Set_Permutations replaced by more general Multiset_Permutations
authoreberlm <eberlm@in.tum.de>
Thu, 29 Sep 2016 16:49:42 +0200
changeset 63965 d510b816ea41
parent 63954 fb03766658f4
child 63966 957ba35d1338
Set_Permutations replaced by more general Multiset_Permutations
src/HOL/Codegenerator_Test/Generate_Efficient_Datastructures.thy
src/HOL/Library/Library.thy
src/HOL/Library/Multiset_Permutations.thy
src/HOL/Library/Set_Permutations.thy
src/HOL/Probability/Random_Permutations.thy
--- a/src/HOL/Codegenerator_Test/Generate_Efficient_Datastructures.thy	Thu Sep 29 11:24:36 2016 +0100
+++ b/src/HOL/Codegenerator_Test/Generate_Efficient_Datastructures.thy	Thu Sep 29 16:49:42 2016 +0200
@@ -76,6 +76,9 @@
 lemma [code, code del]:
   "permutations_of_set = permutations_of_set" ..
 
+lemma [code, code del]:
+  "permutations_of_multiset = permutations_of_multiset" ..
+
 (*
   If the code generation ends with an exception with the following message:
   '"List.set" is not a constructor, on left hand side of equation: ...',
--- a/src/HOL/Library/Library.thy	Thu Sep 29 11:24:36 2016 +0100
+++ b/src/HOL/Library/Library.thy	Thu Sep 29 16:49:42 2016 +0200
@@ -51,6 +51,7 @@
   Monad_Syntax
   More_List
   Multiset_Order
+  Multiset_Permutations
   Numeral_Type
   Omega_Words_Fun
   OptionalSugar
@@ -76,7 +77,6 @@
   Reflection
   Saturated
   Set_Algebras
-  Set_Permutations
   State_Monad
   Stirling
   Stream
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Multiset_Permutations.thy	Thu Sep 29 16:49:42 2016 +0200
@@ -0,0 +1,510 @@
+(*
+  File:      Multiset_Permutations.thy
+  Author:    Manuel Eberl (TU München)
+
+  Defines the set of permutations of a given multiset (or set), i.e. the set of all lists whose 
+  entries correspond to the multiset (resp. set).
+*)
+section \<open>Permutations of a Multiset\<close>
+theory Multiset_Permutations
+imports 
+  Complex_Main 
+  "~~/src/HOL/Library/Multiset" 
+  "~~/src/HOL/Library/Permutations"
+begin
+
+(* TODO Move *)
+lemma mset_tl: "xs \<noteq> [] \<Longrightarrow> mset (tl xs) = mset xs - {#hd xs#}"
+  by (cases xs) simp_all
+
+lemma mset_set_image_inj:
+  assumes "inj_on f A"
+  shows   "mset_set (f ` A) = image_mset f (mset_set A)"
+proof (cases "finite A")
+  case True
+  from this and assms show ?thesis by (induction A) auto
+qed (insert assms, simp add: finite_image_iff)
+
+lemma multiset_remove_induct [case_names empty remove]:
+  assumes "P {#}" "\<And>A. A \<noteq> {#} \<Longrightarrow> (\<And>x. x \<in># A \<Longrightarrow> P (A - {#x#})) \<Longrightarrow> P A"
+  shows   "P A"
+proof (induction A rule: full_multiset_induct)
+  case (less A)
+  hence IH: "P B" if "B \<subset># A" for B using that by blast
+  show ?case
+  proof (cases "A = {#}")
+    case True
+    thus ?thesis by (simp add: assms)
+  next
+    case False
+    hence "P (A - {#x#})" if "x \<in># A" for x
+      using that by (intro IH) (simp add: mset_subset_diff_self)
+    from False and this show "P A" by (rule assms)
+  qed
+qed
+
+lemma map_list_bind: "map g (List.bind xs f) = List.bind xs (map g \<circ> f)"
+  by (simp add: List.bind_def map_concat)
+
+lemma mset_eq_mset_set_imp_distinct:
+  "finite A \<Longrightarrow> mset_set A = mset xs \<Longrightarrow> distinct xs"
+proof (induction xs arbitrary: A)
+  case (Cons x xs A)
+  from Cons.prems(2) have "x \<in># mset_set A" by simp
+  with Cons.prems(1) have [simp]: "x \<in> A" by simp
+  from Cons.prems have "x \<notin># mset_set (A - {x})" by simp
+  also from Cons.prems have "mset_set (A - {x}) = mset_set A - {#x#}"
+    by (subst mset_set_Diff) simp_all
+  also have "mset_set A = mset (x#xs)" by (simp add: Cons.prems)
+  also have "\<dots> - {#x#} = mset xs" by simp
+  finally have [simp]: "x \<notin> set xs" by (simp add: in_multiset_in_set)
+  from Cons.prems show ?case by (auto intro!: Cons.IH[of "A - {x}"] simp: mset_set_Diff)
+qed simp_all
+(* END TODO *)
+
+
+subsection \<open>Permutations of a multiset\<close>
+
+definition permutations_of_multiset :: "'a multiset \<Rightarrow> 'a list set" where
+  "permutations_of_multiset A = {xs. mset xs = A}"
+
+lemma permutations_of_multisetI: "mset xs = A \<Longrightarrow> xs \<in> permutations_of_multiset A"
+  by (simp add: permutations_of_multiset_def)
+
+lemma permutations_of_multisetD: "xs \<in> permutations_of_multiset A \<Longrightarrow> mset xs = A"
+  by (simp add: permutations_of_multiset_def)
+
+lemma permutations_of_multiset_Cons_iff:
+  "x # xs \<in> permutations_of_multiset A \<longleftrightarrow> x \<in># A \<and> xs \<in> permutations_of_multiset (A - {#x#})"
+  by (auto simp: permutations_of_multiset_def)
+
+lemma permutations_of_multiset_empty [simp]: "permutations_of_multiset {#} = {[]}"
+  unfolding permutations_of_multiset_def by simp
+
+lemma permutations_of_multiset_nonempty: 
+  assumes nonempty: "A \<noteq> {#}"
+  shows   "permutations_of_multiset A = 
+             (\<Union>x\<in>set_mset A. (op # x) ` permutations_of_multiset (A - {#x#}))" (is "_ = ?rhs")
+proof safe
+  fix xs assume "xs \<in> permutations_of_multiset A"
+  hence mset_xs: "mset xs = A" by (simp add: permutations_of_multiset_def)
+  hence "xs \<noteq> []" by (auto simp: nonempty)
+  then obtain x xs' where xs: "xs = x # xs'" by (cases xs) simp_all
+  with mset_xs have "x \<in> set_mset A" "xs' \<in> permutations_of_multiset (A - {#x#})"
+    by (auto simp: permutations_of_multiset_def)
+  with xs show "xs \<in> ?rhs" by auto
+qed (auto simp: permutations_of_multiset_def)
+
+lemma permutations_of_multiset_singleton [simp]: "permutations_of_multiset {#x#} = {[x]}"
+  by (simp add: permutations_of_multiset_nonempty)
+
+lemma permutations_of_multiset_doubleton: 
+  "permutations_of_multiset {#x,y#} = {[x,y], [y,x]}"
+  by (simp add: permutations_of_multiset_nonempty insert_commute)
+
+lemma rev_permutations_of_multiset [simp]:
+  "rev ` permutations_of_multiset A = permutations_of_multiset A"
+proof
+  have "rev ` rev ` permutations_of_multiset A \<subseteq> rev ` permutations_of_multiset A"
+    unfolding permutations_of_multiset_def by auto
+  also have "rev ` rev ` permutations_of_multiset A = permutations_of_multiset A"
+    by (simp add: image_image)
+  finally show "permutations_of_multiset A \<subseteq> rev ` permutations_of_multiset A" .
+next
+  show "rev ` permutations_of_multiset A \<subseteq> permutations_of_multiset A"
+    unfolding permutations_of_multiset_def by auto
+qed
+
+lemma length_finite_permutations_of_multiset:
+  "xs \<in> permutations_of_multiset A \<Longrightarrow> length xs = size A"
+  by (auto simp: permutations_of_multiset_def)
+
+lemma permutations_of_multiset_lists: "permutations_of_multiset A \<subseteq> lists (set_mset A)"
+  by (auto simp: permutations_of_multiset_def)
+
+lemma finite_permutations_of_multiset [simp]: "finite (permutations_of_multiset A)"
+proof (rule finite_subset)
+  show "permutations_of_multiset A \<subseteq> {xs. set xs \<subseteq> set_mset A \<and> length xs = size A}" 
+    by (auto simp: permutations_of_multiset_def)
+  show "finite {xs. set xs \<subseteq> set_mset A \<and> length xs = size A}" 
+    by (rule finite_lists_length_eq) simp_all
+qed
+
+lemma permutations_of_multiset_not_empty [simp]: "permutations_of_multiset A \<noteq> {}"
+proof -
+  from ex_mset[of A] guess xs ..
+  thus ?thesis by (auto simp: permutations_of_multiset_def)
+qed
+
+lemma permutations_of_multiset_image:
+  "permutations_of_multiset (image_mset f A) = map f ` permutations_of_multiset A"
+proof safe
+  fix xs assume A: "xs \<in> permutations_of_multiset (image_mset f A)"
+  from ex_mset[of A] obtain ys where ys: "mset ys = A" ..
+  with A have "mset xs = mset (map f ys)" 
+    by (simp add: permutations_of_multiset_def)
+  from mset_eq_permutation[OF this] guess \<sigma> . note \<sigma> = this
+  with ys have "xs = map f (permute_list \<sigma> ys)"
+    by (simp add: permute_list_map)
+  moreover from \<sigma> ys have "permute_list \<sigma> ys \<in> permutations_of_multiset A"
+    by (simp add: permutations_of_multiset_def)
+  ultimately show "xs \<in> map f ` permutations_of_multiset A" by blast
+qed (auto simp: permutations_of_multiset_def)
+
+
+subsection \<open>Cardinality of permutations\<close>
+
+text \<open>
+  In this section, we prove some basic facts about the number of permutations of a multiset.
+\<close>
+
+context
+begin
+
+private lemma multiset_setprod_fact_insert:
+  "(\<Prod>y\<in>set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =
+     (count A x + 1) * (\<Prod>y\<in>set_mset A. fact (count A y))"
+proof -
+  have "(\<Prod>y\<in>set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =
+          (\<Prod>y\<in>set_mset (A+{#x#}). (if y = x then count A x + 1 else 1) * fact (count A y))"
+    by (intro setprod.cong) simp_all
+  also have "\<dots> = (count A x + 1) * (\<Prod>y\<in>set_mset (A+{#x#}). fact (count A y))"
+    by (simp add: setprod.distrib setprod.delta)
+  also have "(\<Prod>y\<in>set_mset (A+{#x#}). fact (count A y)) = (\<Prod>y\<in>set_mset A. fact (count A y))"
+    by (intro setprod.mono_neutral_right) (auto simp: not_in_iff)
+  finally show ?thesis .
+qed
+
+private lemma multiset_setprod_fact_remove:
+  "x \<in># A \<Longrightarrow> (\<Prod>y\<in>set_mset A. fact (count A y)) =
+                   count A x * (\<Prod>y\<in>set_mset (A-{#x#}). fact (count (A-{#x#}) y))"
+  using multiset_setprod_fact_insert[of "A - {#x#}" x] by simp
+
+lemma card_permutations_of_multiset_aux:
+  "card (permutations_of_multiset A) * (\<Prod>x\<in>set_mset A. fact (count A x)) = fact (size A)"
+proof (induction A rule: multiset_remove_induct)
+  case (remove A)
+  have "card (permutations_of_multiset A) = 
+          card (\<Union>x\<in>set_mset A. op # x ` permutations_of_multiset (A - {#x#}))"
+    by (simp add: permutations_of_multiset_nonempty remove.hyps)
+  also have "\<dots> = (\<Sum>x\<in>set_mset A. card (permutations_of_multiset (A - {#x#})))"
+    by (subst card_UN_disjoint) (auto simp: card_image)
+  also have "\<dots> * (\<Prod>x\<in>set_mset A. fact (count A x)) = 
+               (\<Sum>x\<in>set_mset A. card (permutations_of_multiset (A - {#x#})) * 
+                 (\<Prod>y\<in>set_mset A. fact (count A y)))"
+    by (subst setsum_distrib_right) simp_all
+  also have "\<dots> = (\<Sum>x\<in>set_mset A. count A x * fact (size A - 1))"
+  proof (intro setsum.cong refl)
+    fix x assume x: "x \<in># A"
+    have "card (permutations_of_multiset (A - {#x#})) * (\<Prod>y\<in>set_mset A. fact (count A y)) = 
+            count A x * (card (permutations_of_multiset (A - {#x#})) * 
+              (\<Prod>y\<in>set_mset (A - {#x#}). fact (count (A - {#x#}) y)))" (is "?lhs = _")
+      by (subst multiset_setprod_fact_remove[OF x]) simp_all
+    also note remove.IH[OF x]
+    also from x have "size (A - {#x#}) = size A - 1" by (simp add: size_Diff_submset)
+    finally show "?lhs = count A x * fact (size A - 1)" .
+  qed
+  also have "(\<Sum>x\<in>set_mset A. count A x * fact (size A - 1)) =
+                size A * fact (size A - 1)"
+    by (simp add: setsum_distrib_right size_multiset_overloaded_eq)
+  also from remove.hyps have "\<dots> = fact (size A)"
+    by (cases "size A") auto
+  finally show ?case .
+qed simp_all
+
+theorem card_permutations_of_multiset:
+  "card (permutations_of_multiset A) = fact (size A) div (\<Prod>x\<in>set_mset A. fact (count A x))"
+  "(\<Prod>x\<in>set_mset A. fact (count A x) :: nat) dvd fact (size A)"
+  by (simp_all add: card_permutations_of_multiset_aux[of A, symmetric])
+
+lemma card_permutations_of_multiset_insert_aux:
+  "card (permutations_of_multiset (A + {#x#})) * (count A x + 1) = 
+      (size A + 1) * card (permutations_of_multiset A)"
+proof -
+  note card_permutations_of_multiset_aux[of "A + {#x#}"]
+  also have "fact (size (A + {#x#})) = (size A + 1) * fact (size A)" by simp
+  also note multiset_setprod_fact_insert[of A x]
+  also note card_permutations_of_multiset_aux[of A, symmetric]
+  finally have "card (permutations_of_multiset (A + {#x#})) * (count A x + 1) *
+                    (\<Prod>y\<in>set_mset A. fact (count A y)) =
+                (size A + 1) * card (permutations_of_multiset A) *
+                    (\<Prod>x\<in>set_mset A. fact (count A x))" by (simp only: mult_ac)
+  thus ?thesis by (subst (asm) mult_right_cancel) simp_all
+qed
+
+lemma card_permutations_of_multiset_remove_aux:
+  assumes "x \<in># A"
+  shows   "card (permutations_of_multiset A) * count A x = 
+             size A * card (permutations_of_multiset (A - {#x#}))"
+proof -
+  from assms have A: "A - {#x#} + {#x#} = A" by simp
+  from assms have B: "size A = size (A - {#x#}) + 1" 
+    by (subst A [symmetric], subst size_union) simp
+  show ?thesis
+    using card_permutations_of_multiset_insert_aux[of "A - {#x#}" x, unfolded A] assms
+    by (simp add: B)
+qed
+
+lemma real_card_permutations_of_multiset_remove:
+  assumes "x \<in># A"
+  shows   "real (card (permutations_of_multiset (A - {#x#}))) = 
+             real (card (permutations_of_multiset A) * count A x) / real (size A)"
+  using assms by (subst card_permutations_of_multiset_remove_aux[OF assms]) auto
+
+lemma real_card_permutations_of_multiset_remove':
+  assumes "x \<in># A"
+  shows   "real (card (permutations_of_multiset A)) = 
+             real (size A * card (permutations_of_multiset (A - {#x#}))) / real (count A x)"
+  using assms by (subst card_permutations_of_multiset_remove_aux[OF assms, symmetric]) simp
+
+end
+
+
+
+subsection \<open>Permutations of a set\<close>
+
+definition permutations_of_set :: "'a set \<Rightarrow> 'a list set" where
+  "permutations_of_set A = {xs. set xs = A \<and> distinct xs}"
+
+lemma permutations_of_set_altdef:
+  "finite A \<Longrightarrow> permutations_of_set A = permutations_of_multiset (mset_set A)"
+  by (auto simp add: permutations_of_set_def permutations_of_multiset_def mset_set_set 
+        in_multiset_in_set [symmetric] mset_eq_mset_set_imp_distinct)
+
+lemma permutations_of_setI [intro]:
+  assumes "set xs = A" "distinct xs"
+  shows   "xs \<in> permutations_of_set A"
+  using assms unfolding permutations_of_set_def by simp
+  
+lemma permutations_of_setD:
+  assumes "xs \<in> permutations_of_set A"
+  shows   "set xs = A" "distinct xs"
+  using assms unfolding permutations_of_set_def by simp_all
+  
+lemma permutations_of_set_lists: "permutations_of_set A \<subseteq> lists A"
+  unfolding permutations_of_set_def by auto
+
+lemma permutations_of_set_empty [simp]: "permutations_of_set {} = {[]}"
+  by (auto simp: permutations_of_set_def)
+  
+lemma UN_set_permutations_of_set [simp]:
+  "finite A \<Longrightarrow> (\<Union>xs\<in>permutations_of_set A. set xs) = A"
+  using finite_distinct_list by (auto simp: permutations_of_set_def)
+
+lemma permutations_of_set_infinite:
+  "\<not>finite A \<Longrightarrow> permutations_of_set A = {}"
+  by (auto simp: permutations_of_set_def)
+
+lemma permutations_of_set_nonempty:
+  "A \<noteq> {} \<Longrightarrow> permutations_of_set A = 
+                  (\<Union>x\<in>A. (\<lambda>xs. x # xs) ` permutations_of_set (A - {x}))"
+  by (cases "finite A")
+     (simp_all add: permutations_of_multiset_nonempty mset_set_empty_iff mset_set_Diff 
+                    permutations_of_set_altdef permutations_of_set_infinite)
+    
+lemma permutations_of_set_singleton [simp]: "permutations_of_set {x} = {[x]}"
+  by (subst permutations_of_set_nonempty) auto
+
+lemma permutations_of_set_doubleton: 
+  "x \<noteq> y \<Longrightarrow> permutations_of_set {x,y} = {[x,y], [y,x]}"
+  by (subst permutations_of_set_nonempty) 
+     (simp_all add: insert_Diff_if insert_commute)
+
+lemma rev_permutations_of_set [simp]:
+  "rev ` permutations_of_set A = permutations_of_set A"
+  by (cases "finite A") (simp_all add: permutations_of_set_altdef permutations_of_set_infinite)
+
+lemma length_finite_permutations_of_set:
+  "xs \<in> permutations_of_set A \<Longrightarrow> length xs = card A"
+  by (auto simp: permutations_of_set_def distinct_card)
+
+lemma finite_permutations_of_set [simp]: "finite (permutations_of_set A)"
+  by (cases "finite A") (simp_all add: permutations_of_set_infinite permutations_of_set_altdef)
+
+lemma permutations_of_set_empty_iff [simp]:
+  "permutations_of_set A = {} \<longleftrightarrow> \<not>finite A"
+  unfolding permutations_of_set_def using finite_distinct_list[of A] by auto
+
+lemma card_permutations_of_set [simp]:
+  "finite A \<Longrightarrow> card (permutations_of_set A) = fact (card A)"
+  by (simp add: permutations_of_set_altdef card_permutations_of_multiset del: One_nat_def)
+
+lemma permutations_of_set_image_inj:
+  assumes inj: "inj_on f A"
+  shows   "permutations_of_set (f ` A) = map f ` permutations_of_set A"
+  by (cases "finite A")
+     (simp_all add: permutations_of_set_infinite permutations_of_set_altdef
+                    permutations_of_multiset_image mset_set_image_inj inj finite_image_iff)
+
+lemma permutations_of_set_image_permutes:
+  "\<sigma> permutes A \<Longrightarrow> map \<sigma> ` permutations_of_set A = permutations_of_set A"
+  by (subst permutations_of_set_image_inj [symmetric])
+     (simp_all add: permutes_inj_on permutes_image)
+
+
+subsection \<open>Code generation\<close>
+
+text \<open>
+  First, we give code an implementation for permutations of lists.
+\<close>
+
+declare length_remove1 [termination_simp] 
+
+fun permutations_of_list_impl where
+  "permutations_of_list_impl xs = (if xs = [] then [[]] else
+     List.bind (remdups xs) (\<lambda>x. map (op # x) (permutations_of_list_impl (remove1 x xs))))"
+
+fun permutations_of_list_impl_aux where
+  "permutations_of_list_impl_aux acc xs = (if xs = [] then [acc] else
+     List.bind (remdups xs) (\<lambda>x. permutations_of_list_impl_aux (x#acc) (remove1 x xs)))"
+
+declare permutations_of_list_impl_aux.simps [simp del]    
+declare permutations_of_list_impl.simps [simp del]
+    
+lemma permutations_of_list_impl_Nil [simp]:
+  "permutations_of_list_impl [] = [[]]"
+  by (simp add: permutations_of_list_impl.simps)
+
+lemma permutations_of_list_impl_nonempty:
+  "xs \<noteq> [] \<Longrightarrow> permutations_of_list_impl xs = 
+     List.bind (remdups xs) (\<lambda>x. map (op # x) (permutations_of_list_impl (remove1 x xs)))"
+  by (subst permutations_of_list_impl.simps) simp_all
+
+lemma set_permutations_of_list_impl:
+  "set (permutations_of_list_impl xs) = permutations_of_multiset (mset xs)"
+  by (induction xs rule: permutations_of_list_impl.induct)
+     (subst permutations_of_list_impl.simps, 
+      simp_all add: permutations_of_multiset_nonempty set_list_bind)
+
+lemma distinct_permutations_of_list_impl:
+  "distinct (permutations_of_list_impl xs)"
+  by (induction xs rule: permutations_of_list_impl.induct, 
+      subst permutations_of_list_impl.simps)
+     (auto intro!: distinct_list_bind simp: distinct_map o_def disjoint_family_on_def)
+
+lemma permutations_of_list_impl_aux_correct':
+  "permutations_of_list_impl_aux acc xs = 
+     map (\<lambda>xs. rev xs @ acc) (permutations_of_list_impl xs)"
+  by (induction acc xs rule: permutations_of_list_impl_aux.induct,
+      subst permutations_of_list_impl_aux.simps, subst permutations_of_list_impl.simps)
+     (auto simp: map_list_bind intro!: list_bind_cong)
+    
+lemma permutations_of_list_impl_aux_correct:
+  "permutations_of_list_impl_aux [] xs = map rev (permutations_of_list_impl xs)"
+  by (simp add: permutations_of_list_impl_aux_correct')
+
+lemma distinct_permutations_of_list_impl_aux:
+  "distinct (permutations_of_list_impl_aux acc xs)"
+  by (simp add: permutations_of_list_impl_aux_correct' distinct_map 
+        distinct_permutations_of_list_impl inj_on_def)
+
+lemma set_permutations_of_list_impl_aux:
+  "set (permutations_of_list_impl_aux [] xs) = permutations_of_multiset (mset xs)"
+  by (simp add: permutations_of_list_impl_aux_correct set_permutations_of_list_impl)
+  
+declare set_permutations_of_list_impl_aux [symmetric, code]
+
+value [code] "permutations_of_multiset {#1,2,3,4::int#}"
+
+
+
+text \<open>
+  Now we turn to permutations of sets. We define an auxiliary version with an 
+  accumulator to avoid having to map over the results.
+\<close>
+function permutations_of_set_aux where
+  "permutations_of_set_aux acc A = 
+     (if \<not>finite A then {} else if A = {} then {acc} else 
+        (\<Union>x\<in>A. permutations_of_set_aux (x#acc) (A - {x})))"
+by auto
+termination by (relation "Wellfounded.measure (card \<circ> snd)") (simp_all add: card_gt_0_iff)
+
+lemma permutations_of_set_aux_altdef:
+  "permutations_of_set_aux acc A = (\<lambda>xs. rev xs @ acc) ` permutations_of_set A"
+proof (cases "finite A")
+  assume "finite A"
+  thus ?thesis
+  proof (induction A arbitrary: acc rule: finite_psubset_induct)
+    case (psubset A acc)
+    show ?case
+    proof (cases "A = {}")
+      case False
+      note [simp del] = permutations_of_set_aux.simps
+      from psubset.hyps False 
+        have "permutations_of_set_aux acc A = 
+                (\<Union>y\<in>A. permutations_of_set_aux (y#acc) (A - {y}))"
+        by (subst permutations_of_set_aux.simps) simp_all
+      also have "\<dots> = (\<Union>y\<in>A. (\<lambda>xs. rev xs @ acc) ` (\<lambda>xs. y # xs) ` permutations_of_set (A - {y}))"
+        by (intro SUP_cong refl, subst psubset) (auto simp: image_image)
+      also from False have "\<dots> = (\<lambda>xs. rev xs @ acc) ` permutations_of_set A"
+        by (subst (2) permutations_of_set_nonempty) (simp_all add: image_UN)
+      finally show ?thesis .
+    qed simp_all
+  qed
+qed (simp_all add: permutations_of_set_infinite)
+
+declare permutations_of_set_aux.simps [simp del]
+
+lemma permutations_of_set_aux_correct:
+  "permutations_of_set_aux [] A = permutations_of_set A"
+  by (simp add: permutations_of_set_aux_altdef)
+
+
+text \<open>
+  In another refinement step, we define a version on lists.
+\<close>
+declare length_remove1 [termination_simp]
+
+fun permutations_of_set_aux_list where
+  "permutations_of_set_aux_list acc xs = 
+     (if xs = [] then [acc] else 
+        List.bind xs (\<lambda>x. permutations_of_set_aux_list (x#acc) (List.remove1 x xs)))"
+
+definition permutations_of_set_list where
+  "permutations_of_set_list xs = permutations_of_set_aux_list [] xs"
+
+declare permutations_of_set_aux_list.simps [simp del]
+
+lemma permutations_of_set_aux_list_refine:
+  assumes "distinct xs"
+  shows   "set (permutations_of_set_aux_list acc xs) = permutations_of_set_aux acc (set xs)"
+  using assms
+  by (induction acc xs rule: permutations_of_set_aux_list.induct)
+     (subst permutations_of_set_aux_list.simps,
+      subst permutations_of_set_aux.simps,
+      simp_all add: set_list_bind cong: SUP_cong)
+
+
+text \<open>
+  The permutation lists contain no duplicates if the inputs contain no duplicates.
+  Therefore, these functions can easily be used when working with a representation of
+  sets by distinct lists.
+  The same approach should generalise to any kind of set implementation that supports
+  a monadic bind operation, and since the results are disjoint, merging should be cheap.
+\<close>
+lemma distinct_permutations_of_set_aux_list:
+  "distinct xs \<Longrightarrow> distinct (permutations_of_set_aux_list acc xs)"
+  by (induction acc xs rule: permutations_of_set_aux_list.induct)
+     (subst permutations_of_set_aux_list.simps,
+      auto intro!: distinct_list_bind simp: disjoint_family_on_def 
+         permutations_of_set_aux_list_refine permutations_of_set_aux_altdef)
+
+lemma distinct_permutations_of_set_list:
+    "distinct xs \<Longrightarrow> distinct (permutations_of_set_list xs)"
+  by (simp add: permutations_of_set_list_def distinct_permutations_of_set_aux_list)
+
+lemma permutations_of_list:
+    "permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))"
+  by (simp add: permutations_of_set_aux_correct [symmetric] 
+        permutations_of_set_aux_list_refine permutations_of_set_list_def)
+
+lemma permutations_of_list_code [code]:
+  "permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))"
+  "permutations_of_set (List.coset xs) = 
+     Code.abort (STR ''Permutation of set complement not supported'') 
+       (\<lambda>_. permutations_of_set (List.coset xs))"
+  by (simp_all add: permutations_of_list)
+
+value [code] "permutations_of_set (set ''abcd'')"
+
+end
\ No newline at end of file
--- a/src/HOL/Library/Set_Permutations.thy	Thu Sep 29 11:24:36 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,250 +0,0 @@
-(*  
-  Title:    Set_Permutations.thy
-  Author:   Manuel Eberl, TU München
-
-  The set of permutations of a finite set, i.e. the set of all 
-  lists that contain every element of the set once.
-*)
-
-section \<open>Set Permutations\<close>
-
-theory Set_Permutations
-imports 
-  Complex_Main
-  "~~/src/HOL/Library/Disjoint_Sets"
-  "~~/src/HOL/Library/Permutations"
-begin
-
-subsection \<open>Definition and general facts\<close>
-
-definition permutations_of_set :: "'a set \<Rightarrow> 'a list set" where
-  "permutations_of_set A = {xs. set xs = A \<and> distinct xs}"
-
-lemma permutations_of_setI [intro]:
-  assumes "set xs = A" "distinct xs"
-  shows   "xs \<in> permutations_of_set A"
-  using assms unfolding permutations_of_set_def by simp
-  
-lemma permutations_of_setD:
-  assumes "xs \<in> permutations_of_set A"
-  shows   "set xs = A" "distinct xs"
-  using assms unfolding permutations_of_set_def by simp_all
-  
-lemma permutations_of_set_lists: "permutations_of_set A \<subseteq> lists A"
-  unfolding permutations_of_set_def by auto
-
-lemma permutations_of_set_empty [simp]: "permutations_of_set {} = {[]}"
-  by (auto simp: permutations_of_set_def)
-  
-lemma UN_set_permutations_of_set [simp]:
-  "finite A \<Longrightarrow> (\<Union>xs\<in>permutations_of_set A. set xs) = A"
-  using finite_distinct_list by (auto simp: permutations_of_set_def)
-
-lemma permutations_of_set_nonempty:
-  assumes "A \<noteq> {}"
-  shows "permutations_of_set A = 
-           (\<Union>x\<in>A. (\<lambda>xs. x # xs) ` permutations_of_set (A - {x}))" (is "?lhs = ?rhs")
-proof (intro equalityI subsetI)
-  fix ys assume ys: "ys \<in> permutations_of_set A"
-  with assms have "ys \<noteq> []" by (auto simp: permutations_of_set_def)
-  then obtain x xs where xs: "ys = x # xs" by (cases ys) simp_all
-  from xs ys have "x \<in> A" "xs \<in> permutations_of_set (A - {x})"
-    by (auto simp: permutations_of_set_def)
-  with xs show "ys \<in> ?rhs" by auto
-next
-  fix ys assume ys: "ys \<in> ?rhs"
-  then obtain x xs where xs: "ys = x # xs" "x \<in> A" "xs \<in> permutations_of_set (A - {x})"
-    by auto
-  with ys show "ys \<in> ?lhs" by (auto simp: permutations_of_set_def)
-qed
-
-lemma permutations_of_set_singleton [simp]: "permutations_of_set {x} = {[x]}"
-  by (subst permutations_of_set_nonempty) auto
-
-lemma permutations_of_set_doubleton: 
-  "x \<noteq> y \<Longrightarrow> permutations_of_set {x,y} = {[x,y], [y,x]}"
-  by (subst permutations_of_set_nonempty) 
-     (simp_all add: insert_Diff_if insert_commute)
-
-lemma rev_permutations_of_set [simp]:
-  "rev ` permutations_of_set A = permutations_of_set A"
-proof
-  have "rev ` rev ` permutations_of_set A \<subseteq> rev ` permutations_of_set A"
-    unfolding permutations_of_set_def by auto
-  also have "rev ` rev ` permutations_of_set A = permutations_of_set A"
-    by (simp add: image_image)
-  finally show "permutations_of_set A \<subseteq> rev ` permutations_of_set A" .
-next
-  show "rev ` permutations_of_set A \<subseteq> permutations_of_set A"
-    unfolding permutations_of_set_def by auto
-qed
-
-lemma length_finite_permutations_of_set:
-  "xs \<in> permutations_of_set A \<Longrightarrow> length xs = card A"
-  by (auto simp: permutations_of_set_def distinct_card)
-
-lemma permutations_of_set_infinite:
-  "\<not>finite A \<Longrightarrow> permutations_of_set A = {}"
-  by (auto simp: permutations_of_set_def)
-
-lemma finite_permutations_of_set [simp]: "finite (permutations_of_set A)"
-proof (cases "finite A")
-  assume fin: "finite A"
-  have "permutations_of_set A \<subseteq> {xs. set xs \<subseteq> A \<and> length xs = card A}"
-    unfolding permutations_of_set_def by (auto simp: distinct_card)
-  moreover from fin have "finite \<dots>" using finite_lists_length_eq by blast
-  ultimately show ?thesis by (rule finite_subset)
-qed (simp_all add: permutations_of_set_infinite)
-
-lemma permutations_of_set_empty_iff [simp]:
-  "permutations_of_set A = {} \<longleftrightarrow> \<not>finite A"
-  unfolding permutations_of_set_def using finite_distinct_list[of A] by auto
-
-lemma card_permutations_of_set [simp]:
-  "finite A \<Longrightarrow> card (permutations_of_set A) = fact (card A)"
-proof (induction A rule: finite_remove_induct)
-  case (remove A)
-  hence "card (permutations_of_set A) = 
-           card (\<Union>x\<in>A. op # x ` permutations_of_set (A - {x}))"
-    by (simp add: permutations_of_set_nonempty)
-  also from remove.hyps have "\<dots> = (\<Sum>i\<in>A. card (op # i ` permutations_of_set (A - {i})))"
-    by (intro card_UN_disjoint) auto
-  also have "\<dots> = (\<Sum>i\<in>A. card (permutations_of_set (A - {i})))"
-    by (intro setsum.cong) (simp_all add: card_image)
-  also from remove have "\<dots> = card A * fact (card A - 1)" by simp
-  also from remove.hyps have "\<dots> = fact (card A)"
-    by (cases "card A") simp_all
-  finally show ?case .
-qed simp_all
-
-lemma permutations_of_set_image_inj:
-  assumes inj: "inj_on f A"
-  shows   "permutations_of_set (f ` A) = map f ` permutations_of_set A"
-proof (cases "finite A")
-  assume "\<not>finite A"
-  with inj show ?thesis
-    by (auto simp add: permutations_of_set_infinite dest: finite_imageD)
-next
-  assume finite: "finite A"
-  show ?thesis
-  proof (rule sym, rule card_seteq)
-    from inj show "map f ` permutations_of_set A \<subseteq> permutations_of_set (f ` A)" 
-      by (auto simp: permutations_of_set_def distinct_map)
-  
-    from inj have "card (map f ` permutations_of_set A) = card (permutations_of_set A)"
-      by (intro card_image inj_on_mapI) (auto simp: permutations_of_set_def)
-    also from finite inj have "\<dots> = card (permutations_of_set (f ` A))" 
-      by (simp add: card_image)
-    finally show "card (permutations_of_set (f ` A)) \<le>
-                    card (map f ` permutations_of_set A)" by simp
-  qed simp_all
-qed
-
-lemma permutations_of_set_image_permutes:
-  "\<sigma> permutes A \<Longrightarrow> map \<sigma> ` permutations_of_set A = permutations_of_set A"
-  by (subst permutations_of_set_image_inj [symmetric])
-     (simp_all add: permutes_inj_on permutes_image)
-
-
-subsection \<open>Code generation\<close>
-
-text \<open>
-  We define an auxiliary version with an accumulator to avoid
-  having to map over the results.
-\<close>
-function permutations_of_set_aux where
-  "permutations_of_set_aux acc A = 
-     (if \<not>finite A then {} else if A = {} then {acc} else 
-        (\<Union>x\<in>A. permutations_of_set_aux (x#acc) (A - {x})))"
-by auto
-termination by (relation "Wellfounded.measure (card \<circ> snd)") (simp_all add: card_gt_0_iff)
-
-lemma permutations_of_set_aux_altdef:
-  "permutations_of_set_aux acc A = (\<lambda>xs. rev xs @ acc) ` permutations_of_set A"
-proof (cases "finite A")
-  assume "finite A"
-  thus ?thesis
-  proof (induction A arbitrary: acc rule: finite_psubset_induct)
-    case (psubset A acc)
-    show ?case
-    proof (cases "A = {}")
-      case False
-      note [simp del] = permutations_of_set_aux.simps
-      from psubset.hyps False 
-        have "permutations_of_set_aux acc A = 
-                (\<Union>y\<in>A. permutations_of_set_aux (y#acc) (A - {y}))"
-        by (subst permutations_of_set_aux.simps) simp_all
-      also have "\<dots> = (\<Union>y\<in>A. (\<lambda>xs. rev xs @ acc) ` (\<lambda>xs. y # xs) ` permutations_of_set (A - {y}))"
-        by (intro SUP_cong refl, subst psubset) (auto simp: image_image)
-      also from False have "\<dots> = (\<lambda>xs. rev xs @ acc) ` permutations_of_set A"
-        by (subst (2) permutations_of_set_nonempty) (simp_all add: image_UN)
-      finally show ?thesis .
-    qed simp_all
-  qed
-qed (simp_all add: permutations_of_set_infinite)
-
-declare permutations_of_set_aux.simps [simp del]
-
-lemma permutations_of_set_aux_correct:
-  "permutations_of_set_aux [] A = permutations_of_set A"
-  by (simp add: permutations_of_set_aux_altdef)
-
-
-text \<open>
-  In another refinement step, we define a version on lists.
-\<close>
-declare length_remove1 [termination_simp]
-
-fun permutations_of_set_aux_list where
-  "permutations_of_set_aux_list acc xs = 
-     (if xs = [] then [acc] else 
-        List.bind xs (\<lambda>x. permutations_of_set_aux_list (x#acc) (List.remove1 x xs)))"
-
-definition permutations_of_set_list where
-  "permutations_of_set_list xs = permutations_of_set_aux_list [] xs"
-
-declare permutations_of_set_aux_list.simps [simp del]
-
-lemma permutations_of_set_aux_list_refine:
-  assumes "distinct xs"
-  shows   "set (permutations_of_set_aux_list acc xs) = permutations_of_set_aux acc (set xs)"
-  using assms
-  by (induction acc xs rule: permutations_of_set_aux_list.induct)
-     (subst permutations_of_set_aux_list.simps,
-      subst permutations_of_set_aux.simps,
-      simp_all add: set_list_bind cong: SUP_cong)
-
-
-text \<open>
-  The permutation lists contain no duplicates if the inputs contain no duplicates.
-  Therefore, these functions can easily be used when working with a representation of
-  sets by distinct lists.
-  The same approach should generalise to any kind of set implementation that supports
-  a monadic bind operation, and since the results are disjoint, merging should be cheap.
-\<close>
-lemma distinct_permutations_of_set_aux_list:
-  "distinct xs \<Longrightarrow> distinct (permutations_of_set_aux_list acc xs)"
-  by (induction acc xs rule: permutations_of_set_aux_list.induct)
-     (subst permutations_of_set_aux_list.simps,
-      auto intro!: distinct_list_bind simp: disjoint_family_on_def 
-         permutations_of_set_aux_list_refine permutations_of_set_aux_altdef)
-
-lemma distinct_permutations_of_set_list:
-    "distinct xs \<Longrightarrow> distinct (permutations_of_set_list xs)"
-  by (simp add: permutations_of_set_list_def distinct_permutations_of_set_aux_list)
-
-lemma permutations_of_list:
-    "permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))"
-  by (simp add: permutations_of_set_aux_correct [symmetric] 
-        permutations_of_set_aux_list_refine permutations_of_set_list_def)
-
-lemma permutations_of_list_code [code]:
-  "permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))"
-  "permutations_of_set (List.coset xs) = 
-     Code.abort (STR ''Permutation of set complement not supported'') 
-       (\<lambda>_. permutations_of_set (List.coset xs))"
-  by (simp_all add: permutations_of_list)
-
-value [code] "permutations_of_set (set ''abcd'')"
-
-end
\ No newline at end of file
--- a/src/HOL/Probability/Random_Permutations.thy	Thu Sep 29 11:24:36 2016 +0100
+++ b/src/HOL/Probability/Random_Permutations.thy	Thu Sep 29 16:49:42 2016 +0200
@@ -11,7 +11,9 @@
 section \<open>Random Permutations\<close>
 
 theory Random_Permutations
-imports "~~/src/HOL/Probability/Probability_Mass_Function" "~~/src/HOL/Library/Set_Permutations"
+imports 
+  "~~/src/HOL/Probability/Probability_Mass_Function" 
+  "~~/src/HOL/Library/Multiset_Permutations"
 begin
 
 text \<open>