Functionality for sum of squares to call a remote csdp prover
authorPhilipp Meyer
Fri, 24 Jul 2009 13:56:02 +0200
changeset 32268 d50f0cb67578
parent 32166 95ffc6e2a0ea
child 32269 b642e4813e53
Functionality for sum of squares to call a remote csdp prover
CONTRIBUTORS
lib/scripts/neos/NeosCSDPClient.py
lib/scripts/neos/config.py
src/HOL/Library/Sum_Of_Squares.thy
src/HOL/Library/sos_wrapper.ML
src/HOL/Library/sum_of_squares.ML
--- a/CONTRIBUTORS	Fri Jul 24 11:31:22 2009 +0200
+++ b/CONTRIBUTORS	Fri Jul 24 13:56:02 2009 +0200
@@ -7,6 +7,9 @@
 Contributions to this Isabelle version
 --------------------------------------
 
+* July 2009: Philipp Meyer, TUM
+  HOL/Library/Sum_of_Squares: functionality to call a remote csdp prover
+
 * July 2009: Florian Haftmann, TUM
   New quickcheck implementation using new code generator
 
@@ -19,6 +22,9 @@
 * June 2009: Florian Haftmann, TUM
   HOL/Library/Tree: searchtrees implementing mappings, ready to use for code generation
 
+* March 2009: Philipp Meyer, TUM
+  minimalization algorithm for results from sledgehammer call
+
 Contributions to Isabelle2009
 -----------------------------
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/scripts/neos/NeosCSDPClient.py	Fri Jul 24 13:56:02 2009 +0200
@@ -0,0 +1,56 @@
+#!/usr/bin/env python
+import sys
+import xmlrpclib
+import time
+import re
+
+from config import Variables
+
+if len(sys.argv) < 3 or len(sys.argv) > 3:
+  sys.stderr.write("Usage: NeosCSDPClient <input_filename> <output_filename>\n")
+  sys.exit(1)
+
+neos=xmlrpclib.Server("http://%s:%d" % (Variables.NEOS_HOST, Variables.NEOS_PORT))
+
+xmlfile = open(sys.argv[1],"r")
+xml_pre = "<document>\n<category>sdp</category>\n<solver>csdp</solver>\n<inputMethod>SPARSE_SDPA</inputMethod>\n<dat><![CDATA["
+xml_post = "]]></dat>\n</document>\n"
+xml = xml_pre
+buffer = 1
+while buffer:
+  buffer = xmlfile.read()
+  xml += buffer
+xmlfile.close()
+xml += xml_post
+
+(jobNumber,password) = neos.submitJob(xml)
+
+if jobNumber == 0:
+  sys.stdout.write("error submitting job: %s" % password)
+  sys.exit(-1)
+else:
+  sys.stdout.write("jobNumber = %d\tpassword = %s\n" % (jobNumber,password))
+
+offset=0
+status="Waiting"
+while status == "Running" or status=="Waiting":
+  time.sleep(1)
+  (msg,offset) = neos.getIntermediateResults(jobNumber,password,offset)
+  sys.stdout.write(msg.data)
+  status = neos.getJobStatus(jobNumber, password)
+
+msg = neos.getFinalResults(jobNumber, password).data
+result = msg.split("Solution:")
+
+sys.stdout.write(result[0])
+if len(result) > 1:
+  plain_msg = result[1].strip()
+  if plain_msg != "":
+    output = open(sys.argv[2],"w")
+    output.write(plain_msg)
+    output.close()
+    sys.exit(0)
+
+sys.exit(2)
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/scripts/neos/config.py	Fri Jul 24 13:56:02 2009 +0200
@@ -0,0 +1,3 @@
+class Variables:
+  NEOS_HOST="neos.mcs.anl.gov"
+  NEOS_PORT=3332
--- a/src/HOL/Library/Sum_Of_Squares.thy	Fri Jul 24 11:31:22 2009 +0200
+++ b/src/HOL/Library/Sum_Of_Squares.thy	Fri Jul 24 13:56:02 2009 +0200
@@ -6,19 +6,22 @@
           multiplication and ordering using semidefinite programming*}
 theory Sum_Of_Squares
   imports Complex_Main (* "~~/src/HOL/Decision_Procs/Dense_Linear_Order" *)
-  uses "positivstellensatz.ML" "sum_of_squares.ML"
+  uses "positivstellensatz.ML" "sum_of_squares.ML" "sos_wrapper.ML"
   begin
 
 (* Note: 
 
-In order to use the method sos, install CSDP (https://projects.coin-or.org/Csdp/) and put the executable csdp on your path. 
+In order to use the method sos, call it with (sos remote_csdp) to use the remote solver
+or install CSDP (https://projects.coin-or.org/Csdp/), put the executable csdp on your path,
+and call it with (sos csdp)
 
 *)
 
-method_setup sos = {* Scan.succeed (SIMPLE_METHOD' o Sos.sos_tac) *} 
-  "Prove universal problems over the reals using sums of squares"
+(* setup sos tactic *)
+setup SosWrapper.setup
 
-text{* Tests -- commented since they work only when csdp is installed -- see above *}
+text{* Tests -- commented since they work only when csdp is installed  or take too long with remote csdps *}
+
 (*
 lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0" by sos
 
@@ -115,3 +118,4 @@
 *)
 
 end
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/sos_wrapper.ML	Fri Jul 24 13:56:02 2009 +0200
@@ -0,0 +1,158 @@
+(* Title:      sos_wrapper.ML
+   Author:     Philipp Meyer, TU Muenchen
+
+Added functionality for sums of squares, e.g. calling a remote prover
+*)
+
+signature SOS_WRAPPER =
+sig
+
+  datatype prover_result = Success | PartialSuccess | Failure | Error
+  type prover = string * (int -> string -> prover_result * string)
+
+  val setup: theory -> theory
+end
+
+structure SosWrapper : SOS_WRAPPER=
+struct
+
+datatype prover_result = Success | PartialSuccess | Failure | Error
+type prover =
+  string *                           (* command name *)
+  (int -> string ->prover_result * string)   (* function to find failure from return value and output *)
+
+
+(*** output control ***)
+
+fun debug s = Output.debug (fn () => s)
+val answer = Output.priority
+val write = Output.writeln
+
+(*** calling provers ***)
+
+val destdir = ref ""
+
+fun filename dir name =
+  let
+    val probfile = Path.basic (name ^ serial_string ())
+  in
+    if dir = "" then
+      File.tmp_path probfile
+    else
+      if File.exists (Path.explode dir) then
+        Path.append  (Path.explode dir) probfile
+      else
+        error ("No such directory: " ^ dir)
+  end
+
+fun is_success Success = true
+  | is_success PartialSuccess = true
+  | is_success _ = false
+fun str_of_status Success = "Success"
+  | str_of_status PartialSuccess = "Partial Success"
+  | str_of_status Failure= "Failure"
+  | str_of_status Error= "Error"
+
+fun run_solver name (cmd, find_failure) input =
+  let
+    val _ = answer ("Calling solver: " ^ name)
+
+    (* create input file *)
+    val dir = ! destdir
+    val input_file = filename dir "sos_in" 
+    val _ = File.write input_file input
+
+    val _ = debug "Solver input:"
+    val _ = debug input
+
+    (* call solver *)
+    val output_file = filename dir "sos_out"
+    val (output, rv) = system_out (cmd ^ " " ^ (Path.implode input_file) ^
+                         " " ^ (Path.implode output_file))
+ 
+    (* read and analysize output *)
+    val (res, res_msg) = find_failure rv output
+    val result = if is_success res then File.read output_file else ""
+
+    (* remove temporary files *)
+    val _ = if dir = "" then (File.rm input_file ; if File.exists output_file then File.rm output_file else ()) else ()
+
+    val _ = debug "Solver output:"
+    val _ = debug output
+    val _ = debug "Solver result:"
+    val _ = debug result
+
+    val _ = answer (str_of_status res ^ ": " ^ res_msg)
+
+  in
+    if is_success res then
+      result
+    else
+      error ("Prover failed: " ^ res_msg)
+  end
+
+(*** various provers ***)
+
+(* local csdp client *)
+
+fun find_csdp_run_failure rv _ =
+  case rv of
+    0 => (Success, "SDP solved")
+  | 1 => (Failure, "SDP is primal infeasible")
+  | 2 => (Failure, "SDP is dual infeasible")
+  | 3 => (PartialSuccess, "SDP solved with reduced accuracy")
+  | _ => (Failure, "return code is " ^ string_of_int rv)
+
+val csdp = ("csdp", find_csdp_run_failure)
+
+(* remote neos server *)
+
+fun find_neos_failure rv output =
+  if rv = 2 then (Failure, "no solution") else
+  if rv <> 0 then (Error, "return code is " ^ string_of_int rv) else
+  let
+    fun find_success str =
+      if String.isPrefix "Success: " str then
+        SOME (Success, unprefix "Success: " str)
+      else if String.isPrefix "Partial Success: " str then
+        SOME (PartialSuccess, unprefix "Partial Success: " str)
+      else if String.isPrefix "Failure: " str then
+        SOME (Failure, unprefix "Failure: " str)
+      else
+        NONE 
+    val exit_line = get_first find_success (split_lines output)
+  in
+    case exit_line of
+      SOME (status, msg) =>
+        if String.isPrefix "SDP solved" msg then
+          (status, msg)
+        else (Failure, msg)
+    | NONE => (Failure, "no success")
+  end
+
+val neos_csdp = ("$ISABELLE_HOME/lib/scripts/neos/NeosCSDPClient.py", find_neos_failure)
+
+(* save provers in table *)
+
+val provers =
+     Symtab.make [("remote_csdp", neos_csdp),("csdp", csdp)]
+
+fun get_prover name =
+  case Symtab.lookup provers name of
+    SOME prover => prover
+  | NONE => error ("unknown prover: " ^ name)
+
+fun call_solver name =
+    run_solver name (get_prover name)
+
+(* setup tactic *)
+
+val def_solver = "remote_csdp"
+
+fun sos_solver name = (SIMPLE_METHOD' o (Sos.sos_tac (call_solver name))) 
+
+val sos_method = Scan.optional (Scan.lift OuterParse.xname) def_solver >> sos_solver
+
+val setup = Method.setup @{binding sos} sos_method "Prove universal problems over the reals using sums of squares"
+
+end
--- a/src/HOL/Library/sum_of_squares.ML	Fri Jul 24 11:31:22 2009 +0200
+++ b/src/HOL/Library/sum_of_squares.ML	Fri Jul 24 13:56:02 2009 +0200
@@ -1,6 +1,21 @@
-structure Sos = 
+(* Title:      sum_of_squares.ML
+   Authors:    Amine Chaieb, University of Cambridge
+               Philipp Meyer, TU Muenchen
+
+A tactic for proving nonlinear inequalities
+*)
+
+signature SOS =
+sig
+
+  val sos_tac : (string -> string) -> Proof.context -> int -> Tactical.tactic
+
+end
+
+structure Sos : SOS = 
 struct
 
+
 val rat_0 = Rat.zero;
 val rat_1 = Rat.one;
 val rat_2 = Rat.two;
@@ -500,11 +515,11 @@
 (*    Minimize obj_1 * v_1 + ... obj_m * v_m                                 *)
 (* ------------------------------------------------------------------------- *)
 
-fun sdpa_of_problem comment obj mats =
+fun sdpa_of_problem obj mats =
  let 
   val m = length mats - 1
   val (n,_) = dimensions (hd mats) 
- in "\"" ^ comment ^ "\"\n" ^
+ in
   string_of_int m ^ "\n" ^
   "1\n" ^
   string_of_int n ^ "\n" ^
@@ -587,6 +602,14 @@
  val parse_sdpaoutput = mkparser sdpaoutput
  val parse_csdpoutput = mkparser csdpoutput
 
+(* Run prover on a problem in linear form.                       *)
+
+fun run_problem prover obj mats =
+  parse_csdpoutput (prover (sdpa_of_problem obj mats))
+
+(*
+UNUSED
+
 (* Also parse the SDPA output to test success (CSDP yields a return code).   *)
 
 local
@@ -687,6 +710,8 @@
    res)
  end;
 
+*)
+
 (* Try some apparently sensible scaling first. Note that this is purely to   *)
 (* get a cleaner translation to floating-point, and doesn't affect any of    *)
 (* the results, in principle. In practice it seems a lot better when there   *)
@@ -761,6 +786,8 @@
    in if c =/ rat_0 then a 
       else Intfunc.update (i,y) a end) v Intfunc.undefined):vector
 
+(*
+UNUSED
 
 (* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *)
 (* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants).   *)
@@ -823,8 +850,12 @@
  end
 end;
 
+*)
+
 fun dest_ord f x = is_equal (f x);
 
+
+
 (* Stuff for "equations" ((int*int*int)->num functions).                         *)
 
 fun tri_equation_cmul c eq =
@@ -1072,6 +1103,9 @@
 (* constant monomial is last; this gives an order in diagonalization of the  *)
 (* quadratic form that will tend to display constants.                       *)
 
+(*
+UNUSED
+
 fun newton_polytope pol =
  let 
   val vars = poly_variables pol
@@ -1086,6 +1120,8 @@
                         vars m monomial_1) (rev all')
  end;
 
+*)
+
 (* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form.  *)
 
 local
@@ -1204,9 +1240,9 @@
 
 (* SDPA for problem using block diagonal (i.e. multiple SDPs)                *)
 
-fun sdpa_of_blockproblem comment nblocks blocksizes obj mats =
+fun sdpa_of_blockproblem nblocks blocksizes obj mats =
  let val m = length mats - 1 
- in  "\"" ^ comment ^ "\"\n" ^
+ in
   string_of_int m ^ "\n" ^
   string_of_int nblocks ^ "\n" ^
   (fold1 (fn s => fn t => s^" "^t) (map string_of_int blocksizes)) ^
@@ -1216,6 +1252,14 @@
     (1 upto length mats) mats ""
  end;
 
+(* Run prover on a problem in block diagonal form.                       *)
+
+fun run_blockproblem prover nblocks blocksizes obj mats=
+  parse_csdpoutput (prover (sdpa_of_blockproblem nblocks blocksizes obj mats))
+
+(*
+UNUSED
+
 (* Hence run CSDP on a problem in block diagonal form.                       *)
 
 fun run_csdp dbg nblocks blocksizes obj mats =
@@ -1248,6 +1292,7 @@
      else ());
      res)
  end;
+*)
 
 (* 3D versions of matrix operations to consider blocks separately.           *)
 
@@ -1270,17 +1315,25 @@
  (blocksizes ~~ (1 upto length blocksizes));;
 
 (* FIXME : Get rid of this !!!*)
+local
+  fun tryfind_with msg f [] = error msg
+    | tryfind_with msg f (x::xs) = (f x handle ERROR s => tryfind_with s f xs);
+in 
+  fun tryfind f = tryfind_with "tryfind" f
+end
+
+(*
 fun tryfind f [] = error "tryfind"
   | tryfind f (x::xs) = (f x handle ERROR _ => tryfind f xs);
-
+*)
 
 (* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *)
 
-
+ 
 local
  open RealArith
 in
-fun real_positivnullstellensatz_general linf d eqs leqs pol =
+fun real_positivnullstellensatz_general prover linf d eqs leqs pol =
 let 
  val vars = fold_rev (curry (gen_union (op aconvc)) o poly_variables) 
               (pol::eqs @ map fst leqs) []
@@ -1344,7 +1397,7 @@
             itern 1 pvs (fn v => fn i => Intfunc.updatep iszero (i,Inttriplefunc.tryapplyd diagents v rat_0))
                         Intfunc.undefined)
   val raw_vec = if null pvs then vector_0 0
-                else tri_scale_then (csdp nblocks blocksizes) obj mats
+                else tri_scale_then (run_blockproblem prover nblocks blocksizes) obj mats
   fun int_element (d,v) i = Intfunc.tryapplyd v i rat_0
   fun cterm_element (d,v) i = Ctermfunc.tryapplyd v i rat_0
 
@@ -1464,7 +1517,7 @@
   fun simple_cterm_ord t u = TermOrd.fast_term_ord (term_of t, term_of u) = LESS
 in
   (* FIXME: Replace tryfind by get_first !! *)
-fun real_nonlinear_prover ctxt =
+fun real_nonlinear_prover prover ctxt =
  let 
   val {add,mul,neg,pow,sub,main} =  Normalizer.semiring_normalizers_ord_wrapper ctxt
       (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) 
@@ -1502,7 +1555,7 @@
       let val e = multidegree pol
           val k = if e = 0 then 0 else d div e
           val eq' = map fst eq 
-      in tryfind (fn i => (d,i,real_positivnullstellensatz_general false d eq' leq
+      in tryfind (fn i => (d,i,real_positivnullstellensatz_general prover false d eq' leq
                             (poly_neg(poly_pow pol i))))
               (0 upto k)
       end
@@ -1563,7 +1616,7 @@
    end 
 in
 
-fun real_nonlinear_subst_prover ctxt =
+fun real_nonlinear_subst_prover prover ctxt =
  let 
   val {add,mul,neg,pow,sub,main} =  Normalizer.semiring_normalizers_ord_wrapper ctxt
       (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) 
@@ -1596,7 +1649,7 @@
                                    aconvc @{cterm "0::real"}) (map modify eqs),
                                    map modify les,map modify lts)
        end)
-       handle ERROR  _ => real_nonlinear_prover ctxt translator (rev eqs, rev les, rev lts))
+       handle ERROR  _ => real_nonlinear_prover prover ctxt translator (rev eqs, rev les, rev lts))
     in substfirst
    end
 
@@ -1606,7 +1659,7 @@
 
 (* Overall function. *)
 
-fun real_sos ctxt t = gen_prover_real_arith ctxt (real_nonlinear_subst_prover ctxt) t;
+fun real_sos prover ctxt t = gen_prover_real_arith ctxt (real_nonlinear_subst_prover prover ctxt) t;
 end;
 
 (* A tactic *)
@@ -1618,7 +1671,7 @@
    end
 | _ => ([],ct)
 
-fun core_sos_conv ctxt t = Drule.arg_cong_rule @{cterm Trueprop} (real_sos ctxt (Thm.dest_arg t) RS @{thm Eq_TrueI})
+fun core_sos_conv prover ctxt t = Drule.arg_cong_rule @{cterm Trueprop} (real_sos prover ctxt (Thm.dest_arg t) RS @{thm Eq_TrueI})
 
 val known_sos_constants = 
   [@{term "op ==>"}, @{term "Trueprop"}, 
@@ -1654,10 +1707,10 @@
               else error ("SOSO: Unknown constants in Subgoal:" ^ commas (map fst ukcs))
 in () end
 
-fun core_sos_tac ctxt = CSUBGOAL (fn (ct, i) => 
+fun core_sos_tac prover ctxt = CSUBGOAL (fn (ct, i) => 
   let val _ = check_sos known_sos_constants ct
       val (avs, p) = strip_all ct
-      val th = standard (fold_rev forall_intr avs (real_sos ctxt (Thm.dest_arg p)))
+      val th = standard (fold_rev forall_intr avs (real_sos prover ctxt (Thm.dest_arg p)))
   in rtac th i end);
 
 fun default_SOME f NONE v = SOME v
@@ -1695,7 +1748,7 @@
 
 fun elim_denom_tac ctxt i = REPEAT (elim_one_denom_tac ctxt i);
 
-fun sos_tac ctxt = ObjectLogic.full_atomize_tac THEN' elim_denom_tac ctxt THEN' core_sos_tac ctxt
+fun sos_tac prover ctxt = ObjectLogic.full_atomize_tac THEN' elim_denom_tac ctxt THEN' core_sos_tac prover ctxt
 
 
 end;