--- a/src/HOL/Hyperreal/Deriv.thy Wed Nov 08 00:34:15 2006 +0100
+++ b/src/HOL/Hyperreal/Deriv.thy Wed Nov 08 02:13:02 2006 +0100
@@ -300,7 +300,7 @@
from f have "f -- x --> f x"
by (rule DERIV_isCont [unfolded isCont_def])
with cont_d have "(\<lambda>z. d (f z)) -- x --> d (f x)"
- by (rule LIM_compose)
+ by (rule isCont_LIM_compose)
hence "(\<lambda>z. ((f z - f x) /# (z - x)) *# d (f z))
-- x --> D *# d (f x)"
by (rule LIM_scaleR [OF f [unfolded DERIV_iff2]])
--- a/src/HOL/Hyperreal/Lim.thy Wed Nov 08 00:34:15 2006 +0100
+++ b/src/HOL/Hyperreal/Lim.thy Wed Nov 08 02:13:02 2006 +0100
@@ -67,6 +67,12 @@
apply (simp add: compare_rls)
done
+lemma LIM_offset_zero: "f -- a --> L \<Longrightarrow> (\<lambda>h. f (a + h)) -- 0 --> L"
+by (drule_tac k="a" in LIM_offset, simp add: add_commute)
+
+lemma LIM_offset_zero_cancel: "(\<lambda>h. f (a + h)) -- 0 --> L \<Longrightarrow> f -- a --> L"
+by (drule_tac k="- a" in LIM_offset, simp)
+
lemma LIM_const [simp]: "(%x. k) -- x --> k"
by (simp add: LIM_def)
@@ -117,6 +123,12 @@
"[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) - g(x)) -- x --> l-m"
by (simp only: diff_minus LIM_add LIM_minus)
+lemma LIM_zero: "f -- a --> l \<Longrightarrow> (\<lambda>x. f x - l) -- a --> 0"
+by (simp add: LIM_def)
+
+lemma LIM_zero_cancel: "(\<lambda>x. f x - l) -- a --> 0 \<Longrightarrow> f -- a --> l"
+by (simp add: LIM_def)
+
lemma LIM_const_not_eq:
fixes a :: "'a::real_normed_div_algebra"
shows "k \<noteq> L ==> ~ ((%x. k) -- a --> L)"
@@ -191,6 +203,33 @@
apply (auto simp add: add_assoc)
done
+lemma LIM_compose:
+ assumes g: "g -- l --> g l"
+ assumes f: "f -- a --> l"
+ shows "(\<lambda>x. g (f x)) -- a --> g l"
+proof (rule LIM_I)
+ fix r::real assume r: "0 < r"
+ obtain s where s: "0 < s"
+ and less_r: "\<And>y. \<lbrakk>y \<noteq> l; norm (y - l) < s\<rbrakk> \<Longrightarrow> norm (g y - g l) < r"
+ using LIM_D [OF g r] by fast
+ obtain t where t: "0 < t"
+ and less_s: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < t\<rbrakk> \<Longrightarrow> norm (f x - l) < s"
+ using LIM_D [OF f s] by fast
+
+ show "\<exists>t>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < t \<longrightarrow> norm (g (f x) - g l) < r"
+ proof (rule exI, safe)
+ show "0 < t" using t .
+ next
+ fix x assume "x \<noteq> a" and "norm (x - a) < t"
+ hence "norm (f x - l) < s" by (rule less_s)
+ thus "norm (g (f x) - g l) < r"
+ using r less_r by (case_tac "f x = l", simp_all)
+ qed
+qed
+
+lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l"
+unfolding o_def by (rule LIM_compose)
+
subsubsection {* Purely nonstandard proofs *}
lemma NSLIM_I:
@@ -391,11 +430,6 @@
lemma LIM_zero2: "f -- a --> l ==> (%x. f(x) + -l) -- a --> 0"
by (simp add: LIM_NSLIM_iff NSLIM_zero)
-lemma LIM_zero_cancel: "(%x. f(x) - l) -- x --> 0 ==> f -- x --> l"
-apply (drule_tac g = "%x. l" and M = l in LIM_add)
-apply (auto simp add: diff_minus add_assoc)
-done
-
lemma LIM_unique2:
fixes a :: real
shows "[| f -- a --> L; f -- a --> M |] ==> L = M"
@@ -412,6 +446,51 @@
subsection {* Continuity *}
+subsubsection {* Purely standard proofs *}
+
+lemma LIM_isCont_iff: "(f -- a --> f a) = ((\<lambda>h. f (a + h)) -- 0 --> f a)"
+by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
+
+lemma isCont_iff: "isCont f x = (\<lambda>h. f (x + h)) -- 0 --> f x"
+by (simp add: isCont_def LIM_isCont_iff)
+
+lemma isCont_Id: "isCont (\<lambda>x. x) a"
+unfolding isCont_def by (rule LIM_self)
+
+lemma isCont_const [simp]: "isCont (%x. k) a"
+unfolding isCont_def by (rule LIM_const)
+
+lemma isCont_add: "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
+unfolding isCont_def by (rule LIM_add)
+
+lemma isCont_minus: "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
+unfolding isCont_def by (rule LIM_minus)
+
+lemma isCont_diff: "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
+unfolding isCont_def by (rule LIM_diff)
+
+lemma isCont_mult:
+ fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
+ shows "[| isCont f a; isCont g a |] ==> isCont (%x. f(x) * g(x)) a"
+unfolding isCont_def by (rule LIM_mult2)
+
+lemma isCont_inverse:
+ fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
+ shows "[| isCont f x; f x \<noteq> 0 |] ==> isCont (%x. inverse (f x)) x"
+unfolding isCont_def by (rule LIM_inverse)
+
+lemma isCont_LIM_compose:
+ "\<lbrakk>isCont g l; f -- a --> l\<rbrakk> \<Longrightarrow> (\<lambda>x. g (f x)) -- a --> g l"
+unfolding isCont_def by (rule LIM_compose)
+
+lemma isCont_o2: "\<lbrakk>isCont f a; isCont g (f a)\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"
+unfolding isCont_def by (rule LIM_compose)
+
+lemma isCont_o: "\<lbrakk>isCont f a; isCont g (f a)\<rbrakk> \<Longrightarrow> isCont (g o f) a"
+unfolding o_def by (rule isCont_o2)
+
+subsubsection {* Nonstandard proofs *}
+
lemma isNSContD: "[| isNSCont f a; y \<approx> hypreal_of_real a |] ==> ( *f* f) y \<approx> hypreal_of_real (f a)"
by (simp add: isNSCont_def)
@@ -466,64 +545,14 @@
lemma NSLIM_isCont_iff: "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"
by (rule NSLIM_h_iff)
-lemma LIM_isCont_iff: "(f -- a --> f a) = ((%h. f(a + h)) -- 0 --> f(a))"
-by (simp add: LIM_NSLIM_iff NSLIM_isCont_iff)
-
-lemma isCont_iff: "(isCont f x) = ((%h. f(x + h)) -- 0 --> f(x))"
-by (simp add: isCont_def LIM_isCont_iff)
-
-text{*Immediate application of nonstandard criterion for continuity can offer
- very simple proofs of some standard property of continuous functions*}
-text{*sum continuous*}
-lemma isCont_add: "[| isCont f a; isCont g a |] ==> isCont (%x. f(x) + g(x)) a"
-by (auto intro: approx_add simp add: isNSCont_isCont_iff [symmetric] isNSCont_def)
-
-text{*mult continuous*}
-lemma isCont_mult:
- fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
- shows "[| isCont f a; isCont g a |] ==> isCont (%x. f(x) * g(x)) a"
-by (auto intro!: starfun_mult_HFinite_approx
- simp del: starfun_mult [symmetric]
- simp add: isNSCont_isCont_iff [symmetric] isNSCont_def)
-
-text{*composition of continuous functions
- Note very short straightforard proof!*}
-lemma isCont_o: "[| isCont f a; isCont g (f a) |] ==> isCont (g o f) a"
-by (auto simp add: isNSCont_isCont_iff [symmetric] isNSCont_def starfun_o [symmetric])
-
-lemma isCont_o2: "[| isCont f a; isCont g (f a) |] ==> isCont (%x. g (f x)) a"
-by (auto dest: isCont_o simp add: o_def)
-
lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a"
by (simp add: isNSCont_def)
-lemma isCont_minus: "isCont f a ==> isCont (%x. - f x) a"
-by (auto simp add: isNSCont_isCont_iff [symmetric] isNSCont_minus)
-
-lemma isCont_inverse:
- fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
- shows "[| isCont f x; f x \<noteq> 0 |] ==> isCont (%x. inverse (f x)) x"
-apply (simp add: isCont_def)
-apply (blast intro: LIM_inverse)
-done
-
lemma isNSCont_inverse:
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
shows "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x"
by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff)
-lemma isCont_diff:
- "[| isCont f a; isCont g a |] ==> isCont (%x. f(x) - g(x)) a"
-apply (simp add: diff_minus)
-apply (auto intro: isCont_add isCont_minus)
-done
-
-lemma isCont_Id: "isCont (\<lambda>x. x) a"
-by (simp only: isCont_def LIM_self)
-
-lemma isCont_const [simp]: "isCont (%x. k) a"
-by (simp add: isCont_def)
-
lemma isNSCont_const [simp]: "isNSCont (%x. k) a"
by (simp add: isNSCont_def)
@@ -647,30 +676,6 @@
by transfer
qed
-lemma LIM_compose:
- assumes g: "isCont g l"
- assumes f: "f -- a --> l"
- shows "(\<lambda>x. g (f x)) -- a --> g l"
-proof (rule LIM_I)
- fix r::real assume r: "0 < r"
- obtain s where s: "0 < s"
- and less_r: "\<And>y. \<lbrakk>y \<noteq> l; norm (y - l) < s\<rbrakk> \<Longrightarrow> norm (g y - g l) < r"
- using LIM_D [OF g [unfolded isCont_def] r] by fast
- obtain t where t: "0 < t"
- and less_s: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < t\<rbrakk> \<Longrightarrow> norm (f x - l) < s"
- using LIM_D [OF f s] by fast
-
- show "\<exists>t>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < t \<longrightarrow> norm (g (f x) - g l) < r"
- proof (rule exI, safe)
- show "0 < t" using t .
- next
- fix x assume "x \<noteq> a" and "norm (x - a) < t"
- hence "norm (f x - l) < s" by (rule less_s)
- thus "norm (g (f x) - g l) < r"
- using r less_r by (case_tac "f x = l", simp_all)
- qed
-qed
-
subsection {* Relation of LIM and LIMSEQ *}
lemma LIMSEQ_SEQ_conv1: