--- a/src/HOL/Real/ex/ROOT.ML Tue Nov 06 23:47:03 2001 +0100
+++ b/src/HOL/Real/ex/ROOT.ML Tue Nov 06 23:47:35 2001 +0100
@@ -5,5 +5,6 @@
*)
no_document use_thy "Primes";
-time_use_thy "Sqrt_Irrational";
+time_use_thy "Sqrt";
+time_use_thy "Sqrt_Script";
time_use_thy "BinEx";
--- a/src/HOL/Real/ex/Sqrt_Script.thy Tue Nov 06 23:47:03 2001 +0100
+++ b/src/HOL/Real/ex/Sqrt_Script.thy Tue Nov 06 23:47:35 2001 +0100
@@ -6,13 +6,13 @@
header {* Square roots of primes are irrational *}
+theory Sqrt_Script = Primes + Real:
+
text {*
- \medskip Contrast this linear Isar script with Markus Wenzel's
- more mathematical version.
+ \medskip Contrast this linear Isar script with Markus Wenzel's more
+ mathematical version.
*}
-theory Sqrt_Script = Primes + Real:
-
section {* Preliminaries *}
lemma prime_nonzero: "p \<in> prime \<Longrightarrow> p\<noteq>0"
@@ -56,8 +56,8 @@
section {* Main theorem *}
text {*
- \tweakskip The square root of any prime number (including @{text 2})
- is irrational.
+ The square root of any prime number (including @{text 2}) is
+ irrational.
*}
theorem prime_sqrt_irrational: "\<lbrakk>p \<in> prime; x*x = real p; 0 \<le> x\<rbrakk> \<Longrightarrow> x \<notin> \<rat>"
@@ -66,12 +66,12 @@
apply (erule_tac P="real m / real n * ?x = ?y" in rev_mp)
apply (simp del: real_of_nat_mult
add: real_divide_eq_eq prime_not_square
- real_of_nat_mult [THEN sym])
+ real_of_nat_mult [symmetric])
done
lemma two_is_prime: "2 \<in> prime"
apply (auto simp add: prime_def)
-apply (case_tac "m")
+apply (case_tac m)
apply (auto dest!: dvd_imp_le)
apply arith
done