Old version of inductive definition package (for sets).
authorberghofe
Fri, 13 Oct 2006 18:24:02 +0200
changeset 21023 d559870306f4
parent 21022 3634641f9405
child 21024 63ab84bb64d1
Old version of inductive definition package (for sets).
src/HOL/Tools/old_inductive_package.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/old_inductive_package.ML	Fri Oct 13 18:24:02 2006 +0200
@@ -0,0 +1,916 @@
+(*  Title:      HOL/Tools/old_inductive_package.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Stefan Berghofer, TU Muenchen
+    Author:     Markus Wenzel, TU Muenchen
+
+(Co)Inductive Definition module for HOL.
+
+Features:
+  * least or greatest fixedpoints
+  * user-specified product and sum constructions
+  * mutually recursive definitions
+  * definitions involving arbitrary monotone operators
+  * automatically proves introduction and elimination rules
+
+The recursive sets must *already* be declared as constants in the
+current theory!
+
+  Introduction rules have the form
+  [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk
+  where M is some monotone operator (usually the identity)
+  P(x) is any side condition on the free variables
+  ti, t are any terms
+  Sj, Sk are two of the sets being defined in mutual recursion
+
+Sums are used only for mutual recursion.  Products are used only to
+derive "streamlined" induction rules for relations.
+*)
+
+signature OLD_INDUCTIVE_PACKAGE =
+sig
+  val quiet_mode: bool ref
+  val trace: bool ref
+  val unify_consts: theory -> term list -> term list -> term list * term list
+  val split_rule_vars: term list -> thm -> thm
+  val get_inductive: theory -> string -> ({names: string list, coind: bool} *
+    {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
+     intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}) option
+  val the_mk_cases: theory -> string -> string -> thm
+  val print_inductives: theory -> unit
+  val mono_add: attribute
+  val mono_del: attribute
+  val get_monos: theory -> thm list
+  val inductive_forall_name: string
+  val inductive_forall_def: thm
+  val rulify: thm -> thm
+  val inductive_cases: ((bstring * Attrib.src list) * string list) list -> theory -> theory
+  val inductive_cases_i: ((bstring * attribute list) * term list) list -> theory -> theory
+  val add_inductive_i: bool -> bool -> bstring -> bool -> bool -> bool -> term list ->
+    ((bstring * term) * attribute list) list -> thm list -> theory -> theory *
+      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
+       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
+  val add_inductive: bool -> bool -> string list ->
+    ((bstring * string) * Attrib.src list) list -> (thmref * Attrib.src list) list ->
+    theory -> theory *
+      {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
+       intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}
+  val setup: theory -> theory
+end;
+
+structure OldInductivePackage: OLD_INDUCTIVE_PACKAGE =
+struct
+
+
+(** theory context references **)
+
+val mono_name = "Orderings.mono";
+val gfp_name = "FixedPoint.gfp";
+val lfp_name = "FixedPoint.lfp";
+val vimage_name = "Set.vimage";
+val Const _ $ (vimage_f $ _) $ _ = HOLogic.dest_Trueprop (Thm.concl_of vimageD);
+
+val inductive_forall_name = "HOL.induct_forall";
+val inductive_forall_def = thm "induct_forall_def";
+val inductive_conj_name = "HOL.induct_conj";
+val inductive_conj_def = thm "induct_conj_def";
+val inductive_conj = thms "induct_conj";
+val inductive_atomize = thms "induct_atomize";
+val inductive_rulify = thms "induct_rulify";
+val inductive_rulify_fallback = thms "induct_rulify_fallback";
+
+
+
+(** theory data **)
+
+type inductive_info =
+  {names: string list, coind: bool} * {defs: thm list, elims: thm list, raw_induct: thm,
+    induct: thm, intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm};
+
+structure InductiveData = TheoryDataFun
+(struct
+  val name = "HOL/inductive";
+  type T = inductive_info Symtab.table * thm list;
+
+  val empty = (Symtab.empty, []);
+  val copy = I;
+  val extend = I;
+  fun merge _ ((tab1, monos1), (tab2, monos2)) =
+    (Symtab.merge (K true) (tab1, tab2), Drule.merge_rules (monos1, monos2));
+
+  fun print thy (tab, monos) =
+    [Pretty.strs ("(co)inductives:" ::
+      map #1 (NameSpace.extern_table (Sign.const_space thy, tab))),
+     Pretty.big_list "monotonicity rules:" (map (Display.pretty_thm_sg thy) monos)]
+    |> Pretty.chunks |> Pretty.writeln;
+end);
+
+val print_inductives = InductiveData.print;
+
+
+(* get and put data *)
+
+val get_inductive = Symtab.lookup o #1 o InductiveData.get;
+
+fun the_inductive thy name =
+  (case get_inductive thy name of
+    NONE => error ("Unknown (co)inductive set " ^ quote name)
+  | SOME info => info);
+
+val the_mk_cases = (#mk_cases o #2) oo the_inductive;
+
+fun put_inductives names info = InductiveData.map (apfst (fn tab =>
+  fold (fn name => Symtab.update_new (name, info)) names tab
+    handle Symtab.DUP dup => error ("Duplicate definition of (co)inductive set " ^ quote dup)));
+
+
+
+(** monotonicity rules **)
+
+val get_monos = #2 o InductiveData.get;
+val map_monos = InductiveData.map o Library.apsnd;
+
+fun mk_mono thm =
+  let
+    fun eq2mono thm' = [standard (thm' RS (thm' RS eq_to_mono))] @
+      (case concl_of thm of
+          (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
+        | _ => [standard (thm' RS (thm' RS eq_to_mono2))]);
+    val concl = concl_of thm
+  in
+    if can Logic.dest_equals concl then
+      eq2mono (thm RS meta_eq_to_obj_eq)
+    else if can (HOLogic.dest_eq o HOLogic.dest_Trueprop) concl then
+      eq2mono thm
+    else [thm]
+  end;
+
+
+(* attributes *)
+
+val mono_add = Thm.declaration_attribute (fn th =>
+  Context.mapping (map_monos (fold Drule.add_rule (mk_mono th))) I);
+
+val mono_del = Thm.declaration_attribute (fn th =>
+  Context.mapping (map_monos (fold Drule.del_rule (mk_mono th))) I);
+
+
+
+(** misc utilities **)
+
+val quiet_mode = ref false;
+val trace = ref false;  (*for debugging*)
+fun message s = if ! quiet_mode then () else writeln s;
+fun clean_message s = if ! quick_and_dirty then () else message s;
+
+fun coind_prefix true = "co"
+  | coind_prefix false = "";
+
+
+(*the following code ensures that each recursive set always has the
+  same type in all introduction rules*)
+fun unify_consts thy cs intr_ts =
+  (let
+    val add_term_consts_2 = fold_aterms (fn Const c => insert (op =) c | _ => I);
+    fun varify (t, (i, ts)) =
+      let val t' = map_types (Logic.incr_tvar (i + 1)) (#1 (Type.varify (t, [])))
+      in (maxidx_of_term t', t'::ts) end;
+    val (i, cs') = foldr varify (~1, []) cs;
+    val (i', intr_ts') = foldr varify (i, []) intr_ts;
+    val rec_consts = fold add_term_consts_2 cs' [];
+    val intr_consts = fold add_term_consts_2 intr_ts' [];
+    fun unify (cname, cT) =
+      let val consts = map snd (List.filter (fn c => fst c = cname) intr_consts)
+      in fold (Sign.typ_unify thy) ((replicate (length consts) cT) ~~ consts) end;
+    val (env, _) = fold unify rec_consts (Vartab.empty, i');
+    val subst = Type.freeze o map_types (Envir.norm_type env)
+
+  in (map subst cs', map subst intr_ts')
+  end) handle Type.TUNIFY =>
+    (warning "Occurrences of recursive constant have non-unifiable types"; (cs, intr_ts));
+
+
+(*make injections used in mutually recursive definitions*)
+fun mk_inj cs sumT c x =
+  let
+    fun mk_inj' T n i =
+      if n = 1 then x else
+      let val n2 = n div 2;
+          val Type (_, [T1, T2]) = T
+      in
+        if i <= n2 then
+          Const ("Sum_Type.Inl", T1 --> T) $ (mk_inj' T1 n2 i)
+        else
+          Const ("Sum_Type.Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
+      end
+  in mk_inj' sumT (length cs) (1 + find_index_eq c cs)
+  end;
+
+(*make "vimage" terms for selecting out components of mutually rec.def*)
+fun mk_vimage cs sumT t c = if length cs < 2 then t else
+  let
+    val cT = HOLogic.dest_setT (fastype_of c);
+    val vimageT = [cT --> sumT, HOLogic.mk_setT sumT] ---> HOLogic.mk_setT cT
+  in
+    Const (vimage_name, vimageT) $
+      Abs ("y", cT, mk_inj cs sumT c (Bound 0)) $ t
+  end;
+
+(** proper splitting **)
+
+fun prod_factors p (Const ("Pair", _) $ t $ u) =
+      p :: prod_factors (1::p) t @ prod_factors (2::p) u
+  | prod_factors p _ = [];
+
+fun mg_prod_factors ts (t $ u) fs = if t mem ts then
+        let val f = prod_factors [] u
+        in AList.update (op =) (t, f inter (AList.lookup (op =) fs t) |> the_default f) fs end
+      else mg_prod_factors ts u (mg_prod_factors ts t fs)
+  | mg_prod_factors ts (Abs (_, _, t)) fs = mg_prod_factors ts t fs
+  | mg_prod_factors ts _ fs = fs;
+
+fun prodT_factors p ps (T as Type ("*", [T1, T2])) =
+      if p mem ps then prodT_factors (1::p) ps T1 @ prodT_factors (2::p) ps T2
+      else [T]
+  | prodT_factors _ _ T = [T];
+
+fun ap_split p ps (Type ("*", [T1, T2])) T3 u =
+      if p mem ps then HOLogic.split_const (T1, T2, T3) $
+        Abs ("v", T1, ap_split (2::p) ps T2 T3 (ap_split (1::p) ps T1
+          (prodT_factors (2::p) ps T2 ---> T3) (incr_boundvars 1 u) $ Bound 0))
+      else u
+  | ap_split _ _ _ _ u =  u;
+
+fun mk_tuple p ps (Type ("*", [T1, T2])) (tms as t::_) =
+      if p mem ps then HOLogic.mk_prod (mk_tuple (1::p) ps T1 tms,
+        mk_tuple (2::p) ps T2 (Library.drop (length (prodT_factors (1::p) ps T1), tms)))
+      else t
+  | mk_tuple _ _ _ (t::_) = t;
+
+fun split_rule_var' ((t as Var (v, Type ("fun", [T1, T2])), ps), rl) =
+      let val T' = prodT_factors [] ps T1 ---> T2
+          val newt = ap_split [] ps T1 T2 (Var (v, T'))
+          val cterm = Thm.cterm_of (Thm.theory_of_thm rl)
+      in
+          instantiate ([], [(cterm t, cterm newt)]) rl
+      end
+  | split_rule_var' (_, rl) = rl;
+
+val remove_split = rewrite_rule [split_conv RS eq_reflection];
+
+fun split_rule_vars vs rl = standard (remove_split (foldr split_rule_var'
+  rl (mg_prod_factors vs (Thm.prop_of rl) [])));
+
+fun split_rule vs rl = standard (remove_split (foldr split_rule_var'
+  rl (List.mapPartial (fn (t as Var ((a, _), _)) =>
+      Option.map (pair t) (AList.lookup (op =) vs a)) (term_vars (Thm.prop_of rl)))));
+
+
+(** process rules **)
+
+local
+
+fun err_in_rule thy name t msg =
+  error (cat_lines ["Ill-formed introduction rule " ^ quote name,
+    Sign.string_of_term thy t, msg]);
+
+fun err_in_prem thy name t p msg =
+  error (cat_lines ["Ill-formed premise", Sign.string_of_term thy p,
+    "in introduction rule " ^ quote name, Sign.string_of_term thy t, msg]);
+
+val bad_concl = "Conclusion of introduction rule must have form \"t : S_i\"";
+
+val all_not_allowed =
+    "Introduction rule must not have a leading \"!!\" quantifier";
+
+fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
+
+in
+
+fun check_rule thy cs ((name, rule), att) =
+  let
+    val concl = Logic.strip_imp_concl rule;
+    val prems = Logic.strip_imp_prems rule;
+    val aprems = map (atomize_term thy) prems;
+    val arule = Logic.list_implies (aprems, concl);
+
+    fun check_prem (prem, aprem) =
+      if can HOLogic.dest_Trueprop aprem then ()
+      else err_in_prem thy name rule prem "Non-atomic premise";
+  in
+    (case concl of
+      Const ("Trueprop", _) $ (Const ("op :", _) $ t $ u) =>
+        if u mem cs then
+          if exists (Logic.occs o rpair t) cs then
+            err_in_rule thy name rule "Recursion term on left of member symbol"
+          else List.app check_prem (prems ~~ aprems)
+        else err_in_rule thy name rule bad_concl
+      | Const ("all", _) $ _ => err_in_rule thy name rule all_not_allowed
+      | _ => err_in_rule thy name rule bad_concl);
+    ((name, arule), att)
+  end;
+
+val rulify =  (* FIXME norm_hhf *)
+  hol_simplify inductive_conj
+  #> hol_simplify inductive_rulify
+  #> hol_simplify inductive_rulify_fallback
+  #> standard;
+
+end;
+
+
+
+(** properties of (co)inductive sets **)
+
+(* elimination rules *)
+
+fun mk_elims cs cTs params intr_ts intr_names =
+  let
+    val used = foldr add_term_names [] intr_ts;
+    val [aname, pname] = Name.variant_list used ["a", "P"];
+    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
+
+    fun dest_intr r =
+      let val Const ("op :", _) $ t $ u =
+        HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
+      in (u, t, Logic.strip_imp_prems r) end;
+
+    val intrs = map dest_intr intr_ts ~~ intr_names;
+
+    fun mk_elim (c, T) =
+      let
+        val a = Free (aname, T);
+
+        fun mk_elim_prem (_, t, ts) =
+          list_all_free (map dest_Free ((foldr add_term_frees [] (t::ts)) \\ params),
+            Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (a, t)) :: ts, P));
+        val c_intrs = (List.filter (equal c o #1 o #1) intrs);
+      in
+        (Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_mem (a, c)) ::
+          map mk_elim_prem (map #1 c_intrs), P), map #2 c_intrs)
+      end
+  in
+    map mk_elim (cs ~~ cTs)
+  end;
+
+
+(* premises and conclusions of induction rules *)
+
+fun mk_indrule cs cTs params intr_ts =
+  let
+    val used = foldr add_term_names [] intr_ts;
+
+    (* predicates for induction rule *)
+
+    val preds = map Free (Name.variant_list used (if length cs < 2 then ["P"] else
+      map (fn i => "P" ^ string_of_int i) (1 upto length cs)) ~~
+        map (fn T => T --> HOLogic.boolT) cTs);
+
+    (* transform an introduction rule into a premise for induction rule *)
+
+    fun mk_ind_prem r =
+      let
+        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
+
+        val pred_of = AList.lookup (op aconv) (cs ~~ preds);
+
+        fun subst (s as ((m as Const ("op :", T)) $ t $ u)) =
+              (case pred_of u of
+                  NONE => (m $ fst (subst t) $ fst (subst u), NONE)
+                | SOME P => (HOLogic.mk_binop inductive_conj_name (s, P $ t), SOME (s, P $ t)))
+          | subst s =
+              (case pred_of s of
+                  SOME P => (HOLogic.mk_binop "op Int"
+                    (s, HOLogic.Collect_const (HOLogic.dest_setT
+                      (fastype_of s)) $ P), NONE)
+                | NONE => (case s of
+                     (t $ u) => (fst (subst t) $ fst (subst u), NONE)
+                   | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
+                   | _ => (s, NONE)));
+
+        fun mk_prem (s, prems) = (case subst s of
+              (_, SOME (t, u)) => t :: u :: prems
+            | (t, _) => t :: prems);
+
+        val Const ("op :", _) $ t $ u =
+          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
+
+      in list_all_free (frees,
+           Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem
+             [] (map HOLogic.dest_Trueprop (Logic.strip_imp_prems r))),
+               HOLogic.mk_Trueprop (valOf (pred_of u) $ t)))
+      end;
+
+    val ind_prems = map mk_ind_prem intr_ts;
+
+    val factors = Library.fold (mg_prod_factors preds) ind_prems [];
+
+    (* make conclusions for induction rules *)
+
+    fun mk_ind_concl ((c, P), (ts, x)) =
+      let val T = HOLogic.dest_setT (fastype_of c);
+          val ps = AList.lookup (op =) factors P |> the_default [];
+          val Ts = prodT_factors [] ps T;
+          val (frees, x') = foldr (fn (T', (fs, s)) =>
+            ((Free (s, T'))::fs, Symbol.bump_string s)) ([], x) Ts;
+          val tuple = mk_tuple [] ps T frees;
+      in ((HOLogic.mk_binop "op -->"
+        (HOLogic.mk_mem (tuple, c), P $ tuple))::ts, x')
+      end;
+
+    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
+        (fst (foldr mk_ind_concl ([], "xa") (cs ~~ preds))))
+
+  in (preds, ind_prems, mutual_ind_concl,
+    map (apfst (fst o dest_Free)) factors)
+  end;
+
+
+(* prepare cases and induct rules *)
+
+fun add_cases_induct no_elim no_induct coind names elims induct =
+  let
+    fun cases_spec name elim thy =
+      thy
+      |> Theory.parent_path
+      |> Theory.add_path (Sign.base_name name)
+      |> PureThy.add_thms [(("cases", elim), [InductAttrib.cases_set name])] |> snd
+      |> Theory.restore_naming thy;
+    val cases_specs = if no_elim then [] else map2 cases_spec names elims;
+
+    val induct_att = if coind then InductAttrib.coinduct_set else InductAttrib.induct_set;
+    fun induct_specs thy =
+      if no_induct then thy
+      else
+        let
+          val ctxt = ProofContext.init thy;
+          val rules = names ~~ ProjectRule.projects ctxt (1 upto length names) induct;
+          val inducts = map (RuleCases.save induct o standard o #2) rules;
+        in
+          thy
+          |> PureThy.add_thms (rules |> map (fn (name, th) =>
+            (("", th), [RuleCases.consumes 1, induct_att name]))) |> snd
+          |> PureThy.add_thmss
+            [((coind_prefix coind ^ "inducts", inducts), [RuleCases.consumes 1])] |> snd
+        end;
+  in Library.apply cases_specs #> induct_specs end;
+
+
+
+(** proofs for (co)inductive sets **)
+
+(* prove monotonicity -- NOT subject to quick_and_dirty! *)
+
+fun prove_mono setT fp_fun monos thy =
+ (message "  Proving monotonicity ...";
+  Goal.prove_global thy [] []   (*NO quick_and_dirty here!*)
+    (HOLogic.mk_Trueprop
+      (Const (mono_name, (setT --> setT) --> HOLogic.boolT) $ fp_fun))
+    (fn _ => EVERY [rtac monoI 1,
+      REPEAT (ares_tac (List.concat (map mk_mono monos) @ get_monos thy) 1)]));
+
+
+(* prove introduction rules *)
+
+fun prove_intrs coind mono fp_def intr_ts rec_sets_defs ctxt =
+  let
+    val _ = clean_message "  Proving the introduction rules ...";
+
+    val unfold = standard' (mono RS (fp_def RS
+      (if coind then def_gfp_unfold else def_lfp_unfold)));
+
+    fun select_disj 1 1 = []
+      | select_disj _ 1 = [rtac disjI1]
+      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
+
+    val intrs = (1 upto (length intr_ts) ~~ intr_ts) |> map (fn (i, intr) =>
+      rulify (SkipProof.prove ctxt [] [] intr (fn _ => EVERY
+       [rewrite_goals_tac rec_sets_defs,
+        stac unfold 1,
+        REPEAT (resolve_tac [vimageI2, CollectI] 1),
+        (*Now 1-2 subgoals: the disjunction, perhaps equality.*)
+        EVERY1 (select_disj (length intr_ts) i),
+        (*Not ares_tac, since refl must be tried before any equality assumptions;
+          backtracking may occur if the premises have extra variables!*)
+        DEPTH_SOLVE_1 (resolve_tac [refl, exI, conjI] 1 APPEND assume_tac 1),
+        (*Now solve the equations like Inl 0 = Inl ?b2*)
+        REPEAT (rtac refl 1)])))
+
+  in (intrs, unfold) end;
+
+
+(* prove elimination rules *)
+
+fun prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs ctxt =
+  let
+    val _ = clean_message "  Proving the elimination rules ...";
+
+    val rules1 = [CollectE, disjE, make_elim vimageD, exE, FalseE];
+    val rules2 = [conjE, Inl_neq_Inr, Inr_neq_Inl] @ map make_elim [Inl_inject, Inr_inject];
+  in
+    mk_elims cs cTs params intr_ts intr_names |> map (fn (t, cases) =>
+      SkipProof.prove ctxt [] (Logic.strip_imp_prems t) (Logic.strip_imp_concl t)
+        (fn {prems, ...} => EVERY
+          [cut_facts_tac [hd prems] 1,
+           rewrite_goals_tac rec_sets_defs,
+           dtac (unfold RS subst) 1,
+           REPEAT (FIRSTGOAL (eresolve_tac rules1)),
+           REPEAT (FIRSTGOAL (eresolve_tac rules2)),
+           EVERY (map (fn prem =>
+             DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_sets_defs prem, conjI] 1)) (tl prems))])
+        |> rulify
+        |> RuleCases.name cases)
+  end;
+
+
+(* derivation of simplified elimination rules *)
+
+local
+
+(*cprop should have the form t:Si where Si is an inductive set*)
+val mk_cases_err = "mk_cases: proposition not of form \"t : S_i\"";
+
+(*delete needless equality assumptions*)
+val refl_thin = prove_goal HOL.thy "!!P. a = a ==> P ==> P" (fn _ => [assume_tac 1]);
+val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE, Pair_inject];
+val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
+
+fun simp_case_tac solved ss i =
+  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i
+  THEN_MAYBE (if solved then no_tac else all_tac);
+
+in
+
+fun mk_cases_i elims ss cprop =
+  let
+    val prem = Thm.assume cprop;
+    val tac = ALLGOALS (simp_case_tac false ss) THEN prune_params_tac;
+    fun mk_elim rl = Drule.standard (Tactic.rule_by_tactic tac (prem RS rl));
+  in
+    (case get_first (try mk_elim) elims of
+      SOME r => r
+    | NONE => error (Pretty.string_of (Pretty.block
+        [Pretty.str mk_cases_err, Pretty.fbrk, Display.pretty_cterm cprop])))
+  end;
+
+fun mk_cases elims s =
+  mk_cases_i elims (simpset()) (Thm.read_cterm (Thm.theory_of_thm (hd elims)) (s, propT));
+
+fun smart_mk_cases thy ss cprop =
+  let
+    val c = #1 (Term.dest_Const (Term.head_of (#2 (HOLogic.dest_mem (HOLogic.dest_Trueprop
+      (Logic.strip_imp_concl (Thm.term_of cprop))))))) handle TERM _ => error mk_cases_err;
+    val (_, {elims, ...}) = the_inductive thy c;
+  in mk_cases_i elims ss cprop end;
+
+end;
+
+
+(* inductive_cases(_i) *)
+
+fun gen_inductive_cases prep_att prep_prop args thy =
+  let
+    val cert_prop = Thm.cterm_of thy o prep_prop (ProofContext.init thy);
+    val mk_cases = smart_mk_cases thy (Simplifier.simpset_of thy) o cert_prop;
+
+    val facts = args |> map (fn ((a, atts), props) =>
+     ((a, map (prep_att thy) atts), map (Thm.no_attributes o single o mk_cases) props));
+  in thy |> PureThy.note_thmss_i "" facts |> snd end;
+
+val inductive_cases = gen_inductive_cases Attrib.attribute ProofContext.read_prop;
+val inductive_cases_i = gen_inductive_cases (K I) ProofContext.cert_prop;
+
+
+(* mk_cases_meth *)
+
+fun mk_cases_meth (ctxt, raw_props) =
+  let
+    val thy = ProofContext.theory_of ctxt;
+    val ss = local_simpset_of ctxt;
+    val cprops = map (Thm.cterm_of thy o ProofContext.read_prop ctxt) raw_props;
+  in Method.erule 0 (map (smart_mk_cases thy ss) cprops) end;
+
+val mk_cases_args = Method.syntax (Scan.lift (Scan.repeat1 Args.name));
+
+
+(* prove induction rule *)
+
+fun prove_indrule cs cTs sumT rec_const params intr_ts mono
+    fp_def rec_sets_defs ctxt =
+  let
+    val _ = clean_message "  Proving the induction rule ...";
+    val thy = ProofContext.theory_of ctxt;
+
+    val sum_case_rewrites =
+      (if Context.theory_name thy = "Datatype" then
+        PureThy.get_thms thy (Name "sum.cases")
+      else
+        (case ThyInfo.lookup_theory "Datatype" of
+          NONE => []
+        | SOME thy' =>
+            if Theory.subthy (thy', thy) then
+              PureThy.get_thms thy' (Name "sum.cases")
+            else []))
+      |> map mk_meta_eq;
+
+    val (preds, ind_prems, mutual_ind_concl, factors) =
+      mk_indrule cs cTs params intr_ts;
+
+    val dummy = if !trace then
+                (writeln "ind_prems = ";
+                 List.app (writeln o Sign.string_of_term thy) ind_prems)
+            else ();
+
+    (* make predicate for instantiation of abstract induction rule *)
+
+    fun mk_ind_pred _ [P] = P
+      | mk_ind_pred T Ps =
+         let val n = (length Ps) div 2;
+             val Type (_, [T1, T2]) = T
+         in Const ("Datatype.sum.sum_case",
+           [T1 --> HOLogic.boolT, T2 --> HOLogic.boolT, T] ---> HOLogic.boolT) $
+             mk_ind_pred T1 (Library.take (n, Ps)) $ mk_ind_pred T2 (Library.drop (n, Ps))
+         end;
+
+    val ind_pred = mk_ind_pred sumT preds;
+
+    val ind_concl = HOLogic.mk_Trueprop
+      (HOLogic.all_const sumT $ Abs ("x", sumT, HOLogic.mk_binop "op -->"
+        (HOLogic.mk_mem (Bound 0, rec_const), ind_pred $ Bound 0)));
+
+    (* simplification rules for vimage and Collect *)
+
+    val vimage_simps = if length cs < 2 then [] else
+      map (fn c => standard (SkipProof.prove ctxt [] []
+        (HOLogic.mk_Trueprop (HOLogic.mk_eq
+          (mk_vimage cs sumT (HOLogic.Collect_const sumT $ ind_pred) c,
+           HOLogic.Collect_const (HOLogic.dest_setT (fastype_of c)) $
+             List.nth (preds, find_index_eq c cs))))
+        (fn _ => EVERY
+          [rtac vimage_Collect 1, rewrite_goals_tac sum_case_rewrites, rtac refl 1]))) cs;
+
+    val raw_fp_induct = (mono RS (fp_def RS def_lfp_induct_set));
+
+    val dummy = if !trace then
+                (writeln "raw_fp_induct = "; print_thm raw_fp_induct)
+            else ();
+
+    val induct = standard (SkipProof.prove ctxt [] ind_prems ind_concl
+      (fn {prems, ...} => EVERY
+        [rewrite_goals_tac [inductive_conj_def],
+         rtac (impI RS allI) 1,
+         DETERM (etac raw_fp_induct 1),
+         rewrite_goals_tac (map mk_meta_eq (vimage_Int::Int_Collect::vimage_simps)),
+         fold_goals_tac rec_sets_defs,
+         (*This CollectE and disjE separates out the introduction rules*)
+         REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE, exE, FalseE])),
+         (*Now break down the individual cases.  No disjE here in case
+           some premise involves disjunction.*)
+         REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
+         rewrite_goals_tac sum_case_rewrites,
+         EVERY (map (fn prem =>
+           DEPTH_SOLVE_1 (ares_tac [rewrite_rule [inductive_conj_def] prem, conjI, refl] 1)) prems)]));
+
+    val lemma = standard (SkipProof.prove ctxt [] []
+      (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
+        [rewrite_goals_tac rec_sets_defs,
+         REPEAT (EVERY
+           [REPEAT (resolve_tac [conjI, impI] 1),
+            TRY (dtac vimageD 1), etac allE 1, dtac mp 1, atac 1,
+            rewrite_goals_tac sum_case_rewrites,
+            atac 1])]))
+
+  in standard (split_rule factors (induct RS lemma)) end;
+
+
+
+(** specification of (co)inductive sets **)
+
+fun cond_declare_consts declare_consts cs paramTs cnames =
+  if declare_consts then
+    Theory.add_consts_i (map (fn (c, n) => (Sign.base_name n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames))
+  else I;
+
+fun mk_ind_def declare_consts alt_name coind cs intr_ts monos thy
+      params paramTs cTs cnames =
+  let
+    val sumT = fold_bal (fn (T, U) => Type ("+", [T, U])) cTs;
+    val setT = HOLogic.mk_setT sumT;
+
+    val fp_name = if coind then gfp_name else lfp_name;
+
+    val used = foldr add_term_names [] intr_ts;
+    val [sname, xname] = Name.variant_list used ["S", "x"];
+
+    (* transform an introduction rule into a conjunction  *)
+    (*   [| t : ... S_i ... ; ... |] ==> u : S_j          *)
+    (* is transformed into                                *)
+    (*   x = Inj_j u & t : ... Inj_i -`` S ... & ...      *)
+
+    fun transform_rule r =
+      let
+        val frees = map dest_Free ((add_term_frees (r, [])) \\ params);
+        val subst = subst_free
+          (cs ~~ (map (mk_vimage cs sumT (Free (sname, setT))) cs));
+        val Const ("op :", _) $ t $ u =
+          HOLogic.dest_Trueprop (Logic.strip_imp_concl r)
+
+      in foldr (fn ((x, T), P) => HOLogic.mk_exists (x, T, P))
+        (foldr1 HOLogic.mk_conj
+          (((HOLogic.eq_const sumT) $ Free (xname, sumT) $ (mk_inj cs sumT u t))::
+            (map (subst o HOLogic.dest_Trueprop)
+              (Logic.strip_imp_prems r)))) frees
+      end
+
+    (* make a disjunction of all introduction rules *)
+
+    val fp_fun = absfree (sname, setT, (HOLogic.Collect_const sumT) $
+      absfree (xname, sumT, if null intr_ts then HOLogic.false_const
+        else foldr1 HOLogic.mk_disj (map transform_rule intr_ts)));
+
+    (* add definiton of recursive sets to theory *)
+
+    val rec_name = if alt_name = "" then
+      space_implode "_" (map Sign.base_name cnames) else alt_name;
+    val full_rec_name = if length cs < 2 then hd cnames
+      else Sign.full_name thy rec_name;
+
+    val rec_const = list_comb
+      (Const (full_rec_name, paramTs ---> setT), params);
+
+    val fp_def_term = Logic.mk_equals (rec_const,
+      Const (fp_name, (setT --> setT) --> setT) $ fp_fun);
+
+    val def_terms = fp_def_term :: (if length cs < 2 then [] else
+      map (fn c => Logic.mk_equals (c, mk_vimage cs sumT rec_const c)) cs);
+
+    val ([fp_def :: rec_sets_defs], thy') =
+      thy
+      |> cond_declare_consts declare_consts cs paramTs cnames
+      |> (if length cs < 2 then I
+          else Theory.add_consts_i [(rec_name, paramTs ---> setT, NoSyn)])
+      |> Theory.add_path rec_name
+      |> PureThy.add_defss_i false [(("defs", def_terms), [])];
+
+    val mono = prove_mono setT fp_fun monos thy'
+
+  in (thy', rec_name, mono, fp_def, rec_sets_defs, rec_const, sumT) end;
+
+fun add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs
+    intros monos thy params paramTs cTs cnames induct_cases =
+  let
+    val _ =
+      if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive set(s) " ^
+        commas_quote (map Sign.base_name cnames)) else ();
+
+    val ((intr_names, intr_ts), intr_atts) = apfst split_list (split_list intros);
+
+    val (thy1, rec_name, mono, fp_def, rec_sets_defs, rec_const, sumT) =
+      mk_ind_def declare_consts alt_name coind cs intr_ts monos thy
+        params paramTs cTs cnames;
+    val ctxt1 = ProofContext.init thy1;
+
+    val (intrs, unfold) = prove_intrs coind mono fp_def intr_ts rec_sets_defs ctxt1;
+    val elims = if no_elim then [] else
+      prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs ctxt1;
+    val raw_induct = if no_ind then Drule.asm_rl else
+      if coind then standard (rule_by_tactic
+        (rewrite_tac [mk_meta_eq vimage_Un] THEN
+          fold_tac rec_sets_defs) (mono RS (fp_def RS def_Collect_coinduct)))
+      else
+        prove_indrule cs cTs sumT rec_const params intr_ts mono fp_def
+          rec_sets_defs ctxt1;
+    val induct =
+      if coind then
+        (raw_induct, [RuleCases.case_names [rec_name],
+          RuleCases.case_conclusion (rec_name, induct_cases),
+          RuleCases.consumes 1])
+      else if no_ind orelse length cs > 1 then
+        (raw_induct, [RuleCases.case_names induct_cases, RuleCases.consumes 0])
+      else (raw_induct RSN (2, rev_mp), [RuleCases.case_names induct_cases, RuleCases.consumes 1]);
+
+    val (intrs', thy2) =
+      thy1
+      |> PureThy.add_thms ((intr_names ~~ intrs) ~~ intr_atts);
+    val (([_, elims'], [induct']), thy3) =
+      thy2
+      |> PureThy.add_thmss
+        [(("intros", intrs'), []),
+          (("elims", elims), [RuleCases.consumes 1])]
+      ||>> PureThy.add_thms
+        [((coind_prefix coind ^ "induct", rulify (#1 induct)), #2 induct)];
+  in (thy3,
+    {defs = fp_def :: rec_sets_defs,
+     mono = mono,
+     unfold = unfold,
+     intrs = intrs',
+     elims = elims',
+     mk_cases = mk_cases elims',
+     raw_induct = rulify raw_induct,
+     induct = induct'})
+  end;
+
+
+(* external interfaces *)
+
+fun try_term f msg thy t =
+  (case Library.try f t of
+    SOME x => x
+  | NONE => error (msg ^ Sign.string_of_term thy t));
+
+fun add_inductive_i verbose declare_consts alt_name coind no_elim no_ind cs pre_intros monos thy =
+  let
+    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
+
+    (*parameters should agree for all mutually recursive components*)
+    val (_, params) = strip_comb (hd cs);
+    val paramTs = map (try_term (snd o dest_Free) "Parameter in recursive\
+      \ component is not a free variable: " thy) params;
+
+    val cTs = map (try_term (HOLogic.dest_setT o fastype_of)
+      "Recursive component not of type set: " thy) cs;
+
+    val cnames = map (try_term (fst o dest_Const o head_of)
+      "Recursive set not previously declared as constant: " thy) cs;
+
+    val save_thy = thy
+      |> Theory.copy |> cond_declare_consts declare_consts cs paramTs cnames;
+    val intros = map (check_rule save_thy cs) pre_intros;
+    val induct_cases = map (#1 o #1) intros;
+
+    val (thy1, result as {elims, induct, ...}) =
+      add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs intros monos
+        thy params paramTs cTs cnames induct_cases;
+    val thy2 = thy1
+      |> put_inductives cnames ({names = cnames, coind = coind}, result)
+      |> add_cases_induct no_elim no_ind coind cnames elims induct
+      |> Theory.parent_path;
+  in (thy2, result) end;
+
+fun add_inductive verbose coind c_strings intro_srcs raw_monos thy =
+  let
+    val cs = map (Sign.read_term thy) c_strings;
+
+    val intr_names = map (fst o fst) intro_srcs;
+    fun read_rule s = Thm.read_cterm thy (s, propT)
+      handle ERROR msg => cat_error msg ("The error(s) above occurred for " ^ s);
+    val intr_ts = map (Thm.term_of o read_rule o snd o fst) intro_srcs;
+    val intr_atts = map (map (Attrib.attribute thy) o snd) intro_srcs;
+    val (cs', intr_ts') = unify_consts thy cs intr_ts;
+
+    val (monos, thy') = thy |> IsarThy.apply_theorems raw_monos;
+  in
+    add_inductive_i verbose false "" coind false false cs'
+      ((intr_names ~~ intr_ts') ~~ intr_atts) monos thy'
+  end;
+
+
+
+(** package setup **)
+
+(* setup theory *)
+
+val setup =
+  InductiveData.init #>
+  Method.add_methods [("ind_cases", mk_cases_meth oo mk_cases_args,
+    "dynamic case analysis on sets")] #>
+  Attrib.add_attributes [("mono", Attrib.add_del_args mono_add mono_del,
+    "declaration of monotonicity rule")];
+
+
+(* outer syntax *)
+
+local structure P = OuterParse and K = OuterKeyword in
+
+fun mk_ind coind ((sets, intrs), monos) =
+  #1 o add_inductive true coind sets (map P.triple_swap intrs) monos;
+
+fun ind_decl coind =
+  Scan.repeat1 P.term --
+  (P.$$$ "intros" |--
+    P.!!! (Scan.repeat (P.opt_thm_name ":" -- P.prop))) --
+  Scan.optional (P.$$$ "monos" |-- P.!!! P.xthms1) []
+  >> (Toplevel.theory o mk_ind coind);
+
+val inductiveP =
+  OuterSyntax.command "inductive" "define inductive sets" K.thy_decl (ind_decl false);
+
+val coinductiveP =
+  OuterSyntax.command "coinductive" "define coinductive sets" K.thy_decl (ind_decl true);
+
+
+val ind_cases =
+  P.and_list1 (P.opt_thm_name ":" -- Scan.repeat1 P.prop)
+  >> (Toplevel.theory o inductive_cases);
+
+val inductive_casesP =
+  OuterSyntax.command "inductive_cases"
+    "create simplified instances of elimination rules (improper)" K.thy_script ind_cases;
+
+val _ = OuterSyntax.add_keywords ["intros", "monos"];
+val _ = OuterSyntax.add_parsers [inductiveP, coinductiveP, inductive_casesP];
+
+end;
+
+end;
+