Prototype introiff option for find_theorems.
This feature was suggested by Jeremy Avigad / Tobias Nipkow.
It adds an introiff keyword for find_theorems that returns, in
addition to the usual results for intro, any theorems of the
form ([| ... |] ==> (P = Q)) where either P or Q matches the
conclusions of the current goal. Such theorems can be made
introduction rules with [THEN iffDx].
The current patch is for evaluation only. It assumes an
(op = : 'a -> 'a -> bool) operator, which is specific to HOL.
It is not clear how this should be generalised.
--- a/src/Pure/Tools/find_theorems.ML Wed May 06 09:08:47 2009 +0200
+++ b/src/Pure/Tools/find_theorems.ML Wed May 06 10:55:47 2009 +1000
@@ -7,7 +7,7 @@
signature FIND_THEOREMS =
sig
datatype 'term criterion =
- Name of string | Intro | Elim | Dest | Solves | Simp of 'term |
+ Name of string | Intro | IntroIff | Elim | Dest | Solves | Simp of 'term |
Pattern of 'term
val tac_limit: int ref
val limit: int ref
@@ -24,11 +24,12 @@
(** search criteria **)
datatype 'term criterion =
- Name of string | Intro | Elim | Dest | Solves | Simp of 'term |
+ Name of string | Intro | IntroIff | Elim | Dest | Solves | Simp of 'term |
Pattern of 'term;
fun read_criterion _ (Name name) = Name name
| read_criterion _ Intro = Intro
+ | read_criterion _ IntroIff = IntroIff
| read_criterion _ Elim = Elim
| read_criterion _ Dest = Dest
| read_criterion _ Solves = Solves
@@ -42,6 +43,7 @@
(case c of
Name name => Pretty.str (prfx "name: " ^ quote name)
| Intro => Pretty.str (prfx "intro")
+ | IntroIff => Pretty.str (prfx "introiff")
| Elim => Pretty.str (prfx "elim")
| Dest => Pretty.str (prfx "dest")
| Solves => Pretty.str (prfx "solves")
@@ -74,17 +76,40 @@
fun is_nontrivial thy = Term.is_Const o Term.head_of o ObjectLogic.drop_judgment thy;
+(* Note: ("op =" : "bool --> bool --> bool") does not exist in Pure. *)
+fun is_Iff c =
+ (case dest_Const c of
+ ("op =", ty) =>
+ (ty
+ |> strip_type
+ |> swap
+ |> (op ::)
+ |> map (fst o dest_Type)
+ |> forall (curry (op =) "bool")
+ handle TYPE _ => false)
+ | _ => false);
+
(*extract terms from term_src, refine them to the parts that concern us,
if po try match them against obj else vice versa.
trivial matches are ignored.
returns: smallest substitution size*)
-fun is_matching_thm (extract_terms, refine_term) ctxt po obj term_src =
+fun is_matching_thm doiff (extract_terms, refine_term) ctxt po obj term_src =
let
val thy = ProofContext.theory_of ctxt;
+ val chkmatch = obj |> (if po then rpair else pair) #> Pattern.matches thy;
fun matches pat =
- is_nontrivial thy pat andalso
- Pattern.matches thy (if po then (pat, obj) else (obj, pat));
+ let
+ val jpat = ObjectLogic.drop_judgment thy pat;
+ val c = Term.head_of jpat;
+ val pats =
+ if Term.is_Const c
+ then if doiff andalso is_Iff c
+ then pat :: map (ObjectLogic.ensure_propT thy) ((snd o strip_comb) jpat)
+ |> filter (is_nontrivial thy)
+ else [pat]
+ else [];
+ in filter chkmatch pats end;
fun substsize pat =
let val (_, subst) =
@@ -96,7 +121,9 @@
val match_thm = matches o refine_term;
in
- map (substsize o refine_term) (filter match_thm (extract_terms term_src))
+ map match_thm (extract_terms term_src)
+ |> flat
+ |> map substsize
|> bestmatch
end;
@@ -117,7 +144,7 @@
hd o Logic.strip_imp_prems);
val prems = Logic.prems_of_goal goal 1;
- fun try_subst prem = is_matching_thm extract_dest ctxt true prem thm;
+ fun try_subst prem = is_matching_thm false extract_dest ctxt true prem thm;
val successful = prems |> map_filter try_subst;
in
(*if possible, keep best substitution (one with smallest size)*)
@@ -127,11 +154,11 @@
then SOME (Thm.nprems_of thm - 1, foldr1 Int.min successful) else NONE
end;
-fun filter_intro ctxt goal (_, thm) =
+fun filter_intro doiff ctxt goal (_, thm) =
let
val extract_intro = (single o Thm.full_prop_of, Logic.strip_imp_concl);
val concl = Logic.concl_of_goal goal 1;
- val ss = is_matching_thm extract_intro ctxt true concl thm;
+ val ss = is_matching_thm doiff extract_intro ctxt true concl thm;
in
if is_some ss then SOME (Thm.nprems_of thm, the ss) else NONE
end;
@@ -148,7 +175,7 @@
val rule_tree = combine rule_mp rule_concl;
fun goal_tree prem = combine prem goal_concl;
fun try_subst prem =
- is_matching_thm (single, I) ctxt true (goal_tree prem) rule_tree;
+ is_matching_thm false (single, I) ctxt true (goal_tree prem) rule_tree;
val successful = prems |> map_filter try_subst;
in
(*elim rules always have assumptions, so an elim with one
@@ -183,7 +210,7 @@
val mksimps = Simplifier.mksimps (Simplifier.local_simpset_of ctxt);
val extract_simp =
(map Thm.full_prop_of o mksimps, #1 o Logic.dest_equals o Logic.strip_imp_concl);
- val ss = is_matching_thm extract_simp ctxt false t thm;
+ val ss = is_matching_thm false extract_simp ctxt false t thm;
in
if is_some ss then SOME (Thm.nprems_of thm, the ss) else NONE
end;
@@ -233,7 +260,8 @@
| filter_crit _ NONE Elim = err_no_goal "elim"
| filter_crit _ NONE Dest = err_no_goal "dest"
| filter_crit _ NONE Solves = err_no_goal "solves"
- | filter_crit ctxt (SOME goal) Intro = apfst (filter_intro ctxt (fix_goal goal))
+ | filter_crit ctxt (SOME goal) Intro = apfst (filter_intro false ctxt (fix_goal goal))
+ | filter_crit ctxt (SOME goal) IntroIff = apfst (filter_intro true ctxt (fix_goal goal))
| filter_crit ctxt (SOME goal) Elim = apfst (filter_elim ctxt (fix_goal goal))
| filter_crit ctxt (SOME goal) Dest = apfst (filter_dest ctxt (fix_goal goal))
| filter_crit ctxt (SOME goal) Solves = apfst (filter_solves ctxt goal)
@@ -428,6 +456,7 @@
val criterion =
P.reserved "name" |-- P.!!! (P.$$$ ":" |-- P.xname) >> Name ||
P.reserved "intro" >> K Intro ||
+ P.reserved "introiff" >> K IntroIff ||
P.reserved "elim" >> K Elim ||
P.reserved "dest" >> K Dest ||
P.reserved "solves" >> K Solves ||