map_def)
- fix U
- assume "closedin X U"
- then have "U \<subseteq> topspace X"
- by (simp add: closedin_subset)
- moreover have "{x \<in> topspace X. f x \<in> f ` U} = U"
- using \<open>U \<subseteq> topspace X\<close> assms inj_onD by fastforce
- ultimately show "closedin X' (f ` U)"
- using L unfolding quotient_map_closedin
- by (metis (no_types, lifting) Collect_cong \<open>closedin X U\<close> image_mono)
- qed
- ultimately show ?rhs
- using L by (simp add: quotient_imp_continuous_map quotient_imp_surjective_map)
+ then have "closed_map X X' f"
+ by (simp add: L assms bijective_open_imp_closed_map quotient_imp_surjective_map)
+ then show ?rhs
+ using L om by (simp add: quotient_imp_continuous_map quotient_imp_surjective_map)
next
assume ?rhs
then show ?lhs
@@ -2258,12 +2165,7 @@
lemma separatedin_refl [simp]:
"separatedin X S S \<longleftrightarrow> S = {}"
-proof -
- have "\<And>x. \<lbrakk>separatedin X S S; x \<in> S\<rbrakk> \<Longrightarrow> False"
- by (metis all_not_in_conv closure_of_subset inf.orderE separatedin_def)
- then show ?thesis
- by auto
-qed
+ by (metis closure_of_subset empty_subsetI inf.orderE separatedin_def)
lemma separatedin_sym:
"separatedin X S T \<longleftrightarrow> separatedin X T S"
@@ -2289,7 +2191,7 @@
by (metis closedin_def closure_of_eq inf_commute)
lemma separatedin_subtopology:
- "separatedin (subtopology X U) S T \<longleftrightarrow> S \<subseteq> U \<and> T \<subseteq> U \<and> separatedin X S T" (is "?lhs = ?rhs")
+ "separatedin (subtopology X U) S T \<longleftrightarrow> S \<subseteq> U \<and> T \<subseteq> U \<and> separatedin X S T"
by (auto simp: separatedin_def closure_of_subtopology Int_ac disjoint_iff elim!: inf.orderE)
lemma separatedin_discrete_topology:
@@ -2609,29 +2511,13 @@
lemma all_openin_homeomorphic_image:
assumes "homeomorphic_map X Y f"
- shows "(\<forall>V. openin Y V \<longrightarrow> P V) \<longleftrightarrow> (\<forall>U. openin X U \<longrightarrow> P(f ` U))" (is "?lhs = ?rhs")
-proof
- assume ?lhs
- then show ?rhs
- by (meson assms homeomorphic_map_openness_eq)
-next
- assume ?rhs
- then show ?lhs
- by (metis (no_types, lifting) assms homeomorphic_imp_surjective_map homeomorphic_map_openness openin_subset subset_image_iff)
-qed
+ shows "(\<forall>V. openin Y V \<longrightarrow> P V) \<longleftrightarrow> (\<forall>U. openin X U \<longrightarrow> P(f ` U))"
+ by (metis (no_types, lifting) assms homeomorphic_imp_surjective_map homeomorphic_map_openness openin_subset subset_image_iff)
lemma all_closedin_homeomorphic_image:
assumes "homeomorphic_map X Y f"
shows "(\<forall>V. closedin Y V \<longrightarrow> P V) \<longleftrightarrow> (\<forall>U. closedin X U \<longrightarrow> P(f ` U))" (is "?lhs = ?rhs")
-proof
- assume ?lhs
- then show ?rhs
- by (meson assms homeomorphic_map_closedness_eq)
-next
- assume ?rhs
- then show ?lhs
- by (metis (no_types, lifting) assms homeomorphic_imp_surjective_map homeomorphic_map_closedness closedin_subset subset_image_iff)
-qed
+ by (metis (no_types, lifting) assms homeomorphic_imp_surjective_map homeomorphic_map_closedness closedin_subset subset_image_iff)
lemma homeomorphic_map_derived_set_of:
@@ -2648,12 +2534,7 @@
by (meson hom homeomorphic_map_openness_eq inj inj_on_image_mem_iff that)
moreover have "(\<exists>y. y \<noteq> x \<and> y \<in> S \<and> y \<in> T) = (\<exists>y. y \<noteq> f x \<and> y \<in> f ` S \<and> y \<in> f ` T)" (is "?lhs = ?rhs")
if "T \<subseteq> topspace X \<and> f x \<in> f ` T \<and> openin Y (f ` T)" for T
- proof
- show "?lhs \<Longrightarrow> ?rhs"
- by (meson \<section> imageI inj inj_on_eq_iff inj_on_subset that)
- show "?rhs \<Longrightarrow> ?lhs"
- using S inj inj_onD that by fastforce
- qed
+ by (smt (verit, del_insts) S \<open>x \<in> topspace X\<close> image_iff inj inj_on_def subsetD that)
ultimately show ?thesis
by (auto simp flip: fim simp: all_subset_image)
qed
@@ -2717,12 +2598,10 @@
assume "x \<in> f ` (X closure_of S - X interior_of S)"
then obtain y where y: "x = f y" "y \<in> X closure_of S" "y \<notin> X interior_of S"
by blast
- then have "y \<in> topspace X"
- by (simp add: in_closure_of)
- then have "f y \<notin> f ` (X interior_of S)"
- by (meson hom homeomorphic_map_def inj_on_image_mem_iff interior_of_subset_topspace y(3))
then show "x \<notin> Y interior_of f ` S"
- using S hom homeomorphic_map_interior_of y(1) by blast
+ using S hom homeomorphic_map_interior_of y(1)
+ unfolding homeomorphic_map_def
+ by (smt (verit, ccfv_SIG) in_closure_of inj_on_image_mem_iff interior_of_subset_topspace)
qed
lemma homeomorphic_maps_subtopologies:
@@ -2748,12 +2627,13 @@
shows "homeomorphic_map (subtopology X S) (subtopology Y T) f"
proof -
have "homeomorphic_maps (subtopology X S) (subtopology Y T) f g"
- if "homeomorphic_maps X Y f g" for g
+ if "homeomorphic_maps X Y f g" for g
proof (rule homeomorphic_maps_subtopologies [OF that])
- show "f ` (topspace X \<inter> S) = topspace Y \<inter> T"
- using that S
- apply (auto simp: homeomorphic_maps_def continuous_map_def)
- by (metis IntI image_iff)
+ have "f ` (topspace X \<inter> S) \<subseteq> topspace Y \<inter> T"
+ using S hom homeomorphic_imp_surjective_map by fastforce
+ then show "f ` (topspace X \<inter> S) = topspace Y \<inter> T"
+ using that unfolding homeomorphic_maps_def continuous_map_def
+ by (smt (verit, del_insts) Int_iff S image_iff subsetI subset_antisym)
qed
then show ?thesis
using hom by (meson homeomorphic_map_maps)
@@ -2795,13 +2675,9 @@
lemma homeomorphic_empty_space_eq:
assumes "topspace X = {}"
- shows "X homeomorphic_space Y \<longleftrightarrow> topspace Y = {}"
-proof -
- have "\<forall>f t. continuous_map X (t::'b topology) f"
- using assms continuous_map_on_empty by blast
- then show ?thesis
- by (metis (no_types) assms continuous_map_on_empty empty_iff homeomorphic_empty_space homeomorphic_maps_def homeomorphic_space_def)
-qed
+ shows "X homeomorphic_space Y \<longleftrightarrow> topspace Y = {}"
+ unfolding homeomorphic_maps_def homeomorphic_space_def
+ by (metis assms continuous_map_on_empty continuous_map_closedin ex_in_conv)
subsection\<open>Connected topological spaces\<close>
@@ -2845,40 +2721,16 @@
E1 \<inter> E2 = {} \<and> E1 \<noteq> {} \<and> E2 \<noteq> {})" (is "?lhs = ?rhs")
proof
assume ?lhs
- then have L: "\<And>E1 E2. \<lbrakk>openin X E1; E1 \<inter> E2 = {}; topspace X \<subseteq> E1 \<union> E2; openin X E2\<rbrakk> \<Longrightarrow> E1 = {} \<or> E2 = {}"
+ then have "\<And>E1 E2. \<lbrakk>openin X E1; E1 \<inter> E2 = {}; topspace X \<subseteq> E1 \<union> E2; openin X E2\<rbrakk> \<Longrightarrow> E1 = {} \<or> E2 = {}"
by (simp add: connected_space_def)
- show ?rhs
+ then show ?rhs
unfolding connected_space_def
- proof clarify
- fix E1 E2
- assume "closedin X E1" and "closedin X E2" and "topspace X \<subseteq> E1 \<union> E2" and "E1 \<inter> E2 = {}"
- and "E1 \<noteq> {}" and "E2 \<noteq> {}"
- have "E1 \<union> E2 = topspace X"
- by (meson Un_subset_iff \<open>closedin X E1\<close> \<open>closedin X E2\<close> \<open>topspace X \<subseteq> E1 \<union> E2\<close> closedin_def subset_antisym)
- then have "topspace X - E2 = E1"
- using \<open>E1 \<inter> E2 = {}\<close> by fastforce
- then have "topspace X = E1"
- using \<open>E1 \<noteq> {}\<close> L \<open>closedin X E1\<close> \<open>closedin X E2\<close> by blast
- then show "False"
- using \<open>E1 \<inter> E2 = {}\<close> \<open>E1 \<union> E2 = topspace X\<close> \<open>E2 \<noteq> {}\<close> by blast
- qed
+ by (metis disjnt_def separatedin_closed_sets separation_openin_Un_gen subtopology_superset)
next
assume R: ?rhs
- show ?lhs
+ then show ?lhs
unfolding connected_space_def
- proof clarify
- fix E1 E2
- assume "openin X E1" and "openin X E2" and "topspace X \<subseteq> E1 \<union> E2" and "E1 \<inter> E2 = {}"
- and "E1 \<noteq> {}" and "E2 \<noteq> {}"
- have "E1 \<union> E2 = topspace X"
- by (meson Un_subset_iff \<open>openin X E1\<close> \<open>openin X E2\<close> \<open>topspace X \<subseteq> E1 \<union> E2\<close> openin_closedin_eq subset_antisym)
- then have "topspace X - E2 = E1"
- using \<open>E1 \<inter> E2 = {}\<close> by fastforce
- then have "topspace X = E1"
- using \<open>E1 \<noteq> {}\<close> R \<open>openin X E1\<close> \<open>openin X E2\<close> by blast
- then show "False"
- using \<open>E1 \<inter> E2 = {}\<close> \<open>E1 \<union> E2 = topspace X\<close> \<open>E2 \<noteq> {}\<close> by blast
- qed
+ by (metis Diff_triv Int_commute separatedin_openin_diff separation_closedin_Un_gen subtopology_superset)
qed
lemma connected_space_closedin_eq:
@@ -3042,7 +2894,7 @@
lemma connectedin_separation:
"connectedin X S \<longleftrightarrow>
S \<subseteq> topspace X \<and>
- (\<nexists>C1 C2. C1 \<union> C2 = S \<and> C1 \<noteq> {} \<and> C2 \<noteq> {} \<and> C1 \<inter> X closure_of C2 = {} \<and> C2 \<inter> X closure_of C1 = {})" (is "?lhs = ?rhs")
+ (\<nexists>C1 C2. C1 \<union> C2 = S \<and> C1 \<noteq> {} \<and> C2 \<noteq> {} \<and> C1 \<inter> X closure_of C2 = {} \<and> C2 \<inter> X closure_of C1 = {})"
unfolding connectedin_def connected_space_closedin_eq closedin_Int_closure_of topspace_subtopology
apply (intro conj_cong refl arg_cong [where f=Not])
apply (intro ex_cong1 iffI, blast)
@@ -3095,7 +2947,7 @@
by (metis (no_types, lifting) assms connectedin_subset_separated_union inf.orderE separatedin_empty(1) separatedin_mono separatedin_sym)
then show ?thesis
unfolding connectedin_eq_not_separated_subset
- by (simp add: assms(1) assms(2) connectedin_subset_topspace Int_Un_distrib2)
+ by (simp add: assms connectedin_subset_topspace Int_Un_distrib2)
qed
lemma connected_space_closures:
@@ -3126,7 +2978,7 @@
using assms(3) by blast
moreover
have "S \<inter> topspace X \<inter> T \<noteq> {}"
- using assms(1) assms(2) connectedin by fastforce
+ using assms connectedin by fastforce
moreover
have False if "S \<inter> T \<noteq> {}" "S - T \<noteq> {}" "T \<subseteq> topspace X" "S \<inter> X frontier_of T = {}" for T
proof -
@@ -3194,7 +3046,7 @@
then have "topspace Y \<inter> f ` U = f ` U"
by (simp add: subset_antisym)
then show "subtopology Y (f ` U) homeomorphic_space subtopology X U"
- by (metis (no_types) Int_subset_iff U f homeomorphic_map_imp_homeomorphic_space homeomorphic_map_subtopologies homeomorphic_space_sym subset_antisym subset_refl)
+ by (metis U f homeomorphic_map_imp_homeomorphic_space homeomorphic_map_subtopologies homeomorphic_space_sym inf.absorb_iff2)
qed
ultimately show ?thesis
by (auto simp: connectedin_def)
@@ -3435,8 +3287,8 @@
proof (cases "topspace X = {}")
case True
then show ?thesis
-unfolding compact_space_def
- by (metis Sup_bot_conv(1) closedin_topspace_empty compactin_empty finite.emptyI finite_UnionD order_refl)
+ unfolding compact_space_def
+ by (metis Sup_bot_conv(1) closedin_topspace_empty compactin_empty finite.emptyI finite_UnionD order_refl)
next
case False
show ?thesis
@@ -3663,7 +3515,7 @@
have hm: "homeomorphic_map X (subtopology X' (f ` topspace X)) f" "homeomorphic_map X' (subtopology X'' (g ` topspace X')) g"
using assms by (auto simp: embedding_map_def)
then obtain C where "g ` topspace X' \<inter> C = (g \<circ> f) ` topspace X"
- by (metis (no_types) Int_absorb1 continuous_map_image_subset_topspace continuous_map_in_subtopology homeomorphic_eq_everything_map image_comp image_mono)
+ by (metis homeomorphic_imp_surjective_map image_comp image_mono inf.absorb_iff2 topspace_subtopology)
then have "homeomorphic_map (subtopology X' (f ` topspace X)) (subtopology X'' ((g \<circ> f) ` topspace X)) g"
by (metis hm homeomorphic_imp_surjective_map homeomorphic_map_subtopologies image_comp subtopology_subtopology topspace_subtopology)
then show ?thesis
@@ -3738,12 +3590,9 @@
"section_map X Y f \<and> retraction_map X Y f \<longleftrightarrow> homeomorphic_map X Y f" (is "?lhs = ?rhs")
proof
assume ?lhs
- then obtain g g' where f: "continuous_map X Y f"
- and g: "continuous_map Y X g" "\<forall>x\<in>topspace X. g (f x) = x"
- and g': "continuous_map Y X g'" "\<forall>x\<in>topspace Y. f (g' x) = x"
- by (auto simp: retraction_map_def retraction_maps_def section_map_def)
- then have "homeomorphic_maps X Y f g"
- by (force simp add: homeomorphic_maps_def continuous_map_def)
+ then obtain g where "homeomorphic_maps X Y f g"
+ unfolding homeomorphic_maps_def retraction_map_def section_map_def
+ by (smt (verit, best) continuous_map_def retraction_maps_def)
then show ?rhs
using homeomorphic_map_maps by blast
next
@@ -3916,15 +3765,12 @@
by blast
show ?thesis
proof
- show "openin (top_of_set S) (E1 \<inter> S)"
- "openin (top_of_set T) (E2 \<inter> T)"
- using \<open>open E1\<close> \<open>open E2\<close>
- by (auto simp: openin_open)
+ show "openin (top_of_set S) (E1 \<inter> S)" "openin (top_of_set T) (E2 \<inter> T)"
+ using \<open>open E1\<close> \<open>open E2\<close> by (auto simp: openin_open)
show "x \<in> E1 \<inter> S" "y \<in> E2 \<inter> T"
using \<open>(x, y) \<in> E1 \<times> E2\<close> \<open>x \<in> S\<close> \<open>y \<in> T\<close> by auto
show "(E1 \<inter> S) \<times> (E2 \<inter> T) \<subseteq> U"
- using \<open>E1 \<times> E2 \<subseteq> E\<close> \<open>U = _\<close>
- by auto
+ using \<open>E1 \<times> E2 \<subseteq> E\<close> \<open>U = _\<close> by auto
qed
qed
@@ -4030,27 +3876,12 @@
shows "continuous_on S f \<longleftrightarrow>
(\<forall>U. closedin (top_of_set T) U
\<longrightarrow> closedin (top_of_set S) (S \<inter> f -` U))"
- (is "?lhs = ?rhs")
proof -
have *: "U \<subseteq> T \<Longrightarrow> S \<inter> f -` (T - U) = S - (S \<inter> f -` U)" for U
using assms by blast
- show ?thesis
- proof
- assume L: ?lhs
- show ?rhs
- proof clarify
- fix U
- assume "closedin (top_of_set T) U"
- then show "closedin (top_of_set S) (S \<inter> f -` U)"
- using L unfolding continuous_on_open_gen [OF assms]
- by (metis * closedin_def inf_le1 topspace_euclidean_subtopology)
- qed
- next
- assume R [rule_format]: ?rhs
- show ?lhs
+ then show ?thesis
unfolding continuous_on_open_gen [OF assms]
- by (metis * R inf_le1 openin_closedin_eq topspace_euclidean_subtopology)
- qed
+ by (metis closedin_def inf.cobounded1 openin_closedin_eq topspace_euclidean_subtopology)
qed
lemma continuous_closedin_preimage_gen:
@@ -4125,7 +3956,7 @@
lemma topology_generated_by_Basis:
"s \<in> S \<Longrightarrow> openin (topology_generated_by S) s"
- by (simp only: openin_topology_generated_by_iff, auto simp: generate_topology_on.Basis)
+ by (simp add: Basis openin_topology_generated_by_iff)
lemma generate_topology_on_Inter:
"\<lbrakk>finite \<F>; \<And>K. K \<in> \<F> \<Longrightarrow> generate_topology_on \<S> K; \<F> \<noteq> {}\<rbrakk> \<Longrightarrow> generate_topology_on \<S> (\<Inter>\<F>)"
@@ -4409,6 +4240,7 @@
proof (clarsimp simp: f)
show "compactin X {x \<in> topspace X. f x = y}"
if "y \<in> topspace Y" for y
+using inj_on_eq_iff [OF inj] that
proof -
have "{x \<in> topspace X. f x = y} = {} \<or> (\<exists>a \<in> topspace X. {x \<in> topspace X. f x = y} = {a})"
using inj_on_eq_iff [OF inj] by auto
@@ -4558,20 +4390,16 @@
next
case False
have *: "compactin X {x \<in> topspace X. c = y}" if "compact_space X" for y
- proof (cases "c = y")
- case True
- then show ?thesis
- using compact_space_def \<open>compact_space X\<close> by auto
- qed auto
+ using that unfolding compact_space_def
+ by (metis (mono_tags, lifting) compactin_empty empty_subsetI mem_Collect_eq subsetI subset_antisym)
then show ?thesis
using closed_compactin closedin_subset
by (force simp: False proper_map_def closed_map_const compact_space_def)
qed
lemma proper_map_inclusion:
- "s \<subseteq> topspace X
- \<Longrightarrow> proper_map (subtopology X s) X id \<longleftrightarrow> closedin X s \<and> (\<forall>k. compactin X k \<longrightarrow> compactin X (s \<inter> k))"
- by (auto simp: proper_map_alt closed_map_inclusion_eq inf.absorb_iff2 Collect_conj_eq compactin_subtopology intro: closed_Int_compactin)
+ "S \<subseteq> topspace X \<Longrightarrow> proper_map (subtopology X S) X id \<longleftrightarrow> closedin X S \<and> (\<forall>k. compactin X k \<longrightarrow> compactin X (S \<inter> k))"
+ by (metis closed_Int_compactin closed_map_inclusion_eq inf.absorb_iff2 inj_on_id injective_imp_proper_eq_closed_map)
subsection\<open>Perfect maps (proper, continuous and surjective)\<close>