--- a/NEWS Thu Oct 22 09:49:48 2009 +0200
+++ b/NEWS Thu Oct 22 09:50:29 2009 +0200
@@ -153,8 +153,8 @@
this. Fix using O_assoc[symmetric]. The same applies to the curried
version "R OO S".
-* Function "Inv" is renamed to "inv_onto" and function "inv" is now an
-abbreviation for "inv_onto UNIV". Lemmas are renamed accordingly.
+* Function "Inv" is renamed to "inv_into" and function "inv" is now an
+abbreviation for "inv_into UNIV". Lemmas are renamed accordingly.
INCOMPATIBILITY.
* ML antiquotation @{code_datatype} inserts definition of a datatype
--- a/doc-src/Main/Docs/Main_Doc.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/doc-src/Main/Docs/Main_Doc.thy Thu Oct 22 09:50:29 2009 +0200
@@ -170,13 +170,13 @@
\smallskip
\begin{tabular}{@ {} l @ {~::~} l @ {}}
-@{const Hilbert_Choice.inv_onto} & @{term_type_only Hilbert_Choice.inv_onto "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"}
+@{const Hilbert_Choice.inv_into} & @{term_type_only Hilbert_Choice.inv_into "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"}
\end{tabular}
\subsubsection*{Syntax}
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-@{term inv} & @{term[source]"inv_onto UNIV"}
+@{term inv} & @{term[source]"inv_into UNIV"}
\end{tabular}
\section{Fixed Points}
--- a/doc-src/Main/Docs/document/Main_Doc.tex Thu Oct 22 09:49:48 2009 +0200
+++ b/doc-src/Main/Docs/document/Main_Doc.tex Thu Oct 22 09:50:29 2009 +0200
@@ -181,13 +181,13 @@
\smallskip
\begin{tabular}{@ {} l @ {~::~} l @ {}}
-\isa{inv{\isacharunderscore}onto} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a}
+\isa{inv{\isacharunderscore}into} & \isa{{\isacharprime}a\ set\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}b\ {\isasymRightarrow}\ {\isacharprime}a}
\end{tabular}
\subsubsection*{Syntax}
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
-\isa{inv} & \isa{{\isachardoublequote}inv{\isacharunderscore}onto\ UNIV{\isachardoublequote}}
+\isa{inv} & \isa{{\isachardoublequote}inv{\isacharunderscore}into\ UNIV{\isachardoublequote}}
\end{tabular}
\section{Fixed Points}
--- a/doc-src/TutorialI/Rules/rules.tex Thu Oct 22 09:49:48 2009 +0200
+++ b/doc-src/TutorialI/Rules/rules.tex Thu Oct 22 09:50:29 2009 +0200
@@ -1357,7 +1357,7 @@
some $x$ such that $P(x)$ is true, provided one exists.
Isabelle uses \sdx{SOME} for the Greek letter~$\varepsilon$.
-Here is the definition of~\cdx{inv},\footnote{In fact, \isa{inv} is defined via a second constant \isa{inv_onto}, which we ignore here.} which expresses inverses of
+Here is the definition of~\cdx{inv},\footnote{In fact, \isa{inv} is defined via a second constant \isa{inv_into}, which we ignore here.} which expresses inverses of
functions:
\begin{isabelle}
inv\ f\ \isasymequiv \ \isasymlambda y.\ SOME\ x.\ f\ x\ =\ y%
--- a/src/HOL/Algebra/Bij.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Algebra/Bij.thy Thu Oct 22 09:50:29 2009 +0200
@@ -31,8 +31,8 @@
subsection {*Bijections Form a Group *}
-lemma restrict_inv_onto_Bij: "f \<in> Bij S \<Longrightarrow> (\<lambda>x \<in> S. (inv_onto S f) x) \<in> Bij S"
- by (simp add: Bij_def bij_betw_inv_onto)
+lemma restrict_inv_into_Bij: "f \<in> Bij S \<Longrightarrow> (\<lambda>x \<in> S. (inv_into S f) x) \<in> Bij S"
+ by (simp add: Bij_def bij_betw_inv_into)
lemma id_Bij: "(\<lambda>x\<in>S. x) \<in> Bij S "
by (auto simp add: Bij_def bij_betw_def inj_on_def)
@@ -41,8 +41,8 @@
by (auto simp add: Bij_def bij_betw_compose)
lemma Bij_compose_restrict_eq:
- "f \<in> Bij S \<Longrightarrow> compose S (restrict (inv_onto S f) S) f = (\<lambda>x\<in>S. x)"
- by (simp add: Bij_def compose_inv_onto_id)
+ "f \<in> Bij S \<Longrightarrow> compose S (restrict (inv_into S f) S) f = (\<lambda>x\<in>S. x)"
+ by (simp add: Bij_def compose_inv_into_id)
theorem group_BijGroup: "group (BijGroup S)"
apply (simp add: BijGroup_def)
@@ -52,19 +52,19 @@
apply (simp add: compose_Bij)
apply (blast intro: compose_assoc [symmetric] dest: Bij_imp_funcset)
apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
-apply (blast intro: Bij_compose_restrict_eq restrict_inv_onto_Bij)
+apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)
done
subsection{*Automorphisms Form a Group*}
-lemma Bij_inv_onto_mem: "\<lbrakk> f \<in> Bij S; x \<in> S\<rbrakk> \<Longrightarrow> inv_onto S f x \<in> S"
-by (simp add: Bij_def bij_betw_def inv_onto_into)
+lemma Bij_inv_into_mem: "\<lbrakk> f \<in> Bij S; x \<in> S\<rbrakk> \<Longrightarrow> inv_into S f x \<in> S"
+by (simp add: Bij_def bij_betw_def inv_into_into)
-lemma Bij_inv_onto_lemma:
+lemma Bij_inv_into_lemma:
assumes eq: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> h(g x y) = g (h x) (h y)"
shows "\<lbrakk>h \<in> Bij S; g \<in> S \<rightarrow> S \<rightarrow> S; x \<in> S; y \<in> S\<rbrakk>
- \<Longrightarrow> inv_onto S h (g x y) = g (inv_onto S h x) (inv_onto S h y)"
+ \<Longrightarrow> inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"
apply (simp add: Bij_def bij_betw_def)
apply (subgoal_tac "\<exists>x'\<in>S. \<exists>y'\<in>S. x = h x' & y = h y'", clarify)
apply (simp add: eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem], blast)
@@ -84,17 +84,17 @@
lemma (in group) mult_funcset: "mult G \<in> carrier G \<rightarrow> carrier G \<rightarrow> carrier G"
by (simp add: Pi_I group.axioms)
-lemma (in group) restrict_inv_onto_hom:
+lemma (in group) restrict_inv_into_hom:
"\<lbrakk>h \<in> hom G G; h \<in> Bij (carrier G)\<rbrakk>
- \<Longrightarrow> restrict (inv_onto (carrier G) h) (carrier G) \<in> hom G G"
- by (simp add: hom_def Bij_inv_onto_mem restrictI mult_funcset
- group.axioms Bij_inv_onto_lemma)
+ \<Longrightarrow> restrict (inv_into (carrier G) h) (carrier G) \<in> hom G G"
+ by (simp add: hom_def Bij_inv_into_mem restrictI mult_funcset
+ group.axioms Bij_inv_into_lemma)
lemma inv_BijGroup:
- "f \<in> Bij S \<Longrightarrow> m_inv (BijGroup S) f = (\<lambda>x \<in> S. (inv_onto S f) x)"
+ "f \<in> Bij S \<Longrightarrow> m_inv (BijGroup S) f = (\<lambda>x \<in> S. (inv_into S f) x)"
apply (rule group.inv_equality)
apply (rule group_BijGroup)
-apply (simp_all add:BijGroup_def restrict_inv_onto_Bij Bij_compose_restrict_eq)
+apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij_compose_restrict_eq)
done
lemma (in group) subgroup_auto:
@@ -115,7 +115,7 @@
assume "x \<in> auto G"
thus "inv\<^bsub>BijGroup (carrier G)\<^esub> x \<in> auto G"
by (simp del: restrict_apply
- add: inv_BijGroup auto_def restrict_inv_onto_Bij restrict_inv_onto_hom)
+ add: inv_BijGroup auto_def restrict_inv_into_Bij restrict_inv_into_hom)
qed
theorem (in group) AutoGroup: "group (AutoGroup G)"
--- a/src/HOL/Algebra/Group.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Algebra/Group.thy Thu Oct 22 09:50:29 2009 +0200
@@ -553,11 +553,11 @@
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
lemma (in group) iso_sym:
- "h \<in> G \<cong> H \<Longrightarrow> inv_onto (carrier G) h \<in> H \<cong> G"
-apply (simp add: iso_def bij_betw_inv_onto)
-apply (subgoal_tac "inv_onto (carrier G) h \<in> carrier H \<rightarrow> carrier G")
- prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_onto])
-apply (simp add: hom_def bij_betw_def inv_onto_f_eq f_inv_onto_f Pi_def)
+ "h \<in> G \<cong> H \<Longrightarrow> inv_into (carrier G) h \<in> H \<cong> G"
+apply (simp add: iso_def bij_betw_inv_into)
+apply (subgoal_tac "inv_into (carrier G) h \<in> carrier H \<rightarrow> carrier G")
+ prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_into])
+apply (simp add: hom_def bij_betw_def inv_into_f_eq f_inv_into_f Pi_def)
done
lemma (in group) iso_trans:
--- a/src/HOL/Finite_Set.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Finite_Set.thy Thu Oct 22 09:50:29 2009 +0200
@@ -162,9 +162,9 @@
from finite_imp_nat_seg_image_inj_on[OF `finite A`]
obtain f and n::nat where bij: "bij_betw f {i. i<n} A"
by (auto simp:bij_betw_def)
- let ?f = "the_inv_onto {i. i<n} f"
+ let ?f = "the_inv_into {i. i<n} f"
have "inj_on ?f A & ?f ` A = {i. i<n}"
- by (fold bij_betw_def) (rule bij_betw_the_inv_onto[OF bij])
+ by (fold bij_betw_def) (rule bij_betw_the_inv_into[OF bij])
thus ?thesis by blast
qed
--- a/src/HOL/Fun.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Fun.thy Thu Oct 22 09:50:29 2009 +0200
@@ -508,65 +508,65 @@
subsection {* Inversion of injective functions *}
-definition the_inv_onto :: "'a set => ('a => 'b) => ('b => 'a)" where
-"the_inv_onto A f == %x. THE y. y : A & f y = x"
+definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
+"the_inv_into A f == %x. THE y. y : A & f y = x"
-lemma the_inv_onto_f_f:
- "[| inj_on f A; x : A |] ==> the_inv_onto A f (f x) = x"
-apply (simp add: the_inv_onto_def inj_on_def)
+lemma the_inv_into_f_f:
+ "[| inj_on f A; x : A |] ==> the_inv_into A f (f x) = x"
+apply (simp add: the_inv_into_def inj_on_def)
apply (blast intro: the_equality)
done
-lemma f_the_inv_onto_f:
- "inj_on f A ==> y : f`A ==> f (the_inv_onto A f y) = y"
-apply (simp add: the_inv_onto_def)
+lemma f_the_inv_into_f:
+ "inj_on f A ==> y : f`A ==> f (the_inv_into A f y) = y"
+apply (simp add: the_inv_into_def)
apply (rule the1I2)
apply(blast dest: inj_onD)
apply blast
done
-lemma the_inv_onto_into:
- "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_onto A f x : B"
-apply (simp add: the_inv_onto_def)
+lemma the_inv_into_into:
+ "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B"
+apply (simp add: the_inv_into_def)
apply (rule the1I2)
apply(blast dest: inj_onD)
apply blast
done
-lemma the_inv_onto_onto[simp]:
- "inj_on f A ==> the_inv_onto A f ` (f ` A) = A"
-by (fast intro:the_inv_onto_into the_inv_onto_f_f[symmetric])
+lemma the_inv_into_onto[simp]:
+ "inj_on f A ==> the_inv_into A f ` (f ` A) = A"
+by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric])
-lemma the_inv_onto_f_eq:
- "[| inj_on f A; f x = y; x : A |] ==> the_inv_onto A f y = x"
+lemma the_inv_into_f_eq:
+ "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x"
apply (erule subst)
- apply (erule the_inv_onto_f_f, assumption)
+ apply (erule the_inv_into_f_f, assumption)
done
-lemma the_inv_onto_comp:
+lemma the_inv_into_comp:
"[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
- the_inv_onto A (f o g) x = (the_inv_onto A g o the_inv_onto (g ` A) f) x"
-apply (rule the_inv_onto_f_eq)
+ the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x"
+apply (rule the_inv_into_f_eq)
apply (fast intro: comp_inj_on)
- apply (simp add: f_the_inv_onto_f the_inv_onto_into)
-apply (simp add: the_inv_onto_into)
+ apply (simp add: f_the_inv_into_f the_inv_into_into)
+apply (simp add: the_inv_into_into)
done
-lemma inj_on_the_inv_onto:
- "inj_on f A \<Longrightarrow> inj_on (the_inv_onto A f) (f ` A)"
-by (auto intro: inj_onI simp: image_def the_inv_onto_f_f)
+lemma inj_on_the_inv_into:
+ "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"
+by (auto intro: inj_onI simp: image_def the_inv_into_f_f)
-lemma bij_betw_the_inv_onto:
- "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_onto A f) B A"
-by (auto simp add: bij_betw_def inj_on_the_inv_onto the_inv_onto_into)
+lemma bij_betw_the_inv_into:
+ "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"
+by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
- "the_inv f \<equiv> the_inv_onto UNIV f"
+ "the_inv f \<equiv> the_inv_into UNIV f"
lemma the_inv_f_f:
assumes "inj f"
shows "the_inv f (f x) = x" using assms UNIV_I
- by (rule the_inv_onto_f_f)
+ by (rule the_inv_into_f_f)
subsection {* Proof tool setup *}
--- a/src/HOL/HOL.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/HOL.thy Thu Oct 22 09:50:29 2009 +0200
@@ -2049,33 +2049,33 @@
text {* This will be relocated once Nitpick is moved to HOL. *}
ML {*
-structure Nitpick_Const_Defs = Named_Thms
+structure Nitpick_Defs = Named_Thms
(
- val name = "nitpick_const_def"
+ val name = "nitpick_def"
val description = "alternative definitions of constants as needed by Nitpick"
)
-structure Nitpick_Const_Simps = Named_Thms
+structure Nitpick_Simps = Named_Thms
(
- val name = "nitpick_const_simp"
+ val name = "nitpick_simp"
val description = "equational specification of constants as needed by Nitpick"
)
-structure Nitpick_Const_Psimps = Named_Thms
+structure Nitpick_Psimps = Named_Thms
(
- val name = "nitpick_const_psimp"
+ val name = "nitpick_psimp"
val description = "partial equational specification of constants as needed by Nitpick"
)
-structure Nitpick_Ind_Intros = Named_Thms
+structure Nitpick_Intros = Named_Thms
(
- val name = "nitpick_ind_intro"
+ val name = "nitpick_intro"
val description = "introduction rules for (co)inductive predicates as needed by Nitpick"
)
*}
setup {*
- Nitpick_Const_Defs.setup
- #> Nitpick_Const_Simps.setup
- #> Nitpick_Const_Psimps.setup
- #> Nitpick_Ind_Intros.setup
+ Nitpick_Defs.setup
+ #> Nitpick_Simps.setup
+ #> Nitpick_Psimps.setup
+ #> Nitpick_Intros.setup
*}
--- a/src/HOL/Hilbert_Choice.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Hilbert_Choice.thy Thu Oct 22 09:50:29 2009 +0200
@@ -31,11 +31,11 @@
in Syntax.const "_Eps" $ x $ t end)]
*}
-definition inv_onto :: "'a set => ('a => 'b) => ('b => 'a)" where
-"inv_onto A f == %x. SOME y. y : A & f y = x"
+definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
+"inv_into A f == %x. SOME y. y : A & f y = x"
abbreviation inv :: "('a => 'b) => ('b => 'a)" where
-"inv == inv_onto UNIV"
+"inv == inv_into UNIV"
subsection {*Hilbert's Epsilon-operator*}
@@ -92,40 +92,40 @@
subsection {*Function Inverse*}
lemma inv_def: "inv f = (%y. SOME x. f x = y)"
-by(simp add: inv_onto_def)
+by(simp add: inv_into_def)
-lemma inv_onto_into: "x : f ` A ==> inv_onto A f x : A"
-apply (simp add: inv_onto_def)
+lemma inv_into_into: "x : f ` A ==> inv_into A f x : A"
+apply (simp add: inv_into_def)
apply (fast intro: someI2)
done
lemma inv_id [simp]: "inv id = id"
-by (simp add: inv_onto_def id_def)
+by (simp add: inv_into_def id_def)
-lemma inv_onto_f_f [simp]:
- "[| inj_on f A; x : A |] ==> inv_onto A f (f x) = x"
-apply (simp add: inv_onto_def inj_on_def)
+lemma inv_into_f_f [simp]:
+ "[| inj_on f A; x : A |] ==> inv_into A f (f x) = x"
+apply (simp add: inv_into_def inj_on_def)
apply (blast intro: someI2)
done
lemma inv_f_f: "inj f ==> inv f (f x) = x"
-by (simp add: inv_onto_f_f)
+by (simp add: inv_into_f_f)
-lemma f_inv_onto_f: "y : f`A ==> f (inv_onto A f y) = y"
-apply (simp add: inv_onto_def)
+lemma f_inv_into_f: "y : f`A ==> f (inv_into A f y) = y"
+apply (simp add: inv_into_def)
apply (fast intro: someI2)
done
-lemma inv_onto_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_onto A f y = x"
+lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x"
apply (erule subst)
-apply (fast intro: inv_onto_f_f)
+apply (fast intro: inv_into_f_f)
done
lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x"
-by (simp add:inv_onto_f_eq)
+by (simp add:inv_into_f_eq)
lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g"
-by (blast intro: ext inv_onto_f_eq)
+by (blast intro: ext inv_into_f_eq)
text{*But is it useful?*}
lemma inj_transfer:
@@ -134,12 +134,12 @@
proof -
have "f x \<in> range f" by auto
hence "P(inv f (f x))" by (rule minor)
- thus "P x" by (simp add: inv_onto_f_f [OF injf])
+ thus "P x" by (simp add: inv_into_f_f [OF injf])
qed
lemma inj_iff: "(inj f) = (inv f o f = id)"
apply (simp add: o_def expand_fun_eq)
-apply (blast intro: inj_on_inverseI inv_onto_f_f)
+apply (blast intro: inj_on_inverseI inv_into_f_f)
done
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id"
@@ -148,34 +148,34 @@
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g"
by (simp add: o_assoc[symmetric])
-lemma inv_onto_image_cancel[simp]:
- "inj_on f A ==> S <= A ==> inv_onto A f ` f ` S = S"
+lemma inv_into_image_cancel[simp]:
+ "inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S"
by(fastsimp simp: image_def)
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)"
-by (blast intro: surjI inv_onto_f_f)
+by (blast intro: surjI inv_into_f_f)
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y"
-by (simp add: f_inv_onto_f surj_range)
+by (simp add: f_inv_into_f surj_range)
-lemma inv_onto_injective:
- assumes eq: "inv_onto A f x = inv_onto A f y"
+lemma inv_into_injective:
+ assumes eq: "inv_into A f x = inv_into A f y"
and x: "x: f`A"
and y: "y: f`A"
shows "x=y"
proof -
- have "f (inv_onto A f x) = f (inv_onto A f y)" using eq by simp
- thus ?thesis by (simp add: f_inv_onto_f x y)
+ have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp
+ thus ?thesis by (simp add: f_inv_into_f x y)
qed
-lemma inj_on_inv_onto: "B <= f`A ==> inj_on (inv_onto A f) B"
-by (blast intro: inj_onI dest: inv_onto_injective injD)
+lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B"
+by (blast intro: inj_onI dest: inv_into_injective injD)
-lemma bij_betw_inv_onto: "bij_betw f A B ==> bij_betw (inv_onto A f) B A"
-by (auto simp add: bij_betw_def inj_on_inv_onto)
+lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A"
+by (auto simp add: bij_betw_def inj_on_inv_into)
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)"
-by (simp add: inj_on_inv_onto surj_range)
+by (simp add: inj_on_inv_into surj_range)
lemma surj_iff: "(surj f) = (f o inv f = id)"
apply (simp add: o_def expand_fun_eq)
@@ -193,7 +193,7 @@
lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g"
apply (rule ext)
-apply (auto simp add: inv_onto_def)
+apply (auto simp add: inv_into_def)
done
lemma inv_inv_eq: "bij f ==> inv (inv f) = f"
@@ -208,13 +208,13 @@
inv(inv f)=f all fail.
**)
-lemma inv_onto_comp:
+lemma inv_into_comp:
"[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
- inv_onto A (f o g) x = (inv_onto A g o inv_onto (g ` A) f) x"
-apply (rule inv_onto_f_eq)
+ inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x"
+apply (rule inv_into_f_eq)
apply (fast intro: comp_inj_on)
- apply (simp add: inv_onto_into)
-apply (simp add: f_inv_onto_f inv_onto_into)
+ apply (simp add: inv_into_into)
+apply (simp add: f_inv_into_f inv_into_into)
done
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f"
@@ -239,7 +239,7 @@
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A"
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])
-apply (blast intro: bij_is_inj [THEN inv_onto_f_f, symmetric])
+apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])
done
lemma finite_fun_UNIVD1:
@@ -256,7 +256,7 @@
moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)"
proof (rule UNIV_eq_I)
fix x :: 'a
- from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_onto_def)
+ from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def)
thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast
qed
ultimately show "finite (UNIV :: 'a set)" by simp
--- a/src/HOL/Induct/LList.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Induct/LList.thy Thu Oct 22 09:50:29 2009 +0200
@@ -665,7 +665,7 @@
apply (subst LList_corec, force)
done
-lemma llist_corec [nitpick_const_simp]:
+lemma llist_corec [nitpick_simp]:
"llist_corec a f =
(case f a of None => LNil | Some(z,w) => LCons z (llist_corec w f))"
apply (unfold llist_corec_def LNil_def LCons_def)
@@ -774,10 +774,10 @@
subsection{* The functional @{text lmap} *}
-lemma lmap_LNil [simp, nitpick_const_simp]: "lmap f LNil = LNil"
+lemma lmap_LNil [simp, nitpick_simp]: "lmap f LNil = LNil"
by (rule lmap_def [THEN def_llist_corec, THEN trans], simp)
-lemma lmap_LCons [simp, nitpick_const_simp]:
+lemma lmap_LCons [simp, nitpick_simp]:
"lmap f (LCons M N) = LCons (f M) (lmap f N)"
by (rule lmap_def [THEN def_llist_corec, THEN trans], simp)
@@ -793,7 +793,7 @@
subsection{* iterates -- @{text llist_fun_equalityI} cannot be used! *}
-lemma iterates [nitpick_const_simp]: "iterates f x = LCons x (iterates f (f x))"
+lemma iterates [nitpick_simp]: "iterates f x = LCons x (iterates f (f x))"
by (rule iterates_def [THEN def_llist_corec, THEN trans], simp)
lemma lmap_iterates [simp]: "lmap f (iterates f x) = iterates f (f x)"
@@ -848,18 +848,18 @@
subsection{* @{text lappend} -- its two arguments cause some complications! *}
-lemma lappend_LNil_LNil [simp, nitpick_const_simp]: "lappend LNil LNil = LNil"
+lemma lappend_LNil_LNil [simp, nitpick_simp]: "lappend LNil LNil = LNil"
apply (simp add: lappend_def)
apply (rule llist_corec [THEN trans], simp)
done
-lemma lappend_LNil_LCons [simp, nitpick_const_simp]:
+lemma lappend_LNil_LCons [simp, nitpick_simp]:
"lappend LNil (LCons l l') = LCons l (lappend LNil l')"
apply (simp add: lappend_def)
apply (rule llist_corec [THEN trans], simp)
done
-lemma lappend_LCons [simp, nitpick_const_simp]:
+lemma lappend_LCons [simp, nitpick_simp]:
"lappend (LCons l l') N = LCons l (lappend l' N)"
apply (simp add: lappend_def)
apply (rule llist_corec [THEN trans], simp)
--- a/src/HOL/Int.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Int.thy Thu Oct 22 09:50:29 2009 +0200
@@ -1614,7 +1614,7 @@
context ring_1
begin
-lemma of_int_of_nat [nitpick_const_simp]:
+lemma of_int_of_nat [nitpick_simp]:
"of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))"
proof (cases "k < 0")
case True then have "0 \<le> - k" by simp
--- a/src/HOL/Library/Coinductive_List.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Library/Coinductive_List.thy Thu Oct 22 09:50:29 2009 +0200
@@ -260,7 +260,7 @@
qed
qed
-lemma llist_corec [code, nitpick_const_simp]:
+lemma llist_corec [code, nitpick_simp]:
"llist_corec a f =
(case f a of None \<Rightarrow> LNil | Some (z, w) \<Rightarrow> LCons z (llist_corec w f))"
proof (cases "f a")
@@ -656,8 +656,8 @@
qed
qed
-lemma lmap_LNil [simp, nitpick_const_simp]: "lmap f LNil = LNil"
- and lmap_LCons [simp, nitpick_const_simp]:
+lemma lmap_LNil [simp, nitpick_simp]: "lmap f LNil = LNil"
+ and lmap_LCons [simp, nitpick_simp]:
"lmap f (LCons M N) = LCons (f M) (lmap f N)"
by (simp_all add: lmap_def llist_corec)
@@ -729,9 +729,9 @@
qed
qed
-lemma lappend_LNil_LNil [simp, nitpick_const_simp]: "lappend LNil LNil = LNil"
- and lappend_LNil_LCons [simp, nitpick_const_simp]: "lappend LNil (LCons l l') = LCons l (lappend LNil l')"
- and lappend_LCons [simp, nitpick_const_simp]: "lappend (LCons l l') m = LCons l (lappend l' m)"
+lemma lappend_LNil_LNil [simp, nitpick_simp]: "lappend LNil LNil = LNil"
+ and lappend_LNil_LCons [simp, nitpick_simp]: "lappend LNil (LCons l l') = LCons l (lappend LNil l')"
+ and lappend_LCons [simp, nitpick_simp]: "lappend (LCons l l') m = LCons l (lappend l' m)"
by (simp_all add: lappend_def llist_corec)
lemma lappend_LNil1 [simp]: "lappend LNil l = l"
@@ -755,7 +755,7 @@
iterates :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a llist" where
"iterates f a = llist_corec a (\<lambda>x. Some (x, f x))"
-lemma iterates [nitpick_const_simp]: "iterates f x = LCons x (iterates f (f x))"
+lemma iterates [nitpick_simp]: "iterates f x = LCons x (iterates f (f x))"
apply (unfold iterates_def)
apply (subst llist_corec)
apply simp
--- a/src/HOL/Library/FuncSet.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Library/FuncSet.thy Thu Oct 22 09:50:29 2009 +0200
@@ -190,20 +190,20 @@
!!x. x\<in>A ==> f x = g x |] ==> f = g"
by (force simp add: expand_fun_eq extensional_def)
-lemma inv_onto_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_onto A f x) : B -> A"
-by (unfold inv_onto_def) (fast intro: someI2)
+lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A"
+by (unfold inv_into_def) (fast intro: someI2)
-lemma compose_inv_onto_id:
- "bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_onto A f y) f = (\<lambda>x\<in>A. x)"
+lemma compose_inv_into_id:
+ "bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)"
apply (simp add: bij_betw_def compose_def)
apply (rule restrict_ext, auto)
done
-lemma compose_id_inv_onto:
- "f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_onto A f y) = (\<lambda>x\<in>B. x)"
+lemma compose_id_inv_into:
+ "f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)"
apply (simp add: compose_def)
apply (rule restrict_ext)
-apply (simp add: f_inv_onto_f)
+apply (simp add: f_inv_into_f)
done
--- a/src/HOL/Library/Permutations.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Library/Permutations.thy Thu Oct 22 09:50:29 2009 +0200
@@ -83,7 +83,7 @@
unfolding permutes_def by simp
lemma permutes_inv_eq: "p permutes S ==> inv p y = x \<longleftrightarrow> p x = y"
- unfolding permutes_def inv_onto_def apply auto
+ unfolding permutes_def inv_def apply auto
apply (erule allE[where x=y])
apply (erule allE[where x=y])
apply (rule someI_ex) apply blast
--- a/src/HOL/Nominal/nominal_primrec.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Nominal/nominal_primrec.ML Thu Oct 22 09:50:29 2009 +0200
@@ -372,8 +372,7 @@
in
lthy''
|> LocalTheory.note Thm.generatedK ((qualify (Binding.name "simps"),
- map (Attrib.internal o K)
- [Simplifier.simp_add, Nitpick_Const_Simps.add]),
+ map (Attrib.internal o K) [Simplifier.simp_add, Nitpick_Simps.add]),
maps snd simps')
|> snd
end)
--- a/src/HOL/SizeChange/Correctness.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/SizeChange/Correctness.thy Thu Oct 22 09:50:29 2009 +0200
@@ -1146,7 +1146,7 @@
assumes "finite S"
shows "set (set2list S) = S"
unfolding set2list_def
-proof (rule f_inv_onto_f)
+proof (rule f_inv_into_f)
from `finite S` have "\<exists>l. set l = S"
by (rule finite_list)
thus "S \<in> range set"
--- a/src/HOL/Tools/Datatype/datatype_abs_proofs.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/Datatype/datatype_abs_proofs.ML Thu Oct 22 09:50:29 2009 +0200
@@ -262,8 +262,7 @@
in
thy2
|> Sign.add_path (space_implode "_" new_type_names)
- |> PureThy.add_thmss [((Binding.name "recs", rec_thms),
- [Nitpick_Const_Simps.add])]
+ |> PureThy.add_thmss [((Binding.name "recs", rec_thms), [Nitpick_Simps.add])]
||> Sign.parent_path
||> Theory.checkpoint
|-> (fn thms => pair (reccomb_names, flat thms))
@@ -335,7 +334,7 @@
(DatatypeProp.make_cases new_type_names descr sorts thy2)
in
thy2
- |> Context.the_theory o fold (fold Nitpick_Const_Simps.add_thm) case_thms
+ |> Context.the_theory o fold (fold Nitpick_Simps.add_thm) case_thms
o Context.Theory
|> Sign.parent_path
|> store_thmss "cases" new_type_names case_thms
--- a/src/HOL/Tools/Datatype/datatype_rep_proofs.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/Datatype/datatype_rep_proofs.ML Thu Oct 22 09:50:29 2009 +0200
@@ -481,7 +481,7 @@
val Abs_inverse_thms' =
map #1 newT_iso_axms @
- map2 (fn r_inj => fn r => @{thm f_the_inv_onto_f} OF [r_inj, r RS mp])
+ map2 (fn r_inj => fn r => @{thm f_the_inv_into_f} OF [r_inj, r RS mp])
iso_inj_thms_unfolded iso_thms;
val Abs_inverse_thms = maps (mk_funs_inv thy5) Abs_inverse_thms';
@@ -571,7 +571,7 @@
val Abs_t = if i < length newTs then
Const (Sign.intern_const thy6
("Abs_" ^ (nth new_type_names i)), Univ_elT --> T)
- else Const (@{const_name the_inv_onto},
+ else Const (@{const_name the_inv_into},
[HOLogic.mk_setT T, T --> Univ_elT, Univ_elT] ---> T) $
HOLogic.mk_UNIV T $ Const (nth all_rep_names i, T --> Univ_elT)
--- a/src/HOL/Tools/Function/fundef.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/Function/fundef.ML Thu Oct 22 09:50:29 2009 +0200
@@ -37,12 +37,12 @@
val simp_attribs = map (Attrib.internal o K)
[Simplifier.simp_add,
Code.add_default_eqn_attribute,
- Nitpick_Const_Simps.add,
+ Nitpick_Simps.add,
Quickcheck_RecFun_Simps.add]
val psimp_attribs = map (Attrib.internal o K)
[Simplifier.simp_add,
- Nitpick_Const_Psimps.add]
+ Nitpick_Psimps.add]
fun note_theorem ((name, atts), ths) =
LocalTheory.note Thm.generatedK ((Binding.qualified_name name, atts), ths)
--- a/src/HOL/Tools/Function/size.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/Function/size.ML Thu Oct 22 09:50:29 2009 +0200
@@ -209,7 +209,7 @@
val ([size_thms], thy'') = PureThy.add_thmss
[((Binding.name "size", size_eqns),
- [Simplifier.simp_add, Nitpick_Const_Simps.add,
+ [Simplifier.simp_add, Nitpick_Simps.add,
Thm.declaration_attribute
(fn thm => Context.mapping (Code.add_default_eqn thm) I)])] thy'
--- a/src/HOL/Tools/Predicate_Compile/pred_compile_data.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/Predicate_Compile/pred_compile_data.ML Thu Oct 22 09:50:29 2009 +0200
@@ -157,7 +157,7 @@
fun make_const_spec_table thy =
fold store_thm (Predicate_Compile_Preproc_Const_Defs.get (ProofContext.init thy)) thy
- |> (fn thy => fold store_thm (Nitpick_Const_Simps.get (ProofContext.init thy)) thy)
+ |> (fn thy => fold store_thm (Nitpick_Simps.get (ProofContext.init thy)) thy)
*)
fun make_const_spec_table thy =
let
@@ -168,8 +168,8 @@
in
table
|> store ignore_consts Predicate_Compile_Preproc_Const_Defs.get
- |> store ignore_consts Nitpick_Const_Simps.get
- |> store ignore_consts Nitpick_Ind_Intros.get
+ |> store ignore_consts Nitpick_Simps.get
+ |> store ignore_consts Nitpick_Intros.get
end
(*
fun get_specification thy constname =
--- a/src/HOL/Tools/inductive.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/inductive.ML Thu Oct 22 09:50:29 2009 +0200
@@ -703,7 +703,7 @@
LocalTheory.notes kind
(map (rec_qualified false) intr_bindings ~~ intr_atts ~~ map (fn th => [([th],
[Attrib.internal (K (ContextRules.intro_query NONE)),
- Attrib.internal (K Nitpick_Ind_Intros.add)])]) intrs) |>>
+ Attrib.internal (K Nitpick_Intros.add)])]) intrs) |>>
map (hd o snd);
val (((_, elims'), (_, [induct'])), ctxt2) =
ctxt1 |>
--- a/src/HOL/Tools/old_primrec.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/old_primrec.ML Thu Oct 22 09:50:29 2009 +0200
@@ -284,7 +284,7 @@
in
thy''
|> note (("simps",
- [Simplifier.simp_add, Nitpick_Const_Simps.add, Code.add_default_eqn_attribute]), simps'')
+ [Simplifier.simp_add, Nitpick_Simps.add, Code.add_default_eqn_attribute]), simps'')
|> snd
|> note (("induct", []), [prepare_induct (#2 (hd dts)) rec_eqns])
|> snd
--- a/src/HOL/Tools/primrec.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/primrec.ML Thu Oct 22 09:50:29 2009 +0200
@@ -272,7 +272,7 @@
(Binding.qualify false prefix b, Code.add_default_eqn_attrib :: attrs)) spec;
fun simp_attr_binding prefix = (Binding.qualify true prefix (Binding.name "simps"),
map (Attrib.internal o K)
- [Simplifier.simp_add, Nitpick_Const_Simps.add, Quickcheck_RecFun_Simps.add]);
+ [Simplifier.simp_add, Nitpick_Simps.add, Quickcheck_RecFun_Simps.add]);
in
lthy
|> set_group ? LocalTheory.set_group (serial_string ())
--- a/src/HOL/Tools/quickcheck_generators.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/quickcheck_generators.ML Thu Oct 22 09:50:29 2009 +0200
@@ -214,7 +214,7 @@
|-> (fn proto_simps => prove_simps proto_simps)
|-> (fn simps => LocalTheory.note Thm.generatedK ((b,
Code.add_default_eqn_attrib :: map (Attrib.internal o K)
- [Simplifier.simp_add, Nitpick_Const_Simps.add, Quickcheck_RecFun_Simps.add]),
+ [Simplifier.simp_add, Nitpick_Simps.add, Quickcheck_RecFun_Simps.add]),
simps))
|> snd
end
--- a/src/HOL/Tools/recdef.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/recdef.ML Thu Oct 22 09:50:29 2009 +0200
@@ -202,7 +202,7 @@
tfl_fn not_permissive thy cs (ss delcongs [imp_cong])
congs wfs name R eqs;
val rules = (map o map) fst (partition_eq (eq_snd (op = : int * int -> bool)) rules_idx);
- val simp_att = if null tcs then [Simplifier.simp_add, Nitpick_Const_Simps.add,
+ val simp_att = if null tcs then [Simplifier.simp_add, Nitpick_Simps.add,
Code.add_default_eqn_attribute, Quickcheck_RecFun_Simps.add] else [];
val ((simps' :: rules', [induct']), thy) =
--- a/src/HOL/Tools/record.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/record.ML Thu Oct 22 09:50:29 2009 +0200
@@ -2323,8 +2323,7 @@
val final_thy =
thms_thy
|> (snd oo PureThy.add_thmss)
- [((Binding.name "simps", sel_upd_simps),
- [Simplifier.simp_add, Nitpick_Const_Simps.add]),
+ [((Binding.name "simps", sel_upd_simps), [Simplifier.simp_add]),
((Binding.name "iffs", iffs), [iff_add])]
|> put_record name (make_record_info args parent fields extension induct_scheme' ext_def)
|> put_sel_upd names full_moreN depth sel_upd_simps sel_upd_defs (fold_congs', unfold_congs')
--- a/src/HOL/Tools/refute.ML Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/Tools/refute.ML Thu Oct 22 09:50:29 2009 +0200
@@ -1145,6 +1145,10 @@
fun find_model thy {sizes, minsize, maxsize, maxvars, maxtime, satsolver,
expect} t negate =
let
+ (* string -> unit *)
+ fun check_expect outcome_code =
+ if expect = "" orelse outcome_code = expect then ()
+ else error ("Unexpected outcome: " ^ quote outcome_code ^ ".")
(* unit -> unit *)
fun wrapper () =
let
@@ -1237,8 +1241,7 @@
"unknown")
val outcome_code = find_model_loop (first_universe types sizes minsize)
in
- if expect = "" orelse outcome_code = expect then ()
- else error ("Unexpected outcome: " ^ quote outcome_code ^ ".")
+ check_expect outcome_code
end
in
(* some parameter sanity checks *)
@@ -1261,9 +1264,10 @@
TimeLimit.timeLimit (Time.fromSeconds maxtime)
wrapper ()
handle TimeLimit.TimeOut =>
- priority ("Search terminated, time limit (" ^
- string_of_int maxtime
- ^ (if maxtime=1 then " second" else " seconds") ^ ") exceeded.")
+ (priority ("Search terminated, time limit (" ^
+ string_of_int maxtime
+ ^ (if maxtime=1 then " second" else " seconds") ^ ") exceeded.");
+ check_expect "unknown")
) else
wrapper ()
end;
--- a/src/HOL/UNITY/Extend.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/UNITY/Extend.thy Thu Oct 22 09:50:29 2009 +0200
@@ -121,7 +121,7 @@
assumes surj_h: "surj h"
and prem: "!! x y. g (h(x,y)) = x"
shows "fst (inv h z) = g z"
-by (metis UNIV_I f_inv_onto_f pair_collapse prem surj_h surj_range)
+by (metis UNIV_I f_inv_into_f pair_collapse prem surj_h surj_range)
subsection{*Trivial properties of f, g, h*}
--- a/src/HOL/ZF/HOLZF.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/ZF/HOLZF.thy Thu Oct 22 09:50:29 2009 +0200
@@ -626,7 +626,7 @@
lemma nat2Nat_Nat2nat[simp]: "Elem n Nat \<Longrightarrow> nat2Nat (Nat2nat n) = n"
apply (simp add: Nat2nat_def)
- apply (rule_tac f_inv_onto_f)
+ apply (rule_tac f_inv_into_f)
apply (auto simp add: image_def Nat_def Sep)
done
--- a/src/HOL/ZF/Zet.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/ZF/Zet.thy Thu Oct 22 09:50:29 2009 +0200
@@ -35,7 +35,7 @@
lemma image_zet_rep: "A \<in> zet \<Longrightarrow> ? z . g ` A = explode z"
apply (auto simp add: zet_def')
- apply (rule_tac x="Repl z (g o (inv_onto A f))" in exI)
+ apply (rule_tac x="Repl z (g o (inv_into A f))" in exI)
apply (simp add: explode_Repl_eq)
apply (subgoal_tac "explode z = f ` A")
apply (simp_all add: comp_image_eq)
@@ -49,10 +49,10 @@
by (auto simp add: zet_def')
then obtain f where injf: "inj_on (f :: _ \<Rightarrow> ZF) A"
by auto
- let ?w = "f o (inv_onto A g)"
- have subset: "(inv_onto A g) ` (g ` A) \<subseteq> A"
- by (auto simp add: inv_onto_into)
- have "inj_on (inv_onto A g) (g ` A)" by (simp add: inj_on_inv_onto)
+ let ?w = "f o (inv_into A g)"
+ have subset: "(inv_into A g) ` (g ` A) \<subseteq> A"
+ by (auto simp add: inv_into_into)
+ have "inj_on (inv_into A g) (g ` A)" by (simp add: inj_on_inv_into)
then have injw: "inj_on ?w (g ` A)"
apply (rule comp_inj_on)
apply (rule subset_inj_on[where B=A])
@@ -86,7 +86,7 @@
lemma zexplode_zimplode: "zexplode (zimplode A) = A"
apply (simp add: zimplode_def zexplode_def)
apply (simp add: implode_def)
- apply (subst f_inv_onto_f[where y="Rep_zet A"])
+ apply (subst f_inv_into_f[where y="Rep_zet A"])
apply (auto simp add: Rep_zet_inverse Rep_zet_eq_explode image_def)
done
--- a/src/HOL/ex/set.thy Thu Oct 22 09:49:48 2009 +0200
+++ b/src/HOL/ex/set.thy Thu Oct 22 09:50:29 2009 +0200
@@ -104,7 +104,7 @@
--{*The term above can be synthesized by a sufficiently detailed proof.*}
apply (rule bij_if_then_else)
apply (rule_tac [4] refl)
- apply (rule_tac [2] inj_on_inv_onto)
+ apply (rule_tac [2] inj_on_inv_into)
apply (erule subset_inj_on [OF _ subset_UNIV])
apply blast
apply (erule ssubst, subst double_complement, erule inv_image_comp [symmetric])