--- a/NEWS Mon Aug 21 20:49:15 2017 +0200
+++ b/NEWS Tue Aug 22 08:55:07 2017 +0200
@@ -240,8 +240,8 @@
INCOMPATIBILITY.
-* Theory "HOL-Library.Pattern_Aliases" provides input syntax for pattern
-aliases as known from Haskell, Scala and ML.
+* Theory "HOL-Library.Pattern_Aliases" provides input and output syntax
+for pattern aliases as known from Haskell, Scala and ML.
* Session HOL-Analysis: more material involving arcs, paths, covering
spaces, innessential maps, retracts, material on infinite products.
--- a/src/HOL/Library/Pattern_Aliases.thy Mon Aug 21 20:49:15 2017 +0200
+++ b/src/HOL/Library/Pattern_Aliases.thy Tue Aug 22 08:55:07 2017 +0200
@@ -11,7 +11,7 @@
text \<open>
Most functional languages (Haskell, ML, Scala) support aliases in patterns. This allows to refer
to a subpattern with a variable name. This theory implements this using a check phase. It works
- well for function definitions (see usage below).
+ well for function definitions (see usage below). All features are packed into a @{command bundle}.
The following caveats should be kept in mind:
\<^item> The translation expects a term of the form @{prop "f x y = rhs"}, where \<open>x\<close> and \<open>y\<close> are patterns
@@ -22,8 +22,10 @@
\<^item> Terms that do not adhere to the above shape may either stay untranslated or produce an error
message. The @{command fun} command will complain if pattern aliases are left untranslated.
In particular, there are no checks whether the patterns are wellformed or linear.
- \<^item> There is no corresonding uncheck phase, because it is unclear in which situations the
- translation should be reversed.
+ \<^item> The corresponding uncheck phase attempts to reverse the translation (no guarantee).
+ \<^item> To obtain reasonable induction principles in function definitions, the bundle also declares
+ a custom congruence rule for @{const Let} that only affects @{command fun}. This congruence
+ rule might lead to an explosion in term size (although that is rare)!
\<close>
@@ -31,10 +33,14 @@
consts as :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+lemma let_cong_unfolding: "M = N \<Longrightarrow> f N = g N \<Longrightarrow> Let M f = Let N g"
+by simp
+
ML\<open>
local
fun let_typ a b = a --> (a --> b) --> b
+fun as_typ a = a --> a --> a
fun strip_all t =
case try Logic.dest_all t of
@@ -44,6 +50,27 @@
fun all_Frees t =
fold_aterms (fn Free (x, t) => insert op = (x, t) | _ => I) t []
+fun subst_once (old, new) t =
+ let
+ fun go t =
+ if t = old then
+ (new, true)
+ else
+ case t of
+ u $ v =>
+ let
+ val (u', substituted) = go u
+ in
+ if substituted then
+ (u' $ v, true)
+ else
+ case go v of (v', substituted) => (u $ v', substituted)
+ end
+ | Abs (name, typ, t) =>
+ (case go t of (t', substituted) => (Abs (name, typ, t'), substituted))
+ | _ => (t, false)
+ in fst (go t) end
+
in
fun check_pattern_syntax t =
@@ -53,7 +80,7 @@
fun go (Const (@{const_name as}, _) $ pat $ var, rhs) =
let
val (pat', rhs') = go (pat, rhs)
- val _ = if is_Free var then () else error "Left-hand side of =: must be a free variable"
+ val _ = if is_Free var then () else error "Right-hand side of =: must be a free variable"
val rhs'' =
Const (@{const_name Let}, let_typ (fastype_of var) (fastype_of rhs)) $
pat' $ lambda var rhs'
@@ -75,6 +102,35 @@
in fold (fn v => Logic.dependent_all_name ("", v)) (map Free frees) res end
| _ => t
+fun uncheck_pattern_syntax ctxt t =
+ case strip_all t of
+ (vars, @{const Trueprop} $ (Const (@{const_name HOL.eq}, _) $ lhs $ rhs)) =>
+ let
+ fun go lhs (rhs as Const (@{const_name Let}, _) $ pat $ Abs (name, typ, t)) ctxt frees =
+ if exists_subterm (fn t' => t' = pat) lhs then
+ let
+ val ([name'], ctxt') = Variable.variant_fixes [name] ctxt
+ val free = Free (name', typ)
+ val subst = (pat, Const (@{const_name as}, as_typ typ) $ pat $ free)
+ val lhs' = subst_once subst lhs
+ val rhs' = subst_bound (free, t)
+ in
+ go lhs' rhs' ctxt' (Free (name', typ) :: frees)
+ end
+ else
+ (lhs, rhs, ctxt, frees)
+ | go lhs rhs ctxt frees = (lhs, rhs, ctxt, frees)
+
+ val (lhs', rhs', _, frees) = go lhs rhs ctxt []
+
+ val res =
+ HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs', rhs'))
+ |> fold (fn v => Logic.dependent_all_name ("", v)) (map Free vars @ frees)
+ in
+ if null frees then t else res
+ end
+ | _ => t
+
end
\<close>
@@ -83,6 +139,9 @@
notation as (infixr "=:" 1)
declaration \<open>K (Syntax_Phases.term_check 98 "pattern_syntax" (K (map check_pattern_syntax)))\<close>
+ declaration \<open>K (Syntax_Phases.term_uncheck 98 "pattern_syntax" (map o uncheck_pattern_syntax))\<close>
+
+ declare let_cong_unfolding [fundef_cong]
end
@@ -103,12 +162,23 @@
text \<open>Very useful for function definitions.\<close>
private fun test_2 where
-"test_2 (y # (y' # ys =: x') =: x) = x @ x'" |
+"test_2 (y # (y' # ys =: x') =: x) = x @ x' @ x'" |
"test_2 _ = []"
-lemma "test_2 (y # y' # ys) = (y # y' # ys) @ y' # ys"
+lemma "test_2 (y # y' # ys) = (y # y' # ys) @ (y' # ys) @ (y' # ys)"
by (rule test_2.simps[unfolded Let_def])
+ML\<open>
+let
+ val actual =
+ @{thm test_2.simps(1)}
+ |> Thm.prop_of
+ |> Syntax.string_of_term @{context}
+ |> YXML.content_of
+ val expected = "\<And>x x'. test_2 (?y # (?y' # ?ys =: x') =: x) = x @ x' @ x'"
+in @{assert} (actual = expected) end
+\<close>
+
end
end
\ No newline at end of file