no eq_sym_conv;
authorwenzelm
Mon, 01 Aug 2005 19:20:25 +0200
changeset 16972 d3f9abe00712
parent 16971 968adbfbf93b
child 16973 b2a894562b8f
no eq_sym_conv; tuned;
src/HOL/Hoare/SepLogHeap.thy
--- a/src/HOL/Hoare/SepLogHeap.thy	Mon Aug 01 19:20:24 2005 +0200
+++ b/src/HOL/Hoare/SepLogHeap.thy	Mon Aug 01 19:20:25 2005 +0200
@@ -11,8 +11,8 @@
 
 types heap = "(nat \<Rightarrow> nat option)"
 
-text{* Some means allocated, none means free. Address 0 serves as the
-null reference. *}
+text{* @{text "Some"} means allocated, @{text "None"} means
+free. Address @{text "0"} serves as the null reference. *}
 
 subsection "Paths in the heap"
 
@@ -23,24 +23,18 @@
 "Path h x (a#as) y = (x\<noteq>0 \<and> a=x \<and> (\<exists>b. h x = Some b \<and> Path h b as y))"
 
 lemma [iff]: "Path h 0 xs y = (xs = [] \<and> y = 0)"
-apply(case_tac xs)
-apply fastsimp
-apply fastsimp
-done
+by (cases xs) simp_all
 
 lemma [simp]: "x\<noteq>0 \<Longrightarrow> Path h x as z =
  (as = [] \<and> z = x  \<or>  (\<exists>y bs. as = x#bs \<and> h x = Some y & Path h y bs z))"
-apply(case_tac as)
-apply fastsimp
-apply fastsimp
-done
+by (cases as) auto
 
 lemma [simp]: "\<And>x. Path f x (as@bs) z = (\<exists>y. Path f x as y \<and> Path f y bs z)"
-by(induct as, auto)
+by (induct as) auto
 
 lemma Path_upd[simp]:
  "\<And>x. u \<notin> set as \<Longrightarrow> Path (f(u := v)) x as y = Path f x as y"
-by(induct as, simp, simp add:eq_sym_conv)
+by (induct as) simp_all
 
 
 subsection "Lists on the heap"
@@ -50,34 +44,31 @@
 "List h x as == Path h x as 0"
 
 lemma [simp]: "List h x [] = (x = 0)"
-by(simp add:List_def)
+by (simp add: List_def)
 
 lemma [simp]:
  "List h x (a#as) = (x\<noteq>0 \<and> a=x \<and> (\<exists>y. h x = Some y \<and> List h y as))"
-by(simp add:List_def)
+by (simp add: List_def)
 
 lemma [simp]: "List h 0 as = (as = [])"
-by(case_tac as, simp_all)
+by (cases as) simp_all
 
 lemma List_non_null: "a\<noteq>0 \<Longrightarrow>
  List h a as = (\<exists>b bs. as = a#bs \<and> h a = Some b \<and> List h b bs)"
-by(case_tac as, simp_all)
+by (cases as) simp_all
 
 theorem notin_List_update[simp]:
  "\<And>x. a \<notin> set as \<Longrightarrow> List (h(a := y)) x as = List h x as"
-apply(induct as)
-apply simp
-apply(clarsimp simp add:fun_upd_apply)
-done
+by (induct as) simp_all
 
 lemma List_unique: "\<And>x bs. List h x as \<Longrightarrow> List h x bs \<Longrightarrow> as = bs"
-by(induct as, auto simp add:List_non_null)
+by (induct as) (auto simp add:List_non_null)
 
 lemma List_unique1: "List h p as \<Longrightarrow> \<exists>!as. List h p as"
-by(blast intro:List_unique)
+by (blast intro: List_unique)
 
 lemma List_app: "\<And>x. List h x (as@bs) = (\<exists>y. Path h x as y \<and> List h y bs)"
-by(induct as, auto)
+by (induct as) auto
 
 lemma List_hd_not_in_tl[simp]: "List h b as \<Longrightarrow> h a = Some b \<Longrightarrow> a \<notin> set as"
 apply (clarsimp simp add:in_set_conv_decomp)
@@ -86,19 +77,17 @@
 done
 
 lemma List_distinct[simp]: "\<And>x. List h x as \<Longrightarrow> distinct as"
-apply(induct as, simp)
-apply(fastsimp dest:List_hd_not_in_tl)
-done
+by (induct as) (auto dest:List_hd_not_in_tl)
 
 lemma list_in_heap: "\<And>p. List h p ps \<Longrightarrow> set ps \<subseteq> dom h"
-by(induct ps, auto)
+by (induct ps) auto
 
 lemma list_ortho_sum1[simp]:
  "\<And>p. \<lbrakk> List h1 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
-by(induct ps, auto simp add:map_add_def split:option.split)
+by (induct ps) (auto simp add:map_add_def split:option.split)
 
 lemma list_ortho_sum2[simp]:
  "\<And>p. \<lbrakk> List h2 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
-by(induct ps, auto simp add:map_add_def split:option.split)
+by (induct ps) (auto simp add:map_add_def split:option.split)
 
 end