renamed Analysis/Winding_Numbers to Winding_Numbers_2; reorganised Analysis/Cauchy_Integral_Theorem by splitting it into Contour_Integration, Winding_Numbers,Cauchy_Integral_Theorem and Cauchy_Integral_Formula.
authorWenda Li <wl302@cam.ac.uk>
Sun, 01 Dec 2019 19:10:57 +0000
changeset 71184 d62fdaafdafc
parent 71181 8331063570d6
child 71185 8a0e25d93a95
renamed Analysis/Winding_Numbers to Winding_Numbers_2; reorganised Analysis/Cauchy_Integral_Theorem by splitting it into Contour_Integration, Winding_Numbers,Cauchy_Integral_Theorem and Cauchy_Integral_Formula.
src/HOL/Analysis/Cauchy_Integral_Formula.thy
src/HOL/Analysis/Cauchy_Integral_Theorem.thy
src/HOL/Analysis/Complex_Transcendental.thy
src/HOL/Analysis/Conformal_Mappings.thy
src/HOL/Analysis/Contour_Integration.thy
src/HOL/Analysis/Homeomorphism.thy
src/HOL/Analysis/Path_Connected.thy
src/HOL/Analysis/Retracts.thy
src/HOL/Analysis/Winding_Numbers.thy
src/HOL/Analysis/Winding_Numbers_2.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Cauchy_Integral_Formula.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -0,0 +1,2090 @@
+section \<open>Cauchy's Integral Formula\<close>
+
+theory Cauchy_Integral_Formula
+  imports Winding_Numbers
+begin
+
+subsection\<open>Cauchy's integral formula, again for a convex enclosing set\<close>
+
+lemma Cauchy_integral_formula_weak:
+    assumes s: "convex s" and "finite k" and conf: "continuous_on s f"
+        and fcd: "(\<And>x. x \<in> interior s - k \<Longrightarrow> f field_differentiable at x)"
+        and z: "z \<in> interior s - k" and vpg: "valid_path \<gamma>"
+        and pasz: "path_image \<gamma> \<subseteq> s - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+      shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
+proof -
+  obtain f' where f': "(f has_field_derivative f') (at z)"
+    using fcd [OF z] by (auto simp: field_differentiable_def)
+  have pas: "path_image \<gamma> \<subseteq> s" and znotin: "z \<notin> path_image \<gamma>" using pasz by blast+
+  have c: "continuous (at x within s) (\<lambda>w. if w = z then f' else (f w - f z) / (w - z))" if "x \<in> s" for x
+  proof (cases "x = z")
+    case True then show ?thesis
+      apply (simp add: continuous_within)
+      apply (rule Lim_transform_away_within [of _ "z+1" _ "\<lambda>w::complex. (f w - f z)/(w - z)"])
+      using has_field_derivative_at_within has_field_derivative_iff f'
+      apply (fastforce simp add:)+
+      done
+  next
+    case False
+    then have dxz: "dist x z > 0" by auto
+    have cf: "continuous (at x within s) f"
+      using conf continuous_on_eq_continuous_within that by blast
+    have "continuous (at x within s) (\<lambda>w. (f w - f z) / (w - z))"
+      by (rule cf continuous_intros | simp add: False)+
+    then show ?thesis
+      apply (rule continuous_transform_within [OF _ dxz that, of "\<lambda>w::complex. (f w - f z)/(w - z)"])
+      apply (force simp: dist_commute)
+      done
+  qed
+  have fink': "finite (insert z k)" using \<open>finite k\<close> by blast
+  have *: "((\<lambda>w. if w = z then f' else (f w - f z) / (w - z)) has_contour_integral 0) \<gamma>"
+    apply (rule Cauchy_theorem_convex [OF _ s fink' _ vpg pas loop])
+    using c apply (force simp: continuous_on_eq_continuous_within)
+    apply (rename_tac w)
+    apply (rule_tac d="dist w z" and f = "\<lambda>w. (f w - f z)/(w - z)" in field_differentiable_transform_within)
+    apply (simp_all add: dist_pos_lt dist_commute)
+    apply (metis less_irrefl)
+    apply (rule derivative_intros fcd | simp)+
+    done
+  show ?thesis
+    apply (rule has_contour_integral_eq)
+    using znotin has_contour_integral_add [OF has_contour_integral_lmul [OF has_contour_integral_winding_number [OF vpg znotin], of "f z"] *]
+    apply (auto simp: ac_simps divide_simps)
+    done
+qed
+
+text\<open> Hence the Cauchy formula for points inside a circle.\<close>
+
+theorem Cauchy_integral_circlepath:
+  assumes contf: "continuous_on (cball z r) f" and holf: "f holomorphic_on (ball z r)" and wz: "norm(w - z) < r"
+  shows "((\<lambda>u. f u/(u - w)) has_contour_integral (2 * of_real pi * \<i> * f w))
+         (circlepath z r)"
+proof -
+  have "r > 0"
+    using assms le_less_trans norm_ge_zero by blast
+  have "((\<lambda>u. f u / (u - w)) has_contour_integral (2 * pi) * \<i> * winding_number (circlepath z r) w * f w)
+        (circlepath z r)"
+  proof (rule Cauchy_integral_formula_weak [where s = "cball z r" and k = "{}"])
+    show "\<And>x. x \<in> interior (cball z r) - {} \<Longrightarrow>
+         f field_differentiable at x"
+      using holf holomorphic_on_imp_differentiable_at by auto
+    have "w \<notin> sphere z r"
+      by simp (metis dist_commute dist_norm not_le order_refl wz)
+    then show "path_image (circlepath z r) \<subseteq> cball z r - {w}"
+      using \<open>r > 0\<close> by (auto simp add: cball_def sphere_def)
+  qed (use wz in \<open>simp_all add: dist_norm norm_minus_commute contf\<close>)
+  then show ?thesis
+    by (simp add: winding_number_circlepath assms)
+qed
+
+theorem Cauchy_integral_formula_convex_simple:
+    "\<lbrakk>convex s; f holomorphic_on s; z \<in> interior s; valid_path \<gamma>; path_image \<gamma> \<subseteq> s - {z};
+      pathfinish \<gamma> = pathstart \<gamma>\<rbrakk>
+     \<Longrightarrow> ((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
+  apply (rule Cauchy_integral_formula_weak [where k = "{}"])
+  using holomorphic_on_imp_continuous_on
+  by auto (metis at_within_interior holomorphic_on_def interiorE subsetCE)
+
+corollary\<^marker>\<open>tag unimportant\<close> Cauchy_integral_circlepath_simple:
+  assumes "f holomorphic_on cball z r" "norm(w - z) < r"
+  shows "((\<lambda>u. f u/(u - w)) has_contour_integral (2 * of_real pi * \<i> * f w))
+         (circlepath z r)"
+using assms by (force simp: holomorphic_on_imp_continuous_on holomorphic_on_subset Cauchy_integral_circlepath)
+
+text\<open> In particular, the first derivative formula.\<close>
+
+lemma Cauchy_derivative_integral_circlepath:
+  assumes contf: "continuous_on (cball z r) f"
+      and holf: "f holomorphic_on ball z r"
+      and w: "w \<in> ball z r"
+    shows "(\<lambda>u. f u/(u - w)^2) contour_integrable_on (circlepath z r)"
+           (is "?thes1")
+      and "(f has_field_derivative (1 / (2 * of_real pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u / (u - w)^2))) (at w)"
+           (is "?thes2")
+proof -
+  have [simp]: "r \<ge> 0" using w
+    using ball_eq_empty by fastforce
+  have f: "continuous_on (path_image (circlepath z r)) f"
+    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def)
+  have int: "\<And>w. dist z w < r \<Longrightarrow>
+                 ((\<lambda>u. f u / (u - w)) has_contour_integral (\<lambda>x. 2 * of_real pi * \<i> * f x) w) (circlepath z r)"
+    by (rule Cauchy_integral_circlepath [OF contf holf]) (simp add: dist_norm norm_minus_commute)
+  show ?thes1
+    apply (simp add: power2_eq_square)
+    apply (rule Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1, simplified])
+    apply (blast intro: int)
+    done
+  have "((\<lambda>x. 2 * of_real pi * \<i> * f x) has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2)) (at w)"
+    apply (simp add: power2_eq_square)
+    apply (rule Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and g = "\<lambda>x. 2 * of_real pi * \<i> * f x", simplified])
+    apply (blast intro: int)
+    done
+  then have fder: "(f has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2) / (2 * of_real pi * \<i>)) (at w)"
+    by (rule DERIV_cdivide [where f = "\<lambda>x. 2 * of_real pi * \<i> * f x" and c = "2 * of_real pi * \<i>", simplified])
+  show ?thes2
+    by simp (rule fder)
+qed
+
+
+proposition derivative_is_holomorphic:
+  assumes "open S"
+      and fder: "\<And>z. z \<in> S \<Longrightarrow> (f has_field_derivative f' z) (at z)"
+    shows "f' holomorphic_on S"
+proof -
+  have *: "\<exists>h. (f' has_field_derivative h) (at z)" if "z \<in> S" for z
+  proof -
+    obtain r where "r > 0" and r: "cball z r \<subseteq> S"
+      using open_contains_cball \<open>z \<in> S\<close> \<open>open S\<close> by blast
+    then have holf_cball: "f holomorphic_on cball z r"
+      apply (simp add: holomorphic_on_def)
+      using field_differentiable_at_within field_differentiable_def fder by blast
+    then have "continuous_on (path_image (circlepath z r)) f"
+      using \<open>r > 0\<close> by (force elim: holomorphic_on_subset [THEN holomorphic_on_imp_continuous_on])
+    then have contfpi: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1/(2 * of_real pi*\<i>) * f x)"
+      by (auto intro: continuous_intros)+
+    have contf_cball: "continuous_on (cball z r) f" using holf_cball
+      by (simp add: holomorphic_on_imp_continuous_on holomorphic_on_subset)
+    have holf_ball: "f holomorphic_on ball z r" using holf_cball
+      using ball_subset_cball holomorphic_on_subset by blast
+    { fix w  assume w: "w \<in> ball z r"
+      have intf: "(\<lambda>u. f u / (u - w)\<^sup>2) contour_integrable_on circlepath z r"
+        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
+      have fder': "(f has_field_derivative 1 / (2 * of_real pi * \<i>) * contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2))
+                  (at w)"
+        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
+      have f'_eq: "f' w = contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>)"
+        using fder' ball_subset_cball r w by (force intro: DERIV_unique [OF fder])
+      have "((\<lambda>u. f u / (u - w)\<^sup>2 / (2 * of_real pi * \<i>)) has_contour_integral
+                contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>))
+                (circlepath z r)"
+        by (rule has_contour_integral_div [OF has_contour_integral_integral [OF intf]])
+      then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u - w)\<^sup>2)) has_contour_integral
+                contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>))
+                (circlepath z r)"
+        by (simp add: algebra_simps)
+      then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u - w)\<^sup>2)) has_contour_integral f' w) (circlepath z r)"
+        by (simp add: f'_eq)
+    } note * = this
+    show ?thesis
+      apply (rule exI)
+      apply (rule Cauchy_next_derivative_circlepath [OF contfpi, of 2 f', simplified])
+      apply (simp_all add: \<open>0 < r\<close> * dist_norm)
+      done
+  qed
+  show ?thesis
+    by (simp add: holomorphic_on_open [OF \<open>open S\<close>] *)
+qed
+
+
+subsection\<open>Existence of all higher derivatives\<close>
+
+lemma holomorphic_deriv [holomorphic_intros]:
+    "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv f) holomorphic_on S"
+  by (metis DERIV_deriv_iff_field_differentiable at_within_open derivative_is_holomorphic holomorphic_on_def)
+
+lemma analytic_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv f) analytic_on S"
+  using analytic_on_holomorphic holomorphic_deriv by auto
+
+lemma holomorphic_higher_deriv [holomorphic_intros]: "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv ^^ n) f holomorphic_on S"
+  by (induction n) (auto simp: holomorphic_deriv)
+
+lemma analytic_higher_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv ^^ n) f analytic_on S"
+  unfolding analytic_on_def using holomorphic_higher_deriv by blast
+
+lemma has_field_derivative_higher_deriv:
+     "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk>
+      \<Longrightarrow> ((deriv ^^ n) f has_field_derivative (deriv ^^ (Suc n)) f x) (at x)"
+by (metis (no_types, hide_lams) DERIV_deriv_iff_field_differentiable at_within_open comp_apply
+         funpow.simps(2) holomorphic_higher_deriv holomorphic_on_def)
+
+lemma valid_path_compose_holomorphic:
+  assumes "valid_path g" and holo:"f holomorphic_on S" and "open S" "path_image g \<subseteq> S"
+  shows "valid_path (f \<circ> g)"
+proof (rule valid_path_compose[OF \<open>valid_path g\<close>])
+  fix x assume "x \<in> path_image g"
+  then show "f field_differentiable at x"
+    using analytic_on_imp_differentiable_at analytic_on_open assms holo by blast
+next
+  have "deriv f holomorphic_on S"
+    using holomorphic_deriv holo \<open>open S\<close> by auto
+  then show "continuous_on (path_image g) (deriv f)"
+    using assms(4) holomorphic_on_imp_continuous_on holomorphic_on_subset by auto
+qed
+
+proposition\<^marker>\<open>tag unimportant\<close> holomorphic_logarithm_exists:
+  assumes A: "convex A" "open A"
+      and f: "f holomorphic_on A" "\<And>x. x \<in> A \<Longrightarrow> f x \<noteq> 0"
+      and z0: "z0 \<in> A"
+    obtains g where "g holomorphic_on A" and "\<And>x. x \<in> A \<Longrightarrow> exp (g x) = f x"
+proof -
+  note f' = holomorphic_derivI [OF f(1) A(2)]
+  obtain g where g: "\<And>x. x \<in> A \<Longrightarrow> (g has_field_derivative deriv f x / f x) (at x)"
+  proof (rule holomorphic_convex_primitive' [OF A])
+    show "(\<lambda>x. deriv f x / f x) holomorphic_on A"
+      by (intro holomorphic_intros f A)
+  qed (auto simp: A at_within_open[of _ A])
+  define h where "h = (\<lambda>x. -g z0 + ln (f z0) + g x)"
+  from g and A have g_holo: "g holomorphic_on A"
+    by (auto simp: holomorphic_on_def at_within_open[of _ A] field_differentiable_def)
+  hence h_holo: "h holomorphic_on A"
+    by (auto simp: h_def intro!: holomorphic_intros)
+  have "\<exists>c. \<forall>x\<in>A. f x / exp (h x) - 1 = c"
+  proof (rule has_field_derivative_zero_constant, goal_cases)
+    case (2 x)
+    note [simp] = at_within_open[OF _ \<open>open A\<close>]
+    from 2 and z0 and f show ?case
+      by (auto simp: h_def exp_diff field_simps intro!: derivative_eq_intros g f')
+  qed fact+
+  then obtain c where c: "\<And>x. x \<in> A \<Longrightarrow> f x / exp (h x) - 1 = c"
+    by blast
+  from c[OF z0] and z0 and f have "c = 0"
+    by (simp add: h_def)
+  with c have "\<And>x. x \<in> A \<Longrightarrow> exp (h x) = f x" by simp
+  from that[OF h_holo this] show ?thesis .
+qed
+
+subsection\<open>Morera's theorem\<close>
+
+lemma Morera_local_triangle_ball:
+  assumes "\<And>z. z \<in> S
+          \<Longrightarrow> \<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and>
+                    (\<forall>b c. closed_segment b c \<subseteq> ball a e
+                           \<longrightarrow> contour_integral (linepath a b) f +
+                               contour_integral (linepath b c) f +
+                               contour_integral (linepath c a) f = 0)"
+  shows "f analytic_on S"
+proof -
+  { fix z  assume "z \<in> S"
+    with assms obtain e a where
+            "0 < e" and z: "z \<in> ball a e" and contf: "continuous_on (ball a e) f"
+        and 0: "\<And>b c. closed_segment b c \<subseteq> ball a e
+                      \<Longrightarrow> contour_integral (linepath a b) f +
+                          contour_integral (linepath b c) f +
+                          contour_integral (linepath c a) f = 0"
+      by fastforce
+    have az: "dist a z < e" using mem_ball z by blast
+    have sb_ball: "ball z (e - dist a z) \<subseteq> ball a e"
+      by (simp add: dist_commute ball_subset_ball_iff)
+    have "\<exists>e>0. f holomorphic_on ball z e"
+    proof (intro exI conjI)
+      have sub_ball: "\<And>y. dist a y < e \<Longrightarrow> closed_segment a y \<subseteq> ball a e"
+        by (meson \<open>0 < e\<close> centre_in_ball convex_ball convex_contains_segment mem_ball)
+      show "f holomorphic_on ball z (e - dist a z)"
+        apply (rule holomorphic_on_subset [OF _ sb_ball])
+        apply (rule derivative_is_holomorphic[OF open_ball])
+        apply (rule triangle_contour_integrals_starlike_primitive [OF contf _ open_ball, of a])
+           apply (simp_all add: 0 \<open>0 < e\<close> sub_ball)
+        done
+    qed (simp add: az)
+  }
+  then show ?thesis
+    by (simp add: analytic_on_def)
+qed
+
+lemma Morera_local_triangle:
+  assumes "\<And>z. z \<in> S
+          \<Longrightarrow> \<exists>t. open t \<and> z \<in> t \<and> continuous_on t f \<and>
+                  (\<forall>a b c. convex hull {a,b,c} \<subseteq> t
+                              \<longrightarrow> contour_integral (linepath a b) f +
+                                  contour_integral (linepath b c) f +
+                                  contour_integral (linepath c a) f = 0)"
+  shows "f analytic_on S"
+proof -
+  { fix z  assume "z \<in> S"
+    with assms obtain t where
+            "open t" and z: "z \<in> t" and contf: "continuous_on t f"
+        and 0: "\<And>a b c. convex hull {a,b,c} \<subseteq> t
+                      \<Longrightarrow> contour_integral (linepath a b) f +
+                          contour_integral (linepath b c) f +
+                          contour_integral (linepath c a) f = 0"
+      by force
+    then obtain e where "e>0" and e: "ball z e \<subseteq> t"
+      using open_contains_ball by blast
+    have [simp]: "continuous_on (ball z e) f" using contf
+      using continuous_on_subset e by blast
+    have eq0: "\<And>b c. closed_segment b c \<subseteq> ball z e \<Longrightarrow>
+                         contour_integral (linepath z b) f +
+                         contour_integral (linepath b c) f +
+                         contour_integral (linepath c z) f = 0"
+      by (meson 0 z \<open>0 < e\<close> centre_in_ball closed_segment_subset convex_ball dual_order.trans e starlike_convex_subset)
+    have "\<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and>
+                (\<forall>b c. closed_segment b c \<subseteq> ball a e \<longrightarrow>
+                       contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f = 0)"
+      using \<open>e > 0\<close> eq0 by force
+  }
+  then show ?thesis
+    by (simp add: Morera_local_triangle_ball)
+qed
+
+proposition Morera_triangle:
+    "\<lbrakk>continuous_on S f; open S;
+      \<And>a b c. convex hull {a,b,c} \<subseteq> S
+              \<longrightarrow> contour_integral (linepath a b) f +
+                  contour_integral (linepath b c) f +
+                  contour_integral (linepath c a) f = 0\<rbrakk>
+     \<Longrightarrow> f analytic_on S"
+  using Morera_local_triangle by blast
+
+subsection\<open>Combining theorems for higher derivatives including Leibniz rule\<close>
+
+lemma higher_deriv_linear [simp]:
+    "(deriv ^^ n) (\<lambda>w. c*w) = (\<lambda>z. if n = 0 then c*z else if n = 1 then c else 0)"
+  by (induction n) auto
+
+lemma higher_deriv_const [simp]: "(deriv ^^ n) (\<lambda>w. c) = (\<lambda>w. if n=0 then c else 0)"
+  by (induction n) auto
+
+lemma higher_deriv_ident [simp]:
+     "(deriv ^^ n) (\<lambda>w. w) z = (if n = 0 then z else if n = 1 then 1 else 0)"
+  apply (induction n, simp)
+  apply (metis higher_deriv_linear lambda_one)
+  done
+
+lemma higher_deriv_id [simp]:
+     "(deriv ^^ n) id z = (if n = 0 then z else if n = 1 then 1 else 0)"
+  by (simp add: id_def)
+
+lemma has_complex_derivative_funpow_1:
+     "\<lbrakk>(f has_field_derivative 1) (at z); f z = z\<rbrakk> \<Longrightarrow> (f^^n has_field_derivative 1) (at z)"
+  apply (induction n, auto)
+  apply (simp add: id_def)
+  by (metis DERIV_chain comp_funpow comp_id funpow_swap1 mult.right_neutral)
+
+lemma higher_deriv_uminus:
+  assumes "f holomorphic_on S" "open S" and z: "z \<in> S"
+    shows "(deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
+using z
+proof (induction n arbitrary: z)
+  case 0 then show ?case by simp
+next
+  case (Suc n z)
+  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
+    using Suc.prems assms has_field_derivative_higher_deriv by auto
+  have "((deriv ^^ n) (\<lambda>w. - f w) has_field_derivative - deriv ((deriv ^^ n) f) z) (at z)"
+    apply (rule has_field_derivative_transform_within_open [of "\<lambda>w. -((deriv ^^ n) f w)"])
+       apply (rule derivative_eq_intros | rule * refl assms)+
+     apply (auto simp add: Suc)
+    done
+  then show ?case
+    by (simp add: DERIV_imp_deriv)
+qed
+
+lemma higher_deriv_add:
+  fixes z::complex
+  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
+    shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
+using z
+proof (induction n arbitrary: z)
+  case 0 then show ?case by simp
+next
+  case (Suc n z)
+  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
+          "((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
+    using Suc.prems assms has_field_derivative_higher_deriv by auto
+  have "((deriv ^^ n) (\<lambda>w. f w + g w) has_field_derivative
+        deriv ((deriv ^^ n) f) z + deriv ((deriv ^^ n) g) z) (at z)"
+    apply (rule has_field_derivative_transform_within_open [of "\<lambda>w. (deriv ^^ n) f w + (deriv ^^ n) g w"])
+       apply (rule derivative_eq_intros | rule * refl assms)+
+     apply (auto simp add: Suc)
+    done
+  then show ?case
+    by (simp add: DERIV_imp_deriv)
+qed
+
+lemma higher_deriv_diff:
+  fixes z::complex
+  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
+    shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
+  apply (simp only: Groups.group_add_class.diff_conv_add_uminus higher_deriv_add)
+  apply (subst higher_deriv_add)
+  using assms holomorphic_on_minus apply (auto simp: higher_deriv_uminus)
+  done
+
+lemma bb: "Suc n choose k = (n choose k) + (if k = 0 then 0 else (n choose (k - 1)))"
+  by (cases k) simp_all
+
+lemma higher_deriv_mult:
+  fixes z::complex
+  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
+    shows "(deriv ^^ n) (\<lambda>w. f w * g w) z =
+           (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)"
+using z
+proof (induction n arbitrary: z)
+  case 0 then show ?case by simp
+next
+  case (Suc n z)
+  have *: "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
+          "\<And>n. ((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
+    using Suc.prems assms has_field_derivative_higher_deriv by auto
+  have sumeq: "(\<Sum>i = 0..n.
+               of_nat (n choose i) * (deriv ((deriv ^^ i) f) z * (deriv ^^ (n - i)) g z + deriv ((deriv ^^ (n - i)) g) z * (deriv ^^ i) f z)) =
+            g z * deriv ((deriv ^^ n) f) z + (\<Sum>i = 0..n. (deriv ^^ i) f z * (of_nat (Suc n choose i) * (deriv ^^ (Suc n - i)) g z))"
+    apply (simp add: bb algebra_simps sum.distrib)
+    apply (subst (4) sum_Suc_reindex)
+    apply (auto simp: algebra_simps Suc_diff_le intro: sum.cong)
+    done
+  have "((deriv ^^ n) (\<lambda>w. f w * g w) has_field_derivative
+         (\<Sum>i = 0..Suc n. (Suc n choose i) * (deriv ^^ i) f z * (deriv ^^ (Suc n - i)) g z))
+        (at z)"
+    apply (rule has_field_derivative_transform_within_open
+        [of "\<lambda>w. (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f w * (deriv ^^ (n - i)) g w)"])
+       apply (simp add: algebra_simps)
+       apply (rule DERIV_cong [OF DERIV_sum])
+        apply (rule DERIV_cmult)
+        apply (auto intro: DERIV_mult * sumeq \<open>open S\<close> Suc.prems Suc.IH [symmetric])
+    done
+  then show ?case
+    unfolding funpow.simps o_apply
+    by (simp add: DERIV_imp_deriv)
+qed
+
+lemma higher_deriv_transform_within_open:
+  fixes z::complex
+  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
+      and fg: "\<And>w. w \<in> S \<Longrightarrow> f w = g w"
+    shows "(deriv ^^ i) f z = (deriv ^^ i) g z"
+using z
+by (induction i arbitrary: z)
+   (auto simp: fg intro: complex_derivative_transform_within_open holomorphic_higher_deriv assms)
+
+lemma higher_deriv_compose_linear:
+  fixes z::complex
+  assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S"
+      and fg: "\<And>w. w \<in> S \<Longrightarrow> u * w \<in> T"
+    shows "(deriv ^^ n) (\<lambda>w. f (u * w)) z = u^n * (deriv ^^ n) f (u * z)"
+using z
+proof (induction n arbitrary: z)
+  case 0 then show ?case by simp
+next
+  case (Suc n z)
+  have holo0: "f holomorphic_on (*) u ` S"
+    by (meson fg f holomorphic_on_subset image_subset_iff)
+  have holo2: "(deriv ^^ n) f holomorphic_on (*) u ` S"
+    by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff T)
+  have holo3: "(\<lambda>z. u ^ n * (deriv ^^ n) f (u * z)) holomorphic_on S"
+    by (intro holo2 holomorphic_on_compose [where g="(deriv ^^ n) f", unfolded o_def] holomorphic_intros)
+  have holo1: "(\<lambda>w. f (u * w)) holomorphic_on S"
+    apply (rule holomorphic_on_compose [where g=f, unfolded o_def])
+    apply (rule holo0 holomorphic_intros)+
+    done
+  have "deriv ((deriv ^^ n) (\<lambda>w. f (u * w))) z = deriv (\<lambda>z. u^n * (deriv ^^ n) f (u*z)) z"
+    apply (rule complex_derivative_transform_within_open [OF _ holo3 S Suc.prems])
+    apply (rule holomorphic_higher_deriv [OF holo1 S])
+    apply (simp add: Suc.IH)
+    done
+  also have "\<dots> = u^n * deriv (\<lambda>z. (deriv ^^ n) f (u * z)) z"
+    apply (rule deriv_cmult)
+    apply (rule analytic_on_imp_differentiable_at [OF _ Suc.prems])
+    apply (rule analytic_on_compose_gen [where g="(deriv ^^ n) f" and T=T, unfolded o_def])
+      apply (simp)
+     apply (simp add: analytic_on_open f holomorphic_higher_deriv T)
+    apply (blast intro: fg)
+    done
+  also have "\<dots> = u * u ^ n * deriv ((deriv ^^ n) f) (u * z)"
+      apply (subst complex_derivative_chain [where g = "(deriv ^^ n) f" and f = "(*) u", unfolded o_def])
+      apply (rule derivative_intros)
+      using Suc.prems field_differentiable_def f fg has_field_derivative_higher_deriv T apply blast
+      apply (simp)
+      done
+  finally show ?case
+    by simp
+qed
+
+lemma higher_deriv_add_at:
+  assumes "f analytic_on {z}" "g analytic_on {z}"
+    shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
+proof -
+  have "f analytic_on {z} \<and> g analytic_on {z}"
+    using assms by blast
+  with higher_deriv_add show ?thesis
+    by (auto simp: analytic_at_two)
+qed
+
+lemma higher_deriv_diff_at:
+  assumes "f analytic_on {z}" "g analytic_on {z}"
+    shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
+proof -
+  have "f analytic_on {z} \<and> g analytic_on {z}"
+    using assms by blast
+  with higher_deriv_diff show ?thesis
+    by (auto simp: analytic_at_two)
+qed
+
+lemma higher_deriv_uminus_at:
+   "f analytic_on {z}  \<Longrightarrow> (deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
+  using higher_deriv_uminus
+    by (auto simp: analytic_at)
+
+lemma higher_deriv_mult_at:
+  assumes "f analytic_on {z}" "g analytic_on {z}"
+    shows "(deriv ^^ n) (\<lambda>w. f w * g w) z =
+           (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)"
+proof -
+  have "f analytic_on {z} \<and> g analytic_on {z}"
+    using assms by blast
+  with higher_deriv_mult show ?thesis
+    by (auto simp: analytic_at_two)
+qed
+
+
+text\<open> Nonexistence of isolated singularities and a stronger integral formula.\<close>
+
+proposition no_isolated_singularity:
+  fixes z::complex
+  assumes f: "continuous_on S f" and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K"
+    shows "f holomorphic_on S"
+proof -
+  { fix z
+    assume "z \<in> S" and cdf: "\<And>x. x \<in> S - K \<Longrightarrow> f field_differentiable at x"
+    have "f field_differentiable at z"
+    proof (cases "z \<in> K")
+      case False then show ?thesis by (blast intro: cdf \<open>z \<in> S\<close>)
+    next
+      case True
+      with finite_set_avoid [OF K, of z]
+      obtain d where "d>0" and d: "\<And>x. \<lbrakk>x\<in>K; x \<noteq> z\<rbrakk> \<Longrightarrow> d \<le> dist z x"
+        by blast
+      obtain e where "e>0" and e: "ball z e \<subseteq> S"
+        using  S \<open>z \<in> S\<close> by (force simp: open_contains_ball)
+      have fde: "continuous_on (ball z (min d e)) f"
+        by (metis Int_iff ball_min_Int continuous_on_subset e f subsetI)
+      have cont: "{a,b,c} \<subseteq> ball z (min d e) \<Longrightarrow> continuous_on (convex hull {a, b, c}) f" for a b c
+        by (simp add: hull_minimal continuous_on_subset [OF fde])
+      have fd: "\<lbrakk>{a,b,c} \<subseteq> ball z (min d e); x \<in> interior (convex hull {a, b, c}) - K\<rbrakk>
+            \<Longrightarrow> f field_differentiable at x" for a b c x
+        by (metis cdf Diff_iff Int_iff ball_min_Int subsetD convex_ball e interior_mono interior_subset subset_hull)
+      obtain g where "\<And>w. w \<in> ball z (min d e) \<Longrightarrow> (g has_field_derivative f w) (at w within ball z (min d e))"
+        apply (rule contour_integral_convex_primitive
+                     [OF convex_ball fde Cauchy_theorem_triangle_cofinite [OF _ K]])
+        using cont fd by auto
+      then have "f holomorphic_on ball z (min d e)"
+        by (metis open_ball at_within_open derivative_is_holomorphic)
+      then show ?thesis
+        unfolding holomorphic_on_def
+        by (metis open_ball \<open>0 < d\<close> \<open>0 < e\<close> at_within_open centre_in_ball min_less_iff_conj)
+    qed
+  }
+  with holf S K show ?thesis
+    by (simp add: holomorphic_on_open open_Diff finite_imp_closed field_differentiable_def [symmetric])
+qed
+
+lemma no_isolated_singularity':
+  fixes z::complex
+  assumes f: "\<And>z. z \<in> K \<Longrightarrow> (f \<longlongrightarrow> f z) (at z within S)"
+      and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K"
+    shows "f holomorphic_on S"
+proof (rule no_isolated_singularity[OF _ assms(2-)])
+  show "continuous_on S f" unfolding continuous_on_def
+  proof
+    fix z assume z: "z \<in> S"
+    show "(f \<longlongrightarrow> f z) (at z within S)"
+    proof (cases "z \<in> K")
+      case False
+      from holf have "continuous_on (S - K) f"
+        by (rule holomorphic_on_imp_continuous_on)
+      with z False have "(f \<longlongrightarrow> f z) (at z within (S - K))"
+        by (simp add: continuous_on_def)
+      also from z K S False have "at z within (S - K) = at z within S"
+        by (subst (1 2) at_within_open) (auto intro: finite_imp_closed)
+      finally show "(f \<longlongrightarrow> f z) (at z within S)" .
+    qed (insert assms z, simp_all)
+  qed
+qed
+
+proposition Cauchy_integral_formula_convex:
+  assumes S: "convex S" and K: "finite K" and contf: "continuous_on S f"
+    and fcd: "(\<And>x. x \<in> interior S - K \<Longrightarrow> f field_differentiable at x)"
+    and z: "z \<in> interior S" and vpg: "valid_path \<gamma>"
+    and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+  shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
+proof -
+  have *: "\<And>x. x \<in> interior S \<Longrightarrow> f field_differentiable at x"
+    unfolding holomorphic_on_open [symmetric] field_differentiable_def
+    using no_isolated_singularity [where S = "interior S"]
+    by (meson K contf continuous_at_imp_continuous_on continuous_on_interior fcd
+          field_differentiable_at_within field_differentiable_def holomorphic_onI
+          holomorphic_on_imp_differentiable_at open_interior)
+  show ?thesis
+    by (rule Cauchy_integral_formula_weak [OF S finite.emptyI contf]) (use * assms in auto)
+qed
+
+text\<open> Formula for higher derivatives.\<close>
+
+lemma Cauchy_has_contour_integral_higher_derivative_circlepath:
+  assumes contf: "continuous_on (cball z r) f"
+      and holf: "f holomorphic_on ball z r"
+      and w: "w \<in> ball z r"
+    shows "((\<lambda>u. f u / (u - w) ^ (Suc k)) has_contour_integral ((2 * pi * \<i>) / (fact k) * (deriv ^^ k) f w))
+           (circlepath z r)"
+using w
+proof (induction k arbitrary: w)
+  case 0 then show ?case
+    using assms by (auto simp: Cauchy_integral_circlepath dist_commute dist_norm)
+next
+  case (Suc k)
+  have [simp]: "r > 0" using w
+    using ball_eq_empty by fastforce
+  have f: "continuous_on (path_image (circlepath z r)) f"
+    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def less_imp_le)
+  obtain X where X: "((\<lambda>u. f u / (u - w) ^ Suc (Suc k)) has_contour_integral X) (circlepath z r)"
+    using Cauchy_next_derivative_circlepath(1) [OF f Suc.IH _ Suc.prems]
+    by (auto simp: contour_integrable_on_def)
+  then have con: "contour_integral (circlepath z r) ((\<lambda>u. f u / (u - w) ^ Suc (Suc k))) = X"
+    by (rule contour_integral_unique)
+  have "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) w) (at w)"
+    using Suc.prems assms has_field_derivative_higher_deriv by auto
+  then have dnf_diff: "\<And>n. (deriv ^^ n) f field_differentiable (at w)"
+    by (force simp: field_differentiable_def)
+  have "deriv (\<lambda>w. complex_of_real (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w) w =
+          of_nat (Suc k) * contour_integral (circlepath z r) (\<lambda>u. f u / (u - w) ^ Suc (Suc k))"
+    by (force intro!: DERIV_imp_deriv Cauchy_next_derivative_circlepath [OF f Suc.IH _ Suc.prems])
+  also have "\<dots> = of_nat (Suc k) * X"
+    by (simp only: con)
+  finally have "deriv (\<lambda>w. ((2 * pi) * \<i> / (fact k)) * (deriv ^^ k) f w) w = of_nat (Suc k) * X" .
+  then have "((2 * pi) * \<i> / (fact k)) * deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X"
+    by (metis deriv_cmult dnf_diff)
+  then have "deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X / ((2 * pi) * \<i> / (fact k))"
+    by (simp add: field_simps)
+  then show ?case
+  using of_nat_eq_0_iff X by fastforce
+qed
+
+lemma Cauchy_higher_derivative_integral_circlepath:
+  assumes contf: "continuous_on (cball z r) f"
+      and holf: "f holomorphic_on ball z r"
+      and w: "w \<in> ball z r"
+    shows "(\<lambda>u. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)"
+           (is "?thes1")
+      and "(deriv ^^ k) f w = (fact k) / (2 * pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k))"
+           (is "?thes2")
+proof -
+  have *: "((\<lambda>u. f u / (u - w) ^ Suc k) has_contour_integral (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w)
+           (circlepath z r)"
+    using Cauchy_has_contour_integral_higher_derivative_circlepath [OF assms]
+    by simp
+  show ?thes1 using *
+    using contour_integrable_on_def by blast
+  show ?thes2
+    unfolding contour_integral_unique [OF *] by (simp add: field_split_simps)
+qed
+
+corollary Cauchy_contour_integral_circlepath:
+  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r"
+    shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k)) = (2 * pi * \<i>) * (deriv ^^ k) f w / (fact k)"
+by (simp add: Cauchy_higher_derivative_integral_circlepath [OF assms])
+
+lemma Cauchy_contour_integral_circlepath_2:
+  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r"
+    shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^2) = (2 * pi * \<i>) * deriv f w"
+  using Cauchy_contour_integral_circlepath [OF assms, of 1]
+  by (simp add: power2_eq_square)
+
+
+subsection\<open>A holomorphic function is analytic, i.e. has local power series\<close>
+
+theorem holomorphic_power_series:
+  assumes holf: "f holomorphic_on ball z r"
+      and w: "w \<in> ball z r"
+    shows "((\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
+proof -
+  \<comment> \<open>Replacing \<^term>\<open>r\<close> and the original (weak) premises with stronger ones\<close>
+  obtain r where "r > 0" and holfc: "f holomorphic_on cball z r" and w: "w \<in> ball z r"
+  proof
+    have "cball z ((r + dist w z) / 2) \<subseteq> ball z r"
+      using w by (simp add: dist_commute field_sum_of_halves subset_eq)
+    then show "f holomorphic_on cball z ((r + dist w z) / 2)"
+      by (rule holomorphic_on_subset [OF holf])
+    have "r > 0"
+      using w by clarsimp (metis dist_norm le_less_trans norm_ge_zero)
+    then show "0 < (r + dist w z) / 2"
+      by simp (use zero_le_dist [of w z] in linarith)
+  qed (use w in \<open>auto simp: dist_commute\<close>)
+  then have holf: "f holomorphic_on ball z r"
+    using ball_subset_cball holomorphic_on_subset by blast
+  have contf: "continuous_on (cball z r) f"
+    by (simp add: holfc holomorphic_on_imp_continuous_on)
+  have cint: "\<And>k. (\<lambda>u. f u / (u - z) ^ Suc k) contour_integrable_on circlepath z r"
+    by (rule Cauchy_higher_derivative_integral_circlepath [OF contf holf]) (simp add: \<open>0 < r\<close>)
+  obtain B where "0 < B" and B: "\<And>u. u \<in> cball z r \<Longrightarrow> norm(f u) \<le> B"
+    by (metis (no_types) bounded_pos compact_cball compact_continuous_image compact_imp_bounded contf image_eqI)
+  obtain k where k: "0 < k" "k \<le> r" and wz_eq: "norm(w - z) = r - k"
+             and kle: "\<And>u. norm(u - z) = r \<Longrightarrow> k \<le> norm(u - w)"
+  proof
+    show "\<And>u. cmod (u - z) = r \<Longrightarrow> r - dist z w \<le> cmod (u - w)"
+      by (metis add_diff_eq diff_add_cancel dist_norm norm_diff_ineq)
+  qed (use w in \<open>auto simp: dist_norm norm_minus_commute\<close>)
+  have ul: "uniform_limit (sphere z r) (\<lambda>n x. (\<Sum>k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k))) (\<lambda>x. f x / (x - w)) sequentially"
+    unfolding uniform_limit_iff dist_norm
+  proof clarify
+    fix e::real
+    assume "0 < e"
+    have rr: "0 \<le> (r - k) / r" "(r - k) / r < 1" using  k by auto
+    obtain n where n: "((r - k) / r) ^ n < e / B * k"
+      using real_arch_pow_inv [of "e/B*k" "(r - k)/r"] \<open>0 < e\<close> \<open>0 < B\<close> k by force
+    have "norm ((\<Sum>k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) - f u / (u - w)) < e"
+         if "n \<le> N" and r: "r = dist z u"  for N u
+    proof -
+      have N: "((r - k) / r) ^ N < e / B * k"
+        apply (rule le_less_trans [OF power_decreasing n])
+        using  \<open>n \<le> N\<close> k by auto
+      have u [simp]: "(u \<noteq> z) \<and> (u \<noteq> w)"
+        using \<open>0 < r\<close> r w by auto
+      have wzu_not1: "(w - z) / (u - z) \<noteq> 1"
+        by (metis (no_types) dist_norm divide_eq_1_iff less_irrefl mem_ball norm_minus_commute r w)
+      have "norm ((\<Sum>k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) * (u - w) - f u)
+            = norm ((\<Sum>k<N. (((w - z) / (u - z)) ^ k)) * f u * (u - w) / (u - z) - f u)"
+        unfolding sum_distrib_right sum_divide_distrib power_divide by (simp add: algebra_simps)
+      also have "\<dots> = norm ((((w - z) / (u - z)) ^ N - 1) * (u - w) / (((w - z) / (u - z) - 1) * (u - z)) - 1) * norm (f u)"
+        using \<open>0 < B\<close>
+        apply (auto simp: geometric_sum [OF wzu_not1])
+        apply (simp add: field_simps norm_mult [symmetric])
+        done
+      also have "\<dots> = norm ((u-z) ^ N * (w - u) - ((w - z) ^ N - (u-z) ^ N) * (u-w)) / (r ^ N * norm (u-w)) * norm (f u)"
+        using \<open>0 < r\<close> r by (simp add: divide_simps norm_mult norm_divide norm_power dist_norm norm_minus_commute)
+      also have "\<dots> = norm ((w - z) ^ N * (w - u)) / (r ^ N * norm (u - w)) * norm (f u)"
+        by (simp add: algebra_simps)
+      also have "\<dots> = norm (w - z) ^ N * norm (f u) / r ^ N"
+        by (simp add: norm_mult norm_power norm_minus_commute)
+      also have "\<dots> \<le> (((r - k)/r)^N) * B"
+        using \<open>0 < r\<close> w k
+        apply (simp add: divide_simps)
+        apply (rule mult_mono [OF power_mono])
+        apply (auto simp: norm_divide wz_eq norm_power dist_norm norm_minus_commute B r)
+        done
+      also have "\<dots> < e * k"
+        using \<open>0 < B\<close> N by (simp add: divide_simps)
+      also have "\<dots> \<le> e * norm (u - w)"
+        using r kle \<open>0 < e\<close> by (simp add: dist_commute dist_norm)
+      finally show ?thesis
+        by (simp add: field_split_simps norm_divide del: power_Suc)
+    qed
+    with \<open>0 < r\<close> show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>sphere z r.
+                norm ((\<Sum>k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k)) - f x / (x - w)) < e"
+      by (auto simp: mult_ac less_imp_le eventually_sequentially Ball_def)
+  qed
+  have eq: "\<forall>\<^sub>F x in sequentially.
+             contour_integral (circlepath z r) (\<lambda>u. \<Sum>k<x. (w - z) ^ k * (f u / (u - z) ^ Suc k)) =
+             (\<Sum>k<x. contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc k) * (w - z) ^ k)"
+    apply (rule eventuallyI)
+    apply (subst contour_integral_sum, simp)
+    using contour_integrable_lmul [OF cint, of "(w - z) ^ a" for a] apply (simp add: field_simps)
+    apply (simp only: contour_integral_lmul cint algebra_simps)
+    done
+  have cic: "\<And>u. (\<lambda>y. \<Sum>k<u. (w - z) ^ k * (f y / (y - z) ^ Suc k)) contour_integrable_on circlepath z r"
+    apply (intro contour_integrable_sum contour_integrable_lmul, simp)
+    using \<open>0 < r\<close> by (force intro!: Cauchy_higher_derivative_integral_circlepath [OF contf holf])
+  have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u - z)^(Suc k)) * (w - z)^k)
+        sums contour_integral (circlepath z r) (\<lambda>u. f u/(u - w))"
+    unfolding sums_def
+    apply (intro Lim_transform_eventually [OF _ eq] contour_integral_uniform_limit_circlepath [OF eventuallyI ul] cic)
+    using \<open>0 < r\<close> apply auto
+    done
+  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u - z)^(Suc k)) * (w - z)^k)
+             sums (2 * of_real pi * \<i> * f w)"
+    using w by (auto simp: dist_commute dist_norm contour_integral_unique [OF Cauchy_integral_circlepath_simple [OF holfc]])
+  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc k) * (w - z)^k / (\<i> * (of_real pi * 2)))
+            sums ((2 * of_real pi * \<i> * f w) / (\<i> * (complex_of_real pi * 2)))"
+    by (rule sums_divide)
+  then have "(\<lambda>n. (w - z) ^ n * contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc n) / (\<i> * (of_real pi * 2)))
+            sums f w"
+    by (simp add: field_simps)
+  then show ?thesis
+    by (simp add: field_simps \<open>0 < r\<close> Cauchy_higher_derivative_integral_circlepath [OF contf holf])
+qed
+
+
+subsection\<open>The Liouville theorem and the Fundamental Theorem of Algebra\<close>
+
+text\<open> These weak Liouville versions don't even need the derivative formula.\<close>
+
+lemma Liouville_weak_0:
+  assumes holf: "f holomorphic_on UNIV" and inf: "(f \<longlongrightarrow> 0) at_infinity"
+    shows "f z = 0"
+proof (rule ccontr)
+  assume fz: "f z \<noteq> 0"
+  with inf [unfolded Lim_at_infinity, rule_format, of "norm(f z)/2"]
+  obtain B where B: "\<And>x. B \<le> cmod x \<Longrightarrow> norm (f x) * 2 < cmod (f z)"
+    by (auto simp: dist_norm)
+  define R where "R = 1 + \<bar>B\<bar> + norm z"
+  have "R > 0" unfolding R_def
+  proof -
+    have "0 \<le> cmod z + \<bar>B\<bar>"
+      by (metis (full_types) add_nonneg_nonneg norm_ge_zero real_norm_def)
+    then show "0 < 1 + \<bar>B\<bar> + cmod z"
+      by linarith
+  qed
+  have *: "((\<lambda>u. f u / (u - z)) has_contour_integral 2 * complex_of_real pi * \<i> * f z) (circlepath z R)"
+    apply (rule Cauchy_integral_circlepath)
+    using \<open>R > 0\<close> apply (auto intro: holomorphic_on_subset [OF holf] holomorphic_on_imp_continuous_on)+
+    done
+  have "cmod (x - z) = R \<Longrightarrow> cmod (f x) * 2 < cmod (f z)" for x
+    unfolding R_def
+    by (rule B) (use norm_triangle_ineq4 [of x z] in auto)
+  with \<open>R > 0\<close> fz show False
+    using has_contour_integral_bound_circlepath [OF *, of "norm(f z)/2/R"]
+    by (auto simp: less_imp_le norm_mult norm_divide field_split_simps)
+qed
+
+proposition Liouville_weak:
+  assumes "f holomorphic_on UNIV" and "(f \<longlongrightarrow> l) at_infinity"
+    shows "f z = l"
+  using Liouville_weak_0 [of "\<lambda>z. f z - l"]
+  by (simp add: assms holomorphic_on_diff LIM_zero)
+
+proposition Liouville_weak_inverse:
+  assumes "f holomorphic_on UNIV" and unbounded: "\<And>B. eventually (\<lambda>x. norm (f x) \<ge> B) at_infinity"
+    obtains z where "f z = 0"
+proof -
+  { assume f: "\<And>z. f z \<noteq> 0"
+    have 1: "(\<lambda>x. 1 / f x) holomorphic_on UNIV"
+      by (simp add: holomorphic_on_divide assms f)
+    have 2: "((\<lambda>x. 1 / f x) \<longlongrightarrow> 0) at_infinity"
+      apply (rule tendstoI [OF eventually_mono])
+      apply (rule_tac B="2/e" in unbounded)
+      apply (simp add: dist_norm norm_divide field_split_simps)
+      done
+    have False
+      using Liouville_weak_0 [OF 1 2] f by simp
+  }
+  then show ?thesis
+    using that by blast
+qed
+
+text\<open>In particular we get the Fundamental Theorem of Algebra.\<close>
+
+theorem fundamental_theorem_of_algebra:
+    fixes a :: "nat \<Rightarrow> complex"
+  assumes "a 0 = 0 \<or> (\<exists>i \<in> {1..n}. a i \<noteq> 0)"
+  obtains z where "(\<Sum>i\<le>n. a i * z^i) = 0"
+using assms
+proof (elim disjE bexE)
+  assume "a 0 = 0" then show ?thesis
+    by (auto simp: that [of 0])
+next
+  fix i
+  assume i: "i \<in> {1..n}" and nz: "a i \<noteq> 0"
+  have 1: "(\<lambda>z. \<Sum>i\<le>n. a i * z^i) holomorphic_on UNIV"
+    by (rule holomorphic_intros)+
+  show thesis
+  proof (rule Liouville_weak_inverse [OF 1])
+    show "\<forall>\<^sub>F x in at_infinity. B \<le> cmod (\<Sum>i\<le>n. a i * x ^ i)" for B
+      using i polyfun_extremal nz by force
+  qed (use that in auto)
+qed
+
+subsection\<open>Weierstrass convergence theorem\<close>
+
+lemma holomorphic_uniform_limit:
+  assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and> (f n) holomorphic_on ball z r) F"
+      and ulim: "uniform_limit (cball z r) f g F"
+      and F:  "\<not> trivial_limit F"
+  obtains "continuous_on (cball z r) g" "g holomorphic_on ball z r"
+proof (cases r "0::real" rule: linorder_cases)
+  case less then show ?thesis by (force simp: ball_empty less_imp_le continuous_on_def holomorphic_on_def intro: that)
+next
+  case equal then show ?thesis
+    by (force simp: holomorphic_on_def intro: that)
+next
+  case greater
+  have contg: "continuous_on (cball z r) g"
+    using cont uniform_limit_theorem [OF eventually_mono ulim F]  by blast
+  have "path_image (circlepath z r) \<subseteq> cball z r"
+    using \<open>0 < r\<close> by auto
+  then have 1: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1 / (2 * complex_of_real pi * \<i>) * g x)"
+    by (intro continuous_intros continuous_on_subset [OF contg])
+  have 2: "((\<lambda>u. 1 / (2 * of_real pi * \<i>) * g u / (u - w) ^ 1) has_contour_integral g w) (circlepath z r)"
+       if w: "w \<in> ball z r" for w
+  proof -
+    define d where "d = (r - norm(w - z))"
+    have "0 < d"  "d \<le> r" using w by (auto simp: norm_minus_commute d_def dist_norm)
+    have dle: "\<And>u. cmod (z - u) = r \<Longrightarrow> d \<le> cmod (u - w)"
+      unfolding d_def by (metis add_diff_eq diff_add_cancel norm_diff_ineq norm_minus_commute)
+    have ev_int: "\<forall>\<^sub>F n in F. (\<lambda>u. f n u / (u - w)) contour_integrable_on circlepath z r"
+      apply (rule eventually_mono [OF cont])
+      using w
+      apply (auto intro: Cauchy_higher_derivative_integral_circlepath [where k=0, simplified])
+      done
+    have ul_less: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - w)) (\<lambda>x. g x / (x - w)) F"
+      using greater \<open>0 < d\<close>
+      apply (clarsimp simp add: uniform_limit_iff dist_norm norm_divide diff_divide_distrib [symmetric] divide_simps)
+      apply (rule_tac e1="e * d" in eventually_mono [OF uniform_limitD [OF ulim]])
+       apply (force simp: dist_norm intro: dle mult_left_mono less_le_trans)+
+      done
+    have g_cint: "(\<lambda>u. g u/(u - w)) contour_integrable_on circlepath z r"
+      by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>])
+    have cif_tends_cig: "((\<lambda>n. contour_integral(circlepath z r) (\<lambda>u. f n u / (u - w))) \<longlongrightarrow> contour_integral(circlepath z r) (\<lambda>u. g u/(u - w))) F"
+      by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>])
+    have f_tends_cig: "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> contour_integral (circlepath z r) (\<lambda>u. g u / (u - w))) F"
+    proof (rule Lim_transform_eventually)
+      show "\<forall>\<^sub>F x in F. contour_integral (circlepath z r) (\<lambda>u. f x u / (u - w))
+                     = 2 * of_real pi * \<i> * f x w"
+        apply (rule eventually_mono [OF cont contour_integral_unique [OF Cauchy_integral_circlepath]])
+        using w\<open>0 < d\<close> d_def by auto
+    qed (auto simp: cif_tends_cig)
+    have "\<And>e. 0 < e \<Longrightarrow> \<forall>\<^sub>F n in F. dist (f n w) (g w) < e"
+      by (rule eventually_mono [OF uniform_limitD [OF ulim]]) (use w in auto)
+    then have "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> 2 * of_real pi * \<i> * g w) F"
+      by (rule tendsto_mult_left [OF tendstoI])
+    then have "((\<lambda>u. g u / (u - w)) has_contour_integral 2 * of_real pi * \<i> * g w) (circlepath z r)"
+      using has_contour_integral_integral [OF g_cint] tendsto_unique [OF F f_tends_cig] w
+      by fastforce
+    then have "((\<lambda>u. g u / (2 * of_real pi * \<i> * (u - w))) has_contour_integral g w) (circlepath z r)"
+      using has_contour_integral_div [where c = "2 * of_real pi * \<i>"]
+      by (force simp: field_simps)
+    then show ?thesis
+      by (simp add: dist_norm)
+  qed
+  show ?thesis
+    using Cauchy_next_derivative_circlepath(2) [OF 1 2, simplified]
+    by (fastforce simp add: holomorphic_on_open contg intro: that)
+qed
+
+
+text\<open> Version showing that the limit is the limit of the derivatives.\<close>
+
+proposition has_complex_derivative_uniform_limit:
+  fixes z::complex
+  assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and>
+                               (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))) F"
+      and ulim: "uniform_limit (cball z r) f g F"
+      and F:  "\<not> trivial_limit F" and "0 < r"
+  obtains g' where
+      "continuous_on (cball z r) g"
+      "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F"
+proof -
+  let ?conint = "contour_integral (circlepath z r)"
+  have g: "continuous_on (cball z r) g" "g holomorphic_on ball z r"
+    by (rule holomorphic_uniform_limit [OF eventually_mono [OF cont] ulim F];
+             auto simp: holomorphic_on_open field_differentiable_def)+
+  then obtain g' where g': "\<And>x. x \<in> ball z r \<Longrightarrow> (g has_field_derivative g' x) (at x)"
+    using DERIV_deriv_iff_has_field_derivative
+    by (fastforce simp add: holomorphic_on_open)
+  then have derg: "\<And>x. x \<in> ball z r \<Longrightarrow> deriv g x = g' x"
+    by (simp add: DERIV_imp_deriv)
+  have tends_f'n_g': "((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F" if w: "w \<in> ball z r" for w
+  proof -
+    have eq_f': "?conint (\<lambda>x. f n x / (x - w)\<^sup>2) - ?conint (\<lambda>x. g x / (x - w)\<^sup>2) = (f' n w - g' w) * (2 * of_real pi * \<i>)"
+             if cont_fn: "continuous_on (cball z r) (f n)"
+             and fnd: "\<And>w. w \<in> ball z r \<Longrightarrow> (f n has_field_derivative f' n w) (at w)" for n
+    proof -
+      have hol_fn: "f n holomorphic_on ball z r"
+        using fnd by (force simp: holomorphic_on_open)
+      have "(f n has_field_derivative 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u - w)\<^sup>2)) (at w)"
+        by (rule Cauchy_derivative_integral_circlepath [OF cont_fn hol_fn w])
+      then have f': "f' n w = 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u - w)\<^sup>2)"
+        using DERIV_unique [OF fnd] w by blast
+      show ?thesis
+        by (simp add: f' Cauchy_contour_integral_circlepath_2 [OF g w] derg [OF w] field_split_simps)
+    qed
+    define d where "d = (r - norm(w - z))^2"
+    have "d > 0"
+      using w by (simp add: dist_commute dist_norm d_def)
+    have dle: "d \<le> cmod ((y - w)\<^sup>2)" if "r = cmod (z - y)" for y
+    proof -
+      have "w \<in> ball z (cmod (z - y))"
+        using that w by fastforce
+      then have "cmod (w - z) \<le> cmod (z - y)"
+        by (simp add: dist_complex_def norm_minus_commute)
+      moreover have "cmod (z - y) - cmod (w - z) \<le> cmod (y - w)"
+        by (metis diff_add_cancel diff_add_eq_diff_diff_swap norm_minus_commute norm_triangle_ineq2)
+      ultimately show ?thesis
+        using that by (simp add: d_def norm_power power_mono)
+    qed
+    have 1: "\<forall>\<^sub>F n in F. (\<lambda>x. f n x / (x - w)\<^sup>2) contour_integrable_on circlepath z r"
+      by (force simp: holomorphic_on_open intro: w Cauchy_derivative_integral_circlepath eventually_mono [OF cont])
+    have 2: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - w)\<^sup>2) (\<lambda>x. g x / (x - w)\<^sup>2) F"
+      unfolding uniform_limit_iff
+    proof clarify
+      fix e::real
+      assume "0 < e"
+      with \<open>r > 0\<close> show "\<forall>\<^sub>F n in F. \<forall>x\<in>sphere z r. dist (f n x / (x - w)\<^sup>2) (g x / (x - w)\<^sup>2) < e"
+        apply (simp add: norm_divide field_split_simps sphere_def dist_norm)
+        apply (rule eventually_mono [OF uniform_limitD [OF ulim], of "e*d"])
+         apply (simp add: \<open>0 < d\<close>)
+        apply (force simp: dist_norm dle intro: less_le_trans)
+        done
+    qed
+    have "((\<lambda>n. contour_integral (circlepath z r) (\<lambda>x. f n x / (x - w)\<^sup>2))
+             \<longlongrightarrow> contour_integral (circlepath z r) ((\<lambda>x. g x / (x - w)\<^sup>2))) F"
+      by (rule contour_integral_uniform_limit_circlepath [OF 1 2 F \<open>0 < r\<close>])
+    then have tendsto_0: "((\<lambda>n. 1 / (2 * of_real pi * \<i>) * (?conint (\<lambda>x. f n x / (x - w)\<^sup>2) - ?conint (\<lambda>x. g x / (x - w)\<^sup>2))) \<longlongrightarrow> 0) F"
+      using Lim_null by (force intro!: tendsto_mult_right_zero)
+    have "((\<lambda>n. f' n w - g' w) \<longlongrightarrow> 0) F"
+      apply (rule Lim_transform_eventually [OF tendsto_0])
+      apply (force simp: divide_simps intro: eq_f' eventually_mono [OF cont])
+      done
+    then show ?thesis using Lim_null by blast
+  qed
+  obtain g' where "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F"
+      by (blast intro: tends_f'n_g' g')
+  then show ?thesis using g
+    using that by blast
+qed
+
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Some more simple/convenient versions for applications\<close>
+
+lemma holomorphic_uniform_sequence:
+  assumes S: "open S"
+      and hol_fn: "\<And>n. (f n) holomorphic_on S"
+      and ulim_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially"
+  shows "g holomorphic_on S"
+proof -
+  have "\<exists>f'. (g has_field_derivative f') (at z)" if "z \<in> S" for z
+  proof -
+    obtain r where "0 < r" and r: "cball z r \<subseteq> S"
+               and ul: "uniform_limit (cball z r) f g sequentially"
+      using ulim_g [OF \<open>z \<in> S\<close>] by blast
+    have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and> f n holomorphic_on ball z r"
+    proof (intro eventuallyI conjI)
+      show "continuous_on (cball z r) (f x)" for x
+        using hol_fn holomorphic_on_imp_continuous_on holomorphic_on_subset r by blast
+      show "f x holomorphic_on ball z r" for x
+        by (metis hol_fn holomorphic_on_subset interior_cball interior_subset r)
+    qed
+    show ?thesis
+      apply (rule holomorphic_uniform_limit [OF *])
+      using \<open>0 < r\<close> centre_in_ball ul
+      apply (auto simp: holomorphic_on_open)
+      done
+  qed
+  with S show ?thesis
+    by (simp add: holomorphic_on_open)
+qed
+
+lemma has_complex_derivative_uniform_sequence:
+  fixes S :: "complex set"
+  assumes S: "open S"
+      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> ((f n) has_field_derivative f' n x) (at x)"
+      and ulim_g: "\<And>x. x \<in> S
+             \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially"
+  shows "\<exists>g'. \<forall>x \<in> S. (g has_field_derivative g' x) (at x) \<and> ((\<lambda>n. f' n x) \<longlongrightarrow> g' x) sequentially"
+proof -
+  have y: "\<exists>y. (g has_field_derivative y) (at z) \<and> (\<lambda>n. f' n z) \<longlonglongrightarrow> y" if "z \<in> S" for z
+  proof -
+    obtain r where "0 < r" and r: "cball z r \<subseteq> S"
+               and ul: "uniform_limit (cball z r) f g sequentially"
+      using ulim_g [OF \<open>z \<in> S\<close>] by blast
+    have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and>
+                                   (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))"
+    proof (intro eventuallyI conjI ballI)
+      show "continuous_on (cball z r) (f x)" for x
+        by (meson S continuous_on_subset hfd holomorphic_on_imp_continuous_on holomorphic_on_open r)
+      show "w \<in> ball z r \<Longrightarrow> (f x has_field_derivative f' x w) (at w)" for w x
+        using ball_subset_cball hfd r by blast
+    qed
+    show ?thesis
+      by (rule has_complex_derivative_uniform_limit [OF *, of g]) (use \<open>0 < r\<close> ul in \<open>force+\<close>)
+  qed
+  show ?thesis
+    by (rule bchoice) (blast intro: y)
+qed
+
+subsection\<open>On analytic functions defined by a series\<close>
+
+lemma series_and_derivative_comparison:
+  fixes S :: "complex set"
+  assumes S: "open S"
+      and h: "summable h"
+      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
+      and to_g: "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. norm (f n x) \<le> h n"
+  obtains g g' where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
+proof -
+  obtain g where g: "uniform_limit S (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
+    using Weierstrass_m_test_ev [OF to_g h]  by force
+  have *: "\<exists>d>0. cball x d \<subseteq> S \<and> uniform_limit (cball x d) (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
+         if "x \<in> S" for x
+  proof -
+    obtain d where "d>0" and d: "cball x d \<subseteq> S"
+      using open_contains_cball [of "S"] \<open>x \<in> S\<close> S by blast
+    show ?thesis
+    proof (intro conjI exI)
+      show "uniform_limit (cball x d) (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
+        using d g uniform_limit_on_subset by (force simp: dist_norm eventually_sequentially)
+    qed (use \<open>d > 0\<close> d in auto)
+  qed
+  have "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. \<Sum>i<n. f i x) \<longlonglongrightarrow> g x"
+    by (metis tendsto_uniform_limitI [OF g])
+  moreover have "\<exists>g'. \<forall>x\<in>S. (g has_field_derivative g' x) (at x) \<and> (\<lambda>n. \<Sum>i<n. f' i x) \<longlonglongrightarrow> g' x"
+    by (rule has_complex_derivative_uniform_sequence [OF S]) (auto intro: * hfd DERIV_sum)+
+  ultimately show ?thesis
+    by (metis sums_def that)
+qed
+
+text\<open>A version where we only have local uniform/comparative convergence.\<close>
+
+lemma series_and_derivative_comparison_local:
+  fixes S :: "complex set"
+  assumes S: "open S"
+      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
+      and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. norm (f n y) \<le> h n)"
+  shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
+proof -
+  have "\<exists>y. (\<lambda>n. f n z) sums (\<Sum>n. f n z) \<and> (\<lambda>n. f' n z) sums y \<and> ((\<lambda>x. \<Sum>n. f n x) has_field_derivative y) (at z)"
+       if "z \<in> S" for z
+  proof -
+    obtain d h where "0 < d" "summable h" and le_h: "\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball z d \<inter> S. norm (f n y) \<le> h n"
+      using to_g \<open>z \<in> S\<close> by meson
+    then obtain r where "r>0" and r: "ball z r \<subseteq> ball z d \<inter> S" using \<open>z \<in> S\<close> S
+      by (metis Int_iff open_ball centre_in_ball open_Int open_contains_ball_eq)
+    have 1: "open (ball z d \<inter> S)"
+      by (simp add: open_Int S)
+    have 2: "\<And>n x. x \<in> ball z d \<inter> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
+      by (auto simp: hfd)
+    obtain g g' where gg': "\<forall>x \<in> ball z d \<inter> S. ((\<lambda>n. f n x) sums g x) \<and>
+                                    ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
+      by (auto intro: le_h series_and_derivative_comparison [OF 1 \<open>summable h\<close> hfd])
+    then have "(\<lambda>n. f' n z) sums g' z"
+      by (meson \<open>0 < r\<close> centre_in_ball contra_subsetD r)
+    moreover have "(\<lambda>n. f n z) sums (\<Sum>n. f n z)"
+      using  summable_sums centre_in_ball \<open>0 < d\<close> \<open>summable h\<close> le_h
+      by (metis (full_types) Int_iff gg' summable_def that)
+    moreover have "((\<lambda>x. \<Sum>n. f n x) has_field_derivative g' z) (at z)"
+    proof (rule has_field_derivative_transform_within)
+      show "\<And>x. dist x z < r \<Longrightarrow> g x = (\<Sum>n. f n x)"
+        by (metis subsetD dist_commute gg' mem_ball r sums_unique)
+    qed (use \<open>0 < r\<close> gg' \<open>z \<in> S\<close> \<open>0 < d\<close> in auto)
+    ultimately show ?thesis by auto
+  qed
+  then show ?thesis
+    by (rule_tac x="\<lambda>x. suminf (\<lambda>n. f n x)" in exI) meson
+qed
+
+
+text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
+
+lemma series_and_derivative_comparison_complex:
+  fixes S :: "complex set"
+  assumes S: "open S"
+      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
+      and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
+  shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
+apply (rule series_and_derivative_comparison_local [OF S hfd], assumption)
+apply (rule ex_forward [OF to_g], assumption)
+apply (erule exE)
+apply (rule_tac x="Re \<circ> h" in exI)
+apply (force simp: summable_Re o_def nonneg_Reals_cmod_eq_Re image_subset_iff)
+done
+
+text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
+lemma series_differentiable_comparison_complex:
+  fixes S :: "complex set"
+  assumes S: "open S"
+    and hfd: "\<And>n x. x \<in> S \<Longrightarrow> f n field_differentiable (at x)"
+    and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
+  obtains g where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> g field_differentiable (at x)"
+proof -
+  have hfd': "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative deriv (f n) x) (at x)"
+    using hfd field_differentiable_derivI by blast
+  have "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. deriv (f n) x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
+    by (metis series_and_derivative_comparison_complex [OF S hfd' to_g])
+  then show ?thesis
+    using field_differentiable_def that by blast
+qed
+
+text\<open>In particular, a power series is analytic inside circle of convergence.\<close>
+
+lemma power_series_and_derivative_0:
+  fixes a :: "nat \<Rightarrow> complex" and r::real
+  assumes "summable (\<lambda>n. a n * r^n)"
+    shows "\<exists>g g'. \<forall>z. cmod z < r \<longrightarrow>
+             ((\<lambda>n. a n * z^n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * z^(n - 1)) sums g' z) \<and> (g has_field_derivative g' z) (at z)"
+proof (cases "0 < r")
+  case True
+    have der: "\<And>n z. ((\<lambda>x. a n * x ^ n) has_field_derivative of_nat n * a n * z ^ (n - 1)) (at z)"
+      by (rule derivative_eq_intros | simp)+
+    have y_le: "\<lbrakk>cmod (z - y) * 2 < r - cmod z\<rbrakk> \<Longrightarrow> cmod y \<le> cmod (of_real r + of_real (cmod z)) / 2" for z y
+      using \<open>r > 0\<close>
+      apply (auto simp: algebra_simps norm_mult norm_divide norm_power simp flip: of_real_add)
+      using norm_triangle_ineq2 [of y z]
+      apply (simp only: diff_le_eq norm_minus_commute mult_2)
+      done
+    have "summable (\<lambda>n. a n * complex_of_real r ^ n)"
+      using assms \<open>r > 0\<close> by simp
+    moreover have "\<And>z. cmod z < r \<Longrightarrow> cmod ((of_real r + of_real (cmod z)) / 2) < cmod (of_real r)"
+      using \<open>r > 0\<close>
+      by (simp flip: of_real_add)
+    ultimately have sum: "\<And>z. cmod z < r \<Longrightarrow> summable (\<lambda>n. of_real (cmod (a n)) * ((of_real r + complex_of_real (cmod z)) / 2) ^ n)"
+      by (rule power_series_conv_imp_absconv_weak)
+    have "\<exists>g g'. \<forall>z \<in> ball 0 r. (\<lambda>n.  (a n) * z ^ n) sums g z \<and>
+               (\<lambda>n. of_nat n * (a n) * z ^ (n - 1)) sums g' z \<and> (g has_field_derivative g' z) (at z)"
+      apply (rule series_and_derivative_comparison_complex [OF open_ball der])
+      apply (rule_tac x="(r - norm z)/2" in exI)
+      apply (rule_tac x="\<lambda>n. of_real(norm(a n)*((r + norm z)/2)^n)" in exI)
+      using \<open>r > 0\<close>
+      apply (auto simp: sum eventually_sequentially norm_mult norm_power dist_norm intro!: mult_left_mono power_mono y_le)
+      done
+  then show ?thesis
+    by (simp add: ball_def)
+next
+  case False then show ?thesis
+    apply (simp add: not_less)
+    using less_le_trans norm_not_less_zero by blast
+qed
+
+proposition\<^marker>\<open>tag unimportant\<close> power_series_and_derivative:
+  fixes a :: "nat \<Rightarrow> complex" and r::real
+  assumes "summable (\<lambda>n. a n * r^n)"
+    obtains g g' where "\<forall>z \<in> ball w r.
+             ((\<lambda>n. a n * (z - w) ^ n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * (z - w) ^ (n - 1)) sums g' z) \<and>
+              (g has_field_derivative g' z) (at z)"
+  using power_series_and_derivative_0 [OF assms]
+  apply clarify
+  apply (rule_tac g="(\<lambda>z. g(z - w))" in that)
+  using DERIV_shift [where z="-w"]
+  apply (auto simp: norm_minus_commute Ball_def dist_norm)
+  done
+
+proposition\<^marker>\<open>tag unimportant\<close> power_series_holomorphic:
+  assumes "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>n. a n*(w - z)^n) sums f w)"
+    shows "f holomorphic_on ball z r"
+proof -
+  have "\<exists>f'. (f has_field_derivative f') (at w)" if w: "dist z w < r" for w
+  proof -
+    have inb: "z + complex_of_real ((dist z w + r) / 2) \<in> ball z r"
+    proof -
+      have wz: "cmod (w - z) < r" using w
+        by (auto simp: field_split_simps dist_norm norm_minus_commute)
+      then have "0 \<le> r"
+        by (meson less_eq_real_def norm_ge_zero order_trans)
+      show ?thesis
+        using w by (simp add: dist_norm \<open>0\<le>r\<close> flip: of_real_add)
+    qed
+    have sum: "summable (\<lambda>n. a n * of_real (((cmod (z - w) + r) / 2) ^ n))"
+      using assms [OF inb] by (force simp: summable_def dist_norm)
+    obtain g g' where gg': "\<And>u. u \<in> ball z ((cmod (z - w) + r) / 2) \<Longrightarrow>
+                               (\<lambda>n. a n * (u - z) ^ n) sums g u \<and>
+                               (\<lambda>n. of_nat n * a n * (u - z) ^ (n - 1)) sums g' u \<and> (g has_field_derivative g' u) (at u)"
+      by (rule power_series_and_derivative [OF sum, of z]) fastforce
+    have [simp]: "g u = f u" if "cmod (u - w) < (r - cmod (z - w)) / 2" for u
+    proof -
+      have less: "cmod (z - u) * 2 < cmod (z - w) + r"
+        using that dist_triangle2 [of z u w]
+        by (simp add: dist_norm [symmetric] algebra_simps)
+      show ?thesis
+        apply (rule sums_unique2 [of "\<lambda>n. a n*(u - z)^n"])
+        using gg' [of u] less w
+        apply (auto simp: assms dist_norm)
+        done
+    qed
+    have "(f has_field_derivative g' w) (at w)"
+      by (rule has_field_derivative_transform_within [where d="(r - norm(z - w))/2"])
+      (use w gg' [of w] in \<open>(force simp: dist_norm)+\<close>)
+    then show ?thesis ..
+  qed
+  then show ?thesis by (simp add: holomorphic_on_open)
+qed
+
+corollary holomorphic_iff_power_series:
+     "f holomorphic_on ball z r \<longleftrightarrow>
+      (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
+  apply (intro iffI ballI holomorphic_power_series, assumption+)
+  apply (force intro: power_series_holomorphic [where a = "\<lambda>n. (deriv ^^ n) f z / (fact n)"])
+  done
+
+lemma power_series_analytic:
+     "(\<And>w. w \<in> ball z r \<Longrightarrow> (\<lambda>n. a n*(w - z)^n) sums f w) \<Longrightarrow> f analytic_on ball z r"
+  by (force simp: analytic_on_open intro!: power_series_holomorphic)
+
+lemma analytic_iff_power_series:
+     "f analytic_on ball z r \<longleftrightarrow>
+      (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
+  by (simp add: analytic_on_open holomorphic_iff_power_series)
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Equality between holomorphic functions, on open ball then connected set\<close>
+
+lemma holomorphic_fun_eq_on_ball:
+   "\<lbrakk>f holomorphic_on ball z r; g holomorphic_on ball z r;
+     w \<in> ball z r;
+     \<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z\<rbrakk>
+     \<Longrightarrow> f w = g w"
+  apply (rule sums_unique2 [of "\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n"])
+  apply (auto simp: holomorphic_iff_power_series)
+  done
+
+lemma holomorphic_fun_eq_0_on_ball:
+   "\<lbrakk>f holomorphic_on ball z r;  w \<in> ball z r;
+     \<And>n. (deriv ^^ n) f z = 0\<rbrakk>
+     \<Longrightarrow> f w = 0"
+  apply (rule sums_unique2 [of "\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n"])
+  apply (auto simp: holomorphic_iff_power_series)
+  done
+
+lemma holomorphic_fun_eq_0_on_connected:
+  assumes holf: "f holomorphic_on S" and "open S"
+      and cons: "connected S"
+      and der: "\<And>n. (deriv ^^ n) f z = 0"
+      and "z \<in> S" "w \<in> S"
+    shows "f w = 0"
+proof -
+  have *: "ball x e \<subseteq> (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
+    if "\<forall>u. (deriv ^^ u) f x = 0" "ball x e \<subseteq> S" for x e
+  proof -
+    have "\<And>x' n. dist x x' < e \<Longrightarrow> (deriv ^^ n) f x' = 0"
+      apply (rule holomorphic_fun_eq_0_on_ball [OF holomorphic_higher_deriv])
+         apply (rule holomorphic_on_subset [OF holf])
+      using that apply simp_all
+      by (metis funpow_add o_apply)
+    with that show ?thesis by auto
+  qed
+  have 1: "openin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
+    apply (rule open_subset, force)
+    using \<open>open S\<close>
+    apply (simp add: open_contains_ball Ball_def)
+    apply (erule all_forward)
+    using "*" by auto blast+
+  have 2: "closedin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
+    using assms
+    by (auto intro: continuous_closedin_preimage_constant holomorphic_on_imp_continuous_on holomorphic_higher_deriv)
+  obtain e where "e>0" and e: "ball w e \<subseteq> S" using openE [OF \<open>open S\<close> \<open>w \<in> S\<close>] .
+  then have holfb: "f holomorphic_on ball w e"
+    using holf holomorphic_on_subset by blast
+  have 3: "(\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0}) = S \<Longrightarrow> f w = 0"
+    using \<open>e>0\<close> e by (force intro: holomorphic_fun_eq_0_on_ball [OF holfb])
+  show ?thesis
+    using cons der \<open>z \<in> S\<close>
+    apply (simp add: connected_clopen)
+    apply (drule_tac x="\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0}" in spec)
+    apply (auto simp: 1 2 3)
+    done
+qed
+
+lemma holomorphic_fun_eq_on_connected:
+  assumes "f holomorphic_on S" "g holomorphic_on S" and "open S"  "connected S"
+      and "\<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z"
+      and "z \<in> S" "w \<in> S"
+    shows "f w = g w"
+proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>x. f x - g x" S z, simplified])
+  show "(\<lambda>x. f x - g x) holomorphic_on S"
+    by (intro assms holomorphic_intros)
+  show "\<And>n. (deriv ^^ n) (\<lambda>x. f x - g x) z = 0"
+    using assms higher_deriv_diff by auto
+qed (use assms in auto)
+
+lemma holomorphic_fun_eq_const_on_connected:
+  assumes holf: "f holomorphic_on S" and "open S"
+      and cons: "connected S"
+      and der: "\<And>n. 0 < n \<Longrightarrow> (deriv ^^ n) f z = 0"
+      and "z \<in> S" "w \<in> S"
+    shows "f w = f z"
+proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>w. f w - f z" S z, simplified])
+  show "(\<lambda>w. f w - f z) holomorphic_on S"
+    by (intro assms holomorphic_intros)
+  show "\<And>n. (deriv ^^ n) (\<lambda>w. f w - f z) z = 0"
+    by (subst higher_deriv_diff) (use assms in \<open>auto intro: holomorphic_intros\<close>)
+qed (use assms in auto)
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Some basic lemmas about poles/singularities\<close>
+
+lemma pole_lemma:
+  assumes holf: "f holomorphic_on S" and a: "a \<in> interior S"
+    shows "(\<lambda>z. if z = a then deriv f a
+                 else (f z - f a) / (z - a)) holomorphic_on S" (is "?F holomorphic_on S")
+proof -
+  have F1: "?F field_differentiable (at u within S)" if "u \<in> S" "u \<noteq> a" for u
+  proof -
+    have fcd: "f field_differentiable at u within S"
+      using holf holomorphic_on_def by (simp add: \<open>u \<in> S\<close>)
+    have cd: "(\<lambda>z. (f z - f a) / (z - a)) field_differentiable at u within S"
+      by (rule fcd derivative_intros | simp add: that)+
+    have "0 < dist a u" using that dist_nz by blast
+    then show ?thesis
+      by (rule field_differentiable_transform_within [OF _ _ _ cd]) (auto simp: \<open>u \<in> S\<close>)
+  qed
+  have F2: "?F field_differentiable at a" if "0 < e" "ball a e \<subseteq> S" for e
+  proof -
+    have holfb: "f holomorphic_on ball a e"
+      by (rule holomorphic_on_subset [OF holf \<open>ball a e \<subseteq> S\<close>])
+    have 2: "?F holomorphic_on ball a e - {a}"
+      apply (simp add: holomorphic_on_def flip: field_differentiable_def)
+      using mem_ball that
+      apply (auto intro: F1 field_differentiable_within_subset)
+      done
+    have "isCont (\<lambda>z. if z = a then deriv f a else (f z - f a) / (z - a)) x"
+            if "dist a x < e" for x
+    proof (cases "x=a")
+      case True
+      then have "f field_differentiable at a"
+        using holfb \<open>0 < e\<close> holomorphic_on_imp_differentiable_at by auto
+      with True show ?thesis
+        by (auto simp: continuous_at has_field_derivative_iff simp flip: DERIV_deriv_iff_field_differentiable
+                elim: rev_iffD1 [OF _ LIM_equal])
+    next
+      case False with 2 that show ?thesis
+        by (force simp: holomorphic_on_open open_Diff field_differentiable_def [symmetric] field_differentiable_imp_continuous_at)
+    qed
+    then have 1: "continuous_on (ball a e) ?F"
+      by (clarsimp simp:  continuous_on_eq_continuous_at)
+    have "?F holomorphic_on ball a e"
+      by (auto intro: no_isolated_singularity [OF 1 2])
+    with that show ?thesis
+      by (simp add: holomorphic_on_open field_differentiable_def [symmetric]
+                    field_differentiable_at_within)
+  qed
+  show ?thesis
+  proof
+    fix x assume "x \<in> S" show "?F field_differentiable at x within S"
+    proof (cases "x=a")
+      case True then show ?thesis
+      using a by (auto simp: mem_interior intro: field_differentiable_at_within F2)
+    next
+      case False with F1 \<open>x \<in> S\<close>
+      show ?thesis by blast
+    qed
+  qed
+qed
+
+lemma pole_theorem:
+  assumes holg: "g holomorphic_on S" and a: "a \<in> interior S"
+      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
+    shows "(\<lambda>z. if z = a then deriv g a
+                 else f z - g a/(z - a)) holomorphic_on S"
+  using pole_lemma [OF holg a]
+  by (rule holomorphic_transform) (simp add: eq field_split_simps)
+
+lemma pole_lemma_open:
+  assumes "f holomorphic_on S" "open S"
+    shows "(\<lambda>z. if z = a then deriv f a else (f z - f a)/(z - a)) holomorphic_on S"
+proof (cases "a \<in> S")
+  case True with assms interior_eq pole_lemma
+    show ?thesis by fastforce
+next
+  case False with assms show ?thesis
+    apply (simp add: holomorphic_on_def field_differentiable_def [symmetric], clarify)
+    apply (rule field_differentiable_transform_within [where f = "\<lambda>z. (f z - f a)/(z - a)" and d = 1])
+    apply (rule derivative_intros | force)+
+    done
+qed
+
+lemma pole_theorem_open:
+  assumes holg: "g holomorphic_on S" and S: "open S"
+      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
+    shows "(\<lambda>z. if z = a then deriv g a
+                 else f z - g a/(z - a)) holomorphic_on S"
+  using pole_lemma_open [OF holg S]
+  by (rule holomorphic_transform) (auto simp: eq divide_simps)
+
+lemma pole_theorem_0:
+  assumes holg: "g holomorphic_on S" and a: "a \<in> interior S"
+      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
+      and [simp]: "f a = deriv g a" "g a = 0"
+    shows "f holomorphic_on S"
+  using pole_theorem [OF holg a eq]
+  by (rule holomorphic_transform) (auto simp: eq field_split_simps)
+
+lemma pole_theorem_open_0:
+  assumes holg: "g holomorphic_on S" and S: "open S"
+      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
+      and [simp]: "f a = deriv g a" "g a = 0"
+    shows "f holomorphic_on S"
+  using pole_theorem_open [OF holg S eq]
+  by (rule holomorphic_transform) (auto simp: eq field_split_simps)
+
+lemma pole_theorem_analytic:
+  assumes g: "g analytic_on S"
+      and eq: "\<And>z. z \<in> S
+             \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w - a) * f w)"
+    shows "(\<lambda>z. if z = a then deriv g a else f z - g a/(z - a)) analytic_on S" (is "?F analytic_on S")
+  unfolding analytic_on_def
+proof
+  fix x
+  assume "x \<in> S"
+  with g obtain e where "0 < e" and e: "g holomorphic_on ball x e"
+    by (auto simp add: analytic_on_def)
+  obtain d where "0 < d" and d: "\<And>w. w \<in> ball x d - {a} \<Longrightarrow> g w = (w - a) * f w"
+    using \<open>x \<in> S\<close> eq by blast
+  have "?F holomorphic_on ball x (min d e)"
+    using d e \<open>x \<in> S\<close> by (fastforce simp: holomorphic_on_subset subset_ball intro!: pole_theorem_open)
+  then show "\<exists>e>0. ?F holomorphic_on ball x e"
+    using \<open>0 < d\<close> \<open>0 < e\<close> not_le by fastforce
+qed
+
+lemma pole_theorem_analytic_0:
+  assumes g: "g analytic_on S"
+      and eq: "\<And>z. z \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w - a) * f w)"
+      and [simp]: "f a = deriv g a" "g a = 0"
+    shows "f analytic_on S"
+proof -
+  have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z - a)) = f"
+    by auto
+  show ?thesis
+    using pole_theorem_analytic [OF g eq] by simp
+qed
+
+lemma pole_theorem_analytic_open_superset:
+  assumes g: "g analytic_on S" and "S \<subseteq> T" "open T"
+      and eq: "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z - a) * f z"
+    shows "(\<lambda>z. if z = a then deriv g a
+                 else f z - g a/(z - a)) analytic_on S"
+proof (rule pole_theorem_analytic [OF g])
+  fix z
+  assume "z \<in> S"
+  then obtain e where "0 < e" and e: "ball z e \<subseteq> T"
+    using assms openE by blast
+  then show "\<exists>d>0. \<forall>w\<in>ball z d - {a}. g w = (w - a) * f w"
+    using eq by auto
+qed
+
+lemma pole_theorem_analytic_open_superset_0:
+  assumes g: "g analytic_on S" "S \<subseteq> T" "open T" "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z - a) * f z"
+      and [simp]: "f a = deriv g a" "g a = 0"
+    shows "f analytic_on S"
+proof -
+  have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z - a)) = f"
+    by auto
+  have "(\<lambda>z. if z = a then deriv g a else f z - g a/(z - a)) analytic_on S"
+    by (rule pole_theorem_analytic_open_superset [OF g])
+  then show ?thesis by simp
+qed
+
+
+subsection\<open>General, homology form of Cauchy's integral formula\<close>
+
+text\<open>Proof is based on Dixon's, as presented in Lang's "Complex Analysis" book (page 147).\<close>
+
+lemma contour_integral_continuous_on_linepath_2D:
+  assumes "open U" and cont_dw: "\<And>w. w \<in> U \<Longrightarrow> F w contour_integrable_on (linepath a b)"
+      and cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). F x y)"
+      and abu: "closed_segment a b \<subseteq> U"
+    shows "continuous_on U (\<lambda>w. contour_integral (linepath a b) (F w))"
+proof -
+  have *: "\<exists>d>0. \<forall>x'\<in>U. dist x' w < d \<longrightarrow>
+                         dist (contour_integral (linepath a b) (F x'))
+                              (contour_integral (linepath a b) (F w)) \<le> \<epsilon>"
+          if "w \<in> U" "0 < \<epsilon>" "a \<noteq> b" for w \<epsilon>
+  proof -
+    obtain \<delta> where "\<delta>>0" and \<delta>: "cball w \<delta> \<subseteq> U" using open_contains_cball \<open>open U\<close> \<open>w \<in> U\<close> by force
+    let ?TZ = "cball w \<delta>  \<times> closed_segment a b"
+    have "uniformly_continuous_on ?TZ (\<lambda>(x,y). F x y)"
+    proof (rule compact_uniformly_continuous)
+      show "continuous_on ?TZ (\<lambda>(x,y). F x y)"
+        by (rule continuous_on_subset[OF cond_uu]) (use SigmaE \<delta> abu in blast)
+      show "compact ?TZ"
+        by (simp add: compact_Times)
+    qed
+    then obtain \<eta> where "\<eta>>0"
+        and \<eta>: "\<And>x x'. \<lbrakk>x\<in>?TZ; x'\<in>?TZ; dist x' x < \<eta>\<rbrakk> \<Longrightarrow>
+                         dist ((\<lambda>(x,y). F x y) x') ((\<lambda>(x,y). F x y) x) < \<epsilon>/norm(b - a)"
+      apply (rule uniformly_continuous_onE [where e = "\<epsilon>/norm(b - a)"])
+      using \<open>0 < \<epsilon>\<close> \<open>a \<noteq> b\<close> by auto
+    have \<eta>: "\<lbrakk>norm (w - x1) \<le> \<delta>;   x2 \<in> closed_segment a b;
+              norm (w - x1') \<le> \<delta>;  x2' \<in> closed_segment a b; norm ((x1', x2') - (x1, x2)) < \<eta>\<rbrakk>
+              \<Longrightarrow> norm (F x1' x2' - F x1 x2) \<le> \<epsilon> / cmod (b - a)"
+             for x1 x2 x1' x2'
+      using \<eta> [of "(x1,x2)" "(x1',x2')"] by (force simp: dist_norm)
+    have le_ee: "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>"
+                if "x' \<in> U" "cmod (x' - w) < \<delta>" "cmod (x' - w) < \<eta>"  for x'
+    proof -
+      have "(\<lambda>x. F x' x - F w x) contour_integrable_on linepath a b"
+        by (simp add: \<open>w \<in> U\<close> cont_dw contour_integrable_diff that)
+      then have "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>/norm(b - a) * norm(b - a)"
+        apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_integral _ \<eta>])
+        using \<open>0 < \<epsilon>\<close> \<open>0 < \<delta>\<close> that apply (auto simp: norm_minus_commute)
+        done
+      also have "\<dots> = \<epsilon>" using \<open>a \<noteq> b\<close> by simp
+      finally show ?thesis .
+    qed
+    show ?thesis
+      apply (rule_tac x="min \<delta> \<eta>" in exI)
+      using \<open>0 < \<delta>\<close> \<open>0 < \<eta>\<close>
+      apply (auto simp: dist_norm contour_integral_diff [OF cont_dw cont_dw, symmetric] \<open>w \<in> U\<close> intro: le_ee)
+      done
+  qed
+  show ?thesis
+  proof (cases "a=b")
+    case True
+    then show ?thesis by simp
+  next
+    case False
+    show ?thesis
+      by (rule continuous_onI) (use False in \<open>auto intro: *\<close>)
+  qed
+qed
+
+text\<open>This version has \<^term>\<open>polynomial_function \<gamma>\<close> as an additional assumption.\<close>
+lemma Cauchy_integral_formula_global_weak:
+  assumes "open U" and holf: "f holomorphic_on U"
+        and z: "z \<in> U" and \<gamma>: "polynomial_function \<gamma>"
+        and pasz: "path_image \<gamma> \<subseteq> U - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+        and zero: "\<And>w. w \<notin> U \<Longrightarrow> winding_number \<gamma> w = 0"
+      shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
+proof -
+  obtain \<gamma>' where pf\<gamma>': "polynomial_function \<gamma>'" and \<gamma>': "\<And>x. (\<gamma> has_vector_derivative (\<gamma>' x)) (at x)"
+    using has_vector_derivative_polynomial_function [OF \<gamma>] by blast
+  then have "bounded(path_image \<gamma>')"
+    by (simp add: path_image_def compact_imp_bounded compact_continuous_image continuous_on_polymonial_function)
+  then obtain B where "B>0" and B: "\<And>x. x \<in> path_image \<gamma>' \<Longrightarrow> norm x \<le> B"
+    using bounded_pos by force
+  define d where [abs_def]: "d z w = (if w = z then deriv f z else (f w - f z)/(w - z))" for z w
+  define v where "v = {w. w \<notin> path_image \<gamma> \<and> winding_number \<gamma> w = 0}"
+  have "path \<gamma>" "valid_path \<gamma>" using \<gamma>
+    by (auto simp: path_polynomial_function valid_path_polynomial_function)
+  then have ov: "open v"
+    by (simp add: v_def open_winding_number_levelsets loop)
+  have uv_Un: "U \<union> v = UNIV"
+    using pasz zero by (auto simp: v_def)
+  have conf: "continuous_on U f"
+    by (metis holf holomorphic_on_imp_continuous_on)
+  have hol_d: "(d y) holomorphic_on U" if "y \<in> U" for y
+  proof -
+    have *: "(\<lambda>c. if c = y then deriv f y else (f c - f y) / (c - y)) holomorphic_on U"
+      by (simp add: holf pole_lemma_open \<open>open U\<close>)
+    then have "isCont (\<lambda>x. if x = y then deriv f y else (f x - f y) / (x - y)) y"
+      using at_within_open field_differentiable_imp_continuous_at holomorphic_on_def that \<open>open U\<close> by fastforce
+    then have "continuous_on U (d y)"
+      apply (simp add: d_def continuous_on_eq_continuous_at \<open>open U\<close>, clarify)
+      using * holomorphic_on_def
+      by (meson field_differentiable_within_open field_differentiable_imp_continuous_at \<open>open U\<close>)
+    moreover have "d y holomorphic_on U - {y}"
+    proof -
+      have "\<And>w. w \<in> U - {y} \<Longrightarrow>
+                 (\<lambda>w. if w = y then deriv f y else (f w - f y) / (w - y)) field_differentiable at w"
+        apply (rule_tac d="dist w y" and f = "\<lambda>w. (f w - f y)/(w - y)" in field_differentiable_transform_within)
+           apply (auto simp: dist_pos_lt dist_commute intro!: derivative_intros)
+        using \<open>open U\<close> holf holomorphic_on_imp_differentiable_at by blast
+      then show ?thesis
+        unfolding field_differentiable_def by (simp add: d_def holomorphic_on_open \<open>open U\<close> open_delete)
+    qed
+    ultimately show ?thesis
+      by (rule no_isolated_singularity) (auto simp: \<open>open U\<close>)
+  qed
+  have cint_fxy: "(\<lambda>x. (f x - f y) / (x - y)) contour_integrable_on \<gamma>" if "y \<notin> path_image \<gamma>" for y
+  proof (rule contour_integrable_holomorphic_simple [where S = "U-{y}"])
+    show "(\<lambda>x. (f x - f y) / (x - y)) holomorphic_on U - {y}"
+      by (force intro: holomorphic_intros holomorphic_on_subset [OF holf])
+    show "path_image \<gamma> \<subseteq> U - {y}"
+      using pasz that by blast
+  qed (auto simp: \<open>open U\<close> open_delete \<open>valid_path \<gamma>\<close>)
+  define h where
+    "h z = (if z \<in> U then contour_integral \<gamma> (d z) else contour_integral \<gamma> (\<lambda>w. f w/(w - z)))" for z
+  have U: "((d z) has_contour_integral h z) \<gamma>" if "z \<in> U" for z
+  proof -
+    have "d z holomorphic_on U"
+      by (simp add: hol_d that)
+    with that show ?thesis
+    apply (simp add: h_def)
+      by (meson Diff_subset \<open>open U\<close> \<open>valid_path \<gamma>\<close> contour_integrable_holomorphic_simple has_contour_integral_integral pasz subset_trans)
+  qed
+  have V: "((\<lambda>w. f w / (w - z)) has_contour_integral h z) \<gamma>" if z: "z \<in> v" for z
+  proof -
+    have 0: "0 = (f z) * 2 * of_real (2 * pi) * \<i> * winding_number \<gamma> z"
+      using v_def z by auto
+    then have "((\<lambda>x. 1 / (x - z)) has_contour_integral 0) \<gamma>"
+     using z v_def  has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close>] by fastforce
+    then have "((\<lambda>x. f z * (1 / (x - z))) has_contour_integral 0) \<gamma>"
+      using has_contour_integral_lmul by fastforce
+    then have "((\<lambda>x. f z / (x - z)) has_contour_integral 0) \<gamma>"
+      by (simp add: field_split_simps)
+    moreover have "((\<lambda>x. (f x - f z) / (x - z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>"
+      using z
+      apply (auto simp: v_def)
+      apply (metis (no_types, lifting) contour_integrable_eq d_def has_contour_integral_eq has_contour_integral_integral cint_fxy)
+      done
+    ultimately have *: "((\<lambda>x. f z / (x - z) + (f x - f z) / (x - z)) has_contour_integral (0 + contour_integral \<gamma> (d z))) \<gamma>"
+      by (rule has_contour_integral_add)
+    have "((\<lambda>w. f w / (w - z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>"
+            if  "z \<in> U"
+      using * by (auto simp: divide_simps has_contour_integral_eq)
+    moreover have "((\<lambda>w. f w / (w - z)) has_contour_integral contour_integral \<gamma> (\<lambda>w. f w / (w - z))) \<gamma>"
+            if "z \<notin> U"
+      apply (rule has_contour_integral_integral [OF contour_integrable_holomorphic_simple [where S=U]])
+      using U pasz \<open>valid_path \<gamma>\<close> that
+      apply (auto intro: holomorphic_on_imp_continuous_on hol_d)
+       apply (rule continuous_intros conf holomorphic_intros holf assms | force)+
+      done
+    ultimately show ?thesis
+      using z by (simp add: h_def)
+  qed
+  have znot: "z \<notin> path_image \<gamma>"
+    using pasz by blast
+  obtain d0 where "d0>0" and d0: "\<And>x y. x \<in> path_image \<gamma> \<Longrightarrow> y \<in> - U \<Longrightarrow> d0 \<le> dist x y"
+    using separate_compact_closed [of "path_image \<gamma>" "-U"] pasz \<open>open U\<close>
+    by (fastforce simp add: \<open>path \<gamma>\<close> compact_path_image)
+  obtain dd where "0 < dd" and dd: "{y + k | y k. y \<in> path_image \<gamma> \<and> k \<in> ball 0 dd} \<subseteq> U"
+    apply (rule that [of "d0/2"])
+    using \<open>0 < d0\<close>
+    apply (auto simp: dist_norm dest: d0)
+    done
+  have "\<And>x x'. \<lbrakk>x \<in> path_image \<gamma>; dist x x' * 2 < dd\<rbrakk> \<Longrightarrow> \<exists>y k. x' = y + k \<and> y \<in> path_image \<gamma> \<and> dist 0 k * 2 \<le> dd"
+    apply (rule_tac x=x in exI)
+    apply (rule_tac x="x'-x" in exI)
+    apply (force simp: dist_norm)
+    done
+  then have 1: "path_image \<gamma> \<subseteq> interior {y + k |y k. y \<in> path_image \<gamma> \<and> k \<in> cball 0 (dd / 2)}"
+    apply (clarsimp simp add: mem_interior)
+    using \<open>0 < dd\<close>
+    apply (rule_tac x="dd/2" in exI, auto)
+    done
+  obtain T where "compact T" and subt: "path_image \<gamma> \<subseteq> interior T" and T: "T \<subseteq> U"
+    apply (rule that [OF _ 1])
+    apply (fastforce simp add: \<open>valid_path \<gamma>\<close> compact_valid_path_image intro!: compact_sums)
+    apply (rule order_trans [OF _ dd])
+    using \<open>0 < dd\<close> by fastforce
+  obtain L where "L>0"
+           and L: "\<And>f B. \<lbrakk>f holomorphic_on interior T; \<And>z. z\<in>interior T \<Longrightarrow> cmod (f z) \<le> B\<rbrakk> \<Longrightarrow>
+                         cmod (contour_integral \<gamma> f) \<le> L * B"
+      using contour_integral_bound_exists [OF open_interior \<open>valid_path \<gamma>\<close> subt]
+      by blast
+  have "bounded(f ` T)"
+    by (meson \<open>compact T\<close> compact_continuous_image compact_imp_bounded conf continuous_on_subset T)
+  then obtain D where "D>0" and D: "\<And>x. x \<in> T \<Longrightarrow> norm (f x) \<le> D"
+    by (auto simp: bounded_pos)
+  obtain C where "C>0" and C: "\<And>x. x \<in> T \<Longrightarrow> norm x \<le> C"
+    using \<open>compact T\<close> bounded_pos compact_imp_bounded by force
+  have "dist (h y) 0 \<le> e" if "0 < e" and le: "D * L / e + C \<le> cmod y" for e y
+  proof -
+    have "D * L / e > 0"  using \<open>D>0\<close> \<open>L>0\<close> \<open>e>0\<close> by simp
+    with le have ybig: "norm y > C" by force
+    with C have "y \<notin> T"  by force
+    then have ynot: "y \<notin> path_image \<gamma>"
+      using subt interior_subset by blast
+    have [simp]: "winding_number \<gamma> y = 0"
+      apply (rule winding_number_zero_outside [of _ "cball 0 C"])
+      using ybig interior_subset subt
+      apply (force simp: loop \<open>path \<gamma>\<close> dist_norm intro!: C)+
+      done
+    have [simp]: "h y = contour_integral \<gamma> (\<lambda>w. f w/(w - y))"
+      by (rule contour_integral_unique [symmetric]) (simp add: v_def ynot V)
+    have holint: "(\<lambda>w. f w / (w - y)) holomorphic_on interior T"
+      apply (rule holomorphic_on_divide)
+      using holf holomorphic_on_subset interior_subset T apply blast
+      apply (rule holomorphic_intros)+
+      using \<open>y \<notin> T\<close> interior_subset by auto
+    have leD: "cmod (f z / (z - y)) \<le> D * (e / L / D)" if z: "z \<in> interior T" for z
+    proof -
+      have "D * L / e + cmod z \<le> cmod y"
+        using le C [of z] z using interior_subset by force
+      then have DL2: "D * L / e \<le> cmod (z - y)"
+        using norm_triangle_ineq2 [of y z] by (simp add: norm_minus_commute)
+      have "cmod (f z / (z - y)) = cmod (f z) * inverse (cmod (z - y))"
+        by (simp add: norm_mult norm_inverse Fields.field_class.field_divide_inverse)
+      also have "\<dots> \<le> D * (e / L / D)"
+        apply (rule mult_mono)
+        using that D interior_subset apply blast
+        using \<open>L>0\<close> \<open>e>0\<close> \<open>D>0\<close> DL2
+        apply (auto simp: norm_divide field_split_simps)
+        done
+      finally show ?thesis .
+    qed
+    have "dist (h y) 0 = cmod (contour_integral \<gamma> (\<lambda>w. f w / (w - y)))"
+      by (simp add: dist_norm)
+    also have "\<dots> \<le> L * (D * (e / L / D))"
+      by (rule L [OF holint leD])
+    also have "\<dots> = e"
+      using  \<open>L>0\<close> \<open>0 < D\<close> by auto
+    finally show ?thesis .
+  qed
+  then have "(h \<longlongrightarrow> 0) at_infinity"
+    by (meson Lim_at_infinityI)
+  moreover have "h holomorphic_on UNIV"
+  proof -
+    have con_ff: "continuous (at (x,z)) (\<lambda>(x,y). (f y - f x) / (y - x))"
+                 if "x \<in> U" "z \<in> U" "x \<noteq> z" for x z
+      using that conf
+      apply (simp add: split_def continuous_on_eq_continuous_at \<open>open U\<close>)
+      apply (simp | rule continuous_intros continuous_within_compose2 [where g=f])+
+      done
+    have con_fstsnd: "continuous_on UNIV (\<lambda>x. (fst x - snd x) ::complex)"
+      by (rule continuous_intros)+
+    have open_uu_Id: "open (U \<times> U - Id)"
+      apply (rule open_Diff)
+      apply (simp add: open_Times \<open>open U\<close>)
+      using continuous_closed_preimage_constant [OF con_fstsnd closed_UNIV, of 0]
+      apply (auto simp: Id_fstsnd_eq algebra_simps)
+      done
+    have con_derf: "continuous (at z) (deriv f)" if "z \<in> U" for z
+      apply (rule continuous_on_interior [of U])
+      apply (simp add: holf holomorphic_deriv holomorphic_on_imp_continuous_on \<open>open U\<close>)
+      by (simp add: interior_open that \<open>open U\<close>)
+    have tendsto_f': "((\<lambda>(x,y). if y = x then deriv f (x)
+                                else (f (y) - f (x)) / (y - x)) \<longlongrightarrow> deriv f x)
+                      (at (x, x) within U \<times> U)" if "x \<in> U" for x
+    proof (rule Lim_withinI)
+      fix e::real assume "0 < e"
+      obtain k1 where "k1>0" and k1: "\<And>x'. norm (x' - x) \<le> k1 \<Longrightarrow> norm (deriv f x' - deriv f x) < e"
+        using \<open>0 < e\<close> continuous_within_E [OF con_derf [OF \<open>x \<in> U\<close>]]
+        by (metis UNIV_I dist_norm)
+      obtain k2 where "k2>0" and k2: "ball x k2 \<subseteq> U"
+        by (blast intro: openE [OF \<open>open U\<close>] \<open>x \<in> U\<close>)
+      have neq: "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e"
+                    if "z' \<noteq> x'" and less_k1: "norm (x'-x, z'-x) < k1" and less_k2: "norm (x'-x, z'-x) < k2"
+                 for x' z'
+      proof -
+        have cs_less: "w \<in> closed_segment x' z' \<Longrightarrow> cmod (w - x) \<le> norm (x'-x, z'-x)" for w
+          apply (drule segment_furthest_le [where y=x])
+          by (metis (no_types) dist_commute dist_norm norm_fst_le norm_snd_le order_trans)
+        have derf_le: "w \<in> closed_segment x' z' \<Longrightarrow> z' \<noteq> x' \<Longrightarrow> cmod (deriv f w - deriv f x) \<le> e" for w
+          by (blast intro: cs_less less_k1 k1 [unfolded divide_const_simps dist_norm] less_imp_le le_less_trans)
+        have f_has_der: "\<And>x. x \<in> U \<Longrightarrow> (f has_field_derivative deriv f x) (at x within U)"
+          by (metis DERIV_deriv_iff_field_differentiable at_within_open holf holomorphic_on_def \<open>open U\<close>)
+        have "closed_segment x' z' \<subseteq> U"
+          by (rule order_trans [OF _ k2]) (simp add: cs_less  le_less_trans [OF _ less_k2] dist_complex_def norm_minus_commute subset_iff)
+        then have cint_derf: "(deriv f has_contour_integral f z' - f x') (linepath x' z')"
+          using contour_integral_primitive [OF f_has_der valid_path_linepath] pasz  by simp
+        then have *: "((\<lambda>x. deriv f x / (z' - x')) has_contour_integral (f z' - f x') / (z' - x')) (linepath x' z')"
+          by (rule has_contour_integral_div)
+        have "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e/norm(z' - x') * norm(z' - x')"
+          apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_diff [OF *]])
+          using has_contour_integral_div [where c = "z' - x'", OF has_contour_integral_const_linepath [of "deriv f x" z' x']]
+                 \<open>e > 0\<close>  \<open>z' \<noteq> x'\<close>
+          apply (auto simp: norm_divide divide_simps derf_le)
+          done
+        also have "\<dots> \<le> e" using \<open>0 < e\<close> by simp
+        finally show ?thesis .
+      qed
+      show "\<exists>d>0. \<forall>xa\<in>U \<times> U.
+                  0 < dist xa (x, x) \<and> dist xa (x, x) < d \<longrightarrow>
+                  dist (case xa of (x, y) \<Rightarrow> if y = x then deriv f x else (f y - f x) / (y - x)) (deriv f x) \<le> e"
+        apply (rule_tac x="min k1 k2" in exI)
+        using \<open>k1>0\<close> \<open>k2>0\<close> \<open>e>0\<close>
+        apply (force simp: dist_norm neq intro: dual_order.strict_trans2 k1 less_imp_le norm_fst_le)
+        done
+    qed
+    have con_pa_f: "continuous_on (path_image \<gamma>) f"
+      by (meson holf holomorphic_on_imp_continuous_on holomorphic_on_subset interior_subset subt T)
+    have le_B: "\<And>T. T \<in> {0..1} \<Longrightarrow> cmod (vector_derivative \<gamma> (at T)) \<le> B"
+      apply (rule B)
+      using \<gamma>' using path_image_def vector_derivative_at by fastforce
+    have f_has_cint: "\<And>w. w \<in> v - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f u / (u - w) ^ 1) has_contour_integral h w) \<gamma>"
+      by (simp add: V)
+    have cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). d x y)"
+      apply (simp add: continuous_on_eq_continuous_within d_def continuous_within tendsto_f')
+      apply (simp add: tendsto_within_open_NO_MATCH open_Times \<open>open U\<close>, clarify)
+      apply (rule Lim_transform_within_open [OF _ open_uu_Id, where f = "(\<lambda>(x,y). (f y - f x) / (y - x))"])
+      using con_ff
+      apply (auto simp: continuous_within)
+      done
+    have hol_dw: "(\<lambda>z. d z w) holomorphic_on U" if "w \<in> U" for w
+    proof -
+      have "continuous_on U ((\<lambda>(x,y). d x y) \<circ> (\<lambda>z. (w,z)))"
+        by (rule continuous_on_compose continuous_intros continuous_on_subset [OF cond_uu] | force intro: that)+
+      then have *: "continuous_on U (\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z))"
+        by (rule rev_iffD1 [OF _ continuous_on_cong [OF refl]]) (simp add: d_def field_simps)
+      have **: "\<And>x. \<lbrakk>x \<in> U; x \<noteq> w\<rbrakk> \<Longrightarrow> (\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z)) field_differentiable at x"
+        apply (rule_tac f = "\<lambda>x. (f w - f x)/(w - x)" and d = "dist x w" in field_differentiable_transform_within)
+        apply (rule \<open>open U\<close> derivative_intros holomorphic_on_imp_differentiable_at [OF holf] | force simp: dist_commute)+
+        done
+      show ?thesis
+        unfolding d_def
+        apply (rule no_isolated_singularity [OF * _ \<open>open U\<close>, where K = "{w}"])
+        apply (auto simp: field_differentiable_def [symmetric] holomorphic_on_open open_Diff \<open>open U\<close> **)
+        done
+    qed
+    { fix a b
+      assume abu: "closed_segment a b \<subseteq> U"
+      then have "\<And>w. w \<in> U \<Longrightarrow> (\<lambda>z. d z w) contour_integrable_on (linepath a b)"
+        by (metis hol_dw continuous_on_subset contour_integrable_continuous_linepath holomorphic_on_imp_continuous_on)
+      then have cont_cint_d: "continuous_on U (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
+        apply (rule contour_integral_continuous_on_linepath_2D [OF \<open>open U\<close> _ _ abu])
+        apply (auto intro: continuous_on_swap_args cond_uu)
+        done
+      have cont_cint_d\<gamma>: "continuous_on {0..1} ((\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) \<circ> \<gamma>)"
+      proof (rule continuous_on_compose)
+        show "continuous_on {0..1} \<gamma>"
+          using \<open>path \<gamma>\<close> path_def by blast
+        show "continuous_on (\<gamma> ` {0..1}) (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
+          using pasz unfolding path_image_def
+          by (auto intro!: continuous_on_subset [OF cont_cint_d])
+      qed
+      have cint_cint: "(\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) contour_integrable_on \<gamma>"
+        apply (simp add: contour_integrable_on)
+        apply (rule integrable_continuous_real)
+        apply (rule continuous_on_mult [OF cont_cint_d\<gamma> [unfolded o_def]])
+        using pf\<gamma>'
+        by (simp add: continuous_on_polymonial_function vector_derivative_at [OF \<gamma>'])
+      have "contour_integral (linepath a b) h = contour_integral (linepath a b) (\<lambda>z. contour_integral \<gamma> (d z))"
+        using abu  by (force simp: h_def intro: contour_integral_eq)
+      also have "\<dots> =  contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
+        apply (rule contour_integral_swap)
+        apply (rule continuous_on_subset [OF cond_uu])
+        using abu pasz \<open>valid_path \<gamma>\<close>
+        apply (auto intro!: continuous_intros)
+        by (metis \<gamma>' continuous_on_eq path_def path_polynomial_function pf\<gamma>' vector_derivative_at)
+      finally have cint_h_eq:
+          "contour_integral (linepath a b) h =
+                    contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))" .
+      note cint_cint cint_h_eq
+    } note cint_h = this
+    have conthu: "continuous_on U h"
+    proof (simp add: continuous_on_sequentially, clarify)
+      fix a x
+      assume x: "x \<in> U" and au: "\<forall>n. a n \<in> U" and ax: "a \<longlonglongrightarrow> x"
+      then have A1: "\<forall>\<^sub>F n in sequentially. d (a n) contour_integrable_on \<gamma>"
+        by (meson U contour_integrable_on_def eventuallyI)
+      obtain dd where "dd>0" and dd: "cball x dd \<subseteq> U" using open_contains_cball \<open>open U\<close> x by force
+      have A2: "uniform_limit (path_image \<gamma>) (\<lambda>n. d (a n)) (d x) sequentially"
+        unfolding uniform_limit_iff dist_norm
+      proof clarify
+        fix ee::real
+        assume "0 < ee"
+        show "\<forall>\<^sub>F n in sequentially. \<forall>\<xi>\<in>path_image \<gamma>. cmod (d (a n) \<xi> - d x \<xi>) < ee"
+        proof -
+          let ?ddpa = "{(w,z) |w z. w \<in> cball x dd \<and> z \<in> path_image \<gamma>}"
+          have "uniformly_continuous_on ?ddpa (\<lambda>(x,y). d x y)"
+            apply (rule compact_uniformly_continuous [OF continuous_on_subset[OF cond_uu]])
+            using dd pasz \<open>valid_path \<gamma>\<close>
+             apply (auto simp: compact_Times compact_valid_path_image simp del: mem_cball)
+            done
+          then obtain kk where "kk>0"
+            and kk: "\<And>x x'. \<lbrakk>x \<in> ?ddpa; x' \<in> ?ddpa; dist x' x < kk\<rbrakk> \<Longrightarrow>
+                             dist ((\<lambda>(x,y). d x y) x') ((\<lambda>(x,y). d x y) x) < ee"
+            by (rule uniformly_continuous_onE [where e = ee]) (use \<open>0 < ee\<close> in auto)
+          have kk: "\<lbrakk>norm (w - x) \<le> dd; z \<in> path_image \<gamma>; norm ((w, z) - (x, z)) < kk\<rbrakk> \<Longrightarrow> norm (d w z - d x z) < ee"
+            for  w z
+            using \<open>dd>0\<close> kk [of "(x,z)" "(w,z)"] by (force simp: norm_minus_commute dist_norm)
+          show ?thesis
+            using ax unfolding lim_sequentially eventually_sequentially
+            apply (drule_tac x="min dd kk" in spec)
+            using \<open>dd > 0\<close> \<open>kk > 0\<close>
+            apply (fastforce simp: kk dist_norm)
+            done
+        qed
+      qed
+      have "(\<lambda>n. contour_integral \<gamma> (d (a n))) \<longlonglongrightarrow> contour_integral \<gamma> (d x)"
+        by (rule contour_integral_uniform_limit [OF A1 A2 le_B]) (auto simp: \<open>valid_path \<gamma>\<close>)
+      then have tendsto_hx: "(\<lambda>n. contour_integral \<gamma> (d (a n))) \<longlonglongrightarrow> h x"
+        by (simp add: h_def x)
+      then show "(h \<circ> a) \<longlonglongrightarrow> h x"
+        by (simp add: h_def x au o_def)
+    qed
+    show ?thesis
+    proof (simp add: holomorphic_on_open field_differentiable_def [symmetric], clarify)
+      fix z0
+      consider "z0 \<in> v" | "z0 \<in> U" using uv_Un by blast
+      then show "h field_differentiable at z0"
+      proof cases
+        assume "z0 \<in> v" then show ?thesis
+          using Cauchy_next_derivative [OF con_pa_f le_B f_has_cint _ ov] V f_has_cint \<open>valid_path \<gamma>\<close>
+          by (auto simp: field_differentiable_def v_def)
+      next
+        assume "z0 \<in> U" then
+        obtain e where "e>0" and e: "ball z0 e \<subseteq> U" by (blast intro: openE [OF \<open>open U\<close>])
+        have *: "contour_integral (linepath a b) h + contour_integral (linepath b c) h + contour_integral (linepath c a) h = 0"
+                if abc_subset: "convex hull {a, b, c} \<subseteq> ball z0 e"  for a b c
+        proof -
+          have *: "\<And>x1 x2 z. z \<in> U \<Longrightarrow> closed_segment x1 x2 \<subseteq> U \<Longrightarrow> (\<lambda>w. d w z) contour_integrable_on linepath x1 x2"
+            using  hol_dw holomorphic_on_imp_continuous_on \<open>open U\<close>
+            by (auto intro!: contour_integrable_holomorphic_simple)
+          have abc: "closed_segment a b \<subseteq> U"  "closed_segment b c \<subseteq> U"  "closed_segment c a \<subseteq> U"
+            using that e segments_subset_convex_hull by fastforce+
+          have eq0: "\<And>w. w \<in> U \<Longrightarrow> contour_integral (linepath a b +++ linepath b c +++ linepath c a) (\<lambda>z. d z w) = 0"
+            apply (rule contour_integral_unique [OF Cauchy_theorem_triangle])
+            apply (rule holomorphic_on_subset [OF hol_dw])
+            using e abc_subset by auto
+          have "contour_integral \<gamma>
+                   (\<lambda>x. contour_integral (linepath a b) (\<lambda>z. d z x) +
+                        (contour_integral (linepath b c) (\<lambda>z. d z x) +
+                         contour_integral (linepath c a) (\<lambda>z. d z x)))  =  0"
+            apply (rule contour_integral_eq_0)
+            using abc pasz U
+            apply (subst contour_integral_join [symmetric], auto intro: eq0 *)+
+            done
+          then show ?thesis
+            by (simp add: cint_h abc contour_integrable_add contour_integral_add [symmetric] add_ac)
+        qed
+        show ?thesis
+          using e \<open>e > 0\<close>
+          by (auto intro!: holomorphic_on_imp_differentiable_at [OF _ open_ball] analytic_imp_holomorphic
+                           Morera_triangle continuous_on_subset [OF conthu] *)
+      qed
+    qed
+  qed
+  ultimately have [simp]: "h z = 0" for z
+    by (meson Liouville_weak)
+  have "((\<lambda>w. 1 / (w - z)) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z) \<gamma>"
+    by (rule has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close> znot])
+  then have "((\<lambda>w. f z * (1 / (w - z))) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z * f z) \<gamma>"
+    by (metis mult.commute has_contour_integral_lmul)
+  then have 1: "((\<lambda>w. f z / (w - z)) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z * f z) \<gamma>"
+    by (simp add: field_split_simps)
+  moreover have 2: "((\<lambda>w. (f w - f z) / (w - z)) has_contour_integral 0) \<gamma>"
+    using U [OF z] pasz d_def by (force elim: has_contour_integral_eq [where g = "\<lambda>w. (f w - f z)/(w - z)"])
+  show ?thesis
+    using has_contour_integral_add [OF 1 2]  by (simp add: diff_divide_distrib)
+qed
+
+theorem Cauchy_integral_formula_global:
+    assumes S: "open S" and holf: "f holomorphic_on S"
+        and z: "z \<in> S" and vpg: "valid_path \<gamma>"
+        and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+        and zero: "\<And>w. w \<notin> S \<Longrightarrow> winding_number \<gamma> w = 0"
+      shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
+proof -
+  have "path \<gamma>" using vpg by (blast intro: valid_path_imp_path)
+  have hols: "(\<lambda>w. f w / (w - z)) holomorphic_on S - {z}" "(\<lambda>w. 1 / (w - z)) holomorphic_on S - {z}"
+    by (rule holomorphic_intros holomorphic_on_subset [OF holf] | force)+
+  then have cint_fw: "(\<lambda>w. f w / (w - z)) contour_integrable_on \<gamma>"
+    by (meson contour_integrable_holomorphic_simple holomorphic_on_imp_continuous_on open_delete S vpg pasz)
+  obtain d where "d>0"
+      and d: "\<And>g h. \<lbrakk>valid_path g; valid_path h; \<forall>t\<in>{0..1}. cmod (g t - \<gamma> t) < d \<and> cmod (h t - \<gamma> t) < d;
+                     pathstart h = pathstart g \<and> pathfinish h = pathfinish g\<rbrakk>
+                     \<Longrightarrow> path_image h \<subseteq> S - {z} \<and> (\<forall>f. f holomorphic_on S - {z} \<longrightarrow> contour_integral h f = contour_integral g f)"
+    using contour_integral_nearby_ends [OF _ \<open>path \<gamma>\<close> pasz] S by (simp add: open_Diff) metis
+  obtain p where polyp: "polynomial_function p"
+             and ps: "pathstart p = pathstart \<gamma>" and pf: "pathfinish p = pathfinish \<gamma>" and led: "\<forall>t\<in>{0..1}. cmod (p t - \<gamma> t) < d"
+    using path_approx_polynomial_function [OF \<open>path \<gamma>\<close> \<open>d > 0\<close>] by blast
+  then have ploop: "pathfinish p = pathstart p" using loop by auto
+  have vpp: "valid_path p"  using polyp valid_path_polynomial_function by blast
+  have [simp]: "z \<notin> path_image \<gamma>" using pasz by blast
+  have paps: "path_image p \<subseteq> S - {z}" and cint_eq: "(\<And>f. f holomorphic_on S - {z} \<Longrightarrow> contour_integral p f = contour_integral \<gamma> f)"
+    using pf ps led d [OF vpg vpp] \<open>d > 0\<close> by auto
+  have wn_eq: "winding_number p z = winding_number \<gamma> z"
+    using vpp paps
+    by (simp add: subset_Diff_insert vpg valid_path_polynomial_function winding_number_valid_path cint_eq hols)
+  have "winding_number p w = winding_number \<gamma> w" if "w \<notin> S" for w
+  proof -
+    have hol: "(\<lambda>v. 1 / (v - w)) holomorphic_on S - {z}"
+      using that by (force intro: holomorphic_intros holomorphic_on_subset [OF holf])
+   have "w \<notin> path_image p" "w \<notin> path_image \<gamma>" using paps pasz that by auto
+   then show ?thesis
+    using vpp vpg by (simp add: subset_Diff_insert valid_path_polynomial_function winding_number_valid_path cint_eq [OF hol])
+  qed
+  then have wn0: "\<And>w. w \<notin> S \<Longrightarrow> winding_number p w = 0"
+    by (simp add: zero)
+  show ?thesis
+    using Cauchy_integral_formula_global_weak [OF S holf z polyp paps ploop wn0] hols
+    by (metis wn_eq cint_eq has_contour_integral_eqpath cint_fw cint_eq)
+qed
+
+subsection \<open>Generalised Cauchy's integral theorem\<close>
+
+theorem Cauchy_theorem_global:
+    assumes S: "open S" and holf: "f holomorphic_on S"
+        and vpg: "valid_path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+        and pas: "path_image \<gamma> \<subseteq> S"
+        and zero: "\<And>w. w \<notin> S \<Longrightarrow> winding_number \<gamma> w = 0"
+      shows "(f has_contour_integral 0) \<gamma>"
+proof -
+  obtain z where "z \<in> S" and znot: "z \<notin> path_image \<gamma>"
+  proof -
+    have "compact (path_image \<gamma>)"
+      using compact_valid_path_image vpg by blast
+    then have "path_image \<gamma> \<noteq> S"
+      by (metis (no_types) compact_open path_image_nonempty S)
+    with pas show ?thesis by (blast intro: that)
+  qed
+  then have pasz: "path_image \<gamma> \<subseteq> S - {z}" using pas by blast
+  have hol: "(\<lambda>w. (w - z) * f w) holomorphic_on S"
+    by (rule holomorphic_intros holf)+
+  show ?thesis
+    using Cauchy_integral_formula_global [OF S hol \<open>z \<in> S\<close> vpg pasz loop zero]
+    by (auto simp: znot elim!: has_contour_integral_eq)
+qed
+
+corollary Cauchy_theorem_global_outside:
+    assumes "open S" "f holomorphic_on S" "valid_path \<gamma>"  "pathfinish \<gamma> = pathstart \<gamma>" "path_image \<gamma> \<subseteq> S"
+            "\<And>w. w \<notin> S \<Longrightarrow> w \<in> outside(path_image \<gamma>)"
+      shows "(f has_contour_integral 0) \<gamma>"
+by (metis Cauchy_theorem_global assms winding_number_zero_in_outside valid_path_imp_path)
+
+lemma Cauchy_theorem_simply_connected:
+  assumes "open S" "simply_connected S" "f holomorphic_on S" "valid_path g"
+           "path_image g \<subseteq> S" "pathfinish g = pathstart g"
+    shows "(f has_contour_integral 0) g"
+using assms
+apply (simp add: simply_connected_eq_contractible_path)
+apply (auto intro!: Cauchy_theorem_null_homotopic [where a = "pathstart g"]
+                         homotopic_paths_imp_homotopic_loops)
+using valid_path_imp_path by blast
+
+end
\ No newline at end of file
--- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy	Wed Nov 27 16:54:33 2019 +0000
+++ b/src/HOL/Analysis/Cauchy_Integral_Theorem.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -1,15 +1,17 @@
-section \<open>Complex Path Integrals and Cauchy's Integral Theorem\<close>
+section \<open>Cauchy's Integral Theorem\<close>
 
-text\<open>By John Harrison et al.  Ported from HOL Light by L C Paulson (2015)\<close>
+text\<open>By John Harrison et al. Ported from HOL Light by L C Paulson (2015)\<close>
 
 theory Cauchy_Integral_Theorem
 imports
-  Complex_Transcendental
-  Henstock_Kurzweil_Integration
+  Contour_Integration
   Weierstrass_Theorems
   Retracts
 begin
 
+subsection \<open>Misc\<close>
+
+(*TODO: move. Not used in HOL/Analysis.*)
 lemma leibniz_rule_holomorphic:
   fixes f::"complex \<Rightarrow> 'b::euclidean_space \<Rightarrow> complex"
   assumes "\<And>x t. x \<in> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> ((\<lambda>x. f x t) has_field_derivative fx x t) (at x within U)"
@@ -20,6 +22,7 @@
   using leibniz_rule_field_differentiable[OF assms(1-3) _ assms(4)]
   by (auto simp: holomorphic_on_def)
 
+(*TODO: move. Not used in HOL/Analysis.*)
 lemma Ln_measurable [measurable]: "Ln \<in> measurable borel borel"
 proof -
   have *: "Ln (-of_real x) = of_real (ln x) + \<i> * pi" if "x > 0" for x
@@ -36,1968 +39,12 @@
   finally show ?thesis .
 qed
 
+(*TODO: move. Not used in HOL/Analysis.*)
 lemma powr_complex_measurable [measurable]:
   assumes [measurable]: "f \<in> measurable M borel" "g \<in> measurable M borel"
   shows   "(\<lambda>x. f x powr g x :: complex) \<in> measurable M borel"
   using assms by (simp add: powr_def)
 
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Homeomorphisms of arc images\<close>
-
-lemma homeomorphism_arc:
-  fixes g :: "real \<Rightarrow> 'a::t2_space"
-  assumes "arc g"
-  obtains h where "homeomorphism {0..1} (path_image g) g h"
-using assms by (force simp: arc_def homeomorphism_compact path_def path_image_def)
-
-lemma homeomorphic_arc_image_interval:
-  fixes g :: "real \<Rightarrow> 'a::t2_space" and a::real
-  assumes "arc g" "a < b"
-  shows "(path_image g) homeomorphic {a..b}"
-proof -
-  have "(path_image g) homeomorphic {0..1::real}"
-    by (meson assms(1) homeomorphic_def homeomorphic_sym homeomorphism_arc)
-  also have "\<dots> homeomorphic {a..b}"
-    using assms by (force intro: homeomorphic_closed_intervals_real)
-  finally show ?thesis .
-qed
-
-lemma homeomorphic_arc_images:
-  fixes g :: "real \<Rightarrow> 'a::t2_space" and h :: "real \<Rightarrow> 'b::t2_space"
-  assumes "arc g" "arc h"
-  shows "(path_image g) homeomorphic (path_image h)"
-proof -
-  have "(path_image g) homeomorphic {0..1::real}"
-    by (meson assms homeomorphic_def homeomorphic_sym homeomorphism_arc)
-  also have "\<dots> homeomorphic (path_image h)"
-    by (meson assms homeomorphic_def homeomorphism_arc)
-  finally show ?thesis .
-qed
-
-lemma path_connected_arc_complement:
-  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
-  assumes "arc \<gamma>" "2 \<le> DIM('a)"
-  shows "path_connected(- path_image \<gamma>)"
-proof -
-  have "path_image \<gamma> homeomorphic {0..1::real}"
-    by (simp add: assms homeomorphic_arc_image_interval)
-  then
-  show ?thesis
-    apply (rule path_connected_complement_homeomorphic_convex_compact)
-      apply (auto simp: assms)
-    done
-qed
-
-lemma connected_arc_complement:
-  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
-  assumes "arc \<gamma>" "2 \<le> DIM('a)"
-  shows "connected(- path_image \<gamma>)"
-  by (simp add: assms path_connected_arc_complement path_connected_imp_connected)
-
-lemma inside_arc_empty:
-  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
-  assumes "arc \<gamma>"
-    shows "inside(path_image \<gamma>) = {}"
-proof (cases "DIM('a) = 1")
-  case True
-  then show ?thesis
-    using assms connected_arc_image connected_convex_1_gen inside_convex by blast
-next
-  case False
-  show ?thesis
-  proof (rule inside_bounded_complement_connected_empty)
-    show "connected (- path_image \<gamma>)"
-      apply (rule connected_arc_complement [OF assms])
-      using False
-      by (metis DIM_ge_Suc0 One_nat_def Suc_1 not_less_eq_eq order_class.order.antisym)
-    show "bounded (path_image \<gamma>)"
-      by (simp add: assms bounded_arc_image)
-  qed
-qed
-
-lemma inside_simple_curve_imp_closed:
-  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
-    shows "\<lbrakk>simple_path \<gamma>; x \<in> inside(path_image \<gamma>)\<rbrakk> \<Longrightarrow> pathfinish \<gamma> = pathstart \<gamma>"
-  using arc_simple_path  inside_arc_empty by blast
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Piecewise differentiable functions\<close>
-
-definition piecewise_differentiable_on
-           (infixr "piecewise'_differentiable'_on" 50)
-  where "f piecewise_differentiable_on i  \<equiv>
-           continuous_on i f \<and>
-           (\<exists>S. finite S \<and> (\<forall>x \<in> i - S. f differentiable (at x within i)))"
-
-lemma piecewise_differentiable_on_imp_continuous_on:
-    "f piecewise_differentiable_on S \<Longrightarrow> continuous_on S f"
-by (simp add: piecewise_differentiable_on_def)
-
-lemma piecewise_differentiable_on_subset:
-    "f piecewise_differentiable_on S \<Longrightarrow> T \<le> S \<Longrightarrow> f piecewise_differentiable_on T"
-  using continuous_on_subset
-  unfolding piecewise_differentiable_on_def
-  apply safe
-  apply (blast elim: continuous_on_subset)
-  by (meson Diff_iff differentiable_within_subset subsetCE)
-
-lemma differentiable_on_imp_piecewise_differentiable:
-  fixes a:: "'a::{linorder_topology,real_normed_vector}"
-  shows "f differentiable_on {a..b} \<Longrightarrow> f piecewise_differentiable_on {a..b}"
-  apply (simp add: piecewise_differentiable_on_def differentiable_imp_continuous_on)
-  apply (rule_tac x="{a,b}" in exI, simp add: differentiable_on_def)
-  done
-
-lemma differentiable_imp_piecewise_differentiable:
-    "(\<And>x. x \<in> S \<Longrightarrow> f differentiable (at x within S))
-         \<Longrightarrow> f piecewise_differentiable_on S"
-by (auto simp: piecewise_differentiable_on_def differentiable_imp_continuous_on differentiable_on_def
-         intro: differentiable_within_subset)
-
-lemma piecewise_differentiable_const [iff]: "(\<lambda>x. z) piecewise_differentiable_on S"
-  by (simp add: differentiable_imp_piecewise_differentiable)
-
-lemma piecewise_differentiable_compose:
-    "\<lbrakk>f piecewise_differentiable_on S; g piecewise_differentiable_on (f ` S);
-      \<And>x. finite (S \<inter> f-`{x})\<rbrakk>
-      \<Longrightarrow> (g \<circ> f) piecewise_differentiable_on S"
-  apply (simp add: piecewise_differentiable_on_def, safe)
-  apply (blast intro: continuous_on_compose2)
-  apply (rename_tac A B)
-  apply (rule_tac x="A \<union> (\<Union>x\<in>B. S \<inter> f-`{x})" in exI)
-  apply (blast intro!: differentiable_chain_within)
-  done
-
-lemma piecewise_differentiable_affine:
-  fixes m::real
-  assumes "f piecewise_differentiable_on ((\<lambda>x. m *\<^sub>R x + c) ` S)"
-  shows "(f \<circ> (\<lambda>x. m *\<^sub>R x + c)) piecewise_differentiable_on S"
-proof (cases "m = 0")
-  case True
-  then show ?thesis
-    unfolding o_def
-    by (force intro: differentiable_imp_piecewise_differentiable differentiable_const)
-next
-  case False
-  show ?thesis
-    apply (rule piecewise_differentiable_compose [OF differentiable_imp_piecewise_differentiable])
-    apply (rule assms derivative_intros | simp add: False vimage_def real_vector_affinity_eq)+
-    done
-qed
-
-lemma piecewise_differentiable_cases:
-  fixes c::real
-  assumes "f piecewise_differentiable_on {a..c}"
-          "g piecewise_differentiable_on {c..b}"
-           "a \<le> c" "c \<le> b" "f c = g c"
-  shows "(\<lambda>x. if x \<le> c then f x else g x) piecewise_differentiable_on {a..b}"
-proof -
-  obtain S T where st: "finite S" "finite T"
-               and fd: "\<And>x. x \<in> {a..c} - S \<Longrightarrow> f differentiable at x within {a..c}"
-               and gd: "\<And>x. x \<in> {c..b} - T \<Longrightarrow> g differentiable at x within {c..b}"
-    using assms
-    by (auto simp: piecewise_differentiable_on_def)
-  have finabc: "finite ({a,b,c} \<union> (S \<union> T))"
-    by (metis \<open>finite S\<close> \<open>finite T\<close> finite_Un finite_insert finite.emptyI)
-  have "continuous_on {a..c} f" "continuous_on {c..b} g"
-    using assms piecewise_differentiable_on_def by auto
-  then have "continuous_on {a..b} (\<lambda>x. if x \<le> c then f x else g x)"
-    using continuous_on_cases [OF closed_real_atLeastAtMost [of a c],
-                               OF closed_real_atLeastAtMost [of c b],
-                               of f g "\<lambda>x. x\<le>c"]  assms
-    by (force simp: ivl_disj_un_two_touch)
-  moreover
-  { fix x
-    assume x: "x \<in> {a..b} - ({a,b,c} \<union> (S \<union> T))"
-    have "(\<lambda>x. if x \<le> c then f x else g x) differentiable at x within {a..b}" (is "?diff_fg")
-    proof (cases x c rule: le_cases)
-      case le show ?diff_fg
-      proof (rule differentiable_transform_within [where d = "dist x c"])
-        have "f differentiable at x"
-          using x le fd [of x] at_within_interior [of x "{a..c}"] by simp
-        then show "f differentiable at x within {a..b}"
-          by (simp add: differentiable_at_withinI)
-      qed (use x le st dist_real_def in auto)
-    next
-      case ge show ?diff_fg
-      proof (rule differentiable_transform_within [where d = "dist x c"])
-        have "g differentiable at x"
-          using x ge gd [of x] at_within_interior [of x "{c..b}"] by simp
-        then show "g differentiable at x within {a..b}"
-          by (simp add: differentiable_at_withinI)
-      qed (use x ge st dist_real_def in auto)
-    qed
-  }
-  then have "\<exists>S. finite S \<and>
-                 (\<forall>x\<in>{a..b} - S. (\<lambda>x. if x \<le> c then f x else g x) differentiable at x within {a..b})"
-    by (meson finabc)
-  ultimately show ?thesis
-    by (simp add: piecewise_differentiable_on_def)
-qed
-
-lemma piecewise_differentiable_neg:
-    "f piecewise_differentiable_on S \<Longrightarrow> (\<lambda>x. -(f x)) piecewise_differentiable_on S"
-  by (auto simp: piecewise_differentiable_on_def continuous_on_minus)
-
-lemma piecewise_differentiable_add:
-  assumes "f piecewise_differentiable_on i"
-          "g piecewise_differentiable_on i"
-    shows "(\<lambda>x. f x + g x) piecewise_differentiable_on i"
-proof -
-  obtain S T where st: "finite S" "finite T"
-                       "\<forall>x\<in>i - S. f differentiable at x within i"
-                       "\<forall>x\<in>i - T. g differentiable at x within i"
-    using assms by (auto simp: piecewise_differentiable_on_def)
-  then have "finite (S \<union> T) \<and> (\<forall>x\<in>i - (S \<union> T). (\<lambda>x. f x + g x) differentiable at x within i)"
-    by auto
-  moreover have "continuous_on i f" "continuous_on i g"
-    using assms piecewise_differentiable_on_def by auto
-  ultimately show ?thesis
-    by (auto simp: piecewise_differentiable_on_def continuous_on_add)
-qed
-
-lemma piecewise_differentiable_diff:
-    "\<lbrakk>f piecewise_differentiable_on S;  g piecewise_differentiable_on S\<rbrakk>
-     \<Longrightarrow> (\<lambda>x. f x - g x) piecewise_differentiable_on S"
-  unfolding diff_conv_add_uminus
-  by (metis piecewise_differentiable_add piecewise_differentiable_neg)
-
-lemma continuous_on_joinpaths_D1:
-    "continuous_on {0..1} (g1 +++ g2) \<Longrightarrow> continuous_on {0..1} g1"
-  apply (rule continuous_on_eq [of _ "(g1 +++ g2) \<circ> ((*)(inverse 2))"])
-  apply (rule continuous_intros | simp)+
-  apply (auto elim!: continuous_on_subset simp: joinpaths_def)
-  done
-
-lemma continuous_on_joinpaths_D2:
-    "\<lbrakk>continuous_on {0..1} (g1 +++ g2); pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> continuous_on {0..1} g2"
-  apply (rule continuous_on_eq [of _ "(g1 +++ g2) \<circ> (\<lambda>x. inverse 2*x + 1/2)"])
-  apply (rule continuous_intros | simp)+
-  apply (auto elim!: continuous_on_subset simp add: joinpaths_def pathfinish_def pathstart_def Ball_def)
-  done
-
-lemma piecewise_differentiable_D1:
-  assumes "(g1 +++ g2) piecewise_differentiable_on {0..1}"
-  shows "g1 piecewise_differentiable_on {0..1}"
-proof -
-  obtain S where cont: "continuous_on {0..1} g1" and "finite S"
-    and S: "\<And>x. x \<in> {0..1} - S \<Longrightarrow> g1 +++ g2 differentiable at x within {0..1}"
-    using assms unfolding piecewise_differentiable_on_def
-    by (blast dest!: continuous_on_joinpaths_D1)
-  show ?thesis
-    unfolding piecewise_differentiable_on_def
-  proof (intro exI conjI ballI cont)
-    show "finite (insert 1 (((*)2) ` S))"
-      by (simp add: \<open>finite S\<close>)
-    show "g1 differentiable at x within {0..1}" if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
-    proof (rule_tac d="dist (x/2) (1/2)" in differentiable_transform_within)
-      have "g1 +++ g2 differentiable at (x / 2) within {0..1/2}"
-        by (rule differentiable_subset [OF S [of "x/2"]] | use that in force)+
-      then show "g1 +++ g2 \<circ> (*) (inverse 2) differentiable at x within {0..1}"
-        using image_affinity_atLeastAtMost_div [of 2 0 "0::real" 1]
-        by (auto intro: differentiable_chain_within)
-    qed (use that in \<open>auto simp: joinpaths_def\<close>)
-  qed
-qed
-
-lemma piecewise_differentiable_D2:
-  assumes "(g1 +++ g2) piecewise_differentiable_on {0..1}" and eq: "pathfinish g1 = pathstart g2"
-  shows "g2 piecewise_differentiable_on {0..1}"
-proof -
-  have [simp]: "g1 1 = g2 0"
-    using eq by (simp add: pathfinish_def pathstart_def)
-  obtain S where cont: "continuous_on {0..1} g2" and "finite S"
-    and S: "\<And>x. x \<in> {0..1} - S \<Longrightarrow> g1 +++ g2 differentiable at x within {0..1}"
-    using assms unfolding piecewise_differentiable_on_def
-    by (blast dest!: continuous_on_joinpaths_D2)
-  show ?thesis
-    unfolding piecewise_differentiable_on_def
-  proof (intro exI conjI ballI cont)
-    show "finite (insert 0 ((\<lambda>x. 2*x-1)`S))"
-      by (simp add: \<open>finite S\<close>)
-    show "g2 differentiable at x within {0..1}" if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1)`S)" for x
-    proof (rule_tac d="dist ((x+1)/2) (1/2)" in differentiable_transform_within)
-      have x2: "(x + 1) / 2 \<notin> S"
-        using that
-        apply (clarsimp simp: image_iff)
-        by (metis add.commute add_diff_cancel_left' mult_2 field_sum_of_halves)
-      have "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
-        by (rule differentiable_chain_within differentiable_subset [OF S [of "(x+1)/2"]] | use x2 that in force)+
-      then show "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
-        by (auto intro: differentiable_chain_within)
-      show "(g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2)) x' = g2 x'" if "x' \<in> {0..1}" "dist x' x < dist ((x + 1) / 2) (1/2)" for x'
-      proof -
-        have [simp]: "(2*x'+2)/2 = x'+1"
-          by (simp add: field_split_simps)
-        show ?thesis
-          using that by (auto simp: joinpaths_def)
-      qed
-    qed (use that in \<open>auto simp: joinpaths_def\<close>)
-  qed
-qed
-
-
-subsection\<open>The concept of continuously differentiable\<close>
-
-text \<open>
-John Harrison writes as follows:
-
-``The usual assumption in complex analysis texts is that a path \<open>\<gamma>\<close> should be piecewise
-continuously differentiable, which ensures that the path integral exists at least for any continuous
-f, since all piecewise continuous functions are integrable. However, our notion of validity is
-weaker, just piecewise differentiability\ldots{} [namely] continuity plus differentiability except on a
-finite set\ldots{} [Our] underlying theory of integration is the Kurzweil-Henstock theory. In contrast to
-the Riemann or Lebesgue theory (but in common with a simple notion based on antiderivatives), this
-can integrate all derivatives.''
-
-"Formalizing basic complex analysis." From Insight to Proof: Festschrift in Honour of Andrzej Trybulec.
-Studies in Logic, Grammar and Rhetoric 10.23 (2007): 151-165.
-
-And indeed he does not assume that his derivatives are continuous, but the penalty is unreasonably
-difficult proofs concerning winding numbers. We need a self-contained and straightforward theorem
-asserting that all derivatives can be integrated before we can adopt Harrison's choice.\<close>
-
-definition\<^marker>\<open>tag important\<close> C1_differentiable_on :: "(real \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> real set \<Rightarrow> bool"
-           (infix "C1'_differentiable'_on" 50)
-  where
-  "f C1_differentiable_on S \<longleftrightarrow>
-   (\<exists>D. (\<forall>x \<in> S. (f has_vector_derivative (D x)) (at x)) \<and> continuous_on S D)"
-
-lemma C1_differentiable_on_eq:
-    "f C1_differentiable_on S \<longleftrightarrow>
-     (\<forall>x \<in> S. f differentiable at x) \<and> continuous_on S (\<lambda>x. vector_derivative f (at x))"
-     (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    unfolding C1_differentiable_on_def
-    by (metis (no_types, lifting) continuous_on_eq  differentiableI_vector vector_derivative_at)
-next
-  assume ?rhs
-  then show ?lhs
-    using C1_differentiable_on_def vector_derivative_works by fastforce
-qed
-
-lemma C1_differentiable_on_subset:
-  "f C1_differentiable_on T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> f C1_differentiable_on S"
-  unfolding C1_differentiable_on_def  continuous_on_eq_continuous_within
-  by (blast intro:  continuous_within_subset)
-
-lemma C1_differentiable_compose:
-  assumes fg: "f C1_differentiable_on S" "g C1_differentiable_on (f ` S)" and fin: "\<And>x. finite (S \<inter> f-`{x})"
-  shows "(g \<circ> f) C1_differentiable_on S"
-proof -
-  have "\<And>x. x \<in> S \<Longrightarrow> g \<circ> f differentiable at x"
-    by (meson C1_differentiable_on_eq assms differentiable_chain_at imageI)
-  moreover have "continuous_on S (\<lambda>x. vector_derivative (g \<circ> f) (at x))"
-  proof (rule continuous_on_eq [of _ "\<lambda>x. vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x))"])
-    show "continuous_on S (\<lambda>x. vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x)))"
-      using fg
-      apply (clarsimp simp add: C1_differentiable_on_eq)
-      apply (rule Limits.continuous_on_scaleR, assumption)
-      by (metis (mono_tags, lifting) continuous_at_imp_continuous_on continuous_on_compose continuous_on_cong differentiable_imp_continuous_within o_def)
-    show "\<And>x. x \<in> S \<Longrightarrow> vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x)) = vector_derivative (g \<circ> f) (at x)"
-      by (metis (mono_tags, hide_lams) C1_differentiable_on_eq fg imageI vector_derivative_chain_at)
-  qed
-  ultimately show ?thesis
-    by (simp add: C1_differentiable_on_eq)
-qed
-
-lemma C1_diff_imp_diff: "f C1_differentiable_on S \<Longrightarrow> f differentiable_on S"
-  by (simp add: C1_differentiable_on_eq differentiable_at_imp_differentiable_on)
-
-lemma C1_differentiable_on_ident [simp, derivative_intros]: "(\<lambda>x. x) C1_differentiable_on S"
-  by (auto simp: C1_differentiable_on_eq)
-
-lemma C1_differentiable_on_const [simp, derivative_intros]: "(\<lambda>z. a) C1_differentiable_on S"
-  by (auto simp: C1_differentiable_on_eq)
-
-lemma C1_differentiable_on_add [simp, derivative_intros]:
-  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x + g x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
-
-lemma C1_differentiable_on_minus [simp, derivative_intros]:
-  "f C1_differentiable_on S \<Longrightarrow> (\<lambda>x. - f x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
-
-lemma C1_differentiable_on_diff [simp, derivative_intros]:
-  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x - g x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
-
-lemma C1_differentiable_on_mult [simp, derivative_intros]:
-  fixes f g :: "real \<Rightarrow> 'a :: real_normed_algebra"
-  shows "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x * g x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq
-  by (auto simp: continuous_on_add continuous_on_mult continuous_at_imp_continuous_on differentiable_imp_continuous_within)
-
-lemma C1_differentiable_on_scaleR [simp, derivative_intros]:
-  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x *\<^sub>R g x) C1_differentiable_on S"
-  unfolding C1_differentiable_on_eq
-  by (rule continuous_intros | simp add: continuous_at_imp_continuous_on differentiable_imp_continuous_within)+
-
-
-definition\<^marker>\<open>tag important\<close> piecewise_C1_differentiable_on
-           (infixr "piecewise'_C1'_differentiable'_on" 50)
-  where "f piecewise_C1_differentiable_on i  \<equiv>
-           continuous_on i f \<and>
-           (\<exists>S. finite S \<and> (f C1_differentiable_on (i - S)))"
-
-lemma C1_differentiable_imp_piecewise:
-    "f C1_differentiable_on S \<Longrightarrow> f piecewise_C1_differentiable_on S"
-  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_at_imp_continuous_on differentiable_imp_continuous_within)
-
-lemma piecewise_C1_imp_differentiable:
-    "f piecewise_C1_differentiable_on i \<Longrightarrow> f piecewise_differentiable_on i"
-  by (auto simp: piecewise_C1_differentiable_on_def piecewise_differentiable_on_def
-           C1_differentiable_on_def differentiable_def has_vector_derivative_def
-           intro: has_derivative_at_withinI)
-
-lemma piecewise_C1_differentiable_compose:
-  assumes fg: "f piecewise_C1_differentiable_on S" "g piecewise_C1_differentiable_on (f ` S)" and fin: "\<And>x. finite (S \<inter> f-`{x})"
-  shows "(g \<circ> f) piecewise_C1_differentiable_on S"
-proof -
-  have "continuous_on S (\<lambda>x. g (f x))"
-    by (metis continuous_on_compose2 fg order_refl piecewise_C1_differentiable_on_def)
-  moreover have "\<exists>T. finite T \<and> g \<circ> f C1_differentiable_on S - T"
-  proof -
-    obtain F where "finite F" and F: "f C1_differentiable_on S - F" and f: "f piecewise_C1_differentiable_on S"
-      using fg by (auto simp: piecewise_C1_differentiable_on_def)
-    obtain G where "finite G" and G: "g C1_differentiable_on f ` S - G" and g: "g piecewise_C1_differentiable_on f ` S"
-      using fg by (auto simp: piecewise_C1_differentiable_on_def)
-    show ?thesis
-    proof (intro exI conjI)
-      show "finite (F \<union> (\<Union>x\<in>G. S \<inter> f-`{x}))"
-        using fin by (auto simp only: Int_Union \<open>finite F\<close> \<open>finite G\<close> finite_UN finite_imageI)
-      show "g \<circ> f C1_differentiable_on S - (F \<union> (\<Union>x\<in>G. S \<inter> f -` {x}))"
-        apply (rule C1_differentiable_compose)
-          apply (blast intro: C1_differentiable_on_subset [OF F])
-          apply (blast intro: C1_differentiable_on_subset [OF G])
-        by (simp add:  C1_differentiable_on_subset G Diff_Int_distrib2 fin)
-    qed
-  qed
-  ultimately show ?thesis
-    by (simp add: piecewise_C1_differentiable_on_def)
-qed
-
-lemma piecewise_C1_differentiable_on_subset:
-    "f piecewise_C1_differentiable_on S \<Longrightarrow> T \<le> S \<Longrightarrow> f piecewise_C1_differentiable_on T"
-  by (auto simp: piecewise_C1_differentiable_on_def elim!: continuous_on_subset C1_differentiable_on_subset)
-
-lemma C1_differentiable_imp_continuous_on:
-  "f C1_differentiable_on S \<Longrightarrow> continuous_on S f"
-  unfolding C1_differentiable_on_eq continuous_on_eq_continuous_within
-  using differentiable_at_withinI differentiable_imp_continuous_within by blast
-
-lemma C1_differentiable_on_empty [iff]: "f C1_differentiable_on {}"
-  unfolding C1_differentiable_on_def
-  by auto
-
-lemma piecewise_C1_differentiable_affine:
-  fixes m::real
-  assumes "f piecewise_C1_differentiable_on ((\<lambda>x. m * x + c) ` S)"
-  shows "(f \<circ> (\<lambda>x. m *\<^sub>R x + c)) piecewise_C1_differentiable_on S"
-proof (cases "m = 0")
-  case True
-  then show ?thesis
-    unfolding o_def by (auto simp: piecewise_C1_differentiable_on_def)
-next
-  case False
-  have *: "\<And>x. finite (S \<inter> {y. m * y + c = x})"
-    using False not_finite_existsD by fastforce
-  show ?thesis
-    apply (rule piecewise_C1_differentiable_compose [OF C1_differentiable_imp_piecewise])
-    apply (rule * assms derivative_intros | simp add: False vimage_def)+
-    done
-qed
-
-lemma piecewise_C1_differentiable_cases:
-  fixes c::real
-  assumes "f piecewise_C1_differentiable_on {a..c}"
-          "g piecewise_C1_differentiable_on {c..b}"
-           "a \<le> c" "c \<le> b" "f c = g c"
-  shows "(\<lambda>x. if x \<le> c then f x else g x) piecewise_C1_differentiable_on {a..b}"
-proof -
-  obtain S T where st: "f C1_differentiable_on ({a..c} - S)"
-                       "g C1_differentiable_on ({c..b} - T)"
-                       "finite S" "finite T"
-    using assms
-    by (force simp: piecewise_C1_differentiable_on_def)
-  then have f_diff: "f differentiable_on {a..<c} - S"
-        and g_diff: "g differentiable_on {c<..b} - T"
-    by (simp_all add: C1_differentiable_on_eq differentiable_at_withinI differentiable_on_def)
-  have "continuous_on {a..c} f" "continuous_on {c..b} g"
-    using assms piecewise_C1_differentiable_on_def by auto
-  then have cab: "continuous_on {a..b} (\<lambda>x. if x \<le> c then f x else g x)"
-    using continuous_on_cases [OF closed_real_atLeastAtMost [of a c],
-                               OF closed_real_atLeastAtMost [of c b],
-                               of f g "\<lambda>x. x\<le>c"]  assms
-    by (force simp: ivl_disj_un_two_touch)
-  { fix x
-    assume x: "x \<in> {a..b} - insert c (S \<union> T)"
-    have "(\<lambda>x. if x \<le> c then f x else g x) differentiable at x" (is "?diff_fg")
-    proof (cases x c rule: le_cases)
-      case le show ?diff_fg
-        apply (rule differentiable_transform_within [where f=f and d = "dist x c"])
-        using x dist_real_def le st by (auto simp: C1_differentiable_on_eq)
-    next
-      case ge show ?diff_fg
-        apply (rule differentiable_transform_within [where f=g and d = "dist x c"])
-        using dist_nz x dist_real_def ge st x by (auto simp: C1_differentiable_on_eq)
-    qed
-  }
-  then have "(\<forall>x \<in> {a..b} - insert c (S \<union> T). (\<lambda>x. if x \<le> c then f x else g x) differentiable at x)"
-    by auto
-  moreover
-  { assume fcon: "continuous_on ({a<..<c} - S) (\<lambda>x. vector_derivative f (at x))"
-       and gcon: "continuous_on ({c<..<b} - T) (\<lambda>x. vector_derivative g (at x))"
-    have "open ({a<..<c} - S)"  "open ({c<..<b} - T)"
-      using st by (simp_all add: open_Diff finite_imp_closed)
-    moreover have "continuous_on ({a<..<c} - S) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
-    proof -
-      have "((\<lambda>x. if x \<le> c then f x else g x) has_vector_derivative vector_derivative f (at x))            (at x)"
-        if "a < x" "x < c" "x \<notin> S" for x
-      proof -
-        have f: "f differentiable at x"
-          by (meson C1_differentiable_on_eq Diff_iff atLeastAtMost_iff less_eq_real_def st(1) that)
-        show ?thesis
-          using that
-          apply (rule_tac f=f and d="dist x c" in has_vector_derivative_transform_within)
-             apply (auto simp: dist_norm vector_derivative_works [symmetric] f)
-          done
-      qed
-      then show ?thesis
-        by (metis (no_types, lifting) continuous_on_eq [OF fcon] DiffE greaterThanLessThan_iff vector_derivative_at)
-    qed
-    moreover have "continuous_on ({c<..<b} - T) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
-    proof -
-      have "((\<lambda>x. if x \<le> c then f x else g x) has_vector_derivative vector_derivative g (at x))            (at x)"
-        if "c < x" "x < b" "x \<notin> T" for x
-      proof -
-        have g: "g differentiable at x"
-          by (metis C1_differentiable_on_eq DiffD1 DiffI atLeastAtMost_diff_ends greaterThanLessThan_iff st(2) that)
-        show ?thesis
-          using that
-          apply (rule_tac f=g and d="dist x c" in has_vector_derivative_transform_within)
-             apply (auto simp: dist_norm vector_derivative_works [symmetric] g)
-          done
-      qed
-      then show ?thesis
-        by (metis (no_types, lifting) continuous_on_eq [OF gcon] DiffE greaterThanLessThan_iff vector_derivative_at)
-    qed
-    ultimately have "continuous_on ({a<..<b} - insert c (S \<union> T))
-        (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
-      by (rule continuous_on_subset [OF continuous_on_open_Un], auto)
-  } note * = this
-  have "continuous_on ({a<..<b} - insert c (S \<union> T)) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
-    using st
-    by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset intro: *)
-  ultimately have "\<exists>S. finite S \<and> ((\<lambda>x. if x \<le> c then f x else g x) C1_differentiable_on {a..b} - S)"
-    apply (rule_tac x="{a,b,c} \<union> S \<union> T" in exI)
-    using st  by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset)
-  with cab show ?thesis
-    by (simp add: piecewise_C1_differentiable_on_def)
-qed
-
-lemma piecewise_C1_differentiable_neg:
-    "f piecewise_C1_differentiable_on S \<Longrightarrow> (\<lambda>x. -(f x)) piecewise_C1_differentiable_on S"
-  unfolding piecewise_C1_differentiable_on_def
-  by (auto intro!: continuous_on_minus C1_differentiable_on_minus)
-
-lemma piecewise_C1_differentiable_add:
-  assumes "f piecewise_C1_differentiable_on i"
-          "g piecewise_C1_differentiable_on i"
-    shows "(\<lambda>x. f x + g x) piecewise_C1_differentiable_on i"
-proof -
-  obtain S t where st: "finite S" "finite t"
-                       "f C1_differentiable_on (i-S)"
-                       "g C1_differentiable_on (i-t)"
-    using assms by (auto simp: piecewise_C1_differentiable_on_def)
-  then have "finite (S \<union> t) \<and> (\<lambda>x. f x + g x) C1_differentiable_on i - (S \<union> t)"
-    by (auto intro: C1_differentiable_on_add elim!: C1_differentiable_on_subset)
-  moreover have "continuous_on i f" "continuous_on i g"
-    using assms piecewise_C1_differentiable_on_def by auto
-  ultimately show ?thesis
-    by (auto simp: piecewise_C1_differentiable_on_def continuous_on_add)
-qed
-
-lemma piecewise_C1_differentiable_diff:
-    "\<lbrakk>f piecewise_C1_differentiable_on S;  g piecewise_C1_differentiable_on S\<rbrakk>
-     \<Longrightarrow> (\<lambda>x. f x - g x) piecewise_C1_differentiable_on S"
-  unfolding diff_conv_add_uminus
-  by (metis piecewise_C1_differentiable_add piecewise_C1_differentiable_neg)
-
-lemma piecewise_C1_differentiable_D1:
-  fixes g1 :: "real \<Rightarrow> 'a::real_normed_field"
-  assumes "(g1 +++ g2) piecewise_C1_differentiable_on {0..1}"
-    shows "g1 piecewise_C1_differentiable_on {0..1}"
-proof -
-  obtain S where "finite S"
-             and co12: "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
-             and g12D: "\<forall>x\<in>{0..1} - S. g1 +++ g2 differentiable at x"
-    using assms  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have g1D: "g1 differentiable at x" if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
-  proof (rule differentiable_transform_within)
-    show "g1 +++ g2 \<circ> (*) (inverse 2) differentiable at x"
-      using that g12D
-      apply (simp only: joinpaths_def)
-      by (rule differentiable_chain_at derivative_intros | force)+
-    show "\<And>x'. \<lbrakk>dist x' x < dist (x/2) (1/2)\<rbrakk>
-          \<Longrightarrow> (g1 +++ g2 \<circ> (*) (inverse 2)) x' = g1 x'"
-      using that by (auto simp: dist_real_def joinpaths_def)
-  qed (use that in \<open>auto simp: dist_real_def\<close>)
-  have [simp]: "vector_derivative (g1 \<circ> (*) 2) (at (x/2)) = 2 *\<^sub>R vector_derivative g1 (at x)"
-               if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
-    apply (subst vector_derivative_chain_at)
-    using that
-    apply (rule derivative_eq_intros g1D | simp)+
-    done
-  have "continuous_on ({0..1/2} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
-    using co12 by (rule continuous_on_subset) force
-  then have coDhalf: "continuous_on ({0..1/2} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 \<circ> (*)2) (at x))"
-  proof (rule continuous_on_eq [OF _ vector_derivative_at])
-    show "(g1 +++ g2 has_vector_derivative vector_derivative (g1 \<circ> (*) 2) (at x)) (at x)"
-      if "x \<in> {0..1/2} - insert (1/2) S" for x
-    proof (rule has_vector_derivative_transform_within)
-      show "(g1 \<circ> (*) 2 has_vector_derivative vector_derivative (g1 \<circ> (*) 2) (at x)) (at x)"
-        using that
-        by (force intro: g1D differentiable_chain_at simp: vector_derivative_works [symmetric])
-      show "\<And>x'. \<lbrakk>dist x' x < dist x (1/2)\<rbrakk> \<Longrightarrow> (g1 \<circ> (*) 2) x' = (g1 +++ g2) x'"
-        using that by (auto simp: dist_norm joinpaths_def)
-    qed (use that in \<open>auto simp: dist_norm\<close>)
-  qed
-  have "continuous_on ({0..1} - insert 1 ((*) 2 ` S))
-                      ((\<lambda>x. 1/2 * vector_derivative (g1 \<circ> (*)2) (at x)) \<circ> (*)(1/2))"
-    apply (rule continuous_intros)+
-    using coDhalf
-    apply (simp add: scaleR_conv_of_real image_set_diff image_image)
-    done
-  then have con_g1: "continuous_on ({0..1} - insert 1 ((*) 2 ` S)) (\<lambda>x. vector_derivative g1 (at x))"
-    by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
-  have "continuous_on {0..1} g1"
-    using continuous_on_joinpaths_D1 assms piecewise_C1_differentiable_on_def by blast
-  with \<open>finite S\<close> show ?thesis
-    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-    apply (rule_tac x="insert 1 (((*)2)`S)" in exI)
-    apply (simp add: g1D con_g1)
-  done
-qed
-
-lemma piecewise_C1_differentiable_D2:
-  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
-  assumes "(g1 +++ g2) piecewise_C1_differentiable_on {0..1}" "pathfinish g1 = pathstart g2"
-    shows "g2 piecewise_C1_differentiable_on {0..1}"
-proof -
-  obtain S where "finite S"
-             and co12: "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
-             and g12D: "\<forall>x\<in>{0..1} - S. g1 +++ g2 differentiable at x"
-    using assms  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have g2D: "g2 differentiable at x" if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)" for x
-  proof (rule differentiable_transform_within)
-    show "g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2) differentiable at x"
-      using g12D that
-      apply (simp only: joinpaths_def)
-      apply (drule_tac x= "(x+1) / 2" in bspec, force simp: field_split_simps)
-      apply (rule differentiable_chain_at derivative_intros | force)+
-      done
-    show "\<And>x'. dist x' x < dist ((x + 1) / 2) (1/2) \<Longrightarrow> (g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2)) x' = g2 x'"
-      using that by (auto simp: dist_real_def joinpaths_def field_simps)
-    qed (use that in \<open>auto simp: dist_norm\<close>)
-  have [simp]: "vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at ((x+1)/2)) = 2 *\<^sub>R vector_derivative g2 (at x)"
-               if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)" for x
-    using that  by (auto simp: vector_derivative_chain_at field_split_simps g2D)
-  have "continuous_on ({1/2..1} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
-    using co12 by (rule continuous_on_subset) force
-  then have coDhalf: "continuous_on ({1/2..1} - insert (1/2) S) (\<lambda>x. vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at x))"
-  proof (rule continuous_on_eq [OF _ vector_derivative_at])
-    show "(g1 +++ g2 has_vector_derivative vector_derivative (g2 \<circ> (\<lambda>x. 2 * x - 1)) (at x))
-          (at x)"
-      if "x \<in> {1 / 2..1} - insert (1 / 2) S" for x
-    proof (rule_tac f="g2 \<circ> (\<lambda>x. 2*x-1)" and d="dist (3/4) ((x+1)/2)" in has_vector_derivative_transform_within)
-      show "(g2 \<circ> (\<lambda>x. 2 * x - 1) has_vector_derivative vector_derivative (g2 \<circ> (\<lambda>x. 2 * x - 1)) (at x))
-            (at x)"
-        using that by (force intro: g2D differentiable_chain_at simp: vector_derivative_works [symmetric])
-      show "\<And>x'. \<lbrakk>dist x' x < dist (3 / 4) ((x + 1) / 2)\<rbrakk> \<Longrightarrow> (g2 \<circ> (\<lambda>x. 2 * x - 1)) x' = (g1 +++ g2) x'"
-        using that by (auto simp: dist_norm joinpaths_def add_divide_distrib)
-    qed (use that in \<open>auto simp: dist_norm\<close>)
-  qed
-  have [simp]: "((\<lambda>x. (x+1) / 2) ` ({0..1} - insert 0 ((\<lambda>x. 2 * x - 1) ` S))) = ({1/2..1} - insert (1/2) S)"
-    apply (simp add: image_set_diff inj_on_def image_image)
-    apply (auto simp: image_affinity_atLeastAtMost_div add_divide_distrib)
-    done
-  have "continuous_on ({0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S))
-                      ((\<lambda>x. 1/2 * vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at x)) \<circ> (\<lambda>x. (x+1)/2))"
-    by (rule continuous_intros | simp add:  coDhalf)+
-  then have con_g2: "continuous_on ({0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)) (\<lambda>x. vector_derivative g2 (at x))"
-    by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
-  have "continuous_on {0..1} g2"
-    using continuous_on_joinpaths_D2 assms piecewise_C1_differentiable_on_def by blast
-  with \<open>finite S\<close> show ?thesis
-    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-    apply (rule_tac x="insert 0 ((\<lambda>x. 2 * x - 1) ` S)" in exI)
-    apply (simp add: g2D con_g2)
-  done
-qed
-
-subsection \<open>Valid paths, and their start and finish\<close>
-
-definition\<^marker>\<open>tag important\<close> valid_path :: "(real \<Rightarrow> 'a :: real_normed_vector) \<Rightarrow> bool"
-  where "valid_path f \<equiv> f piecewise_C1_differentiable_on {0..1::real}"
-
-definition closed_path :: "(real \<Rightarrow> 'a :: real_normed_vector) \<Rightarrow> bool"
-  where "closed_path g \<equiv> g 0 = g 1"
-
-text\<open>In particular, all results for paths apply\<close>
-
-lemma valid_path_imp_path: "valid_path g \<Longrightarrow> path g"
-  by (simp add: path_def piecewise_C1_differentiable_on_def valid_path_def)
-
-lemma connected_valid_path_image: "valid_path g \<Longrightarrow> connected(path_image g)"
-  by (metis connected_path_image valid_path_imp_path)
-
-lemma compact_valid_path_image: "valid_path g \<Longrightarrow> compact(path_image g)"
-  by (metis compact_path_image valid_path_imp_path)
-
-lemma bounded_valid_path_image: "valid_path g \<Longrightarrow> bounded(path_image g)"
-  by (metis bounded_path_image valid_path_imp_path)
-
-lemma closed_valid_path_image: "valid_path g \<Longrightarrow> closed(path_image g)"
-  by (metis closed_path_image valid_path_imp_path)
-
-lemma valid_path_compose:
-  assumes "valid_path g"
-      and der: "\<And>x. x \<in> path_image g \<Longrightarrow> f field_differentiable (at x)"
-      and con: "continuous_on (path_image g) (deriv f)"
-    shows "valid_path (f \<circ> g)"
-proof -
-  obtain S where "finite S" and g_diff: "g C1_differentiable_on {0..1} - S"
-    using \<open>valid_path g\<close> unfolding valid_path_def piecewise_C1_differentiable_on_def by auto
-  have "f \<circ> g differentiable at t" when "t\<in>{0..1} - S" for t
-    proof (rule differentiable_chain_at)
-      show "g differentiable at t" using \<open>valid_path g\<close>
-        by (meson C1_differentiable_on_eq \<open>g C1_differentiable_on {0..1} - S\<close> that)
-    next
-      have "g t\<in>path_image g" using that DiffD1 image_eqI path_image_def by metis
-      then show "f differentiable at (g t)"
-        using der[THEN field_differentiable_imp_differentiable] by auto
-    qed
-  moreover have "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (f \<circ> g) (at x))"
-    proof (rule continuous_on_eq [where f = "\<lambda>x. vector_derivative g (at x) * deriv f (g x)"],
-        rule continuous_intros)
-      show "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative g (at x))"
-        using g_diff C1_differentiable_on_eq by auto
-    next
-      have "continuous_on {0..1} (\<lambda>x. deriv f (g x))"
-        using continuous_on_compose[OF _ con[unfolded path_image_def],unfolded comp_def]
-          \<open>valid_path g\<close> piecewise_C1_differentiable_on_def valid_path_def
-        by blast
-      then show "continuous_on ({0..1} - S) (\<lambda>x. deriv f (g x))"
-        using continuous_on_subset by blast
-    next
-      show "vector_derivative g (at t) * deriv f (g t) = vector_derivative (f \<circ> g) (at t)"
-          when "t \<in> {0..1} - S" for t
-        proof (rule vector_derivative_chain_at_general[symmetric])
-          show "g differentiable at t" by (meson C1_differentiable_on_eq g_diff that)
-        next
-          have "g t\<in>path_image g" using that DiffD1 image_eqI path_image_def by metis
-          then show "f field_differentiable at (g t)" using der by auto
-        qed
-    qed
-  ultimately have "f \<circ> g C1_differentiable_on {0..1} - S"
-    using C1_differentiable_on_eq by blast
-  moreover have "path (f \<circ> g)"
-    apply (rule path_continuous_image[OF valid_path_imp_path[OF \<open>valid_path g\<close>]])
-    using der
-    by (simp add: continuous_at_imp_continuous_on field_differentiable_imp_continuous_at)
-  ultimately show ?thesis unfolding valid_path_def piecewise_C1_differentiable_on_def path_def
-    using \<open>finite S\<close> by auto
-qed
-  
-lemma valid_path_uminus_comp[simp]:
-  fixes g::"real \<Rightarrow> 'a ::real_normed_field"
-  shows "valid_path (uminus \<circ> g) \<longleftrightarrow> valid_path g"
-proof 
-  show "valid_path g \<Longrightarrow> valid_path (uminus \<circ> g)" for g::"real \<Rightarrow> 'a"
-    by (auto intro!: valid_path_compose derivative_intros simp add: deriv_linear[of "-1",simplified])  
-  then show "valid_path g" when "valid_path (uminus \<circ> g)"
-    by (metis fun.map_comp group_add_class.minus_comp_minus id_comp that)
-qed
-
-lemma valid_path_offset[simp]:
-  shows "valid_path (\<lambda>t. g t - z) \<longleftrightarrow> valid_path g"  
-proof 
-  show *: "valid_path (g::real\<Rightarrow>'a) \<Longrightarrow> valid_path (\<lambda>t. g t - z)" for g z
-    unfolding valid_path_def
-    by (fastforce intro:derivative_intros C1_differentiable_imp_piecewise piecewise_C1_differentiable_diff)
-  show "valid_path (\<lambda>t. g t - z) \<Longrightarrow> valid_path g"
-    using *[of "\<lambda>t. g t - z" "-z",simplified] .
-qed
-  
-
-subsection\<open>Contour Integrals along a path\<close>
-
-text\<open>This definition is for complex numbers only, and does not generalise to line integrals in a vector field\<close>
-
-text\<open>piecewise differentiable function on [0,1]\<close>
-
-definition\<^marker>\<open>tag important\<close> has_contour_integral :: "(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> bool"
-           (infixr "has'_contour'_integral" 50)
-  where "(f has_contour_integral i) g \<equiv>
-           ((\<lambda>x. f(g x) * vector_derivative g (at x within {0..1}))
-            has_integral i) {0..1}"
-
-definition\<^marker>\<open>tag important\<close> contour_integrable_on
-           (infixr "contour'_integrable'_on" 50)
-  where "f contour_integrable_on g \<equiv> \<exists>i. (f has_contour_integral i) g"
-
-definition\<^marker>\<open>tag important\<close> contour_integral
-  where "contour_integral g f \<equiv> SOME i. (f has_contour_integral i) g \<or> \<not> f contour_integrable_on g \<and> i=0"
-
-lemma not_integrable_contour_integral: "\<not> f contour_integrable_on g \<Longrightarrow> contour_integral g f = 0"
-  unfolding contour_integrable_on_def contour_integral_def by blast
-
-lemma contour_integral_unique: "(f has_contour_integral i) g \<Longrightarrow> contour_integral g f = i"
-  apply (simp add: contour_integral_def has_contour_integral_def contour_integrable_on_def)
-  using has_integral_unique by blast
-
-lemma has_contour_integral_eqpath:
-     "\<lbrakk>(f has_contour_integral y) p; f contour_integrable_on \<gamma>;
-       contour_integral p f = contour_integral \<gamma> f\<rbrakk>
-      \<Longrightarrow> (f has_contour_integral y) \<gamma>"
-using contour_integrable_on_def contour_integral_unique by auto
-
-lemma has_contour_integral_integral:
-    "f contour_integrable_on i \<Longrightarrow> (f has_contour_integral (contour_integral i f)) i"
-  by (metis contour_integral_unique contour_integrable_on_def)
-
-lemma has_contour_integral_unique:
-    "(f has_contour_integral i) g \<Longrightarrow> (f has_contour_integral j) g \<Longrightarrow> i = j"
-  using has_integral_unique
-  by (auto simp: has_contour_integral_def)
-
-lemma has_contour_integral_integrable: "(f has_contour_integral i) g \<Longrightarrow> f contour_integrable_on g"
-  using contour_integrable_on_def by blast
-
-text\<open>Show that we can forget about the localized derivative.\<close>
-
-lemma has_integral_localized_vector_derivative:
-    "((\<lambda>x. f (g x) * vector_derivative g (at x within {a..b})) has_integral i) {a..b} \<longleftrightarrow>
-     ((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {a..b}"
-proof -
-  have *: "{a..b} - {a,b} = interior {a..b}"
-    by (simp add: atLeastAtMost_diff_ends)
-  show ?thesis
-    apply (rule has_integral_spike_eq [of "{a,b}"])
-    apply (auto simp: at_within_interior [of _ "{a..b}"])
-    done
-qed
-
-lemma integrable_on_localized_vector_derivative:
-    "(\<lambda>x. f (g x) * vector_derivative g (at x within {a..b})) integrable_on {a..b} \<longleftrightarrow>
-     (\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on {a..b}"
-  by (simp add: integrable_on_def has_integral_localized_vector_derivative)
-
-lemma has_contour_integral:
-     "(f has_contour_integral i) g \<longleftrightarrow>
-      ((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {0..1}"
-  by (simp add: has_integral_localized_vector_derivative has_contour_integral_def)
-
-lemma contour_integrable_on:
-     "f contour_integrable_on g \<longleftrightarrow>
-      (\<lambda>t. f(g t) * vector_derivative g (at t)) integrable_on {0..1}"
-  by (simp add: has_contour_integral integrable_on_def contour_integrable_on_def)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Reversing a path\<close>
-
-lemma valid_path_imp_reverse:
-  assumes "valid_path g"
-    shows "valid_path(reversepath g)"
-proof -
-  obtain S where "finite S" and S: "g C1_differentiable_on ({0..1} - S)"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
-  then have "finite ((-) 1 ` S)"
-    by auto
-  moreover have "(reversepath g C1_differentiable_on ({0..1} - (-) 1 ` S))"
-    unfolding reversepath_def
-    apply (rule C1_differentiable_compose [of "\<lambda>x::real. 1-x" _ g, unfolded o_def])
-    using S
-    by (force simp: finite_vimageI inj_on_def C1_differentiable_on_eq elim!: continuous_on_subset)+
-  ultimately show ?thesis using assms
-    by (auto simp: valid_path_def piecewise_C1_differentiable_on_def path_def [symmetric])
-qed
-
-lemma valid_path_reversepath [simp]: "valid_path(reversepath g) \<longleftrightarrow> valid_path g"
-  using valid_path_imp_reverse by force
-
-lemma has_contour_integral_reversepath:
-  assumes "valid_path g" and f: "(f has_contour_integral i) g"
-    shows "(f has_contour_integral (-i)) (reversepath g)"
-proof -
-  { fix S x
-    assume xs: "g C1_differentiable_on ({0..1} - S)" "x \<notin> (-) 1 ` S" "0 \<le> x" "x \<le> 1"
-    have "vector_derivative (\<lambda>x. g (1 - x)) (at x within {0..1}) =
-            - vector_derivative g (at (1 - x) within {0..1})"
-    proof -
-      obtain f' where f': "(g has_vector_derivative f') (at (1 - x))"
-        using xs
-        by (force simp: has_vector_derivative_def C1_differentiable_on_def)
-      have "(g \<circ> (\<lambda>x. 1 - x) has_vector_derivative -1 *\<^sub>R f') (at x)"
-        by (intro vector_diff_chain_within has_vector_derivative_at_within [OF f'] derivative_eq_intros | simp)+
-      then have mf': "((\<lambda>x. g (1 - x)) has_vector_derivative -f') (at x)"
-        by (simp add: o_def)
-      show ?thesis
-        using xs
-        by (auto simp: vector_derivative_at_within_ivl [OF mf'] vector_derivative_at_within_ivl [OF f'])
-    qed
-  } note * = this
-  obtain S where S: "continuous_on {0..1} g" "finite S" "g C1_differentiable_on {0..1} - S"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
-  have "((\<lambda>x. - (f (g (1 - x)) * vector_derivative g (at (1 - x) within {0..1}))) has_integral -i)
-       {0..1}"
-    using has_integral_affinity01 [where m= "-1" and c=1, OF f [unfolded has_contour_integral_def]]
-    by (simp add: has_integral_neg)
-  then show ?thesis
-    using S
-    apply (clarsimp simp: reversepath_def has_contour_integral_def)
-    apply (rule_tac S = "(\<lambda>x. 1 - x) ` S" in has_integral_spike_finite)
-      apply (auto simp: *)
-    done
-qed
-
-lemma contour_integrable_reversepath:
-    "valid_path g \<Longrightarrow> f contour_integrable_on g \<Longrightarrow> f contour_integrable_on (reversepath g)"
-  using has_contour_integral_reversepath contour_integrable_on_def by blast
-
-lemma contour_integrable_reversepath_eq:
-    "valid_path g \<Longrightarrow> (f contour_integrable_on (reversepath g) \<longleftrightarrow> f contour_integrable_on g)"
-  using contour_integrable_reversepath valid_path_reversepath by fastforce
-
-lemma contour_integral_reversepath:
-  assumes "valid_path g"
-    shows "contour_integral (reversepath g) f = - (contour_integral g f)"
-proof (cases "f contour_integrable_on g")
-  case True then show ?thesis
-    by (simp add: assms contour_integral_unique has_contour_integral_integral has_contour_integral_reversepath)
-next
-  case False then have "\<not> f contour_integrable_on (reversepath g)"
-    by (simp add: assms contour_integrable_reversepath_eq)
-  with False show ?thesis by (simp add: not_integrable_contour_integral)
-qed
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Joining two paths together\<close>
-
-lemma valid_path_join:
-  assumes "valid_path g1" "valid_path g2" "pathfinish g1 = pathstart g2"
-    shows "valid_path(g1 +++ g2)"
-proof -
-  have "g1 1 = g2 0"
-    using assms by (auto simp: pathfinish_def pathstart_def)
-  moreover have "(g1 \<circ> (\<lambda>x. 2*x)) piecewise_C1_differentiable_on {0..1/2}"
-    apply (rule piecewise_C1_differentiable_compose)
-    using assms
-    apply (auto simp: valid_path_def piecewise_C1_differentiable_on_def continuous_on_joinpaths)
-    apply (force intro: finite_vimageI [where h = "(*)2"] inj_onI)
-    done
-  moreover have "(g2 \<circ> (\<lambda>x. 2*x-1)) piecewise_C1_differentiable_on {1/2..1}"
-    apply (rule piecewise_C1_differentiable_compose)
-    using assms unfolding valid_path_def piecewise_C1_differentiable_on_def
-    by (auto intro!: continuous_intros finite_vimageI [where h = "(\<lambda>x. 2*x - 1)"] inj_onI
-             simp: image_affinity_atLeastAtMost_diff continuous_on_joinpaths)
-  ultimately show ?thesis
-    apply (simp only: valid_path_def continuous_on_joinpaths joinpaths_def)
-    apply (rule piecewise_C1_differentiable_cases)
-    apply (auto simp: o_def)
-    done
-qed
-
-lemma valid_path_join_D1:
-  fixes g1 :: "real \<Rightarrow> 'a::real_normed_field"
-  shows "valid_path (g1 +++ g2) \<Longrightarrow> valid_path g1"
-  unfolding valid_path_def
-  by (rule piecewise_C1_differentiable_D1)
-
-lemma valid_path_join_D2:
-  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
-  shows "\<lbrakk>valid_path (g1 +++ g2); pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> valid_path g2"
-  unfolding valid_path_def
-  by (rule piecewise_C1_differentiable_D2)
-
-lemma valid_path_join_eq [simp]:
-  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
-  shows "pathfinish g1 = pathstart g2 \<Longrightarrow> (valid_path(g1 +++ g2) \<longleftrightarrow> valid_path g1 \<and> valid_path g2)"
-  using valid_path_join_D1 valid_path_join_D2 valid_path_join by blast
-
-lemma has_contour_integral_join:
-  assumes "(f has_contour_integral i1) g1" "(f has_contour_integral i2) g2"
-          "valid_path g1" "valid_path g2"
-    shows "(f has_contour_integral (i1 + i2)) (g1 +++ g2)"
-proof -
-  obtain s1 s2
-    where s1: "finite s1" "\<forall>x\<in>{0..1} - s1. g1 differentiable at x"
-      and s2: "finite s2" "\<forall>x\<in>{0..1} - s2. g2 differentiable at x"
-    using assms
-    by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have 1: "((\<lambda>x. f (g1 x) * vector_derivative g1 (at x)) has_integral i1) {0..1}"
-   and 2: "((\<lambda>x. f (g2 x) * vector_derivative g2 (at x)) has_integral i2) {0..1}"
-    using assms
-    by (auto simp: has_contour_integral)
-  have i1: "((\<lambda>x. (2*f (g1 (2*x))) * vector_derivative g1 (at (2*x))) has_integral i1) {0..1/2}"
-   and i2: "((\<lambda>x. (2*f (g2 (2*x - 1))) * vector_derivative g2 (at (2*x - 1))) has_integral i2) {1/2..1}"
-    using has_integral_affinity01 [OF 1, where m= 2 and c=0, THEN has_integral_cmul [where c=2]]
-          has_integral_affinity01 [OF 2, where m= 2 and c="-1", THEN has_integral_cmul [where c=2]]
-    by (simp_all only: image_affinity_atLeastAtMost_div_diff, simp_all add: scaleR_conv_of_real mult_ac)
-  have g1: "\<lbrakk>0 \<le> z; z*2 < 1; z*2 \<notin> s1\<rbrakk> \<Longrightarrow>
-            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at z) =
-            2 *\<^sub>R vector_derivative g1 (at (z*2))" for z
-    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g1(2*x))" and d = "\<bar>z - 1/2\<bar>"]])
-    apply (simp_all add: dist_real_def abs_if split: if_split_asm)
-    apply (rule vector_diff_chain_at [of "\<lambda>x. 2*x" 2 _ g1, simplified o_def])
-    apply (simp add: has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
-    using s1
-    apply (auto simp: algebra_simps vector_derivative_works)
-    done
-  have g2: "\<lbrakk>1 < z*2; z \<le> 1; z*2 - 1 \<notin> s2\<rbrakk> \<Longrightarrow>
-            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at z) =
-            2 *\<^sub>R vector_derivative g2 (at (z*2 - 1))" for z
-    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g2 (2*x - 1))" and d = "\<bar>z - 1/2\<bar>"]])
-    apply (simp_all add: dist_real_def abs_if split: if_split_asm)
-    apply (rule vector_diff_chain_at [of "\<lambda>x. 2*x - 1" 2 _ g2, simplified o_def])
-    apply (simp add: has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
-    using s2
-    apply (auto simp: algebra_simps vector_derivative_works)
-    done
-  have "((\<lambda>x. f ((g1 +++ g2) x) * vector_derivative (g1 +++ g2) (at x)) has_integral i1) {0..1/2}"
-    apply (rule has_integral_spike_finite [OF _ _ i1, of "insert (1/2) ((*)2 -` s1)"])
-    using s1
-    apply (force intro: finite_vimageI [where h = "(*)2"] inj_onI)
-    apply (clarsimp simp add: joinpaths_def scaleR_conv_of_real mult_ac g1)
-    done
-  moreover have "((\<lambda>x. f ((g1 +++ g2) x) * vector_derivative (g1 +++ g2) (at x)) has_integral i2) {1/2..1}"
-    apply (rule has_integral_spike_finite [OF _ _ i2, of "insert (1/2) ((\<lambda>x. 2*x-1) -` s2)"])
-    using s2
-    apply (force intro: finite_vimageI [where h = "\<lambda>x. 2*x-1"] inj_onI)
-    apply (clarsimp simp add: joinpaths_def scaleR_conv_of_real mult_ac g2)
-    done
-  ultimately
-  show ?thesis
-    apply (simp add: has_contour_integral)
-    apply (rule has_integral_combine [where c = "1/2"], auto)
-    done
-qed
-
-lemma contour_integrable_joinI:
-  assumes "f contour_integrable_on g1" "f contour_integrable_on g2"
-          "valid_path g1" "valid_path g2"
-    shows "f contour_integrable_on (g1 +++ g2)"
-  using assms
-  by (meson has_contour_integral_join contour_integrable_on_def)
-
-lemma contour_integrable_joinD1:
-  assumes "f contour_integrable_on (g1 +++ g2)" "valid_path g1"
-    shows "f contour_integrable_on g1"
-proof -
-  obtain s1
-    where s1: "finite s1" "\<forall>x\<in>{0..1} - s1. g1 differentiable at x"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have "(\<lambda>x. f ((g1 +++ g2) (x/2)) * vector_derivative (g1 +++ g2) (at (x/2))) integrable_on {0..1}"
-    using assms
-    apply (auto simp: contour_integrable_on)
-    apply (drule integrable_on_subcbox [where a=0 and b="1/2"])
-    apply (auto intro: integrable_affinity [of _ 0 "1/2::real" "1/2" 0, simplified])
-    done
-  then have *: "(\<lambda>x. (f ((g1 +++ g2) (x/2))/2) * vector_derivative (g1 +++ g2) (at (x/2))) integrable_on {0..1}"
-    by (auto dest: integrable_cmul [where c="1/2"] simp: scaleR_conv_of_real)
-  have g1: "\<lbrakk>0 < z; z < 1; z \<notin> s1\<rbrakk> \<Longrightarrow>
-            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at (z/2)) =
-            2 *\<^sub>R vector_derivative g1 (at z)"  for z
-    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g1(2*x))" and d = "\<bar>(z-1)/2\<bar>"]])
-    apply (simp_all add: field_simps dist_real_def abs_if split: if_split_asm)
-    apply (rule vector_diff_chain_at [of "\<lambda>x. x*2" 2 _ g1, simplified o_def])
-    using s1
-    apply (auto simp: vector_derivative_works has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
-    done
-  show ?thesis
-    using s1
-    apply (auto simp: contour_integrable_on)
-    apply (rule integrable_spike_finite [of "{0,1} \<union> s1", OF _ _ *])
-    apply (auto simp: joinpaths_def scaleR_conv_of_real g1)
-    done
-qed
-
-lemma contour_integrable_joinD2:
-  assumes "f contour_integrable_on (g1 +++ g2)" "valid_path g2"
-    shows "f contour_integrable_on g2"
-proof -
-  obtain s2
-    where s2: "finite s2" "\<forall>x\<in>{0..1} - s2. g2 differentiable at x"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have "(\<lambda>x. f ((g1 +++ g2) (x/2 + 1/2)) * vector_derivative (g1 +++ g2) (at (x/2 + 1/2))) integrable_on {0..1}"
-    using assms
-    apply (auto simp: contour_integrable_on)
-    apply (drule integrable_on_subcbox [where a="1/2" and b=1], auto)
-    apply (drule integrable_affinity [of _ "1/2::real" 1 "1/2" "1/2", simplified])
-    apply (simp add: image_affinity_atLeastAtMost_diff)
-    done
-  then have *: "(\<lambda>x. (f ((g1 +++ g2) (x/2 + 1/2))/2) * vector_derivative (g1 +++ g2) (at (x/2 + 1/2)))
-                integrable_on {0..1}"
-    by (auto dest: integrable_cmul [where c="1/2"] simp: scaleR_conv_of_real)
-  have g2: "\<lbrakk>0 < z; z < 1; z \<notin> s2\<rbrakk> \<Longrightarrow>
-            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at (z/2+1/2)) =
-            2 *\<^sub>R vector_derivative g2 (at z)" for z
-    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g2(2*x-1))" and d = "\<bar>z/2\<bar>"]])
-    apply (simp_all add: field_simps dist_real_def abs_if split: if_split_asm)
-    apply (rule vector_diff_chain_at [of "\<lambda>x. x*2-1" 2 _ g2, simplified o_def])
-    using s2
-    apply (auto simp: has_vector_derivative_def has_derivative_def bounded_linear_mult_left
-                      vector_derivative_works add_divide_distrib)
-    done
-  show ?thesis
-    using s2
-    apply (auto simp: contour_integrable_on)
-    apply (rule integrable_spike_finite [of "{0,1} \<union> s2", OF _ _ *])
-    apply (auto simp: joinpaths_def scaleR_conv_of_real g2)
-    done
-qed
-
-lemma contour_integrable_join [simp]:
-  shows
-    "\<lbrakk>valid_path g1; valid_path g2\<rbrakk>
-     \<Longrightarrow> f contour_integrable_on (g1 +++ g2) \<longleftrightarrow> f contour_integrable_on g1 \<and> f contour_integrable_on g2"
-using contour_integrable_joinD1 contour_integrable_joinD2 contour_integrable_joinI by blast
-
-lemma contour_integral_join [simp]:
-  shows
-    "\<lbrakk>f contour_integrable_on g1; f contour_integrable_on g2; valid_path g1; valid_path g2\<rbrakk>
-        \<Longrightarrow> contour_integral (g1 +++ g2) f = contour_integral g1 f + contour_integral g2 f"
-  by (simp add: has_contour_integral_integral has_contour_integral_join contour_integral_unique)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Shifting the starting point of a (closed) path\<close>
-
-lemma shiftpath_alt_def: "shiftpath a f = (\<lambda>x. if x \<le> 1-a then f (a + x) else f (a + x - 1))"
-  by (auto simp: shiftpath_def)
-
-lemma valid_path_shiftpath [intro]:
-  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "valid_path(shiftpath a g)"
-  using assms
-  apply (auto simp: valid_path_def shiftpath_alt_def)
-  apply (rule piecewise_C1_differentiable_cases)
-  apply (auto simp: algebra_simps)
-  apply (rule piecewise_C1_differentiable_affine [of g 1 a, simplified o_def scaleR_one])
-  apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
-  apply (rule piecewise_C1_differentiable_affine [of g 1 "a-1", simplified o_def scaleR_one algebra_simps])
-  apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
-  done
-
-lemma has_contour_integral_shiftpath:
-  assumes f: "(f has_contour_integral i) g" "valid_path g"
-      and a: "a \<in> {0..1}"
-    shows "(f has_contour_integral i) (shiftpath a g)"
-proof -
-  obtain s
-    where s: "finite s" and g: "\<forall>x\<in>{0..1} - s. g differentiable at x"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  have *: "((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {0..1}"
-    using assms by (auto simp: has_contour_integral)
-  then have i: "i = integral {a..1} (\<lambda>x. f (g x) * vector_derivative g (at x)) +
-                    integral {0..a} (\<lambda>x. f (g x) * vector_derivative g (at x))"
-    apply (rule has_integral_unique)
-    apply (subst add.commute)
-    apply (subst integral_combine)
-    using assms * integral_unique by auto
-  { fix x
-    have "0 \<le> x \<Longrightarrow> x + a < 1 \<Longrightarrow> x \<notin> (\<lambda>x. x - a) ` s \<Longrightarrow>
-         vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x + a))"
-      unfolding shiftpath_def
-      apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g(a+x))" and d = "dist(1-a) x"]])
-        apply (auto simp: field_simps dist_real_def abs_if split: if_split_asm)
-      apply (rule vector_diff_chain_at [of "\<lambda>x. x+a" 1 _ g, simplified o_def scaleR_one])
-       apply (intro derivative_eq_intros | simp)+
-      using g
-       apply (drule_tac x="x+a" in bspec)
-      using a apply (auto simp: has_vector_derivative_def vector_derivative_works image_def add.commute)
-      done
-  } note vd1 = this
-  { fix x
-    have "1 < x + a \<Longrightarrow> x \<le> 1 \<Longrightarrow> x \<notin> (\<lambda>x. x - a + 1) ` s \<Longrightarrow>
-          vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x + a - 1))"
-      unfolding shiftpath_def
-      apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g(a+x-1))" and d = "dist (1-a) x"]])
-        apply (auto simp: field_simps dist_real_def abs_if split: if_split_asm)
-      apply (rule vector_diff_chain_at [of "\<lambda>x. x+a-1" 1 _ g, simplified o_def scaleR_one])
-       apply (intro derivative_eq_intros | simp)+
-      using g
-      apply (drule_tac x="x+a-1" in bspec)
-      using a apply (auto simp: has_vector_derivative_def vector_derivative_works image_def add.commute)
-      done
-  } note vd2 = this
-  have va1: "(\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on ({a..1})"
-    using * a   by (fastforce intro: integrable_subinterval_real)
-  have v0a: "(\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on ({0..a})"
-    apply (rule integrable_subinterval_real)
-    using * a by auto
-  have "((\<lambda>x. f (shiftpath a g x) * vector_derivative (shiftpath a g) (at x))
-        has_integral  integral {a..1} (\<lambda>x. f (g x) * vector_derivative g (at x)))  {0..1 - a}"
-    apply (rule has_integral_spike_finite
-             [where S = "{1-a} \<union> (\<lambda>x. x-a) ` s" and f = "\<lambda>x. f(g(a+x)) * vector_derivative g (at(a+x))"])
-      using s apply blast
-     using a apply (auto simp: algebra_simps vd1)
-     apply (force simp: shiftpath_def add.commute)
-    using has_integral_affinity [where m=1 and c=a, simplified, OF integrable_integral [OF va1]]
-    apply (simp add: image_affinity_atLeastAtMost_diff [where m=1 and c=a, simplified] add.commute)
-    done
-  moreover
-  have "((\<lambda>x. f (shiftpath a g x) * vector_derivative (shiftpath a g) (at x))
-        has_integral  integral {0..a} (\<lambda>x. f (g x) * vector_derivative g (at x)))  {1 - a..1}"
-    apply (rule has_integral_spike_finite
-             [where S = "{1-a} \<union> (\<lambda>x. x-a+1) ` s" and f = "\<lambda>x. f(g(a+x-1)) * vector_derivative g (at(a+x-1))"])
-      using s apply blast
-     using a apply (auto simp: algebra_simps vd2)
-     apply (force simp: shiftpath_def add.commute)
-    using has_integral_affinity [where m=1 and c="a-1", simplified, OF integrable_integral [OF v0a]]
-    apply (simp add: image_affinity_atLeastAtMost [where m=1 and c="1-a", simplified])
-    apply (simp add: algebra_simps)
-    done
-  ultimately show ?thesis
-    using a
-    by (auto simp: i has_contour_integral intro: has_integral_combine [where c = "1-a"])
-qed
-
-lemma has_contour_integral_shiftpath_D:
-  assumes "(f has_contour_integral i) (shiftpath a g)"
-          "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "(f has_contour_integral i) g"
-proof -
-  obtain s
-    where s: "finite s" and g: "\<forall>x\<in>{0..1} - s. g differentiable at x"
-    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
-  { fix x
-    assume x: "0 < x" "x < 1" "x \<notin> s"
-    then have gx: "g differentiable at x"
-      using g by auto
-    have "vector_derivative g (at x within {0..1}) =
-          vector_derivative (shiftpath (1 - a) (shiftpath a g)) (at x within {0..1})"
-      apply (rule vector_derivative_at_within_ivl
-                  [OF has_vector_derivative_transform_within_open
-                      [where f = "(shiftpath (1 - a) (shiftpath a g))" and S = "{0<..<1}-s"]])
-      using s g assms x
-      apply (auto simp: finite_imp_closed open_Diff shiftpath_shiftpath
-                        at_within_interior [of _ "{0..1}"] vector_derivative_works [symmetric])
-      apply (rule differentiable_transform_within [OF gx, of "min x (1-x)"])
-      apply (auto simp: dist_real_def shiftpath_shiftpath abs_if split: if_split_asm)
-      done
-  } note vd = this
-  have fi: "(f has_contour_integral i) (shiftpath (1 - a) (shiftpath a g))"
-    using assms  by (auto intro!: has_contour_integral_shiftpath)
-  show ?thesis
-    apply (simp add: has_contour_integral_def)
-    apply (rule has_integral_spike_finite [of "{0,1} \<union> s", OF _ _  fi [unfolded has_contour_integral_def]])
-    using s assms vd
-    apply (auto simp: Path_Connected.shiftpath_shiftpath)
-    done
-qed
-
-lemma has_contour_integral_shiftpath_eq:
-  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "(f has_contour_integral i) (shiftpath a g) \<longleftrightarrow> (f has_contour_integral i) g"
-  using assms has_contour_integral_shiftpath has_contour_integral_shiftpath_D by blast
-
-lemma contour_integrable_on_shiftpath_eq:
-  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "f contour_integrable_on (shiftpath a g) \<longleftrightarrow> f contour_integrable_on g"
-using assms contour_integrable_on_def has_contour_integral_shiftpath_eq by auto
-
-lemma contour_integral_shiftpath:
-  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
-    shows "contour_integral (shiftpath a g) f = contour_integral g f"
-   using assms
-   by (simp add: contour_integral_def contour_integrable_on_def has_contour_integral_shiftpath_eq)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>More about straight-line paths\<close>
-
-lemma has_vector_derivative_linepath_within:
-    "(linepath a b has_vector_derivative (b - a)) (at x within s)"
-apply (simp add: linepath_def has_vector_derivative_def algebra_simps)
-apply (rule derivative_eq_intros | simp)+
-done
-
-lemma vector_derivative_linepath_within:
-    "x \<in> {0..1} \<Longrightarrow> vector_derivative (linepath a b) (at x within {0..1}) = b - a"
-  apply (rule vector_derivative_within_cbox [of 0 "1::real", simplified])
-  apply (auto simp: has_vector_derivative_linepath_within)
-  done
-
-lemma vector_derivative_linepath_at [simp]: "vector_derivative (linepath a b) (at x) = b - a"
-  by (simp add: has_vector_derivative_linepath_within vector_derivative_at)
-
-lemma valid_path_linepath [iff]: "valid_path (linepath a b)"
-  apply (simp add: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_on_linepath)
-  apply (rule_tac x="{}" in exI)
-  apply (simp add: differentiable_on_def differentiable_def)
-  using has_vector_derivative_def has_vector_derivative_linepath_within
-  apply (fastforce simp add: continuous_on_eq_continuous_within)
-  done
-
-lemma has_contour_integral_linepath:
-  shows "(f has_contour_integral i) (linepath a b) \<longleftrightarrow>
-         ((\<lambda>x. f(linepath a b x) * (b - a)) has_integral i) {0..1}"
-  by (simp add: has_contour_integral)
-
-lemma linepath_in_path:
-  shows "x \<in> {0..1} \<Longrightarrow> linepath a b x \<in> closed_segment a b"
-  by (auto simp: segment linepath_def)
-
-lemma linepath_image_01: "linepath a b ` {0..1} = closed_segment a b"
-  by (auto simp: segment linepath_def)
-
-lemma linepath_in_convex_hull:
-    fixes x::real
-    assumes a: "a \<in> convex hull s"
-        and b: "b \<in> convex hull s"
-        and x: "0\<le>x" "x\<le>1"
-       shows "linepath a b x \<in> convex hull s"
-  apply (rule closed_segment_subset_convex_hull [OF a b, THEN subsetD])
-  using x
-  apply (auto simp: linepath_image_01 [symmetric])
-  done
-
-lemma Re_linepath: "Re(linepath (of_real a) (of_real b) x) = (1 - x)*a + x*b"
-  by (simp add: linepath_def)
-
-lemma Im_linepath: "Im(linepath (of_real a) (of_real b) x) = 0"
-  by (simp add: linepath_def)
-
-lemma has_contour_integral_trivial [iff]: "(f has_contour_integral 0) (linepath a a)"
-  by (simp add: has_contour_integral_linepath)
-
-lemma has_contour_integral_trivial_iff [simp]: "(f has_contour_integral i) (linepath a a) \<longleftrightarrow> i=0"
-  using has_contour_integral_unique by blast
-
-lemma contour_integral_trivial [simp]: "contour_integral (linepath a a) f = 0"
-  using has_contour_integral_trivial contour_integral_unique by blast
-
-lemma differentiable_linepath [intro]: "linepath a b differentiable at x within A"
-  by (auto simp: linepath_def)
-
-lemma bounded_linear_linepath:
-  assumes "bounded_linear f"
-  shows   "f (linepath a b x) = linepath (f a) (f b) x"
-proof -
-  interpret f: bounded_linear f by fact
-  show ?thesis by (simp add: linepath_def f.add f.scale)
-qed
-
-lemma bounded_linear_linepath':
-  assumes "bounded_linear f"
-  shows   "f \<circ> linepath a b = linepath (f a) (f b)"
-  using bounded_linear_linepath[OF assms] by (simp add: fun_eq_iff)
-
-lemma cnj_linepath: "cnj (linepath a b x) = linepath (cnj a) (cnj b) x"
-  by (simp add: linepath_def)
-
-lemma cnj_linepath': "cnj \<circ> linepath a b = linepath (cnj a) (cnj b)"
-  by (simp add: linepath_def fun_eq_iff)
-
-subsection\<open>Relation to subpath construction\<close>
-
-lemma valid_path_subpath:
-  fixes g :: "real \<Rightarrow> 'a :: real_normed_vector"
-  assumes "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}"
-    shows "valid_path(subpath u v g)"
-proof (cases "v=u")
-  case True
-  then show ?thesis
-    unfolding valid_path_def subpath_def
-    by (force intro: C1_differentiable_on_const C1_differentiable_imp_piecewise)
-next
-  case False
-  have "(g \<circ> (\<lambda>x. ((v-u) * x + u))) piecewise_C1_differentiable_on {0..1}"
-    apply (rule piecewise_C1_differentiable_compose)
-    apply (simp add: C1_differentiable_imp_piecewise)
-     apply (simp add: image_affinity_atLeastAtMost)
-    using assms False
-    apply (auto simp: algebra_simps valid_path_def piecewise_C1_differentiable_on_subset)
-    apply (subst Int_commute)
-    apply (auto simp: inj_on_def algebra_simps crossproduct_eq finite_vimage_IntI)
-    done
-  then show ?thesis
-    by (auto simp: o_def valid_path_def subpath_def)
-qed
-
-lemma has_contour_integral_subpath_refl [iff]: "(f has_contour_integral 0) (subpath u u g)"
-  by (simp add: has_contour_integral subpath_def)
-
-lemma contour_integrable_subpath_refl [iff]: "f contour_integrable_on (subpath u u g)"
-  using has_contour_integral_subpath_refl contour_integrable_on_def by blast
-
-lemma contour_integral_subpath_refl [simp]: "contour_integral (subpath u u g) f = 0"
-  by (simp add: contour_integral_unique)
-
-lemma has_contour_integral_subpath:
-  assumes f: "f contour_integrable_on g" and g: "valid_path g"
-      and uv: "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
-    shows "(f has_contour_integral  integral {u..v} (\<lambda>x. f(g x) * vector_derivative g (at x)))
-           (subpath u v g)"
-proof (cases "v=u")
-  case True
-  then show ?thesis
-    using f   by (simp add: contour_integrable_on_def subpath_def has_contour_integral)
-next
-  case False
-  obtain s where s: "\<And>x. x \<in> {0..1} - s \<Longrightarrow> g differentiable at x" and fs: "finite s"
-    using g unfolding piecewise_C1_differentiable_on_def C1_differentiable_on_eq valid_path_def by blast
-  have *: "((\<lambda>x. f (g ((v - u) * x + u)) * vector_derivative g (at ((v - u) * x + u)))
-            has_integral (1 / (v - u)) * integral {u..v} (\<lambda>t. f (g t) * vector_derivative g (at t)))
-           {0..1}"
-    using f uv
-    apply (simp add: contour_integrable_on subpath_def has_contour_integral)
-    apply (drule integrable_on_subcbox [where a=u and b=v, simplified])
-    apply (simp_all add: has_integral_integral)
-    apply (drule has_integral_affinity [where m="v-u" and c=u, simplified])
-    apply (simp_all add: False image_affinity_atLeastAtMost_div_diff scaleR_conv_of_real)
-    apply (simp add: divide_simps False)
-    done
-  { fix x
-    have "x \<in> {0..1} \<Longrightarrow>
-           x \<notin> (\<lambda>t. (v-u) *\<^sub>R t + u) -` s \<Longrightarrow>
-           vector_derivative (\<lambda>x. g ((v-u) * x + u)) (at x) = (v-u) *\<^sub>R vector_derivative g (at ((v-u) * x + u))"
-      apply (rule vector_derivative_at [OF vector_diff_chain_at [simplified o_def]])
-      apply (intro derivative_eq_intros | simp)+
-      apply (cut_tac s [of "(v - u) * x + u"])
-      using uv mult_left_le [of x "v-u"]
-      apply (auto simp:  vector_derivative_works)
-      done
-  } note vd = this
-  show ?thesis
-    apply (cut_tac has_integral_cmul [OF *, where c = "v-u"])
-    using fs assms
-    apply (simp add: False subpath_def has_contour_integral)
-    apply (rule_tac S = "(\<lambda>t. ((v-u) *\<^sub>R t + u)) -` s" in has_integral_spike_finite)
-    apply (auto simp: inj_on_def False finite_vimageI vd scaleR_conv_of_real)
-    done
-qed
-
-lemma contour_integrable_subpath:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}"
-    shows "f contour_integrable_on (subpath u v g)"
-  apply (cases u v rule: linorder_class.le_cases)
-   apply (metis contour_integrable_on_def has_contour_integral_subpath [OF assms])
-  apply (subst reversepath_subpath [symmetric])
-  apply (rule contour_integrable_reversepath)
-   using assms apply (blast intro: valid_path_subpath)
-  apply (simp add: contour_integrable_on_def)
-  using assms apply (blast intro: has_contour_integral_subpath)
-  done
-
-lemma has_integral_contour_integral_subpath:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
-    shows "(((\<lambda>x. f(g x) * vector_derivative g (at x)))
-            has_integral  contour_integral (subpath u v g) f) {u..v}"
-  using assms
-  apply (auto simp: has_integral_integrable_integral)
-  apply (rule integrable_on_subcbox [where a=u and b=v and S = "{0..1}", simplified])
-  apply (auto simp: contour_integral_unique [OF has_contour_integral_subpath] contour_integrable_on)
-  done
-
-lemma contour_integral_subcontour_integral:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
-    shows "contour_integral (subpath u v g) f =
-           integral {u..v} (\<lambda>x. f(g x) * vector_derivative g (at x))"
-  using assms has_contour_integral_subpath contour_integral_unique by blast
-
-lemma contour_integral_subpath_combine_less:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "w \<in> {0..1}"
-          "u<v" "v<w"
-    shows "contour_integral (subpath u v g) f + contour_integral (subpath v w g) f =
-           contour_integral (subpath u w g) f"
-  using assms apply (auto simp: contour_integral_subcontour_integral)
-  apply (rule integral_combine, auto)
-  apply (rule integrable_on_subcbox [where a=u and b=w and S = "{0..1}", simplified])
-  apply (auto simp: contour_integrable_on)
-  done
-
-lemma contour_integral_subpath_combine:
-  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "w \<in> {0..1}"
-    shows "contour_integral (subpath u v g) f + contour_integral (subpath v w g) f =
-           contour_integral (subpath u w g) f"
-proof (cases "u\<noteq>v \<and> v\<noteq>w \<and> u\<noteq>w")
-  case True
-    have *: "subpath v u g = reversepath(subpath u v g) \<and>
-             subpath w u g = reversepath(subpath u w g) \<and>
-             subpath w v g = reversepath(subpath v w g)"
-      by (auto simp: reversepath_subpath)
-    have "u < v \<and> v < w \<or>
-          u < w \<and> w < v \<or>
-          v < u \<and> u < w \<or>
-          v < w \<and> w < u \<or>
-          w < u \<and> u < v \<or>
-          w < v \<and> v < u"
-      using True assms by linarith
-    with assms show ?thesis
-      using contour_integral_subpath_combine_less [of f g u v w]
-            contour_integral_subpath_combine_less [of f g u w v]
-            contour_integral_subpath_combine_less [of f g v u w]
-            contour_integral_subpath_combine_less [of f g v w u]
-            contour_integral_subpath_combine_less [of f g w u v]
-            contour_integral_subpath_combine_less [of f g w v u]
-      apply simp
-      apply (elim disjE)
-      apply (auto simp: * contour_integral_reversepath contour_integrable_subpath
-               valid_path_subpath algebra_simps)
-      done
-next
-  case False
-  then show ?thesis
-    apply (auto)
-    using assms
-    by (metis eq_neg_iff_add_eq_0 contour_integral_reversepath reversepath_subpath valid_path_subpath)
-qed
-
-lemma contour_integral_integral:
-     "contour_integral g f = integral {0..1} (\<lambda>x. f (g x) * vector_derivative g (at x))"
-  by (simp add: contour_integral_def integral_def has_contour_integral contour_integrable_on)
-
-lemma contour_integral_cong:
-  assumes "g = g'" "\<And>x. x \<in> path_image g \<Longrightarrow> f x = f' x"
-  shows   "contour_integral g f = contour_integral g' f'"
-  unfolding contour_integral_integral using assms
-  by (intro integral_cong) (auto simp: path_image_def)
-
-
-text \<open>Contour integral along a segment on the real axis\<close>
-
-lemma has_contour_integral_linepath_Reals_iff:
-  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
-  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
-  shows   "(f has_contour_integral I) (linepath a b) \<longleftrightarrow>
-             ((\<lambda>x. f (of_real x)) has_integral I) {Re a..Re b}"
-proof -
-  from assms have [simp]: "of_real (Re a) = a" "of_real (Re b) = b"
-    by (simp_all add: complex_eq_iff)
-  from assms have "a \<noteq> b" by auto
-  have "((\<lambda>x. f (of_real x)) has_integral I) (cbox (Re a) (Re b)) \<longleftrightarrow>
-          ((\<lambda>x. f (a + b * of_real x - a * of_real x)) has_integral I /\<^sub>R (Re b - Re a)) {0..1}"
-    by (subst has_integral_affinity_iff [of "Re b - Re a" _ "Re a", symmetric])
-       (insert assms, simp_all add: field_simps scaleR_conv_of_real)
-  also have "(\<lambda>x. f (a + b * of_real x - a * of_real x)) =
-               (\<lambda>x. (f (a + b * of_real x - a * of_real x) * (b - a)) /\<^sub>R (Re b - Re a))"
-    using \<open>a \<noteq> b\<close> by (auto simp: field_simps fun_eq_iff scaleR_conv_of_real)
-  also have "(\<dots> has_integral I /\<^sub>R (Re b - Re a)) {0..1} \<longleftrightarrow> 
-               ((\<lambda>x. f (linepath a b x) * (b - a)) has_integral I) {0..1}" using assms
-    by (subst has_integral_cmul_iff) (auto simp: linepath_def scaleR_conv_of_real algebra_simps)
-  also have "\<dots> \<longleftrightarrow> (f has_contour_integral I) (linepath a b)" unfolding has_contour_integral_def
-    by (intro has_integral_cong) (simp add: vector_derivative_linepath_within)
-  finally show ?thesis by simp
-qed
-
-lemma contour_integrable_linepath_Reals_iff:
-  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
-  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
-  shows   "(f contour_integrable_on linepath a b) \<longleftrightarrow>
-             (\<lambda>x. f (of_real x)) integrable_on {Re a..Re b}"
-  using has_contour_integral_linepath_Reals_iff[OF assms, of f]
-  by (auto simp: contour_integrable_on_def integrable_on_def)
-
-lemma contour_integral_linepath_Reals_eq:
-  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
-  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
-  shows   "contour_integral (linepath a b) f = integral {Re a..Re b} (\<lambda>x. f (of_real x))"
-proof (cases "f contour_integrable_on linepath a b")
-  case True
-  thus ?thesis using has_contour_integral_linepath_Reals_iff[OF assms, of f]
-    using has_contour_integral_integral has_contour_integral_unique by blast
-next
-  case False
-  thus ?thesis using contour_integrable_linepath_Reals_iff[OF assms, of f]
-    by (simp add: not_integrable_contour_integral not_integrable_integral)
-qed
-
-
-
-text\<open>Cauchy's theorem where there's a primitive\<close>
-
-lemma contour_integral_primitive_lemma:
-  fixes f :: "complex \<Rightarrow> complex" and g :: "real \<Rightarrow> complex"
-  assumes "a \<le> b"
-      and "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
-      and "g piecewise_differentiable_on {a..b}"  "\<And>x. x \<in> {a..b} \<Longrightarrow> g x \<in> s"
-    shows "((\<lambda>x. f'(g x) * vector_derivative g (at x within {a..b}))
-             has_integral (f(g b) - f(g a))) {a..b}"
-proof -
-  obtain k where k: "finite k" "\<forall>x\<in>{a..b} - k. g differentiable (at x within {a..b})" and cg: "continuous_on {a..b} g"
-    using assms by (auto simp: piecewise_differentiable_on_def)
-  have cfg: "continuous_on {a..b} (\<lambda>x. f (g x))"
-    apply (rule continuous_on_compose [OF cg, unfolded o_def])
-    using assms
-    apply (metis field_differentiable_def field_differentiable_imp_continuous_at continuous_on_eq_continuous_within continuous_on_subset image_subset_iff)
-    done
-  { fix x::real
-    assume a: "a < x" and b: "x < b" and xk: "x \<notin> k"
-    then have "g differentiable at x within {a..b}"
-      using k by (simp add: differentiable_at_withinI)
-    then have "(g has_vector_derivative vector_derivative g (at x within {a..b})) (at x within {a..b})"
-      by (simp add: vector_derivative_works has_field_derivative_def scaleR_conv_of_real)
-    then have gdiff: "(g has_derivative (\<lambda>u. u * vector_derivative g (at x within {a..b}))) (at x within {a..b})"
-      by (simp add: has_vector_derivative_def scaleR_conv_of_real)
-    have "(f has_field_derivative (f' (g x))) (at (g x) within g ` {a..b})"
-      using assms by (metis a atLeastAtMost_iff b DERIV_subset image_subset_iff less_eq_real_def)
-    then have fdiff: "(f has_derivative (*) (f' (g x))) (at (g x) within g ` {a..b})"
-      by (simp add: has_field_derivative_def)
-    have "((\<lambda>x. f (g x)) has_vector_derivative f' (g x) * vector_derivative g (at x within {a..b})) (at x within {a..b})"
-      using diff_chain_within [OF gdiff fdiff]
-      by (simp add: has_vector_derivative_def scaleR_conv_of_real o_def mult_ac)
-  } note * = this
-  show ?thesis
-    apply (rule fundamental_theorem_of_calculus_interior_strong)
-    using k assms cfg *
-    apply (auto simp: at_within_Icc_at)
-    done
-qed
-
-lemma contour_integral_primitive:
-  assumes "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
-      and "valid_path g" "path_image g \<subseteq> s"
-    shows "(f' has_contour_integral (f(pathfinish g) - f(pathstart g))) g"
-  using assms
-  apply (simp add: valid_path_def path_image_def pathfinish_def pathstart_def has_contour_integral_def)
-  apply (auto intro!: piecewise_C1_imp_differentiable contour_integral_primitive_lemma [of 0 1 s])
-  done
-
-corollary Cauchy_theorem_primitive:
-  assumes "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
-      and "valid_path g"  "path_image g \<subseteq> s" "pathfinish g = pathstart g"
-    shows "(f' has_contour_integral 0) g"
-  using assms
-  by (metis diff_self contour_integral_primitive)
-
-text\<open>Existence of path integral for continuous function\<close>
-lemma contour_integrable_continuous_linepath:
-  assumes "continuous_on (closed_segment a b) f"
-  shows "f contour_integrable_on (linepath a b)"
-proof -
-  have "continuous_on {0..1} ((\<lambda>x. f x * (b - a)) \<circ> linepath a b)"
-    apply (rule continuous_on_compose [OF continuous_on_linepath], simp add: linepath_image_01)
-    apply (rule continuous_intros | simp add: assms)+
-    done
-  then show ?thesis
-    apply (simp add: contour_integrable_on_def has_contour_integral_def integrable_on_def [symmetric])
-    apply (rule integrable_continuous [of 0 "1::real", simplified])
-    apply (rule continuous_on_eq [where f = "\<lambda>x. f(linepath a b x)*(b - a)"])
-    apply (auto simp: vector_derivative_linepath_within)
-    done
-qed
-
-lemma has_field_der_id: "((\<lambda>x. x\<^sup>2 / 2) has_field_derivative x) (at x)"
-  by (rule has_derivative_imp_has_field_derivative)
-     (rule derivative_intros | simp)+
-
-lemma contour_integral_id [simp]: "contour_integral (linepath a b) (\<lambda>y. y) = (b^2 - a^2)/2"
-  apply (rule contour_integral_unique)
-  using contour_integral_primitive [of UNIV "\<lambda>x. x^2/2" "\<lambda>x. x" "linepath a b"]
-  apply (auto simp: field_simps has_field_der_id)
-  done
-
-lemma contour_integrable_on_const [iff]: "(\<lambda>x. c) contour_integrable_on (linepath a b)"
-  by (simp add: contour_integrable_continuous_linepath)
-
-lemma contour_integrable_on_id [iff]: "(\<lambda>x. x) contour_integrable_on (linepath a b)"
-  by (simp add: contour_integrable_continuous_linepath)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetical combining theorems\<close>
-
-lemma has_contour_integral_neg:
-    "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. -(f x)) has_contour_integral (-i)) g"
-  by (simp add: has_integral_neg has_contour_integral_def)
-
-lemma has_contour_integral_add:
-    "\<lbrakk>(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g\<rbrakk>
-     \<Longrightarrow> ((\<lambda>x. f1 x + f2 x) has_contour_integral (i1 + i2)) g"
-  by (simp add: has_integral_add has_contour_integral_def algebra_simps)
-
-lemma has_contour_integral_diff:
-  "\<lbrakk>(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g\<rbrakk>
-         \<Longrightarrow> ((\<lambda>x. f1 x - f2 x) has_contour_integral (i1 - i2)) g"
-  by (simp add: has_integral_diff has_contour_integral_def algebra_simps)
-
-lemma has_contour_integral_lmul:
-  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. c * (f x)) has_contour_integral (c*i)) g"
-apply (simp add: has_contour_integral_def)
-apply (drule has_integral_mult_right)
-apply (simp add: algebra_simps)
-done
-
-lemma has_contour_integral_rmul:
-  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. (f x) * c) has_contour_integral (i*c)) g"
-apply (drule has_contour_integral_lmul)
-apply (simp add: mult.commute)
-done
-
-lemma has_contour_integral_div:
-  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. f x/c) has_contour_integral (i/c)) g"
-  by (simp add: field_class.field_divide_inverse) (metis has_contour_integral_rmul)
-
-lemma has_contour_integral_eq:
-    "\<lbrakk>(f has_contour_integral y) p; \<And>x. x \<in> path_image p \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> (g has_contour_integral y) p"
-apply (simp add: path_image_def has_contour_integral_def)
-by (metis (no_types, lifting) image_eqI has_integral_eq)
-
-lemma has_contour_integral_bound_linepath:
-  assumes "(f has_contour_integral i) (linepath a b)"
-          "0 \<le> B" "\<And>x. x \<in> closed_segment a b \<Longrightarrow> norm(f x) \<le> B"
-    shows "norm i \<le> B * norm(b - a)"
-proof -
-  { fix x::real
-    assume x: "0 \<le> x" "x \<le> 1"
-  have "norm (f (linepath a b x)) *
-        norm (vector_derivative (linepath a b) (at x within {0..1})) \<le> B * norm (b - a)"
-    by (auto intro: mult_mono simp: assms linepath_in_path of_real_linepath vector_derivative_linepath_within x)
-  } note * = this
-  have "norm i \<le> (B * norm (b - a)) * content (cbox 0 (1::real))"
-    apply (rule has_integral_bound
-       [of _ "\<lambda>x. f (linepath a b x) * vector_derivative (linepath a b) (at x within {0..1})"])
-    using assms * unfolding has_contour_integral_def
-    apply (auto simp: norm_mult)
-    done
-  then show ?thesis
-    by (auto simp: content_real)
-qed
-
-(*UNUSED
-lemma has_contour_integral_bound_linepath_strong:
-  fixes a :: real and f :: "complex \<Rightarrow> real"
-  assumes "(f has_contour_integral i) (linepath a b)"
-          "finite k"
-          "0 \<le> B" "\<And>x::real. x \<in> closed_segment a b - k \<Longrightarrow> norm(f x) \<le> B"
-    shows "norm i \<le> B*norm(b - a)"
-*)
-
-lemma has_contour_integral_const_linepath: "((\<lambda>x. c) has_contour_integral c*(b - a))(linepath a b)"
-  unfolding has_contour_integral_linepath
-  by (metis content_real diff_0_right has_integral_const_real lambda_one of_real_1 scaleR_conv_of_real zero_le_one)
-
-lemma has_contour_integral_0: "((\<lambda>x. 0) has_contour_integral 0) g"
-  by (simp add: has_contour_integral_def)
-
-lemma has_contour_integral_is_0:
-    "(\<And>z. z \<in> path_image g \<Longrightarrow> f z = 0) \<Longrightarrow> (f has_contour_integral 0) g"
-  by (rule has_contour_integral_eq [OF has_contour_integral_0]) auto
-
-lemma has_contour_integral_sum:
-    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a has_contour_integral i a) p\<rbrakk>
-     \<Longrightarrow> ((\<lambda>x. sum (\<lambda>a. f a x) s) has_contour_integral sum i s) p"
-  by (induction s rule: finite_induct) (auto simp: has_contour_integral_0 has_contour_integral_add)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Operations on path integrals\<close>
-
-lemma contour_integral_const_linepath [simp]: "contour_integral (linepath a b) (\<lambda>x. c) = c*(b - a)"
-  by (rule contour_integral_unique [OF has_contour_integral_const_linepath])
-
-lemma contour_integral_neg:
-    "f contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. -(f x)) = -(contour_integral g f)"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_neg)
-
-lemma contour_integral_add:
-    "f1 contour_integrable_on g \<Longrightarrow> f2 contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. f1 x + f2 x) =
-                contour_integral g f1 + contour_integral g f2"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_add)
-
-lemma contour_integral_diff:
-    "f1 contour_integrable_on g \<Longrightarrow> f2 contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. f1 x - f2 x) =
-                contour_integral g f1 - contour_integral g f2"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_diff)
-
-lemma contour_integral_lmul:
-  shows "f contour_integrable_on g
-           \<Longrightarrow> contour_integral g (\<lambda>x. c * f x) = c*contour_integral g f"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_lmul)
-
-lemma contour_integral_rmul:
-  shows "f contour_integrable_on g
-        \<Longrightarrow> contour_integral g (\<lambda>x. f x * c) = contour_integral g f * c"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_rmul)
-
-lemma contour_integral_div:
-  shows "f contour_integrable_on g
-        \<Longrightarrow> contour_integral g (\<lambda>x. f x / c) = contour_integral g f / c"
-  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_div)
-
-lemma contour_integral_eq:
-    "(\<And>x. x \<in> path_image p \<Longrightarrow> f x = g x) \<Longrightarrow> contour_integral p f = contour_integral p g"
-  apply (simp add: contour_integral_def)
-  using has_contour_integral_eq
-  by (metis contour_integral_unique has_contour_integral_integrable has_contour_integral_integral)
-
-lemma contour_integral_eq_0:
-    "(\<And>z. z \<in> path_image g \<Longrightarrow> f z = 0) \<Longrightarrow> contour_integral g f = 0"
-  by (simp add: has_contour_integral_is_0 contour_integral_unique)
-
-lemma contour_integral_bound_linepath:
-  shows
-    "\<lbrakk>f contour_integrable_on (linepath a b);
-      0 \<le> B; \<And>x. x \<in> closed_segment a b \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
-     \<Longrightarrow> norm(contour_integral (linepath a b) f) \<le> B*norm(b - a)"
-  apply (rule has_contour_integral_bound_linepath [of f])
-  apply (auto simp: has_contour_integral_integral)
-  done
-
-lemma contour_integral_0 [simp]: "contour_integral g (\<lambda>x. 0) = 0"
-  by (simp add: contour_integral_unique has_contour_integral_0)
-
-lemma contour_integral_sum:
-    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a) contour_integrable_on p\<rbrakk>
-     \<Longrightarrow> contour_integral p (\<lambda>x. sum (\<lambda>a. f a x) s) = sum (\<lambda>a. contour_integral p (f a)) s"
-  by (auto simp: contour_integral_unique has_contour_integral_sum has_contour_integral_integral)
-
-lemma contour_integrable_eq:
-    "\<lbrakk>f contour_integrable_on p; \<And>x. x \<in> path_image p \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g contour_integrable_on p"
-  unfolding contour_integrable_on_def
-  by (metis has_contour_integral_eq)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetic theorems for path integrability\<close>
-
-lemma contour_integrable_neg:
-    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. -(f x)) contour_integrable_on g"
-  using has_contour_integral_neg contour_integrable_on_def by blast
-
-lemma contour_integrable_add:
-    "\<lbrakk>f1 contour_integrable_on g; f2 contour_integrable_on g\<rbrakk> \<Longrightarrow> (\<lambda>x. f1 x + f2 x) contour_integrable_on g"
-  using has_contour_integral_add contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_diff:
-    "\<lbrakk>f1 contour_integrable_on g; f2 contour_integrable_on g\<rbrakk> \<Longrightarrow> (\<lambda>x. f1 x - f2 x) contour_integrable_on g"
-  using has_contour_integral_diff contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_lmul:
-    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. c * f x) contour_integrable_on g"
-  using has_contour_integral_lmul contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_rmul:
-    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. f x * c) contour_integrable_on g"
-  using has_contour_integral_rmul contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_div:
-    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. f x / c) contour_integrable_on g"
-  using has_contour_integral_div contour_integrable_on_def
-  by fastforce
-
-lemma contour_integrable_sum:
-    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a) contour_integrable_on p\<rbrakk>
-     \<Longrightarrow> (\<lambda>x. sum (\<lambda>a. f a x) s) contour_integrable_on p"
-   unfolding contour_integrable_on_def
-   by (metis has_contour_integral_sum)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Reversing a path integral\<close>
-
-lemma has_contour_integral_reverse_linepath:
-    "(f has_contour_integral i) (linepath a b)
-     \<Longrightarrow> (f has_contour_integral (-i)) (linepath b a)"
-  using has_contour_integral_reversepath valid_path_linepath by fastforce
-
-lemma contour_integral_reverse_linepath:
-    "continuous_on (closed_segment a b) f
-     \<Longrightarrow> contour_integral (linepath a b) f = - (contour_integral(linepath b a) f)"
-apply (rule contour_integral_unique)
-apply (rule has_contour_integral_reverse_linepath)
-by (simp add: closed_segment_commute contour_integrable_continuous_linepath has_contour_integral_integral)
-
-
-(* Splitting a path integral in a flat way.*)
-
-lemma has_contour_integral_split:
-  assumes f: "(f has_contour_integral i) (linepath a c)" "(f has_contour_integral j) (linepath c b)"
-      and k: "0 \<le> k" "k \<le> 1"
-      and c: "c - a = k *\<^sub>R (b - a)"
-    shows "(f has_contour_integral (i + j)) (linepath a b)"
-proof (cases "k = 0 \<or> k = 1")
-  case True
-  then show ?thesis
-    using assms by auto
-next
-  case False
-  then have k: "0 < k" "k < 1" "complex_of_real k \<noteq> 1"
-    using assms by auto
-  have c': "c = k *\<^sub>R (b - a) + a"
-    by (metis diff_add_cancel c)
-  have bc: "(b - c) = (1 - k) *\<^sub>R (b - a)"
-    by (simp add: algebra_simps c')
-  { assume *: "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R c) * (c - a)) has_integral i) {0..1}"
-    have **: "\<And>x. ((k - x) / k) *\<^sub>R a + (x / k) *\<^sub>R c = (1 - x) *\<^sub>R a + x *\<^sub>R b"
-      using False apply (simp add: c' algebra_simps)
-      apply (simp add: real_vector.scale_left_distrib [symmetric] field_split_simps)
-      done
-    have "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R b) * (b - a)) has_integral i) {0..k}"
-      using k has_integral_affinity01 [OF *, of "inverse k" "0"]
-      apply (simp add: divide_simps mult.commute [of _ "k"] image_affinity_atLeastAtMost ** c)
-      apply (auto dest: has_integral_cmul [where c = "inverse k"])
-      done
-  } note fi = this
-  { assume *: "((\<lambda>x. f ((1 - x) *\<^sub>R c + x *\<^sub>R b) * (b - c)) has_integral j) {0..1}"
-    have **: "\<And>x. (((1 - x) / (1 - k)) *\<^sub>R c + ((x - k) / (1 - k)) *\<^sub>R b) = ((1 - x) *\<^sub>R a + x *\<^sub>R b)"
-      using k
-      apply (simp add: c' field_simps)
-      apply (simp add: scaleR_conv_of_real divide_simps)
-      apply (simp add: field_simps)
-      done
-    have "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R b) * (b - a)) has_integral j) {k..1}"
-      using k has_integral_affinity01 [OF *, of "inverse(1 - k)" "-(k/(1 - k))"]
-      apply (simp add: divide_simps mult.commute [of _ "1-k"] image_affinity_atLeastAtMost ** bc)
-      apply (auto dest: has_integral_cmul [where k = "(1 - k) *\<^sub>R j" and c = "inverse (1 - k)"])
-      done
-  } note fj = this
-  show ?thesis
-    using f k
-    apply (simp add: has_contour_integral_linepath)
-    apply (simp add: linepath_def)
-    apply (rule has_integral_combine [OF _ _ fi fj], simp_all)
-    done
-qed
-
-lemma continuous_on_closed_segment_transform:
-  assumes f: "continuous_on (closed_segment a b) f"
-      and k: "0 \<le> k" "k \<le> 1"
-      and c: "c - a = k *\<^sub>R (b - a)"
-    shows "continuous_on (closed_segment a c) f"
-proof -
-  have c': "c = (1 - k) *\<^sub>R a + k *\<^sub>R b"
-    using c by (simp add: algebra_simps)
-  have "closed_segment a c \<subseteq> closed_segment a b"
-    by (metis c' ends_in_segment(1) in_segment(1) k subset_closed_segment)
-  then show "continuous_on (closed_segment a c) f"
-    by (rule continuous_on_subset [OF f])
-qed
-
-lemma contour_integral_split:
-  assumes f: "continuous_on (closed_segment a b) f"
-      and k: "0 \<le> k" "k \<le> 1"
-      and c: "c - a = k *\<^sub>R (b - a)"
-    shows "contour_integral(linepath a b) f = contour_integral(linepath a c) f + contour_integral(linepath c b) f"
-proof -
-  have c': "c = (1 - k) *\<^sub>R a + k *\<^sub>R b"
-    using c by (simp add: algebra_simps)
-  have "closed_segment a c \<subseteq> closed_segment a b"
-    by (metis c' ends_in_segment(1) in_segment(1) k subset_closed_segment)
-  moreover have "closed_segment c b \<subseteq> closed_segment a b"
-    by (metis c' ends_in_segment(2) in_segment(1) k subset_closed_segment)
-  ultimately
-  have *: "continuous_on (closed_segment a c) f" "continuous_on (closed_segment c b) f"
-    by (auto intro: continuous_on_subset [OF f])
-  show ?thesis
-    by (rule contour_integral_unique) (meson "*" c contour_integrable_continuous_linepath has_contour_integral_integral has_contour_integral_split k)
-qed
-
-lemma contour_integral_split_linepath:
-  assumes f: "continuous_on (closed_segment a b) f"
-      and c: "c \<in> closed_segment a b"
-    shows "contour_integral(linepath a b) f = contour_integral(linepath a c) f + contour_integral(linepath c b) f"
-  using c by (auto simp: closed_segment_def algebra_simps intro!: contour_integral_split [OF f])
-
 text\<open>The special case of midpoints used in the main quadrisection\<close>
 
 lemma has_contour_integral_midpoint:
@@ -3362,7 +1409,6 @@
   qed
 qed
 
-
 lemma
   assumes "open S" "path p" "path_image p \<subseteq> S"
     shows contour_integral_nearby_ends:
@@ -3453,1189 +1499,6 @@
     by (force simp: L contour_integral_integral)
 qed
 
-text\<open>We can treat even non-rectifiable paths as having a "length" for bounds on analytic functions in open sets.\<close>
-
-subsection \<open>Winding Numbers\<close>
-
-definition\<^marker>\<open>tag important\<close> winding_number_prop :: "[real \<Rightarrow> complex, complex, real, real \<Rightarrow> complex, complex] \<Rightarrow> bool" where
-  "winding_number_prop \<gamma> z e p n \<equiv>
-      valid_path p \<and> z \<notin> path_image p \<and>
-      pathstart p = pathstart \<gamma> \<and>
-      pathfinish p = pathfinish \<gamma> \<and>
-      (\<forall>t \<in> {0..1}. norm(\<gamma> t - p t) < e) \<and>
-      contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
-
-definition\<^marker>\<open>tag important\<close> winding_number:: "[real \<Rightarrow> complex, complex] \<Rightarrow> complex" where
-  "winding_number \<gamma> z \<equiv> SOME n. \<forall>e > 0. \<exists>p. winding_number_prop \<gamma> z e p n"
-
-
-lemma winding_number:
-  assumes "path \<gamma>" "z \<notin> path_image \<gamma>" "0 < e"
-    shows "\<exists>p. winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
-proof -
-  have "path_image \<gamma> \<subseteq> UNIV - {z}"
-    using assms by blast
-  then obtain d
-    where d: "d>0"
-      and pi_eq: "\<And>h1 h2. valid_path h1 \<and> valid_path h2 \<and>
-                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < d \<and> cmod (h2 t - \<gamma> t) < d) \<and>
-                    pathstart h2 = pathstart h1 \<and> pathfinish h2 = pathfinish h1 \<longrightarrow>
-                      path_image h1 \<subseteq> UNIV - {z} \<and> path_image h2 \<subseteq> UNIV - {z} \<and>
-                      (\<forall>f. f holomorphic_on UNIV - {z} \<longrightarrow> contour_integral h2 f = contour_integral h1 f)"
-    using contour_integral_nearby_ends [of "UNIV - {z}" \<gamma>] assms by (auto simp: open_delete)
-  then obtain h where h: "polynomial_function h \<and> pathstart h = pathstart \<gamma> \<and> pathfinish h = pathfinish \<gamma> \<and>
-                          (\<forall>t \<in> {0..1}. norm(h t - \<gamma> t) < d/2)"
-    using path_approx_polynomial_function [OF \<open>path \<gamma>\<close>, of "d/2"] d by auto
-  define nn where "nn = 1/(2* pi*\<i>) * contour_integral h (\<lambda>w. 1/(w - z))"
-  have "\<exists>n. \<forall>e > 0. \<exists>p. winding_number_prop \<gamma> z e p n"
-    proof (rule_tac x=nn in exI, clarify)
-      fix e::real
-      assume e: "e>0"
-      obtain p where p: "polynomial_function p \<and>
-            pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma> \<and> (\<forall>t\<in>{0..1}. cmod (p t - \<gamma> t) < min e (d/2))"
-        using path_approx_polynomial_function [OF \<open>path \<gamma>\<close>, of "min e (d/2)"] d \<open>0<e\<close> by auto
-      have "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
-        by (auto simp: intro!: holomorphic_intros)
-      then show "\<exists>p. winding_number_prop \<gamma> z e p nn"
-        apply (rule_tac x=p in exI)
-        using pi_eq [of h p] h p d
-        apply (auto simp: valid_path_polynomial_function norm_minus_commute nn_def winding_number_prop_def)
-        done
-    qed
-  then show ?thesis
-    unfolding winding_number_def by (rule someI2_ex) (blast intro: \<open>0<e\<close>)
-qed
-
-lemma winding_number_unique:
-  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
-      and pi: "\<And>e. e>0 \<Longrightarrow> \<exists>p. winding_number_prop \<gamma> z e p n"
-   shows "winding_number \<gamma> z = n"
-proof -
-  have "path_image \<gamma> \<subseteq> UNIV - {z}"
-    using assms by blast
-  then obtain e
-    where e: "e>0"
-      and pi_eq: "\<And>h1 h2 f. \<lbrakk>valid_path h1; valid_path h2;
-                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < e \<and> cmod (h2 t - \<gamma> t) < e);
-                    pathstart h2 = pathstart h1; pathfinish h2 = pathfinish h1; f holomorphic_on UNIV - {z}\<rbrakk> \<Longrightarrow>
-                    contour_integral h2 f = contour_integral h1 f"
-    using contour_integral_nearby_ends [of "UNIV - {z}" \<gamma>] assms  by (auto simp: open_delete)
-  obtain p where p: "winding_number_prop \<gamma> z e p n"
-    using pi [OF e] by blast
-  obtain q where q: "winding_number_prop \<gamma> z e q (winding_number \<gamma> z)"
-    using winding_number [OF \<gamma> e] by blast
-  have "2 * complex_of_real pi * \<i> * n = contour_integral p (\<lambda>w. 1 / (w - z))"
-    using p by (auto simp: winding_number_prop_def)
-  also have "\<dots> = contour_integral q (\<lambda>w. 1 / (w - z))"
-  proof (rule pi_eq)
-    show "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
-      by (auto intro!: holomorphic_intros)
-  qed (use p q in \<open>auto simp: winding_number_prop_def norm_minus_commute\<close>)
-  also have "\<dots> = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z"
-    using q by (auto simp: winding_number_prop_def)
-  finally have "2 * complex_of_real pi * \<i> * n = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z" .
-  then show ?thesis
-    by simp
-qed
-
-(*NB not winding_number_prop here due to the loop in p*)
-lemma winding_number_unique_loop:
-  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
-      and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-      and pi:
-        "\<And>e. e>0 \<Longrightarrow> \<exists>p. valid_path p \<and> z \<notin> path_image p \<and>
-                           pathfinish p = pathstart p \<and>
-                           (\<forall>t \<in> {0..1}. norm (\<gamma> t - p t) < e) \<and>
-                           contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
-   shows "winding_number \<gamma> z = n"
-proof -
-  have "path_image \<gamma> \<subseteq> UNIV - {z}"
-    using assms by blast
-  then obtain e
-    where e: "e>0"
-      and pi_eq: "\<And>h1 h2 f. \<lbrakk>valid_path h1; valid_path h2;
-                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < e \<and> cmod (h2 t - \<gamma> t) < e);
-                    pathfinish h1 = pathstart h1; pathfinish h2 = pathstart h2; f holomorphic_on UNIV - {z}\<rbrakk> \<Longrightarrow>
-                    contour_integral h2 f = contour_integral h1 f"
-    using contour_integral_nearby_loops [of "UNIV - {z}" \<gamma>] assms  by (auto simp: open_delete)
-  obtain p where p:
-     "valid_path p \<and> z \<notin> path_image p \<and> pathfinish p = pathstart p \<and>
-      (\<forall>t \<in> {0..1}. norm (\<gamma> t - p t) < e) \<and>
-      contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
-    using pi [OF e] by blast
-  obtain q where q: "winding_number_prop \<gamma> z e q (winding_number \<gamma> z)"
-    using winding_number [OF \<gamma> e] by blast
-  have "2 * complex_of_real pi * \<i> * n = contour_integral p (\<lambda>w. 1 / (w - z))"
-    using p by auto
-  also have "\<dots> = contour_integral q (\<lambda>w. 1 / (w - z))"
-  proof (rule pi_eq)
-    show "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
-      by (auto intro!: holomorphic_intros)
-  qed (use p q loop in \<open>auto simp: winding_number_prop_def norm_minus_commute\<close>)
-  also have "\<dots> = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z"
-    using q by (auto simp: winding_number_prop_def)
-  finally have "2 * complex_of_real pi * \<i> * n = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z" .
-  then show ?thesis
-    by simp
-qed
-
-proposition winding_number_valid_path:
-  assumes "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-  shows "winding_number \<gamma> z = 1/(2*pi*\<i>) * contour_integral \<gamma> (\<lambda>w. 1/(w - z))"
-  by (rule winding_number_unique)
-  (use assms in \<open>auto simp: valid_path_imp_path winding_number_prop_def\<close>)
-
-proposition has_contour_integral_winding_number:
-  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-    shows "((\<lambda>w. 1/(w - z)) has_contour_integral (2*pi*\<i>*winding_number \<gamma> z)) \<gamma>"
-by (simp add: winding_number_valid_path has_contour_integral_integral contour_integrable_inversediff assms)
-
-lemma winding_number_trivial [simp]: "z \<noteq> a \<Longrightarrow> winding_number(linepath a a) z = 0"
-  by (simp add: winding_number_valid_path)
-
-lemma winding_number_subpath_trivial [simp]: "z \<noteq> g x \<Longrightarrow> winding_number (subpath x x g) z = 0"
-  by (simp add: path_image_subpath winding_number_valid_path)
-
-lemma winding_number_join:
-  assumes \<gamma>1: "path \<gamma>1" "z \<notin> path_image \<gamma>1"
-      and \<gamma>2: "path \<gamma>2" "z \<notin> path_image \<gamma>2"
-      and "pathfinish \<gamma>1 = pathstart \<gamma>2"
-    shows "winding_number(\<gamma>1 +++ \<gamma>2) z = winding_number \<gamma>1 z + winding_number \<gamma>2 z"
-proof (rule winding_number_unique)
-  show "\<exists>p. winding_number_prop (\<gamma>1 +++ \<gamma>2) z e p
-              (winding_number \<gamma>1 z + winding_number \<gamma>2 z)" if "e > 0" for e
-  proof -
-    obtain p1 where "winding_number_prop \<gamma>1 z e p1 (winding_number \<gamma>1 z)"
-      using \<open>0 < e\<close> \<gamma>1 winding_number by blast
-    moreover
-    obtain p2 where "winding_number_prop \<gamma>2 z e p2 (winding_number \<gamma>2 z)"
-      using \<open>0 < e\<close> \<gamma>2 winding_number by blast
-    ultimately
-    have "winding_number_prop (\<gamma>1+++\<gamma>2) z e (p1+++p2) (winding_number \<gamma>1 z + winding_number \<gamma>2 z)"
-      using assms
-      apply (simp add: winding_number_prop_def not_in_path_image_join contour_integrable_inversediff algebra_simps)
-      apply (auto simp: joinpaths_def)
-      done
-    then show ?thesis
-      by blast
-  qed
-qed (use assms in \<open>auto simp: not_in_path_image_join\<close>)
-
-lemma winding_number_reversepath:
-  assumes "path \<gamma>" "z \<notin> path_image \<gamma>"
-    shows "winding_number(reversepath \<gamma>) z = - (winding_number \<gamma> z)"
-proof (rule winding_number_unique)
-  show "\<exists>p. winding_number_prop (reversepath \<gamma>) z e p (- winding_number \<gamma> z)" if "e > 0" for e
-  proof -
-    obtain p where "winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
-      using \<open>0 < e\<close> assms winding_number by blast
-    then have "winding_number_prop (reversepath \<gamma>) z e (reversepath p) (- winding_number \<gamma> z)"
-      using assms
-      apply (simp add: winding_number_prop_def contour_integral_reversepath contour_integrable_inversediff valid_path_imp_reverse)
-      apply (auto simp: reversepath_def)
-      done
-    then show ?thesis
-      by blast
-  qed
-qed (use assms in auto)
-
-lemma winding_number_shiftpath:
-  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
-      and "pathfinish \<gamma> = pathstart \<gamma>" "a \<in> {0..1}"
-    shows "winding_number(shiftpath a \<gamma>) z = winding_number \<gamma> z"
-proof (rule winding_number_unique_loop)
-  show "\<exists>p. valid_path p \<and> z \<notin> path_image p \<and> pathfinish p = pathstart p \<and>
-            (\<forall>t\<in>{0..1}. cmod (shiftpath a \<gamma> t - p t) < e) \<and>
-            contour_integral p (\<lambda>w. 1 / (w - z)) =
-            complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
-    if "e > 0" for e
-  proof -
-    obtain p where "winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
-      using \<open>0 < e\<close> assms winding_number by blast
-    then show ?thesis
-      apply (rule_tac x="shiftpath a p" in exI)
-      using assms that
-      apply (auto simp: winding_number_prop_def path_image_shiftpath pathfinish_shiftpath pathstart_shiftpath contour_integral_shiftpath)
-      apply (simp add: shiftpath_def)
-      done
-  qed
-qed (use assms in \<open>auto simp: path_shiftpath path_image_shiftpath pathfinish_shiftpath pathstart_shiftpath\<close>)
-
-lemma winding_number_split_linepath:
-  assumes "c \<in> closed_segment a b" "z \<notin> closed_segment a b"
-    shows "winding_number(linepath a b) z = winding_number(linepath a c) z + winding_number(linepath c b) z"
-proof -
-  have "z \<notin> closed_segment a c" "z \<notin> closed_segment c b"
-    using assms  by (meson convex_contains_segment convex_segment ends_in_segment subsetCE)+
-  then show ?thesis
-    using assms
-    by (simp add: winding_number_valid_path contour_integral_split_linepath [symmetric] continuous_on_inversediff field_simps)
-qed
-
-lemma winding_number_cong:
-   "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> p t = q t) \<Longrightarrow> winding_number p z = winding_number q z"
-  by (simp add: winding_number_def winding_number_prop_def pathstart_def pathfinish_def)
-
-lemma winding_number_constI:
-  assumes "c\<noteq>z" "\<And>t. \<lbrakk>0\<le>t; t\<le>1\<rbrakk> \<Longrightarrow> g t = c" 
-  shows "winding_number g z = 0"
-proof -
-  have "winding_number g z = winding_number (linepath c c) z"
-    apply (rule winding_number_cong)
-    using assms unfolding linepath_def by auto
-  moreover have "winding_number (linepath c c) z =0"
-    apply (rule winding_number_trivial)
-    using assms by auto
-  ultimately show ?thesis by auto
-qed
-
-lemma winding_number_offset: "winding_number p z = winding_number (\<lambda>w. p w - z) 0"
-  unfolding winding_number_def
-proof (intro ext arg_cong [where f = Eps] arg_cong [where f = All] imp_cong refl, safe)
-  fix n e g
-  assume "0 < e" and g: "winding_number_prop p z e g n"
-  then show "\<exists>r. winding_number_prop (\<lambda>w. p w - z) 0 e r n"
-    by (rule_tac x="\<lambda>t. g t - z" in exI)
-       (force simp: winding_number_prop_def contour_integral_integral valid_path_def path_defs
-                vector_derivative_def has_vector_derivative_diff_const piecewise_C1_differentiable_diff C1_differentiable_imp_piecewise)
-next
-  fix n e g
-  assume "0 < e" and g: "winding_number_prop (\<lambda>w. p w - z) 0 e g n"
-  then show "\<exists>r. winding_number_prop p z e r n"
-    apply (rule_tac x="\<lambda>t. g t + z" in exI)
-    apply (simp add: winding_number_prop_def contour_integral_integral valid_path_def path_defs
-        piecewise_C1_differentiable_add vector_derivative_def has_vector_derivative_add_const C1_differentiable_imp_piecewise)
-    apply (force simp: algebra_simps)
-    done
-qed
-
-subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Some lemmas about negating a path\<close>
-
-lemma valid_path_negatepath: "valid_path \<gamma> \<Longrightarrow> valid_path (uminus \<circ> \<gamma>)"
-   unfolding o_def using piecewise_C1_differentiable_neg valid_path_def by blast
-
-lemma has_contour_integral_negatepath:
-  assumes \<gamma>: "valid_path \<gamma>" and cint: "((\<lambda>z. f (- z)) has_contour_integral - i) \<gamma>"
-  shows "(f has_contour_integral i) (uminus \<circ> \<gamma>)"
-proof -
-  obtain S where cont: "continuous_on {0..1} \<gamma>" and "finite S" and diff: "\<gamma> C1_differentiable_on {0..1} - S"
-    using \<gamma> by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
-  have "((\<lambda>x. - (f (- \<gamma> x) * vector_derivative \<gamma> (at x within {0..1}))) has_integral i) {0..1}"
-    using cint by (auto simp: has_contour_integral_def dest: has_integral_neg)
-  then
-  have "((\<lambda>x. f (- \<gamma> x) * vector_derivative (uminus \<circ> \<gamma>) (at x within {0..1})) has_integral i) {0..1}"
-  proof (rule rev_iffD1 [OF _ has_integral_spike_eq])
-    show "negligible S"
-      by (simp add: \<open>finite S\<close> negligible_finite)
-    show "f (- \<gamma> x) * vector_derivative (uminus \<circ> \<gamma>) (at x within {0..1}) =
-         - (f (- \<gamma> x) * vector_derivative \<gamma> (at x within {0..1}))"
-      if "x \<in> {0..1} - S" for x
-    proof -
-      have "vector_derivative (uminus \<circ> \<gamma>) (at x within cbox 0 1) = - vector_derivative \<gamma> (at x within cbox 0 1)"
-      proof (rule vector_derivative_within_cbox)
-        show "(uminus \<circ> \<gamma> has_vector_derivative - vector_derivative \<gamma> (at x within cbox 0 1)) (at x within cbox 0 1)"
-          using that unfolding o_def
-          by (metis C1_differentiable_on_eq UNIV_I diff differentiable_subset has_vector_derivative_minus subsetI that vector_derivative_works)
-      qed (use that in auto)
-      then show ?thesis
-        by simp
-    qed
-  qed
-  then show ?thesis by (simp add: has_contour_integral_def)
-qed
-
-lemma winding_number_negatepath:
-  assumes \<gamma>: "valid_path \<gamma>" and 0: "0 \<notin> path_image \<gamma>"
-  shows "winding_number(uminus \<circ> \<gamma>) 0 = winding_number \<gamma> 0"
-proof -
-  have "(/) 1 contour_integrable_on \<gamma>"
-    using "0" \<gamma> contour_integrable_inversediff by fastforce
-  then have "((\<lambda>z. 1/z) has_contour_integral contour_integral \<gamma> ((/) 1)) \<gamma>"
-    by (rule has_contour_integral_integral)
-  then have "((\<lambda>z. 1 / - z) has_contour_integral - contour_integral \<gamma> ((/) 1)) \<gamma>"
-    using has_contour_integral_neg by auto
-  then show ?thesis
-    using assms
-    apply (simp add: winding_number_valid_path valid_path_negatepath image_def path_defs)
-    apply (simp add: contour_integral_unique has_contour_integral_negatepath)
-    done
-qed
-
-lemma contour_integrable_negatepath:
-  assumes \<gamma>: "valid_path \<gamma>" and pi: "(\<lambda>z. f (- z)) contour_integrable_on \<gamma>"
-  shows "f contour_integrable_on (uminus \<circ> \<gamma>)"
-  by (metis \<gamma> add.inverse_inverse contour_integrable_on_def has_contour_integral_negatepath pi)
-
-(* A combined theorem deducing several things piecewise.*)
-lemma winding_number_join_pos_combined:
-     "\<lbrakk>valid_path \<gamma>1; z \<notin> path_image \<gamma>1; 0 < Re(winding_number \<gamma>1 z);
-       valid_path \<gamma>2; z \<notin> path_image \<gamma>2; 0 < Re(winding_number \<gamma>2 z); pathfinish \<gamma>1 = pathstart \<gamma>2\<rbrakk>
-      \<Longrightarrow> valid_path(\<gamma>1 +++ \<gamma>2) \<and> z \<notin> path_image(\<gamma>1 +++ \<gamma>2) \<and> 0 < Re(winding_number(\<gamma>1 +++ \<gamma>2) z)"
-  by (simp add: valid_path_join path_image_join winding_number_join valid_path_imp_path)
-
-
-subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Useful sufficient conditions for the winding number to be positive\<close>
-
-lemma Re_winding_number:
-    "\<lbrakk>valid_path \<gamma>; z \<notin> path_image \<gamma>\<rbrakk>
-     \<Longrightarrow> Re(winding_number \<gamma> z) = Im(contour_integral \<gamma> (\<lambda>w. 1/(w - z))) / (2*pi)"
-by (simp add: winding_number_valid_path field_simps Re_divide power2_eq_square)
-
-lemma winding_number_pos_le:
-  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> 0 \<le> Im (vector_derivative \<gamma> (at x) * cnj(\<gamma> x - z))"
-    shows "0 \<le> Re(winding_number \<gamma> z)"
-proof -
-  have ge0: "0 \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))" if x: "0 < x" "x < 1" for x
-    using ge by (simp add: Complex.Im_divide algebra_simps x)
-  let ?vd = "\<lambda>x. 1 / (\<gamma> x - z) * vector_derivative \<gamma> (at x)"
-  let ?int = "\<lambda>z. contour_integral \<gamma> (\<lambda>w. 1 / (w - z))"
-  have hi: "(?vd has_integral ?int z) (cbox 0 1)"
-    unfolding box_real
-    apply (subst has_contour_integral [symmetric])
-    using \<gamma> by (simp add: contour_integrable_inversediff has_contour_integral_integral)
-  have "0 \<le> Im (?int z)"
-  proof (rule has_integral_component_nonneg [of \<i>, simplified])
-    show "\<And>x. x \<in> cbox 0 1 \<Longrightarrow> 0 \<le> Im (if 0 < x \<and> x < 1 then ?vd x else 0)"
-      by (force simp: ge0)
-    show "((\<lambda>x. if 0 < x \<and> x < 1 then ?vd x else 0) has_integral ?int z) (cbox 0 1)"
-      by (rule has_integral_spike_interior [OF hi]) simp
-  qed
-  then show ?thesis
-    by (simp add: Re_winding_number [OF \<gamma>] field_simps)
-qed
-
-lemma winding_number_pos_lt_lemma:
-  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-      and e: "0 < e"
-      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> e \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
-    shows "0 < Re(winding_number \<gamma> z)"
-proof -
-  let ?vd = "\<lambda>x. 1 / (\<gamma> x - z) * vector_derivative \<gamma> (at x)"
-  let ?int = "\<lambda>z. contour_integral \<gamma> (\<lambda>w. 1 / (w - z))"
-  have hi: "(?vd has_integral ?int z) (cbox 0 1)"
-    unfolding box_real
-    apply (subst has_contour_integral [symmetric])
-    using \<gamma> by (simp add: contour_integrable_inversediff has_contour_integral_integral)
-  have "e \<le> Im (contour_integral \<gamma> (\<lambda>w. 1 / (w - z)))"
-  proof (rule has_integral_component_le [of \<i> "\<lambda>x. \<i>*e" "\<i>*e" "{0..1}", simplified])
-    show "((\<lambda>x. if 0 < x \<and> x < 1 then ?vd x else \<i> * complex_of_real e) has_integral ?int z) {0..1}"
-      by (rule has_integral_spike_interior [OF hi, simplified box_real]) (use e in simp)
-    show "\<And>x. 0 \<le> x \<and> x \<le> 1 \<Longrightarrow>
-              e \<le> Im (if 0 < x \<and> x < 1 then ?vd x else \<i> * complex_of_real e)"
-      by (simp add: ge)
-  qed (use has_integral_const_real [of _ 0 1] in auto)
-  with e show ?thesis
-    by (simp add: Re_winding_number [OF \<gamma>] field_simps)
-qed
-
-lemma winding_number_pos_lt:
-  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
-      and e: "0 < e"
-      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> e \<le> Im (vector_derivative \<gamma> (at x) * cnj(\<gamma> x - z))"
-    shows "0 < Re (winding_number \<gamma> z)"
-proof -
-  have bm: "bounded ((\<lambda>w. w - z) ` (path_image \<gamma>))"
-    using bounded_translation [of _ "-z"] \<gamma> by (simp add: bounded_valid_path_image)
-  then obtain B where B: "B > 0" and Bno: "\<And>x. x \<in> (\<lambda>w. w - z) ` (path_image \<gamma>) \<Longrightarrow> norm x \<le> B"
-    using bounded_pos [THEN iffD1, OF bm] by blast
-  { fix x::real  assume x: "0 < x" "x < 1"
-    then have B2: "cmod (\<gamma> x - z)^2 \<le> B^2" using Bno [of "\<gamma> x - z"]
-      by (simp add: path_image_def power2_eq_square mult_mono')
-    with x have "\<gamma> x \<noteq> z" using \<gamma>
-      using path_image_def by fastforce
-    then have "e / B\<^sup>2 \<le> Im (vector_derivative \<gamma> (at x) * cnj (\<gamma> x - z)) / (cmod (\<gamma> x - z))\<^sup>2"
-      using B ge [OF x] B2 e
-      apply (rule_tac y="e / (cmod (\<gamma> x - z))\<^sup>2" in order_trans)
-      apply (auto simp: divide_left_mono divide_right_mono)
-      done
-    then have "e / B\<^sup>2 \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
-      by (simp add: complex_div_cnj [of _ "\<gamma> x - z" for x] del: complex_cnj_diff times_complex.sel)
-  } note * = this
-  show ?thesis
-    using e B by (simp add: * winding_number_pos_lt_lemma [OF \<gamma>, of "e/B^2"])
-qed
-
-subsection\<open>The winding number is an integer\<close>
-
-text\<open>Proof from the book Complex Analysis by Lars V. Ahlfors, Chapter 4, section 2.1,
-     Also on page 134 of Serge Lang's book with the name title, etc.\<close>
-
-lemma exp_fg:
-  fixes z::complex
-  assumes g: "(g has_vector_derivative g') (at x within s)"
-      and f: "(f has_vector_derivative (g' / (g x - z))) (at x within s)"
-      and z: "g x \<noteq> z"
-    shows "((\<lambda>x. exp(-f x) * (g x - z)) has_vector_derivative 0) (at x within s)"
-proof -
-  have *: "(exp \<circ> (\<lambda>x. (- f x)) has_vector_derivative - (g' / (g x - z)) * exp (- f x)) (at x within s)"
-    using assms unfolding has_vector_derivative_def scaleR_conv_of_real
-    by (auto intro!: derivative_eq_intros)
-  show ?thesis
-    apply (rule has_vector_derivative_eq_rhs)
-    using z
-    apply (auto intro!: derivative_eq_intros * [unfolded o_def] g)
-    done
-qed
-
-lemma winding_number_exp_integral:
-  fixes z::complex
-  assumes \<gamma>: "\<gamma> piecewise_C1_differentiable_on {a..b}"
-      and ab: "a \<le> b"
-      and z: "z \<notin> \<gamma> ` {a..b}"
-    shows "(\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)) integrable_on {a..b}"
-          (is "?thesis1")
-          "exp (- (integral {a..b} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))) * (\<gamma> b - z) = \<gamma> a - z"
-          (is "?thesis2")
-proof -
-  let ?D\<gamma> = "\<lambda>x. vector_derivative \<gamma> (at x)"
-  have [simp]: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<gamma> x \<noteq> z"
-    using z by force
-  have cong: "continuous_on {a..b} \<gamma>"
-    using \<gamma> by (simp add: piecewise_C1_differentiable_on_def)
-  obtain k where fink: "finite k" and g_C1_diff: "\<gamma> C1_differentiable_on ({a..b} - k)"
-    using \<gamma> by (force simp: piecewise_C1_differentiable_on_def)
-  have \<circ>: "open ({a<..<b} - k)"
-    using \<open>finite k\<close> by (simp add: finite_imp_closed open_Diff)
-  moreover have "{a<..<b} - k \<subseteq> {a..b} - k"
-    by force
-  ultimately have g_diff_at: "\<And>x. \<lbrakk>x \<notin> k; x \<in> {a<..<b}\<rbrakk> \<Longrightarrow> \<gamma> differentiable at x"
-    by (metis Diff_iff differentiable_on_subset C1_diff_imp_diff [OF g_C1_diff] differentiable_on_def at_within_open)
-  { fix w
-    assume "w \<noteq> z"
-    have "continuous_on (ball w (cmod (w - z))) (\<lambda>w. 1 / (w - z))"
-      by (auto simp: dist_norm intro!: continuous_intros)
-    moreover have "\<And>x. cmod (w - x) < cmod (w - z) \<Longrightarrow> \<exists>f'. ((\<lambda>w. 1 / (w - z)) has_field_derivative f') (at x)"
-      by (auto simp: intro!: derivative_eq_intros)
-    ultimately have "\<exists>h. \<forall>y. norm(y - w) < norm(w - z) \<longrightarrow> (h has_field_derivative 1/(y - z)) (at y)"
-      using holomorphic_convex_primitive [of "ball w (norm(w - z))" "{}" "\<lambda>w. 1/(w - z)"]
-      by (force simp: field_differentiable_def Ball_def dist_norm at_within_open_NO_MATCH norm_minus_commute)
-  }
-  then obtain h where h: "\<And>w y. w \<noteq> z \<Longrightarrow> norm(y - w) < norm(w - z) \<Longrightarrow> (h w has_field_derivative 1/(y - z)) (at y)"
-    by meson
-  have exy: "\<exists>y. ((\<lambda>x. inverse (\<gamma> x - z) * ?D\<gamma> x) has_integral y) {a..b}"
-    unfolding integrable_on_def [symmetric]
-  proof (rule contour_integral_local_primitive_any [OF piecewise_C1_imp_differentiable [OF \<gamma>]])
-    show "\<exists>d h. 0 < d \<and>
-               (\<forall>y. cmod (y - w) < d \<longrightarrow> (h has_field_derivative inverse (y - z))(at y within - {z}))"
-          if "w \<in> - {z}" for w
-      apply (rule_tac x="norm(w - z)" in exI)
-      using that inverse_eq_divide has_field_derivative_at_within h
-      by (metis Compl_insert DiffD2 insertCI right_minus_eq zero_less_norm_iff)
-  qed simp
-  have vg_int: "(\<lambda>x. ?D\<gamma> x / (\<gamma> x - z)) integrable_on {a..b}"
-    unfolding box_real [symmetric] divide_inverse_commute
-    by (auto intro!: exy integrable_subinterval simp add: integrable_on_def ab)
-  with ab show ?thesis1
-    by (simp add: divide_inverse_commute integral_def integrable_on_def)
-  { fix t
-    assume t: "t \<in> {a..b}"
-    have cball: "continuous_on (ball (\<gamma> t) (dist (\<gamma> t) z)) (\<lambda>x. inverse (x - z))"
-        using z by (auto intro!: continuous_intros simp: dist_norm)
-    have icd: "\<And>x. cmod (\<gamma> t - x) < cmod (\<gamma> t - z) \<Longrightarrow> (\<lambda>w. inverse (w - z)) field_differentiable at x"
-      unfolding field_differentiable_def by (force simp: intro!: derivative_eq_intros)
-    obtain h where h: "\<And>x. cmod (\<gamma> t - x) < cmod (\<gamma> t - z) \<Longrightarrow>
-                       (h has_field_derivative inverse (x - z)) (at x within {y. cmod (\<gamma> t - y) < cmod (\<gamma> t - z)})"
-      using holomorphic_convex_primitive [where f = "\<lambda>w. inverse(w - z)", OF convex_ball finite.emptyI cball icd]
-      by simp (auto simp: ball_def dist_norm that)
-    { fix x D
-      assume x: "x \<notin> k" "a < x" "x < b"
-      then have "x \<in> interior ({a..b} - k)"
-        using open_subset_interior [OF \<circ>] by fastforce
-      then have con: "isCont ?D\<gamma> x"
-        using g_C1_diff x by (auto simp: C1_differentiable_on_eq intro: continuous_on_interior)
-      then have con_vd: "continuous (at x within {a..b}) (\<lambda>x. ?D\<gamma> x)"
-        by (rule continuous_at_imp_continuous_within)
-      have gdx: "\<gamma> differentiable at x"
-        using x by (simp add: g_diff_at)
-      have "\<And>d. \<lbrakk>x \<notin> k; a < x; x < b;
-          (\<gamma> has_vector_derivative d) (at x); a \<le> t; t \<le> b\<rbrakk>
-         \<Longrightarrow> ((\<lambda>x. integral {a..x}
-                     (\<lambda>x. ?D\<gamma> x /
-                           (\<gamma> x - z))) has_vector_derivative
-              d / (\<gamma> x - z))
-              (at x within {a..b})"
-        apply (rule has_vector_derivative_eq_rhs)
-         apply (rule integral_has_vector_derivative_continuous_at [where S = "{}", simplified])
-        apply (rule con_vd continuous_intros cong vg_int | simp add: continuous_at_imp_continuous_within has_vector_derivative_continuous vector_derivative_at)+
-        done
-      then have "((\<lambda>c. exp (- integral {a..c} (\<lambda>x. ?D\<gamma> x / (\<gamma> x - z))) * (\<gamma> c - z)) has_derivative (\<lambda>h. 0))
-          (at x within {a..b})"
-        using x gdx t
-        apply (clarsimp simp add: differentiable_iff_scaleR)
-        apply (rule exp_fg [unfolded has_vector_derivative_def, simplified], blast intro: has_derivative_at_withinI)
-        apply (simp_all add: has_vector_derivative_def [symmetric])
-        done
-      } note * = this
-    have "exp (- (integral {a..t} (\<lambda>x. ?D\<gamma> x / (\<gamma> x - z)))) * (\<gamma> t - z) =\<gamma> a - z"
-      apply (rule has_derivative_zero_unique_strong_interval [of "{a,b} \<union> k" a b])
-      using t
-      apply (auto intro!: * continuous_intros fink cong indefinite_integral_continuous_1 [OF vg_int]  simp add: ab)+
-      done
-   }
-  with ab show ?thesis2
-    by (simp add: divide_inverse_commute integral_def)
-qed
-
-lemma winding_number_exp_2pi:
-    "\<lbrakk>path p; z \<notin> path_image p\<rbrakk>
-     \<Longrightarrow> pathfinish p - z = exp (2 * pi * \<i> * winding_number p z) * (pathstart p - z)"
-using winding_number [of p z 1] unfolding valid_path_def path_image_def pathstart_def pathfinish_def winding_number_prop_def
-  by (force dest: winding_number_exp_integral(2) [of _ 0 1 z] simp: field_simps contour_integral_integral exp_minus)
-
-lemma integer_winding_number_eq:
-  assumes \<gamma>: "path \<gamma>" and z: "z \<notin> path_image \<gamma>"
-  shows "winding_number \<gamma> z \<in> \<int> \<longleftrightarrow> pathfinish \<gamma> = pathstart \<gamma>"
-proof -
-  obtain p where p: "valid_path p" "z \<notin> path_image p"
-                    "pathstart p = pathstart \<gamma>" "pathfinish p = pathfinish \<gamma>"
-           and eq: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
-    using winding_number [OF assms, of 1] unfolding winding_number_prop_def by auto
-  then have wneq: "winding_number \<gamma> z = winding_number p z"
-      using eq winding_number_valid_path by force
-  have iff: "(winding_number \<gamma> z \<in> \<int>) \<longleftrightarrow> (exp (contour_integral p (\<lambda>w. 1 / (w - z))) = 1)"
-    using eq by (simp add: exp_eq_1 complex_is_Int_iff)
-  have "exp (contour_integral p (\<lambda>w. 1 / (w - z))) = (\<gamma> 1 - z) / (\<gamma> 0 - z)"
-    using p winding_number_exp_integral(2) [of p 0 1 z]
-    apply (simp add: valid_path_def path_defs contour_integral_integral exp_minus field_split_simps)
-    by (metis path_image_def pathstart_def pathstart_in_path_image)
-  then have "winding_number p z \<in> \<int> \<longleftrightarrow> pathfinish p = pathstart p"
-    using p wneq iff by (auto simp: path_defs)
-  then show ?thesis using p eq
-    by (auto simp: winding_number_valid_path)
-qed
-
-theorem integer_winding_number:
-  "\<lbrakk>path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>\<rbrakk> \<Longrightarrow> winding_number \<gamma> z \<in> \<int>"
-by (metis integer_winding_number_eq)
-
-
-text\<open>If the winding number's magnitude is at least one, then the path must contain points in every direction.*)
-   We can thus bound the winding number of a path that doesn't intersect a given ray. \<close>
-
-lemma winding_number_pos_meets:
-  fixes z::complex
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and 1: "Re (winding_number \<gamma> z) \<ge> 1"
-      and w: "w \<noteq> z"
-  shows "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image \<gamma>"
-proof -
-  have [simp]: "\<And>x. 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> \<gamma> x \<noteq> z"
-    using z by (auto simp: path_image_def)
-  have [simp]: "z \<notin> \<gamma> ` {0..1}"
-    using path_image_def z by auto
-  have gpd: "\<gamma> piecewise_C1_differentiable_on {0..1}"
-    using \<gamma> valid_path_def by blast
-  define r where "r = (w - z) / (\<gamma> 0 - z)"
-  have [simp]: "r \<noteq> 0"
-    using w z by (auto simp: r_def)
-  have cont: "continuous_on {0..1}
-     (\<lambda>x. Im (integral {0..x} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z))))"
-    by (intro continuous_intros indefinite_integral_continuous_1 winding_number_exp_integral [OF gpd]; simp)
-  have "Arg2pi r \<le> 2*pi"
-    by (simp add: Arg2pi less_eq_real_def)
-  also have "\<dots> \<le> Im (integral {0..1} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))"
-    using 1
-    apply (simp add: winding_number_valid_path [OF \<gamma> z] contour_integral_integral)
-    apply (simp add: Complex.Re_divide field_simps power2_eq_square)
-    done
-  finally have "Arg2pi r \<le> Im (integral {0..1} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))" .
-  then have "\<exists>t. t \<in> {0..1} \<and> Im(integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x)/(\<gamma> x - z))) = Arg2pi r"
-    by (simp add: Arg2pi_ge_0 cont IVT')
-  then obtain t where t:     "t \<in> {0..1}"
-                  and eqArg: "Im (integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x)/(\<gamma> x - z))) = Arg2pi r"
-    by blast
-  define i where "i = integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
-  have iArg: "Arg2pi r = Im i"
-    using eqArg by (simp add: i_def)
-  have gpdt: "\<gamma> piecewise_C1_differentiable_on {0..t}"
-    by (metis atLeastAtMost_iff atLeastatMost_subset_iff order_refl piecewise_C1_differentiable_on_subset gpd t)
-  have "exp (- i) * (\<gamma> t - z) = \<gamma> 0 - z"
-    unfolding i_def
-    apply (rule winding_number_exp_integral [OF gpdt])
-    using t z unfolding path_image_def by force+
-  then have *: "\<gamma> t - z = exp i * (\<gamma> 0 - z)"
-    by (simp add: exp_minus field_simps)
-  then have "(w - z) = r * (\<gamma> 0 - z)"
-    by (simp add: r_def)
-  then have "z + complex_of_real (exp (Re i)) * (w - z) / complex_of_real (cmod r) = \<gamma> t"
-    apply simp
-    apply (subst Complex_Transcendental.Arg2pi_eq [of r])
-    apply (simp add: iArg)
-    using * apply (simp add: exp_eq_polar field_simps)
-    done
-  with t show ?thesis
-    by (rule_tac x="exp(Re i) / norm r" in exI) (auto simp: path_image_def)
-qed
-
-lemma winding_number_big_meets:
-  fixes z::complex
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "\<bar>Re (winding_number \<gamma> z)\<bar> \<ge> 1"
-      and w: "w \<noteq> z"
-  shows "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image \<gamma>"
-proof -
-  { assume "Re (winding_number \<gamma> z) \<le> - 1"
-    then have "Re (winding_number (reversepath \<gamma>) z) \<ge> 1"
-      by (simp add: \<gamma> valid_path_imp_path winding_number_reversepath z)
-    moreover have "valid_path (reversepath \<gamma>)"
-      using \<gamma> valid_path_imp_reverse by auto
-    moreover have "z \<notin> path_image (reversepath \<gamma>)"
-      by (simp add: z)
-    ultimately have "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image (reversepath \<gamma>)"
-      using winding_number_pos_meets w by blast
-    then have ?thesis
-      by simp
-  }
-  then show ?thesis
-    using assms
-    by (simp add: abs_if winding_number_pos_meets split: if_split_asm)
-qed
-
-lemma winding_number_less_1:
-  fixes z::complex
-  shows
-  "\<lbrakk>valid_path \<gamma>; z \<notin> path_image \<gamma>; w \<noteq> z;
-    \<And>a::real. 0 < a \<Longrightarrow> z + a*(w - z) \<notin> path_image \<gamma>\<rbrakk>
-   \<Longrightarrow> Re(winding_number \<gamma> z) < 1"
-   by (auto simp: not_less dest: winding_number_big_meets)
-
-text\<open>One way of proving that WN=1 for a loop.\<close>
-lemma winding_number_eq_1:
-  fixes z::complex
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-      and 0: "0 < Re(winding_number \<gamma> z)" and 2: "Re(winding_number \<gamma> z) < 2"
-  shows "winding_number \<gamma> z = 1"
-proof -
-  have "winding_number \<gamma> z \<in> Ints"
-    by (simp add: \<gamma> integer_winding_number loop valid_path_imp_path z)
-  then show ?thesis
-    using 0 2 by (auto simp: Ints_def)
-qed
-
-subsection\<open>Continuity of winding number and invariance on connected sets\<close>
-
-lemma continuous_at_winding_number:
-  fixes z::complex
-  assumes \<gamma>: "path \<gamma>" and z: "z \<notin> path_image \<gamma>"
-  shows "continuous (at z) (winding_number \<gamma>)"
-proof -
-  obtain e where "e>0" and cbg: "cball z e \<subseteq> - path_image \<gamma>"
-    using open_contains_cball [of "- path_image \<gamma>"]  z
-    by (force simp: closed_def [symmetric] closed_path_image [OF \<gamma>])
-  then have ppag: "path_image \<gamma> \<subseteq> - cball z (e/2)"
-    by (force simp: cball_def dist_norm)
-  have oc: "open (- cball z (e / 2))"
-    by (simp add: closed_def [symmetric])
-  obtain d where "d>0" and pi_eq:
-    "\<And>h1 h2. \<lbrakk>valid_path h1; valid_path h2;
-              (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < d \<and> cmod (h2 t - \<gamma> t) < d);
-              pathstart h2 = pathstart h1; pathfinish h2 = pathfinish h1\<rbrakk>
-             \<Longrightarrow>
-               path_image h1 \<subseteq> - cball z (e / 2) \<and>
-               path_image h2 \<subseteq> - cball z (e / 2) \<and>
-               (\<forall>f. f holomorphic_on - cball z (e / 2) \<longrightarrow> contour_integral h2 f = contour_integral h1 f)"
-    using contour_integral_nearby_ends [OF oc \<gamma> ppag] by metis
-  obtain p where p: "valid_path p" "z \<notin> path_image p"
-                    "pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma>"
-              and pg: "\<And>t. t\<in>{0..1} \<Longrightarrow> cmod (\<gamma> t - p t) < min d e / 2"
-              and pi: "contour_integral p (\<lambda>x. 1 / (x - z)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
-    using winding_number [OF \<gamma> z, of "min d e / 2"] \<open>d>0\<close> \<open>e>0\<close> by (auto simp: winding_number_prop_def)
-  { fix w
-    assume d2: "cmod (w - z) < d/2" and e2: "cmod (w - z) < e/2"
-    then have wnotp: "w \<notin> path_image p"
-      using cbg \<open>d>0\<close> \<open>e>0\<close>
-      apply (simp add: path_image_def cball_def dist_norm, clarify)
-      apply (frule pg)
-      apply (drule_tac c="\<gamma> x" in subsetD)
-      apply (auto simp: less_eq_real_def norm_minus_commute norm_triangle_half_l)
-      done
-    have wnotg: "w \<notin> path_image \<gamma>"
-      using cbg e2 \<open>e>0\<close> by (force simp: dist_norm norm_minus_commute)
-    { fix k::real
-      assume k: "k>0"
-      then obtain q where q: "valid_path q" "w \<notin> path_image q"
-                             "pathstart q = pathstart \<gamma> \<and> pathfinish q = pathfinish \<gamma>"
-                    and qg: "\<And>t. t \<in> {0..1} \<Longrightarrow> cmod (\<gamma> t - q t) < min k (min d e) / 2"
-                    and qi: "contour_integral q (\<lambda>u. 1 / (u - w)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> w"
-        using winding_number [OF \<gamma> wnotg, of "min k (min d e) / 2"] \<open>d>0\<close> \<open>e>0\<close> k
-        by (force simp: min_divide_distrib_right winding_number_prop_def)
-      have "contour_integral p (\<lambda>u. 1 / (u - w)) = contour_integral q (\<lambda>u. 1 / (u - w))"
-        apply (rule pi_eq [OF \<open>valid_path q\<close> \<open>valid_path p\<close>, THEN conjunct2, THEN conjunct2, rule_format])
-        apply (frule pg)
-        apply (frule qg)
-        using p q \<open>d>0\<close> e2
-        apply (auto simp: dist_norm norm_minus_commute intro!: holomorphic_intros)
-        done
-      then have "contour_integral p (\<lambda>x. 1 / (x - w)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> w"
-        by (simp add: pi qi)
-    } note pip = this
-    have "path p"
-      using p by (simp add: valid_path_imp_path)
-    then have "winding_number p w = winding_number \<gamma> w"
-      apply (rule winding_number_unique [OF _ wnotp])
-      apply (rule_tac x=p in exI)
-      apply (simp add: p wnotp min_divide_distrib_right pip winding_number_prop_def)
-      done
-  } note wnwn = this
-  obtain pe where "pe>0" and cbp: "cball z (3 / 4 * pe) \<subseteq> - path_image p"
-    using p open_contains_cball [of "- path_image p"]
-    by (force simp: closed_def [symmetric] closed_path_image [OF valid_path_imp_path])
-  obtain L
-    where "L>0"
-      and L: "\<And>f B. \<lbrakk>f holomorphic_on - cball z (3 / 4 * pe);
-                      \<forall>z \<in> - cball z (3 / 4 * pe). cmod (f z) \<le> B\<rbrakk> \<Longrightarrow>
-                      cmod (contour_integral p f) \<le> L * B"
-    using contour_integral_bound_exists [of "- cball z (3/4*pe)" p] cbp \<open>valid_path p\<close> by force
-  { fix e::real and w::complex
-    assume e: "0 < e" and w: "cmod (w - z) < pe/4" "cmod (w - z) < e * pe\<^sup>2 / (8 * L)"
-    then have [simp]: "w \<notin> path_image p"
-      using cbp p(2) \<open>0 < pe\<close>
-      by (force simp: dist_norm norm_minus_commute path_image_def cball_def)
-    have [simp]: "contour_integral p (\<lambda>x. 1/(x - w)) - contour_integral p (\<lambda>x. 1/(x - z)) =
-                  contour_integral p (\<lambda>x. 1/(x - w) - 1/(x - z))"
-      by (simp add: p contour_integrable_inversediff contour_integral_diff)
-    { fix x
-      assume pe: "3/4 * pe < cmod (z - x)"
-      have "cmod (w - x) < pe/4 + cmod (z - x)"
-        by (meson add_less_cancel_right norm_diff_triangle_le order_refl order_trans_rules(21) w(1))
-      then have wx: "cmod (w - x) < 4/3 * cmod (z - x)" using pe by simp
-      have "cmod (z - x) \<le> cmod (z - w) + cmod (w - x)"
-        using norm_diff_triangle_le by blast
-      also have "\<dots> < pe/4 + cmod (w - x)"
-        using w by (simp add: norm_minus_commute)
-      finally have "pe/2 < cmod (w - x)"
-        using pe by auto
-      then have "(pe/2)^2 < cmod (w - x) ^ 2"
-        apply (rule power_strict_mono)
-        using \<open>pe>0\<close> by auto
-      then have pe2: "pe^2 < 4 * cmod (w - x) ^ 2"
-        by (simp add: power_divide)
-      have "8 * L * cmod (w - z) < e * pe\<^sup>2"
-        using w \<open>L>0\<close> by (simp add: field_simps)
-      also have "\<dots> < e * 4 * cmod (w - x) * cmod (w - x)"
-        using pe2 \<open>e>0\<close> by (simp add: power2_eq_square)
-      also have "\<dots> < e * 4 * cmod (w - x) * (4/3 * cmod (z - x))"
-        using wx
-        apply (rule mult_strict_left_mono)
-        using pe2 e not_less_iff_gr_or_eq by fastforce
-      finally have "L * cmod (w - z) < 2/3 * e * cmod (w - x) * cmod (z - x)"
-        by simp
-      also have "\<dots> \<le> e * cmod (w - x) * cmod (z - x)"
-         using e by simp
-      finally have Lwz: "L * cmod (w - z) < e * cmod (w - x) * cmod (z - x)" .
-      have "L * cmod (1 / (x - w) - 1 / (x - z)) \<le> e"
-        apply (cases "x=z \<or> x=w")
-        using pe \<open>pe>0\<close> w \<open>L>0\<close>
-        apply (force simp: norm_minus_commute)
-        using wx w(2) \<open>L>0\<close> pe pe2 Lwz
-        apply (auto simp: divide_simps mult_less_0_iff norm_minus_commute norm_divide norm_mult power2_eq_square)
-        done
-    } note L_cmod_le = this
-    have *: "cmod (contour_integral p (\<lambda>x. 1 / (x - w) - 1 / (x - z))) \<le> L * (e * pe\<^sup>2 / L / 4 * (inverse (pe / 2))\<^sup>2)"
-      apply (rule L)
-      using \<open>pe>0\<close> w
-      apply (force simp: dist_norm norm_minus_commute intro!: holomorphic_intros)
-      using \<open>pe>0\<close> w \<open>L>0\<close>
-      apply (auto simp: cball_def dist_norm field_simps L_cmod_le  simp del: less_divide_eq_numeral1 le_divide_eq_numeral1)
-      done
-    have "cmod (contour_integral p (\<lambda>x. 1 / (x - w)) - contour_integral p (\<lambda>x. 1 / (x - z))) < 2*e"
-      apply simp
-      apply (rule le_less_trans [OF *])
-      using \<open>L>0\<close> e
-      apply (force simp: field_simps)
-      done
-    then have "cmod (winding_number p w - winding_number p z) < e"
-      using pi_ge_two e
-      by (force simp: winding_number_valid_path p field_simps norm_divide norm_mult intro: less_le_trans)
-  } note cmod_wn_diff = this
-  then have "isCont (winding_number p) z"
-    apply (simp add: continuous_at_eps_delta, clarify)
-    apply (rule_tac x="min (pe/4) (e/2*pe^2/L/4)" in exI)
-    using \<open>pe>0\<close> \<open>L>0\<close>
-    apply (simp add: dist_norm cmod_wn_diff)
-    done
-  then show ?thesis
-    apply (rule continuous_transform_within [where d = "min d e / 2"])
-    apply (auto simp: \<open>d>0\<close> \<open>e>0\<close> dist_norm wnwn)
-    done
-qed
-
-corollary continuous_on_winding_number:
-    "path \<gamma> \<Longrightarrow> continuous_on (- path_image \<gamma>) (\<lambda>w. winding_number \<gamma> w)"
-  by (simp add: continuous_at_imp_continuous_on continuous_at_winding_number)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>The winding number is constant on a connected region\<close>
-
-lemma winding_number_constant:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" and cs: "connected S" and sg: "S \<inter> path_image \<gamma> = {}"
-  shows "winding_number \<gamma> constant_on S"
-proof -
-  have *: "1 \<le> cmod (winding_number \<gamma> y - winding_number \<gamma> z)"
-      if ne: "winding_number \<gamma> y \<noteq> winding_number \<gamma> z" and "y \<in> S" "z \<in> S" for y z
-  proof -
-    have "winding_number \<gamma> y \<in> \<int>"  "winding_number \<gamma> z \<in>  \<int>"
-      using that integer_winding_number [OF \<gamma> loop] sg \<open>y \<in> S\<close> by auto
-    with ne show ?thesis
-      by (auto simp: Ints_def simp flip: of_int_diff)
-  qed
-  have cont: "continuous_on S (\<lambda>w. winding_number \<gamma> w)"
-    using continuous_on_winding_number [OF \<gamma>] sg
-    by (meson continuous_on_subset disjoint_eq_subset_Compl)
-  show ?thesis
-    using "*" zero_less_one
-    by (blast intro: continuous_discrete_range_constant [OF cs cont])
-qed
-
-lemma winding_number_eq:
-     "\<lbrakk>path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; w \<in> S; z \<in> S; connected S; S \<inter> path_image \<gamma> = {}\<rbrakk>
-      \<Longrightarrow> winding_number \<gamma> w = winding_number \<gamma> z"
-  using winding_number_constant by (metis constant_on_def)
-
-lemma open_winding_number_levelsets:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-    shows "open {z. z \<notin> path_image \<gamma> \<and> winding_number \<gamma> z = k}"
-proof -
-  have opn: "open (- path_image \<gamma>)"
-    by (simp add: closed_path_image \<gamma> open_Compl)
-  { fix z assume z: "z \<notin> path_image \<gamma>" and k: "k = winding_number \<gamma> z"
-    obtain e where e: "e>0" "ball z e \<subseteq> - path_image \<gamma>"
-      using open_contains_ball [of "- path_image \<gamma>"] opn z
-      by blast
-    have "\<exists>e>0. \<forall>y. dist y z < e \<longrightarrow> y \<notin> path_image \<gamma> \<and> winding_number \<gamma> y = winding_number \<gamma> z"
-      apply (rule_tac x=e in exI)
-      using e apply (simp add: dist_norm ball_def norm_minus_commute)
-      apply (auto simp: dist_norm norm_minus_commute intro!: winding_number_eq [OF assms, where S = "ball z e"])
-      done
-  } then
-  show ?thesis
-    by (auto simp: open_dist)
-qed
-
-subsection\<open>Winding number is zero "outside" a curve\<close>
-
-proposition winding_number_zero_in_outside:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" and z: "z \<in> outside (path_image \<gamma>)"
-    shows "winding_number \<gamma> z = 0"
-proof -
-  obtain B::real where "0 < B" and B: "path_image \<gamma> \<subseteq> ball 0 B"
-    using bounded_subset_ballD [OF bounded_path_image [OF \<gamma>]] by auto
-  obtain w::complex where w: "w \<notin> ball 0 (B + 1)"
-    by (metis abs_of_nonneg le_less less_irrefl mem_ball_0 norm_of_real)
-  have "- ball 0 (B + 1) \<subseteq> outside (path_image \<gamma>)"
-    apply (rule outside_subset_convex)
-    using B subset_ball by auto
-  then have wout: "w \<in> outside (path_image \<gamma>)"
-    using w by blast
-  moreover have "winding_number \<gamma> constant_on outside (path_image \<gamma>)"
-    using winding_number_constant [OF \<gamma> loop, of "outside(path_image \<gamma>)"] connected_outside
-    by (metis DIM_complex bounded_path_image dual_order.refl \<gamma> outside_no_overlap)
-  ultimately have "winding_number \<gamma> z = winding_number \<gamma> w"
-    by (metis (no_types, hide_lams) constant_on_def z)
-  also have "\<dots> = 0"
-  proof -
-    have wnot: "w \<notin> path_image \<gamma>"  using wout by (simp add: outside_def)
-    { fix e::real assume "0<e"
-      obtain p where p: "polynomial_function p" "pathstart p = pathstart \<gamma>" "pathfinish p = pathfinish \<gamma>"
-                 and pg1: "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> cmod (p t - \<gamma> t) < 1)"
-                 and pge: "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> cmod (p t - \<gamma> t) < e)"
-        using path_approx_polynomial_function [OF \<gamma>, of "min 1 e"] \<open>e>0\<close> by force
-      have pip: "path_image p \<subseteq> ball 0 (B + 1)"
-        using B
-        apply (clarsimp simp add: path_image_def dist_norm ball_def)
-        apply (frule (1) pg1)
-        apply (fastforce dest: norm_add_less)
-        done
-      then have "w \<notin> path_image p"  using w by blast
-      then have "\<exists>p. valid_path p \<and> w \<notin> path_image p \<and>
-                     pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma> \<and>
-                     (\<forall>t\<in>{0..1}. cmod (\<gamma> t - p t) < e) \<and> contour_integral p (\<lambda>wa. 1 / (wa - w)) = 0"
-        apply (rule_tac x=p in exI)
-        apply (simp add: p valid_path_polynomial_function)
-        apply (intro conjI)
-        using pge apply (simp add: norm_minus_commute)
-        apply (rule contour_integral_unique [OF Cauchy_theorem_convex_simple [OF _ convex_ball [of 0 "B+1"]]])
-        apply (rule holomorphic_intros | simp add: dist_norm)+
-        using mem_ball_0 w apply blast
-        using p apply (simp_all add: valid_path_polynomial_function loop pip)
-        done
-    }
-    then show ?thesis
-      by (auto intro: winding_number_unique [OF \<gamma>] simp add: winding_number_prop_def wnot)
-  qed
-  finally show ?thesis .
-qed
-
-corollary\<^marker>\<open>tag unimportant\<close> winding_number_zero_const: "a \<noteq> z \<Longrightarrow> winding_number (\<lambda>t. a) z = 0"
-  by (rule winding_number_zero_in_outside)
-     (auto simp: pathfinish_def pathstart_def path_polynomial_function)
-
-corollary\<^marker>\<open>tag unimportant\<close> winding_number_zero_outside:
-    "\<lbrakk>path \<gamma>; convex s; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> s; path_image \<gamma> \<subseteq> s\<rbrakk> \<Longrightarrow> winding_number \<gamma> z = 0"
-  by (meson convex_in_outside outside_mono subsetCE winding_number_zero_in_outside)
-
-lemma winding_number_zero_at_infinity:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-    shows "\<exists>B. \<forall>z. B \<le> norm z \<longrightarrow> winding_number \<gamma> z = 0"
-proof -
-  obtain B::real where "0 < B" and B: "path_image \<gamma> \<subseteq> ball 0 B"
-    using bounded_subset_ballD [OF bounded_path_image [OF \<gamma>]] by auto
-  then show ?thesis
-    apply (rule_tac x="B+1" in exI, clarify)
-    apply (rule winding_number_zero_outside [OF \<gamma> convex_cball [of 0 B] loop])
-    apply (meson less_add_one mem_cball_0 not_le order_trans)
-    using ball_subset_cball by blast
-qed
-
-lemma winding_number_zero_point:
-    "\<lbrakk>path \<gamma>; convex s; pathfinish \<gamma> = pathstart \<gamma>; open s; path_image \<gamma> \<subseteq> s\<rbrakk>
-     \<Longrightarrow> \<exists>z. z \<in> s \<and> winding_number \<gamma> z = 0"
-  using outside_compact_in_open [of "path_image \<gamma>" s] path_image_nonempty winding_number_zero_in_outside
-  by (fastforce simp add: compact_path_image)
-
-
-text\<open>If a path winds round a set, it winds rounds its inside.\<close>
-lemma winding_number_around_inside:
-  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-      and cls: "closed s" and cos: "connected s" and s_disj: "s \<inter> path_image \<gamma> = {}"
-      and z: "z \<in> s" and wn_nz: "winding_number \<gamma> z \<noteq> 0" and w: "w \<in> s \<union> inside s"
-    shows "winding_number \<gamma> w = winding_number \<gamma> z"
-proof -
-  have ssb: "s \<subseteq> inside(path_image \<gamma>)"
-  proof
-    fix x :: complex
-    assume "x \<in> s"
-    hence "x \<notin> path_image \<gamma>"
-      by (meson disjoint_iff_not_equal s_disj)
-    thus "x \<in> inside (path_image \<gamma>)"
-      using \<open>x \<in> s\<close> by (metis (no_types) ComplI UnE cos \<gamma> loop s_disj union_with_outside winding_number_eq winding_number_zero_in_outside wn_nz z)
-qed
-  show ?thesis
-    apply (rule winding_number_eq [OF \<gamma> loop w])
-    using z apply blast
-    apply (simp add: cls connected_with_inside cos)
-    apply (simp add: Int_Un_distrib2 s_disj, safe)
-    by (meson ssb inside_inside_compact_connected [OF cls, of "path_image \<gamma>"] compact_path_image connected_path_image contra_subsetD disjoint_iff_not_equal \<gamma> inside_no_overlap)
- qed
-
-
-text\<open>Bounding a WN by 1/2 for a path and point in opposite halfspaces.\<close>
-lemma winding_number_subpath_continuous:
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>"
-    shows "continuous_on {0..1} (\<lambda>x. winding_number(subpath 0 x \<gamma>) z)"
-proof -
-  have *: "integral {0..x} (\<lambda>t. vector_derivative \<gamma> (at t) / (\<gamma> t - z)) / (2 * of_real pi * \<i>) =
-         winding_number (subpath 0 x \<gamma>) z"
-         if x: "0 \<le> x" "x \<le> 1" for x
-  proof -
-    have "integral {0..x} (\<lambda>t. vector_derivative \<gamma> (at t) / (\<gamma> t - z)) / (2 * of_real pi * \<i>) =
-          1 / (2*pi*\<i>) * contour_integral (subpath 0 x \<gamma>) (\<lambda>w. 1/(w - z))"
-      using assms x
-      apply (simp add: contour_integral_subcontour_integral [OF contour_integrable_inversediff])
-      done
-    also have "\<dots> = winding_number (subpath 0 x \<gamma>) z"
-      apply (subst winding_number_valid_path)
-      using assms x
-      apply (simp_all add: path_image_subpath valid_path_subpath)
-      by (force simp: path_image_def)
-    finally show ?thesis .
-  qed
-  show ?thesis
-    apply (rule continuous_on_eq
-                 [where f = "\<lambda>x. 1 / (2*pi*\<i>) *
-                                 integral {0..x} (\<lambda>t. 1/(\<gamma> t - z) * vector_derivative \<gamma> (at t))"])
-    apply (rule continuous_intros)+
-    apply (rule indefinite_integral_continuous_1)
-    apply (rule contour_integrable_inversediff [OF assms, unfolded contour_integrable_on])
-      using assms
-    apply (simp add: *)
-    done
-qed
-
-lemma winding_number_ivt_pos:
-    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "0 \<le> w" "w \<le> Re(winding_number \<gamma> z)"
-      shows "\<exists>t \<in> {0..1}. Re(winding_number(subpath 0 t \<gamma>) z) = w"
-  apply (rule ivt_increasing_component_on_1 [of 0 1, where ?k = "1::complex", simplified complex_inner_1_right], simp)
-  apply (rule winding_number_subpath_continuous [OF \<gamma> z])
-  using assms
-  apply (auto simp: path_image_def image_def)
-  done
-
-lemma winding_number_ivt_neg:
-    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "Re(winding_number \<gamma> z) \<le> w" "w \<le> 0"
-      shows "\<exists>t \<in> {0..1}. Re(winding_number(subpath 0 t \<gamma>) z) = w"
-  apply (rule ivt_decreasing_component_on_1 [of 0 1, where ?k = "1::complex", simplified complex_inner_1_right], simp)
-  apply (rule winding_number_subpath_continuous [OF \<gamma> z])
-  using assms
-  apply (auto simp: path_image_def image_def)
-  done
-
-lemma winding_number_ivt_abs:
-    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "0 \<le> w" "w \<le> \<bar>Re(winding_number \<gamma> z)\<bar>"
-      shows "\<exists>t \<in> {0..1}. \<bar>Re (winding_number (subpath 0 t \<gamma>) z)\<bar> = w"
-  using assms winding_number_ivt_pos [of \<gamma> z w] winding_number_ivt_neg [of \<gamma> z "-w"]
-  by force
-
-lemma winding_number_lt_half_lemma:
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and az: "a \<bullet> z \<le> b" and pag: "path_image \<gamma> \<subseteq> {w. a \<bullet> w > b}"
-    shows "Re(winding_number \<gamma> z) < 1/2"
-proof -
-  { assume "Re(winding_number \<gamma> z) \<ge> 1/2"
-    then obtain t::real where t: "0 \<le> t" "t \<le> 1" and sub12: "Re (winding_number (subpath 0 t \<gamma>) z) = 1/2"
-      using winding_number_ivt_pos [OF \<gamma> z, of "1/2"] by auto
-    have gt: "\<gamma> t - z = - (of_real (exp (- (2 * pi * Im (winding_number (subpath 0 t \<gamma>) z)))) * (\<gamma> 0 - z))"
-      using winding_number_exp_2pi [of "subpath 0 t \<gamma>" z]
-      apply (simp add: t \<gamma> valid_path_imp_path)
-      using closed_segment_eq_real_ivl path_image_def t z by (fastforce simp: path_image_subpath Euler sub12)
-    have "b < a \<bullet> \<gamma> 0"
-    proof -
-      have "\<gamma> 0 \<in> {c. b < a \<bullet> c}"
-        by (metis (no_types) pag atLeastAtMost_iff image_subset_iff order_refl path_image_def zero_le_one)
-      thus ?thesis
-        by blast
-    qed
-    moreover have "b < a \<bullet> \<gamma> t"
-    proof -
-      have "\<gamma> t \<in> {c. b < a \<bullet> c}"
-        by (metis (no_types) pag atLeastAtMost_iff image_subset_iff path_image_def t)
-      thus ?thesis
-        by blast
-    qed
-    ultimately have "0 < a \<bullet> (\<gamma> 0 - z)" "0 < a \<bullet> (\<gamma> t - z)" using az
-      by (simp add: inner_diff_right)+
-    then have False
-      by (simp add: gt inner_mult_right mult_less_0_iff)
-  }
-  then show ?thesis by force
-qed
-
-lemma winding_number_lt_half:
-  assumes "valid_path \<gamma>" "a \<bullet> z \<le> b" "path_image \<gamma> \<subseteq> {w. a \<bullet> w > b}"
-    shows "\<bar>Re (winding_number \<gamma> z)\<bar> < 1/2"
-proof -
-  have "z \<notin> path_image \<gamma>" using assms by auto
-  with assms show ?thesis
-    apply (simp add: winding_number_lt_half_lemma abs_if del: less_divide_eq_numeral1)
-    apply (metis complex_inner_1_right winding_number_lt_half_lemma [OF valid_path_imp_reverse, of \<gamma> z a b]
-                 winding_number_reversepath valid_path_imp_path inner_minus_left path_image_reversepath)
-    done
-qed
-
-lemma winding_number_le_half:
-  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>"
-      and anz: "a \<noteq> 0" and azb: "a \<bullet> z \<le> b" and pag: "path_image \<gamma> \<subseteq> {w. a \<bullet> w \<ge> b}"
-    shows "\<bar>Re (winding_number \<gamma> z)\<bar> \<le> 1/2"
-proof -
-  { assume wnz_12: "\<bar>Re (winding_number \<gamma> z)\<bar> > 1/2"
-    have "isCont (winding_number \<gamma>) z"
-      by (metis continuous_at_winding_number valid_path_imp_path \<gamma> z)
-    then obtain d where "d>0" and d: "\<And>x'. dist x' z < d \<Longrightarrow> dist (winding_number \<gamma> x') (winding_number \<gamma> z) < \<bar>Re(winding_number \<gamma> z)\<bar> - 1/2"
-      using continuous_at_eps_delta wnz_12 diff_gt_0_iff_gt by blast
-    define z' where "z' = z - (d / (2 * cmod a)) *\<^sub>R a"
-    have *: "a \<bullet> z' \<le> b - d / 3 * cmod a"
-      unfolding z'_def inner_mult_right' divide_inverse
-      apply (simp add: field_split_simps algebra_simps dot_square_norm power2_eq_square anz)
-      apply (metis \<open>0 < d\<close> add_increasing azb less_eq_real_def mult_nonneg_nonneg mult_right_mono norm_ge_zero norm_numeral)
-      done
-    have "cmod (winding_number \<gamma> z' - winding_number \<gamma> z) < \<bar>Re (winding_number \<gamma> z)\<bar> - 1/2"
-      using d [of z'] anz \<open>d>0\<close> by (simp add: dist_norm z'_def)
-    then have "1/2 < \<bar>Re (winding_number \<gamma> z)\<bar> - cmod (winding_number \<gamma> z' - winding_number \<gamma> z)"
-      by simp
-    then have "1/2 < \<bar>Re (winding_number \<gamma> z)\<bar> - \<bar>Re (winding_number \<gamma> z') - Re (winding_number \<gamma> z)\<bar>"
-      using abs_Re_le_cmod [of "winding_number \<gamma> z' - winding_number \<gamma> z"] by simp
-    then have wnz_12': "\<bar>Re (winding_number \<gamma> z')\<bar> > 1/2"
-      by linarith
-    moreover have "\<bar>Re (winding_number \<gamma> z')\<bar> < 1/2"
-      apply (rule winding_number_lt_half [OF \<gamma> *])
-      using azb \<open>d>0\<close> pag
-      apply (auto simp: add_strict_increasing anz field_split_simps dest!: subsetD)
-      done
-    ultimately have False
-      by simp
-  }
-  then show ?thesis by force
-qed
-
-lemma winding_number_lt_half_linepath: "z \<notin> closed_segment a b \<Longrightarrow> \<bar>Re (winding_number (linepath a b) z)\<bar> < 1/2"
-  using separating_hyperplane_closed_point [of "closed_segment a b" z]
-  apply auto
-  apply (simp add: closed_segment_def)
-  apply (drule less_imp_le)
-  apply (frule winding_number_lt_half [OF valid_path_linepath [of a b]])
-  apply (auto simp: segment)
-  done
-
-
-text\<open> Positivity of WN for a linepath.\<close>
-lemma winding_number_linepath_pos_lt:
-    assumes "0 < Im ((b - a) * cnj (b - z))"
-      shows "0 < Re(winding_number(linepath a b) z)"
-proof -
-  have z: "z \<notin> path_image (linepath a b)"
-    using assms
-    by (simp add: closed_segment_def) (force simp: algebra_simps)
-  show ?thesis
-    apply (rule winding_number_pos_lt [OF valid_path_linepath z assms])
-    apply (simp add: linepath_def algebra_simps)
-    done
-qed
-
-
-subsection\<open>Cauchy's integral formula, again for a convex enclosing set\<close>
-
-lemma Cauchy_integral_formula_weak:
-    assumes s: "convex s" and "finite k" and conf: "continuous_on s f"
-        and fcd: "(\<And>x. x \<in> interior s - k \<Longrightarrow> f field_differentiable at x)"
-        and z: "z \<in> interior s - k" and vpg: "valid_path \<gamma>"
-        and pasz: "path_image \<gamma> \<subseteq> s - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-      shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-proof -
-  obtain f' where f': "(f has_field_derivative f') (at z)"
-    using fcd [OF z] by (auto simp: field_differentiable_def)
-  have pas: "path_image \<gamma> \<subseteq> s" and znotin: "z \<notin> path_image \<gamma>" using pasz by blast+
-  have c: "continuous (at x within s) (\<lambda>w. if w = z then f' else (f w - f z) / (w - z))" if "x \<in> s" for x
-  proof (cases "x = z")
-    case True then show ?thesis
-      apply (simp add: continuous_within)
-      apply (rule Lim_transform_away_within [of _ "z+1" _ "\<lambda>w::complex. (f w - f z)/(w - z)"])
-      using has_field_derivative_at_within has_field_derivative_iff f'
-      apply (fastforce simp add:)+
-      done
-  next
-    case False
-    then have dxz: "dist x z > 0" by auto
-    have cf: "continuous (at x within s) f"
-      using conf continuous_on_eq_continuous_within that by blast
-    have "continuous (at x within s) (\<lambda>w. (f w - f z) / (w - z))"
-      by (rule cf continuous_intros | simp add: False)+
-    then show ?thesis
-      apply (rule continuous_transform_within [OF _ dxz that, of "\<lambda>w::complex. (f w - f z)/(w - z)"])
-      apply (force simp: dist_commute)
-      done
-  qed
-  have fink': "finite (insert z k)" using \<open>finite k\<close> by blast
-  have *: "((\<lambda>w. if w = z then f' else (f w - f z) / (w - z)) has_contour_integral 0) \<gamma>"
-    apply (rule Cauchy_theorem_convex [OF _ s fink' _ vpg pas loop])
-    using c apply (force simp: continuous_on_eq_continuous_within)
-    apply (rename_tac w)
-    apply (rule_tac d="dist w z" and f = "\<lambda>w. (f w - f z)/(w - z)" in field_differentiable_transform_within)
-    apply (simp_all add: dist_pos_lt dist_commute)
-    apply (metis less_irrefl)
-    apply (rule derivative_intros fcd | simp)+
-    done
-  show ?thesis
-    apply (rule has_contour_integral_eq)
-    using znotin has_contour_integral_add [OF has_contour_integral_lmul [OF has_contour_integral_winding_number [OF vpg znotin], of "f z"] *]
-    apply (auto simp: ac_simps divide_simps)
-    done
-qed
-
-theorem Cauchy_integral_formula_convex_simple:
-    "\<lbrakk>convex s; f holomorphic_on s; z \<in> interior s; valid_path \<gamma>; path_image \<gamma> \<subseteq> s - {z};
-      pathfinish \<gamma> = pathstart \<gamma>\<rbrakk>
-     \<Longrightarrow> ((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-  apply (rule Cauchy_integral_formula_weak [where k = "{}"])
-  using holomorphic_on_imp_continuous_on
-  by auto (metis at_within_interior holomorphic_on_def interiorE subsetCE)
-
 subsection\<open>Homotopy forms of Cauchy's theorem\<close>
 
 lemma Cauchy_theorem_homotopic:
@@ -4826,3022 +1689,7 @@
     apply (blast dest: holomorphic_on_imp_continuous_on homotopic_loops_imp_subset)
   by (simp add: Cauchy_theorem_homotopic_loops)
 
-subsection\<^marker>\<open>tag unimportant\<close> \<open>More winding number properties\<close>
-
-text\<open>including the fact that it's +-1 inside a simple closed curve.\<close>
-
-lemma winding_number_homotopic_paths:
-    assumes "homotopic_paths (-{z}) g h"
-      shows "winding_number g z = winding_number h z"
-proof -
-  have "path g" "path h" using homotopic_paths_imp_path [OF assms] by auto
-  moreover have pag: "z \<notin> path_image g" and pah: "z \<notin> path_image h"
-    using homotopic_paths_imp_subset [OF assms] by auto
-  ultimately obtain d e where "d > 0" "e > 0"
-      and d: "\<And>p. \<lbrakk>path p; pathstart p = pathstart g; pathfinish p = pathfinish g; \<forall>t\<in>{0..1}. norm (p t - g t) < d\<rbrakk>
-            \<Longrightarrow> homotopic_paths (-{z}) g p"
-      and e: "\<And>q. \<lbrakk>path q; pathstart q = pathstart h; pathfinish q = pathfinish h; \<forall>t\<in>{0..1}. norm (q t - h t) < e\<rbrakk>
-            \<Longrightarrow> homotopic_paths (-{z}) h q"
-    using homotopic_nearby_paths [of g "-{z}"] homotopic_nearby_paths [of h "-{z}"] by force
-  obtain p where p:
-       "valid_path p" "z \<notin> path_image p"
-       "pathstart p = pathstart g" "pathfinish p = pathfinish g"
-       and gp_less:"\<forall>t\<in>{0..1}. cmod (g t - p t) < d"
-       and pap: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number g z"
-    using winding_number [OF \<open>path g\<close> pag \<open>0 < d\<close>] unfolding winding_number_prop_def by blast
-  obtain q where q:
-       "valid_path q" "z \<notin> path_image q"
-       "pathstart q = pathstart h" "pathfinish q = pathfinish h"
-       and hq_less: "\<forall>t\<in>{0..1}. cmod (h t - q t) < e"
-       and paq:  "contour_integral q (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number h z"
-    using winding_number [OF \<open>path h\<close> pah \<open>0 < e\<close>] unfolding winding_number_prop_def by blast
-  have "homotopic_paths (- {z}) g p"
-    by (simp add: d p valid_path_imp_path norm_minus_commute gp_less)
-  moreover have "homotopic_paths (- {z}) h q"
-    by (simp add: e q valid_path_imp_path norm_minus_commute hq_less)
-  ultimately have "homotopic_paths (- {z}) p q"
-    by (blast intro: homotopic_paths_trans homotopic_paths_sym assms)
-  then have "contour_integral p (\<lambda>w. 1/(w - z)) = contour_integral q (\<lambda>w. 1/(w - z))"
-    by (rule Cauchy_theorem_homotopic_paths) (auto intro!: holomorphic_intros simp: p q)
-  then show ?thesis
-    by (simp add: pap paq)
-qed
-
-lemma winding_number_homotopic_loops:
-    assumes "homotopic_loops (-{z}) g h"
-      shows "winding_number g z = winding_number h z"
-proof -
-  have "path g" "path h" using homotopic_loops_imp_path [OF assms] by auto
-  moreover have pag: "z \<notin> path_image g" and pah: "z \<notin> path_image h"
-    using homotopic_loops_imp_subset [OF assms] by auto
-  moreover have gloop: "pathfinish g = pathstart g" and hloop: "pathfinish h = pathstart h"
-    using homotopic_loops_imp_loop [OF assms] by auto
-  ultimately obtain d e where "d > 0" "e > 0"
-      and d: "\<And>p. \<lbrakk>path p; pathfinish p = pathstart p; \<forall>t\<in>{0..1}. norm (p t - g t) < d\<rbrakk>
-            \<Longrightarrow> homotopic_loops (-{z}) g p"
-      and e: "\<And>q. \<lbrakk>path q; pathfinish q = pathstart q; \<forall>t\<in>{0..1}. norm (q t - h t) < e\<rbrakk>
-            \<Longrightarrow> homotopic_loops (-{z}) h q"
-    using homotopic_nearby_loops [of g "-{z}"] homotopic_nearby_loops [of h "-{z}"] by force
-  obtain p where p:
-       "valid_path p" "z \<notin> path_image p"
-       "pathstart p = pathstart g" "pathfinish p = pathfinish g"
-       and gp_less:"\<forall>t\<in>{0..1}. cmod (g t - p t) < d"
-       and pap: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number g z"
-    using winding_number [OF \<open>path g\<close> pag \<open>0 < d\<close>] unfolding winding_number_prop_def by blast
-  obtain q where q:
-       "valid_path q" "z \<notin> path_image q"
-       "pathstart q = pathstart h" "pathfinish q = pathfinish h"
-       and hq_less: "\<forall>t\<in>{0..1}. cmod (h t - q t) < e"
-       and paq:  "contour_integral q (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number h z"
-    using winding_number [OF \<open>path h\<close> pah \<open>0 < e\<close>] unfolding winding_number_prop_def by blast
-  have gp: "homotopic_loops (- {z}) g p"
-    by (simp add: gloop d gp_less norm_minus_commute p valid_path_imp_path)
-  have hq: "homotopic_loops (- {z}) h q"
-    by (simp add: e hloop hq_less norm_minus_commute q valid_path_imp_path)
-  have "contour_integral p (\<lambda>w. 1/(w - z)) = contour_integral q (\<lambda>w. 1/(w - z))"
-  proof (rule Cauchy_theorem_homotopic_loops)
-    show "homotopic_loops (- {z}) p q"
-      by (blast intro: homotopic_loops_trans homotopic_loops_sym gp hq assms)
-  qed (auto intro!: holomorphic_intros simp: p q)
-  then show ?thesis
-    by (simp add: pap paq)
-qed
-
-lemma winding_number_paths_linear_eq:
-  "\<lbrakk>path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;
-    \<And>t. t \<in> {0..1} \<Longrightarrow> z \<notin> closed_segment (g t) (h t)\<rbrakk>
-        \<Longrightarrow> winding_number h z = winding_number g z"
-  by (blast intro: sym homotopic_paths_linear winding_number_homotopic_paths)
-
-lemma winding_number_loops_linear_eq:
-  "\<lbrakk>path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;
-    \<And>t. t \<in> {0..1} \<Longrightarrow> z \<notin> closed_segment (g t) (h t)\<rbrakk>
-        \<Longrightarrow> winding_number h z = winding_number g z"
-  by (blast intro: sym homotopic_loops_linear winding_number_homotopic_loops)
-
-lemma winding_number_nearby_paths_eq:
-     "\<lbrakk>path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;
-      \<And>t. t \<in> {0..1} \<Longrightarrow> norm(h t - g t) < norm(g t - z)\<rbrakk>
-      \<Longrightarrow> winding_number h z = winding_number g z"
-  by (metis segment_bound(2) norm_minus_commute not_le winding_number_paths_linear_eq)
-
-lemma winding_number_nearby_loops_eq:
-     "\<lbrakk>path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;
-      \<And>t. t \<in> {0..1} \<Longrightarrow> norm(h t - g t) < norm(g t - z)\<rbrakk>
-      \<Longrightarrow> winding_number h z = winding_number g z"
-  by (metis segment_bound(2) norm_minus_commute not_le winding_number_loops_linear_eq)
-
-
-lemma winding_number_subpath_combine:
-    "\<lbrakk>path g; z \<notin> path_image g;
-      u \<in> {0..1}; v \<in> {0..1}; w \<in> {0..1}\<rbrakk>
-      \<Longrightarrow> winding_number (subpath u v g) z + winding_number (subpath v w g) z =
-          winding_number (subpath u w g) z"
-apply (rule trans [OF winding_number_join [THEN sym]
-                      winding_number_homotopic_paths [OF homotopic_join_subpaths]])
-  using path_image_subpath_subset by auto
-
-subsection\<open>Partial circle path\<close>
-
-definition\<^marker>\<open>tag important\<close> part_circlepath :: "[complex, real, real, real, real] \<Rightarrow> complex"
-  where "part_circlepath z r s t \<equiv> \<lambda>x. z + of_real r * exp (\<i> * of_real (linepath s t x))"
-
-lemma pathstart_part_circlepath [simp]:
-     "pathstart(part_circlepath z r s t) = z + r*exp(\<i> * s)"
-by (metis part_circlepath_def pathstart_def pathstart_linepath)
-
-lemma pathfinish_part_circlepath [simp]:
-     "pathfinish(part_circlepath z r s t) = z + r*exp(\<i>*t)"
-by (metis part_circlepath_def pathfinish_def pathfinish_linepath)
-
-lemma reversepath_part_circlepath[simp]:
-    "reversepath (part_circlepath z r s t) = part_circlepath z r t s"
-  unfolding part_circlepath_def reversepath_def linepath_def 
-  by (auto simp:algebra_simps)
-    
-lemma has_vector_derivative_part_circlepath [derivative_intros]:
-    "((part_circlepath z r s t) has_vector_derivative
-      (\<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)))
-     (at x within X)"
-  apply (simp add: part_circlepath_def linepath_def scaleR_conv_of_real)
-  apply (rule has_vector_derivative_real_field)
-  apply (rule derivative_eq_intros | simp)+
-  done
-
-lemma differentiable_part_circlepath:
-  "part_circlepath c r a b differentiable at x within A"
-  using has_vector_derivative_part_circlepath[of c r a b x A] differentiableI_vector by blast
-
-lemma vector_derivative_part_circlepath:
-    "vector_derivative (part_circlepath z r s t) (at x) =
-       \<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)"
-  using has_vector_derivative_part_circlepath vector_derivative_at by blast
-
-lemma vector_derivative_part_circlepath01:
-    "\<lbrakk>0 \<le> x; x \<le> 1\<rbrakk>
-     \<Longrightarrow> vector_derivative (part_circlepath z r s t) (at x within {0..1}) =
-          \<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)"
-  using has_vector_derivative_part_circlepath
-  by (auto simp: vector_derivative_at_within_ivl)
-
-lemma valid_path_part_circlepath [simp]: "valid_path (part_circlepath z r s t)"
-  apply (simp add: valid_path_def)
-  apply (rule C1_differentiable_imp_piecewise)
-  apply (auto simp: C1_differentiable_on_eq vector_derivative_works vector_derivative_part_circlepath has_vector_derivative_part_circlepath
-              intro!: continuous_intros)
-  done
-
-lemma path_part_circlepath [simp]: "path (part_circlepath z r s t)"
-  by (simp add: valid_path_imp_path)
-
-proposition path_image_part_circlepath:
-  assumes "s \<le> t"
-    shows "path_image (part_circlepath z r s t) = {z + r * exp(\<i> * of_real x) | x. s \<le> x \<and> x \<le> t}"
-proof -
-  { fix z::real
-    assume "0 \<le> z" "z \<le> 1"
-    with \<open>s \<le> t\<close> have "\<exists>x. (exp (\<i> * linepath s t z) = exp (\<i> * of_real x)) \<and> s \<le> x \<and> x \<le> t"
-      apply (rule_tac x="(1 - z) * s + z * t" in exI)
-      apply (simp add: linepath_def scaleR_conv_of_real algebra_simps)
-      apply (rule conjI)
-      using mult_right_mono apply blast
-      using affine_ineq  by (metis "mult.commute")
-  }
-  moreover
-  { fix z
-    assume "s \<le> z" "z \<le> t"
-    then have "z + of_real r * exp (\<i> * of_real z) \<in> (\<lambda>x. z + of_real r * exp (\<i> * linepath s t x)) ` {0..1}"
-      apply (rule_tac x="(z - s)/(t - s)" in image_eqI)
-      apply (simp add: linepath_def scaleR_conv_of_real divide_simps exp_eq)
-      apply (auto simp: field_split_simps)
-      done
-  }
-  ultimately show ?thesis
-    by (fastforce simp add: path_image_def part_circlepath_def)
-qed
-
-lemma path_image_part_circlepath':
-  "path_image (part_circlepath z r s t) = (\<lambda>x. z + r * cis x) ` closed_segment s t"
-proof -
-  have "path_image (part_circlepath z r s t) = 
-          (\<lambda>x. z + r * exp(\<i> * of_real x)) ` linepath s t ` {0..1}"
-    by (simp add: image_image path_image_def part_circlepath_def)
-  also have "linepath s t ` {0..1} = closed_segment s t"
-    by (rule linepath_image_01)
-  finally show ?thesis by (simp add: cis_conv_exp)
-qed
-
-lemma path_image_part_circlepath_subset:
-    "\<lbrakk>s \<le> t; 0 \<le> r\<rbrakk> \<Longrightarrow> path_image(part_circlepath z r s t) \<subseteq> sphere z r"
-by (auto simp: path_image_part_circlepath sphere_def dist_norm algebra_simps norm_mult)
-
-lemma in_path_image_part_circlepath:
-  assumes "w \<in> path_image(part_circlepath z r s t)" "s \<le> t" "0 \<le> r"
-    shows "norm(w - z) = r"
-proof -
-  have "w \<in> {c. dist z c = r}"
-    by (metis (no_types) path_image_part_circlepath_subset sphere_def subset_eq assms)
-  thus ?thesis
-    by (simp add: dist_norm norm_minus_commute)
-qed
-
-lemma path_image_part_circlepath_subset':
-  assumes "r \<ge> 0"
-  shows   "path_image (part_circlepath z r s t) \<subseteq> sphere z r"
-proof (cases "s \<le> t")
-  case True
-  thus ?thesis using path_image_part_circlepath_subset[of s t r z] assms by simp
-next
-  case False
-  thus ?thesis using path_image_part_circlepath_subset[of t s r z] assms
-    by (subst reversepath_part_circlepath [symmetric], subst path_image_reversepath) simp_all
-qed
-
-lemma part_circlepath_cnj: "cnj (part_circlepath c r a b x) = part_circlepath (cnj c) r (-a) (-b) x"
-  by (simp add: part_circlepath_def exp_cnj linepath_def algebra_simps)
-
-lemma contour_integral_bound_part_circlepath:
-  assumes "f contour_integrable_on part_circlepath c r a b"
-  assumes "B \<ge> 0" "r \<ge> 0" "\<And>x. x \<in> path_image (part_circlepath c r a b) \<Longrightarrow> norm (f x) \<le> B"
-  shows   "norm (contour_integral (part_circlepath c r a b) f) \<le> B * r * \<bar>b - a\<bar>"
-proof -
-  let ?I = "integral {0..1} (\<lambda>x. f (part_circlepath c r a b x) * \<i> * of_real (r * (b - a)) *
-              exp (\<i> * linepath a b x))"
-  have "norm ?I \<le> integral {0..1} (\<lambda>x::real. B * 1 * (r * \<bar>b - a\<bar>) * 1)"
-  proof (rule integral_norm_bound_integral, goal_cases)
-    case 1
-    with assms(1) show ?case
-      by (simp add: contour_integrable_on vector_derivative_part_circlepath mult_ac)
-  next
-    case (3 x)
-    with assms(2-) show ?case unfolding norm_mult norm_of_real abs_mult
-      by (intro mult_mono) (auto simp: path_image_def)
-  qed auto
-  also have "?I = contour_integral (part_circlepath c r a b) f"
-    by (simp add: contour_integral_integral vector_derivative_part_circlepath mult_ac)
-  finally show ?thesis by simp
-qed
-
-lemma has_contour_integral_part_circlepath_iff:
-  assumes "a < b"
-  shows "(f has_contour_integral I) (part_circlepath c r a b) \<longleftrightarrow>
-           ((\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) has_integral I) {a..b}"
-proof -
-  have "(f has_contour_integral I) (part_circlepath c r a b) \<longleftrightarrow>
-          ((\<lambda>x. f (part_circlepath c r a b x) * vector_derivative (part_circlepath c r a b)
-           (at x within {0..1})) has_integral I) {0..1}"
-    unfolding has_contour_integral_def ..
-  also have "\<dots> \<longleftrightarrow> ((\<lambda>x. f (part_circlepath c r a b x) * r * (b - a) * \<i> *
-                            cis (linepath a b x)) has_integral I) {0..1}"
-    by (intro has_integral_cong, subst vector_derivative_part_circlepath01)
-       (simp_all add: cis_conv_exp)
-  also have "\<dots> \<longleftrightarrow> ((\<lambda>x. f (c + r * exp (\<i> * linepath (of_real a) (of_real b) x)) *
-                       r * \<i> * exp (\<i> * linepath (of_real a) (of_real b) x) *
-                       vector_derivative (linepath (of_real a) (of_real b)) 
-                         (at x within {0..1})) has_integral I) {0..1}"
-    by (intro has_integral_cong, subst vector_derivative_linepath_within)
-       (auto simp: part_circlepath_def cis_conv_exp of_real_linepath [symmetric])
-  also have "\<dots> \<longleftrightarrow> ((\<lambda>z. f (c + r * exp (\<i> * z)) * r * \<i> * exp (\<i> * z)) has_contour_integral I)
-                      (linepath (of_real a) (of_real b))"
-    by (simp add: has_contour_integral_def)
-  also have "\<dots> \<longleftrightarrow> ((\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) has_integral I) {a..b}" using assms
-    by (subst has_contour_integral_linepath_Reals_iff) (simp_all add: cis_conv_exp)
-  finally show ?thesis .
-qed
-
-lemma contour_integrable_part_circlepath_iff:
-  assumes "a < b"
-  shows "f contour_integrable_on (part_circlepath c r a b) \<longleftrightarrow>
-           (\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}"
-  using assms by (auto simp: contour_integrable_on_def integrable_on_def 
-                             has_contour_integral_part_circlepath_iff)
-
-lemma contour_integral_part_circlepath_eq:
-  assumes "a < b"
-  shows "contour_integral (part_circlepath c r a b) f =
-           integral {a..b} (\<lambda>t. f (c + r * cis t) * r * \<i> * cis t)"
-proof (cases "f contour_integrable_on part_circlepath c r a b")
-  case True
-  hence "(\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}" 
-    using assms by (simp add: contour_integrable_part_circlepath_iff)
-  with True show ?thesis
-    using has_contour_integral_part_circlepath_iff[OF assms]
-          contour_integral_unique has_integral_integrable_integral by blast
-next
-  case False
-  hence "\<not>(\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}" 
-    using assms by (simp add: contour_integrable_part_circlepath_iff)
-  with False show ?thesis
-    by (simp add: not_integrable_contour_integral not_integrable_integral)
-qed
-
-lemma contour_integral_part_circlepath_reverse:
-  "contour_integral (part_circlepath c r a b) f = -contour_integral (part_circlepath c r b a) f"
-  by (subst reversepath_part_circlepath [symmetric], subst contour_integral_reversepath) simp_all
-
-lemma contour_integral_part_circlepath_reverse':
-  "b < a \<Longrightarrow> contour_integral (part_circlepath c r a b) f = 
-               -contour_integral (part_circlepath c r b a) f"
-  by (rule contour_integral_part_circlepath_reverse)
-
-lemma finite_bounded_log: "finite {z::complex. norm z \<le> b \<and> exp z = w}"
-proof (cases "w = 0")
-  case True then show ?thesis by auto
-next
-  case False
-  have *: "finite {x. cmod (complex_of_real (2 * real_of_int x * pi) * \<i>) \<le> b + cmod (Ln w)}"
-    apply (simp add: norm_mult finite_int_iff_bounded_le)
-    apply (rule_tac x="\<lfloor>(b + cmod (Ln w)) / (2*pi)\<rfloor>" in exI)
-    apply (auto simp: field_split_simps le_floor_iff)
-    done
-  have [simp]: "\<And>P f. {z. P z \<and> (\<exists>n. z = f n)} = f ` {n. P (f n)}"
-    by blast
-  show ?thesis
-    apply (subst exp_Ln [OF False, symmetric])
-    apply (simp add: exp_eq)
-    using norm_add_leD apply (fastforce intro: finite_subset [OF _ *])
-    done
-qed
-
-lemma finite_bounded_log2:
-  fixes a::complex
-    assumes "a \<noteq> 0"
-    shows "finite {z. norm z \<le> b \<and> exp(a*z) = w}"
-proof -
-  have *: "finite ((\<lambda>z. z / a) ` {z. cmod z \<le> b * cmod a \<and> exp z = w})"
-    by (rule finite_imageI [OF finite_bounded_log])
-  show ?thesis
-    by (rule finite_subset [OF _ *]) (force simp: assms norm_mult)
-qed
-
-lemma has_contour_integral_bound_part_circlepath_strong:
-  assumes fi: "(f has_contour_integral i) (part_circlepath z r s t)"
-      and "finite k" and le: "0 \<le> B" "0 < r" "s \<le> t"
-      and B: "\<And>x. x \<in> path_image(part_circlepath z r s t) - k \<Longrightarrow> norm(f x) \<le> B"
-    shows "cmod i \<le> B * r * (t - s)"
-proof -
-  consider "s = t" | "s < t" using \<open>s \<le> t\<close> by linarith
-  then show ?thesis
-  proof cases
-    case 1 with fi [unfolded has_contour_integral]
-    have "i = 0"  by (simp add: vector_derivative_part_circlepath)
-    with assms show ?thesis by simp
-  next
-    case 2
-    have [simp]: "\<bar>r\<bar> = r" using \<open>r > 0\<close> by linarith
-    have [simp]: "cmod (complex_of_real t - complex_of_real s) = t-s"
-      by (metis "2" abs_of_pos diff_gt_0_iff_gt norm_of_real of_real_diff)
-    have "finite (part_circlepath z r s t -` {y} \<inter> {0..1})" if "y \<in> k" for y
-    proof -
-      define w where "w = (y - z)/of_real r / exp(\<i> * of_real s)"
-      have fin: "finite (of_real -` {z. cmod z \<le> 1 \<and> exp (\<i> * complex_of_real (t - s) * z) = w})"
-        apply (rule finite_vimageI [OF finite_bounded_log2])
-        using \<open>s < t\<close> apply (auto simp: inj_of_real)
-        done
-      show ?thesis
-        apply (simp add: part_circlepath_def linepath_def vimage_def)
-        apply (rule finite_subset [OF _ fin])
-        using le
-        apply (auto simp: w_def algebra_simps scaleR_conv_of_real exp_add exp_diff)
-        done
-    qed
-    then have fin01: "finite ((part_circlepath z r s t) -` k \<inter> {0..1})"
-      by (rule finite_finite_vimage_IntI [OF \<open>finite k\<close>])
-    have **: "((\<lambda>x. if (part_circlepath z r s t x) \<in> k then 0
-                    else f(part_circlepath z r s t x) *
-                       vector_derivative (part_circlepath z r s t) (at x)) has_integral i)  {0..1}"
-      by (rule has_integral_spike [OF negligible_finite [OF fin01]])  (use fi has_contour_integral in auto)
-    have *: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1; part_circlepath z r s t x \<notin> k\<rbrakk> \<Longrightarrow> cmod (f (part_circlepath z r s t x)) \<le> B"
-      by (auto intro!: B [unfolded path_image_def image_def, simplified])
-    show ?thesis
-      apply (rule has_integral_bound [where 'a=real, simplified, OF _ **, simplified])
-      using assms apply force
-      apply (simp add: norm_mult vector_derivative_part_circlepath)
-      using le * "2" \<open>r > 0\<close> by auto
-  qed
-qed
-
-lemma has_contour_integral_bound_part_circlepath:
-      "\<lbrakk>(f has_contour_integral i) (part_circlepath z r s t);
-        0 \<le> B; 0 < r; s \<le> t;
-        \<And>x. x \<in> path_image(part_circlepath z r s t) \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
-       \<Longrightarrow> norm i \<le> B*r*(t - s)"
-  by (auto intro: has_contour_integral_bound_part_circlepath_strong)
-
-lemma contour_integrable_continuous_part_circlepath:
-     "continuous_on (path_image (part_circlepath z r s t)) f
-      \<Longrightarrow> f contour_integrable_on (part_circlepath z r s t)"
-  apply (simp add: contour_integrable_on has_contour_integral_def vector_derivative_part_circlepath path_image_def)
-  apply (rule integrable_continuous_real)
-  apply (fast intro: path_part_circlepath [unfolded path_def] continuous_intros continuous_on_compose2 [where g=f, OF _ _ order_refl])
-  done
-
-proposition winding_number_part_circlepath_pos_less:
-  assumes "s < t" and no: "norm(w - z) < r"
-    shows "0 < Re (winding_number(part_circlepath z r s t) w)"
-proof -
-  have "0 < r" by (meson no norm_not_less_zero not_le order.strict_trans2)
-  note valid_path_part_circlepath
-  moreover have " w \<notin> path_image (part_circlepath z r s t)"
-    using assms by (auto simp: path_image_def image_def part_circlepath_def norm_mult linepath_def)
-  moreover have "0 < r * (t - s) * (r - cmod (w - z))"
-    using assms by (metis \<open>0 < r\<close> diff_gt_0_iff_gt mult_pos_pos)
-  ultimately show ?thesis
-    apply (rule winding_number_pos_lt [where e = "r*(t - s)*(r - norm(w - z))"])
-    apply (simp add: vector_derivative_part_circlepath right_diff_distrib [symmetric] mult_ac)
-    apply (rule mult_left_mono)+
-    using Re_Im_le_cmod [of "w-z" "linepath s t x" for x]
-    apply (simp add: exp_Euler cos_of_real sin_of_real part_circlepath_def algebra_simps cos_squared_eq [unfolded power2_eq_square])
-    using assms \<open>0 < r\<close> by auto
-qed
-
-lemma simple_path_part_circlepath:
-    "simple_path(part_circlepath z r s t) \<longleftrightarrow> (r \<noteq> 0 \<and> s \<noteq> t \<and> \<bar>s - t\<bar> \<le> 2*pi)"
-proof (cases "r = 0 \<or> s = t")
-  case True
-  then show ?thesis
-    unfolding part_circlepath_def simple_path_def
-    by (rule disjE) (force intro: bexI [where x = "1/4"] bexI [where x = "1/3"])+
-next
-  case False then have "r \<noteq> 0" "s \<noteq> t" by auto
-  have *: "\<And>x y z s t. \<i>*((1 - x) * s + x * t) = \<i>*(((1 - y) * s + y * t)) + z  \<longleftrightarrow> \<i>*(x - y) * (t - s) = z"
-    by (simp add: algebra_simps)
-  have abs01: "\<And>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1
-                      \<Longrightarrow> (x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0 \<longleftrightarrow> \<bar>x - y\<bar> \<in> {0,1})"
-    by auto
-  have **: "\<And>x y. (\<exists>n. (complex_of_real x - of_real y) * (of_real t - of_real s) = 2 * (of_int n * of_real pi)) \<longleftrightarrow>
-                  (\<exists>n. \<bar>x - y\<bar> * (t - s) = 2 * (of_int n * pi))"
-    by (force simp: algebra_simps abs_if dest: arg_cong [where f=Re] arg_cong [where f=complex_of_real]
-                    intro: exI [where x = "-n" for n])
-  have 1: "\<bar>s - t\<bar> \<le> 2 * pi"
-    if "\<And>x. 0 \<le> x \<and> x \<le> 1 \<Longrightarrow> (\<exists>n. x * (t - s) = 2 * (real_of_int n * pi)) \<longrightarrow> x = 0 \<or> x = 1"
-  proof (rule ccontr)
-    assume "\<not> \<bar>s - t\<bar> \<le> 2 * pi"
-    then have *: "\<And>n. t - s \<noteq> of_int n * \<bar>s - t\<bar>"
-      using False that [of "2*pi / \<bar>t - s\<bar>"]
-      by (simp add: abs_minus_commute divide_simps)
-    show False
-      using * [of 1] * [of "-1"] by auto
-  qed
-  have 2: "\<bar>s - t\<bar> = \<bar>2 * (real_of_int n * pi) / x\<bar>" if "x \<noteq> 0" "x * (t - s) = 2 * (real_of_int n * pi)" for x n
-  proof -
-    have "t-s = 2 * (real_of_int n * pi)/x"
-      using that by (simp add: field_simps)
-    then show ?thesis by (metis abs_minus_commute)
-  qed
-  have abs_away: "\<And>P. (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. P \<bar>x - y\<bar>) \<longleftrightarrow> (\<forall>x::real. 0 \<le> x \<and> x \<le> 1 \<longrightarrow> P x)"
-    by force
-  show ?thesis using False
-    apply (simp add: simple_path_def)
-    apply (simp add: part_circlepath_def linepath_def exp_eq  * ** abs01  del: Set.insert_iff)
-    apply (subst abs_away)
-    apply (auto simp: 1)
-    apply (rule ccontr)
-    apply (auto simp: 2 field_split_simps abs_mult dest: of_int_leD)
-    done
-qed
-
-lemma arc_part_circlepath:
-  assumes "r \<noteq> 0" "s \<noteq> t" "\<bar>s - t\<bar> < 2*pi"
-    shows "arc (part_circlepath z r s t)"
-proof -
-  have *: "x = y" if eq: "\<i> * (linepath s t x) = \<i> * (linepath s t y) + 2 * of_int n * complex_of_real pi * \<i>"
-    and x: "x \<in> {0..1}" and y: "y \<in> {0..1}" for x y n
-  proof (rule ccontr)
-    assume "x \<noteq> y"
-    have "(linepath s t x) = (linepath s t y) + 2 * of_int n * complex_of_real pi"
-      by (metis add_divide_eq_iff complex_i_not_zero mult.commute nonzero_mult_div_cancel_left eq)
-    then have "s*y + t*x = s*x + (t*y + of_int n * (pi * 2))"
-      by (force simp: algebra_simps linepath_def dest: arg_cong [where f=Re])
-    with \<open>x \<noteq> y\<close> have st: "s-t = (of_int n * (pi * 2) / (y-x))"
-      by (force simp: field_simps)
-    have "\<bar>real_of_int n\<bar> < \<bar>y - x\<bar>"
-      using assms \<open>x \<noteq> y\<close> by (simp add: st abs_mult field_simps)
-    then show False
-      using assms x y st by (auto dest: of_int_lessD)
-  qed
-  show ?thesis
-    using assms
-    apply (simp add: arc_def)
-    apply (simp add: part_circlepath_def inj_on_def exp_eq)
-    apply (blast intro: *)
-    done
-qed
-
-subsection\<open>Special case of one complete circle\<close>
-
-definition\<^marker>\<open>tag important\<close> circlepath :: "[complex, real, real] \<Rightarrow> complex"
-  where "circlepath z r \<equiv> part_circlepath z r 0 (2*pi)"
-
-lemma circlepath: "circlepath z r = (\<lambda>x. z + r * exp(2 * of_real pi * \<i> * of_real x))"
-  by (simp add: circlepath_def part_circlepath_def linepath_def algebra_simps)
-
-lemma pathstart_circlepath [simp]: "pathstart (circlepath z r) = z + r"
-  by (simp add: circlepath_def)
-
-lemma pathfinish_circlepath [simp]: "pathfinish (circlepath z r) = z + r"
-  by (simp add: circlepath_def) (metis exp_two_pi_i mult.commute)
-
-lemma circlepath_minus: "circlepath z (-r) x = circlepath z r (x + 1/2)"
-proof -
-  have "z + of_real r * exp (2 * pi * \<i> * (x + 1/2)) =
-        z + of_real r * exp (2 * pi * \<i> * x + pi * \<i>)"
-    by (simp add: divide_simps) (simp add: algebra_simps)
-  also have "\<dots> = z - r * exp (2 * pi * \<i> * x)"
-    by (simp add: exp_add)
-  finally show ?thesis
-    by (simp add: circlepath path_image_def sphere_def dist_norm)
-qed
-
-lemma circlepath_add1: "circlepath z r (x+1) = circlepath z r x"
-  using circlepath_minus [of z r "x+1/2"] circlepath_minus [of z "-r" x]
-  by (simp add: add.commute)
-
-lemma circlepath_add_half: "circlepath z r (x + 1/2) = circlepath z r (x - 1/2)"
-  using circlepath_add1 [of z r "x-1/2"]
-  by (simp add: add.commute)
-
-lemma path_image_circlepath_minus_subset:
-     "path_image (circlepath z (-r)) \<subseteq> path_image (circlepath z r)"
-  apply (simp add: path_image_def image_def circlepath_minus, clarify)
-  apply (case_tac "xa \<le> 1/2", force)
-  apply (force simp: circlepath_add_half)+
-  done
-
-lemma path_image_circlepath_minus: "path_image (circlepath z (-r)) = path_image (circlepath z r)"
-  using path_image_circlepath_minus_subset by fastforce
-
-lemma has_vector_derivative_circlepath [derivative_intros]:
- "((circlepath z r) has_vector_derivative (2 * pi * \<i> * r * exp (2 * of_real pi * \<i> * of_real x)))
-   (at x within X)"
-  apply (simp add: circlepath_def scaleR_conv_of_real)
-  apply (rule derivative_eq_intros)
-  apply (simp add: algebra_simps)
-  done
-
-lemma vector_derivative_circlepath:
-   "vector_derivative (circlepath z r) (at x) =
-    2 * pi * \<i> * r * exp(2 * of_real pi * \<i> * x)"
-using has_vector_derivative_circlepath vector_derivative_at by blast
-
-lemma vector_derivative_circlepath01:
-    "\<lbrakk>0 \<le> x; x \<le> 1\<rbrakk>
-     \<Longrightarrow> vector_derivative (circlepath z r) (at x within {0..1}) =
-          2 * pi * \<i> * r * exp(2 * of_real pi * \<i> * x)"
-  using has_vector_derivative_circlepath
-  by (auto simp: vector_derivative_at_within_ivl)
-
-lemma valid_path_circlepath [simp]: "valid_path (circlepath z r)"
-  by (simp add: circlepath_def)
-
-lemma path_circlepath [simp]: "path (circlepath z r)"
-  by (simp add: valid_path_imp_path)
-
-lemma path_image_circlepath_nonneg:
-  assumes "0 \<le> r" shows "path_image (circlepath z r) = sphere z r"
-proof -
-  have *: "x \<in> (\<lambda>u. z + (cmod (x - z)) * exp (\<i> * (of_real u * (of_real pi * 2)))) ` {0..1}" for x
-  proof (cases "x = z")
-    case True then show ?thesis by force
-  next
-    case False
-    define w where "w = x - z"
-    then have "w \<noteq> 0" by (simp add: False)
-    have **: "\<And>t. \<lbrakk>Re w = cos t * cmod w; Im w = sin t * cmod w\<rbrakk> \<Longrightarrow> w = of_real (cmod w) * exp (\<i> * t)"
-      using cis_conv_exp complex_eq_iff by auto
-    show ?thesis
-      apply (rule sincos_total_2pi [of "Re(w/of_real(norm w))" "Im(w/of_real(norm w))"])
-      apply (simp add: divide_simps \<open>w \<noteq> 0\<close> cmod_power2 [symmetric])
-      apply (rule_tac x="t / (2*pi)" in image_eqI)
-      apply (simp add: field_simps \<open>w \<noteq> 0\<close>)
-      using False **
-      apply (auto simp: w_def)
-      done
-  qed
-  show ?thesis
-    unfolding circlepath path_image_def sphere_def dist_norm
-    by (force simp: assms algebra_simps norm_mult norm_minus_commute intro: *)
-qed
-
-lemma path_image_circlepath [simp]:
-    "path_image (circlepath z r) = sphere z \<bar>r\<bar>"
-  using path_image_circlepath_minus
-  by (force simp: path_image_circlepath_nonneg abs_if)
-
-lemma has_contour_integral_bound_circlepath_strong:
-      "\<lbrakk>(f has_contour_integral i) (circlepath z r);
-        finite k; 0 \<le> B; 0 < r;
-        \<And>x. \<lbrakk>norm(x - z) = r; x \<notin> k\<rbrakk> \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
-        \<Longrightarrow> norm i \<le> B*(2*pi*r)"
-  unfolding circlepath_def
-  by (auto simp: algebra_simps in_path_image_part_circlepath dest!: has_contour_integral_bound_part_circlepath_strong)
-
-lemma has_contour_integral_bound_circlepath:
-      "\<lbrakk>(f has_contour_integral i) (circlepath z r);
-        0 \<le> B; 0 < r; \<And>x. norm(x - z) = r \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
-        \<Longrightarrow> norm i \<le> B*(2*pi*r)"
-  by (auto intro: has_contour_integral_bound_circlepath_strong)
-
-lemma contour_integrable_continuous_circlepath:
-    "continuous_on (path_image (circlepath z r)) f
-     \<Longrightarrow> f contour_integrable_on (circlepath z r)"
-  by (simp add: circlepath_def contour_integrable_continuous_part_circlepath)
-
-lemma simple_path_circlepath: "simple_path(circlepath z r) \<longleftrightarrow> (r \<noteq> 0)"
-  by (simp add: circlepath_def simple_path_part_circlepath)
-
-lemma notin_path_image_circlepath [simp]: "cmod (w - z) < r \<Longrightarrow> w \<notin> path_image (circlepath z r)"
-  by (simp add: sphere_def dist_norm norm_minus_commute)
-
-lemma contour_integral_circlepath:
-  assumes "r > 0"
-  shows "contour_integral (circlepath z r) (\<lambda>w. 1 / (w - z)) = 2 * complex_of_real pi * \<i>"
-proof (rule contour_integral_unique)
-  show "((\<lambda>w. 1 / (w - z)) has_contour_integral 2 * complex_of_real pi * \<i>) (circlepath z r)"
-    unfolding has_contour_integral_def using assms
-    apply (subst has_integral_cong)
-     apply (simp add: vector_derivative_circlepath01)
-    using has_integral_const_real [of _ 0 1] apply (force simp: circlepath)
-    done
-qed
-
-lemma winding_number_circlepath_centre: "0 < r \<Longrightarrow> winding_number (circlepath z r) z = 1"
-  apply (rule winding_number_unique_loop)
-  apply (simp_all add: sphere_def valid_path_imp_path)
-  apply (rule_tac x="circlepath z r" in exI)
-  apply (simp add: sphere_def contour_integral_circlepath)
-  done
-
-proposition winding_number_circlepath:
-  assumes "norm(w - z) < r" shows "winding_number(circlepath z r) w = 1"
-proof (cases "w = z")
-  case True then show ?thesis
-    using assms winding_number_circlepath_centre by auto
-next
-  case False
-  have [simp]: "r > 0"
-    using assms le_less_trans norm_ge_zero by blast
-  define r' where "r' = norm(w - z)"
-  have "r' < r"
-    by (simp add: assms r'_def)
-  have disjo: "cball z r' \<inter> sphere z r = {}"
-    using \<open>r' < r\<close> by (force simp: cball_def sphere_def)
-  have "winding_number(circlepath z r) w = winding_number(circlepath z r) z"
-  proof (rule winding_number_around_inside [where s = "cball z r'"])
-    show "winding_number (circlepath z r) z \<noteq> 0"
-      by (simp add: winding_number_circlepath_centre)
-    show "cball z r' \<inter> path_image (circlepath z r) = {}"
-      by (simp add: disjo less_eq_real_def)
-  qed (auto simp: r'_def dist_norm norm_minus_commute)
-  also have "\<dots> = 1"
-    by (simp add: winding_number_circlepath_centre)
-  finally show ?thesis .
-qed
-
-
-text\<open> Hence the Cauchy formula for points inside a circle.\<close>
-
-theorem Cauchy_integral_circlepath:
-  assumes contf: "continuous_on (cball z r) f" and holf: "f holomorphic_on (ball z r)" and wz: "norm(w - z) < r"
-  shows "((\<lambda>u. f u/(u - w)) has_contour_integral (2 * of_real pi * \<i> * f w))
-         (circlepath z r)"
-proof -
-  have "r > 0"
-    using assms le_less_trans norm_ge_zero by blast
-  have "((\<lambda>u. f u / (u - w)) has_contour_integral (2 * pi) * \<i> * winding_number (circlepath z r) w * f w)
-        (circlepath z r)"
-  proof (rule Cauchy_integral_formula_weak [where s = "cball z r" and k = "{}"])
-    show "\<And>x. x \<in> interior (cball z r) - {} \<Longrightarrow>
-         f field_differentiable at x"
-      using holf holomorphic_on_imp_differentiable_at by auto
-    have "w \<notin> sphere z r"
-      by simp (metis dist_commute dist_norm not_le order_refl wz)
-    then show "path_image (circlepath z r) \<subseteq> cball z r - {w}"
-      using \<open>r > 0\<close> by (auto simp add: cball_def sphere_def)
-  qed (use wz in \<open>simp_all add: dist_norm norm_minus_commute contf\<close>)
-  then show ?thesis
-    by (simp add: winding_number_circlepath assms)
-qed
-
-corollary\<^marker>\<open>tag unimportant\<close> Cauchy_integral_circlepath_simple:
-  assumes "f holomorphic_on cball z r" "norm(w - z) < r"
-  shows "((\<lambda>u. f u/(u - w)) has_contour_integral (2 * of_real pi * \<i> * f w))
-         (circlepath z r)"
-using assms by (force simp: holomorphic_on_imp_continuous_on holomorphic_on_subset Cauchy_integral_circlepath)
-
-
-lemma no_bounded_connected_component_imp_winding_number_zero:
-  assumes g: "path g" "path_image g \<subseteq> s" "pathfinish g = pathstart g" "z \<notin> s"
-      and nb: "\<And>z. bounded (connected_component_set (- s) z) \<longrightarrow> z \<in> s"
-  shows "winding_number g z = 0"
-apply (rule winding_number_zero_in_outside)
-apply (simp_all add: assms)
-by (metis nb [of z] \<open>path_image g \<subseteq> s\<close> \<open>z \<notin> s\<close> contra_subsetD mem_Collect_eq outside outside_mono)
-
-lemma no_bounded_path_component_imp_winding_number_zero:
-  assumes g: "path g" "path_image g \<subseteq> s" "pathfinish g = pathstart g" "z \<notin> s"
-      and nb: "\<And>z. bounded (path_component_set (- s) z) \<longrightarrow> z \<in> s"
-  shows "winding_number g z = 0"
-apply (rule no_bounded_connected_component_imp_winding_number_zero [OF g])
-by (simp add: bounded_subset nb path_component_subset_connected_component)
-
-
-subsection\<open> Uniform convergence of path integral\<close>
-
-text\<open>Uniform convergence when the derivative of the path is bounded, and in particular for the special case of a circle.\<close>
-
-proposition contour_integral_uniform_limit:
-  assumes ev_fint: "eventually (\<lambda>n::'a. (f n) contour_integrable_on \<gamma>) F"
-      and ul_f: "uniform_limit (path_image \<gamma>) f l F"
-      and noleB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B"
-      and \<gamma>: "valid_path \<gamma>"
-      and [simp]: "\<not> trivial_limit F"
-  shows "l contour_integrable_on \<gamma>" "((\<lambda>n. contour_integral \<gamma> (f n)) \<longlongrightarrow> contour_integral \<gamma> l) F"
-proof -
-  have "0 \<le> B" by (meson noleB [of 0] atLeastAtMost_iff norm_ge_zero order_refl order_trans zero_le_one)
-  { fix e::real
-    assume "0 < e"
-    then have "0 < e / (\<bar>B\<bar> + 1)" by simp
-    then have "\<forall>\<^sub>F n in F. \<forall>x\<in>path_image \<gamma>. cmod (f n x - l x) < e / (\<bar>B\<bar> + 1)"
-      using ul_f [unfolded uniform_limit_iff dist_norm] by auto
-    with ev_fint
-    obtain a where fga: "\<And>x. x \<in> {0..1} \<Longrightarrow> cmod (f a (\<gamma> x) - l (\<gamma> x)) < e / (\<bar>B\<bar> + 1)"
-               and inta: "(\<lambda>t. f a (\<gamma> t) * vector_derivative \<gamma> (at t)) integrable_on {0..1}"
-      using eventually_happens [OF eventually_conj]
-      by (fastforce simp: contour_integrable_on path_image_def)
-    have Ble: "B * e / (\<bar>B\<bar> + 1) \<le> e"
-      using \<open>0 \<le> B\<close>  \<open>0 < e\<close> by (simp add: field_split_simps)
-    have "\<exists>h. (\<forall>x\<in>{0..1}. cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - h x) \<le> e) \<and> h integrable_on {0..1}"
-    proof (intro exI conjI ballI)
-      show "cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - f a (\<gamma> x) * vector_derivative \<gamma> (at x)) \<le> e"
-        if "x \<in> {0..1}" for x
-        apply (rule order_trans [OF _ Ble])
-        using noleB [OF that] fga [OF that] \<open>0 \<le> B\<close> \<open>0 < e\<close>
-        apply (simp add: norm_mult left_diff_distrib [symmetric] norm_minus_commute divide_simps)
-        apply (fastforce simp: mult_ac dest: mult_mono [OF less_imp_le])
-        done
-    qed (rule inta)
-  }
-  then show lintg: "l contour_integrable_on \<gamma>"
-    unfolding contour_integrable_on by (metis (mono_tags, lifting)integrable_uniform_limit_real)
-  { fix e::real
-    define B' where "B' = B + 1"
-    have B': "B' > 0" "B' > B" using  \<open>0 \<le> B\<close> by (auto simp: B'_def)
-    assume "0 < e"
-    then have ev_no': "\<forall>\<^sub>F n in F. \<forall>x\<in>path_image \<gamma>. 2 * cmod (f n x - l x) < e / B'"
-      using ul_f [unfolded uniform_limit_iff dist_norm, rule_format, of "e / B' / 2"] B'
-        by (simp add: field_simps)
-    have ie: "integral {0..1::real} (\<lambda>x. e / 2) < e" using \<open>0 < e\<close> by simp
-    have *: "cmod (f x (\<gamma> t) * vector_derivative \<gamma> (at t) - l (\<gamma> t) * vector_derivative \<gamma> (at t)) \<le> e / 2"
-             if t: "t\<in>{0..1}" and leB': "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) < e / B'" for x t
-    proof -
-      have "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) * cmod (vector_derivative \<gamma> (at t)) \<le> e * (B/ B')"
-        using mult_mono [OF less_imp_le [OF leB'] noleB] B' \<open>0 < e\<close> t by auto
-      also have "\<dots> < e"
-        by (simp add: B' \<open>0 < e\<close> mult_imp_div_pos_less)
-      finally have "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) * cmod (vector_derivative \<gamma> (at t)) < e" .
-      then show ?thesis
-        by (simp add: left_diff_distrib [symmetric] norm_mult)
-    qed
-    have le_e: "\<And>x. \<lbrakk>\<forall>xa\<in>{0..1}. 2 * cmod (f x (\<gamma> xa) - l (\<gamma> xa)) < e / B'; f x contour_integrable_on \<gamma>\<rbrakk>
-         \<Longrightarrow> cmod (integral {0..1}
-                    (\<lambda>u. f x (\<gamma> u) * vector_derivative \<gamma> (at u) - l (\<gamma> u) * vector_derivative \<gamma> (at u))) < e"
-      apply (rule le_less_trans [OF integral_norm_bound_integral ie])
-        apply (simp add: lintg integrable_diff contour_integrable_on [symmetric])
-       apply (blast intro: *)+
-      done
-    have "\<forall>\<^sub>F x in F. dist (contour_integral \<gamma> (f x)) (contour_integral \<gamma> l) < e"
-      apply (rule eventually_mono [OF eventually_conj [OF ev_no' ev_fint]])
-      apply (simp add: dist_norm contour_integrable_on path_image_def contour_integral_integral)
-      apply (simp add: lintg integral_diff [symmetric] contour_integrable_on [symmetric] le_e)
-      done
-  }
-  then show "((\<lambda>n. contour_integral \<gamma> (f n)) \<longlongrightarrow> contour_integral \<gamma> l) F"
-    by (rule tendstoI)
-qed
-
-corollary\<^marker>\<open>tag unimportant\<close> contour_integral_uniform_limit_circlepath:
-  assumes "\<forall>\<^sub>F n::'a in F. (f n) contour_integrable_on (circlepath z r)"
-      and "uniform_limit (sphere z r) f l F"
-      and "\<not> trivial_limit F" "0 < r"
-    shows "l contour_integrable_on (circlepath z r)"
-          "((\<lambda>n. contour_integral (circlepath z r) (f n)) \<longlongrightarrow> contour_integral (circlepath z r) l) F"
-  using assms by (auto simp: vector_derivative_circlepath norm_mult intro!: contour_integral_uniform_limit)
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>General stepping result for derivative formulas\<close>
-
-lemma Cauchy_next_derivative:
-  assumes "continuous_on (path_image \<gamma>) f'"
-      and leB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B"
-      and int: "\<And>w. w \<in> s - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f' u / (u - w)^k) has_contour_integral f w) \<gamma>"
-      and k: "k \<noteq> 0"
-      and "open s"
-      and \<gamma>: "valid_path \<gamma>"
-      and w: "w \<in> s - path_image \<gamma>"
-    shows "(\<lambda>u. f' u / (u - w)^(Suc k)) contour_integrable_on \<gamma>"
-      and "(f has_field_derivative (k * contour_integral \<gamma> (\<lambda>u. f' u/(u - w)^(Suc k))))
-           (at w)"  (is "?thes2")
-proof -
-  have "open (s - path_image \<gamma>)" using \<open>open s\<close> closed_valid_path_image \<gamma> by blast
-  then obtain d where "d>0" and d: "ball w d \<subseteq> s - path_image \<gamma>" using w
-    using open_contains_ball by blast
-  have [simp]: "\<And>n. cmod (1 + of_nat n) = 1 + of_nat n"
-    by (metis norm_of_nat of_nat_Suc)
-  have cint: "\<And>x. \<lbrakk>x \<noteq> w; cmod (x - w) < d\<rbrakk>
-         \<Longrightarrow> (\<lambda>z. (f' z / (z - x) ^ k - f' z / (z - w) ^ k) / (x * k - w * k)) contour_integrable_on \<gamma>"
-    apply (rule contour_integrable_div [OF contour_integrable_diff])
-    using int w d
-    by (force simp: dist_norm norm_minus_commute intro!: has_contour_integral_integrable)+
-  have 1: "\<forall>\<^sub>F n in at w. (\<lambda>x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k)
-                         contour_integrable_on \<gamma>"
-    unfolding eventually_at
-    apply (rule_tac x=d in exI)
-    apply (simp add: \<open>d > 0\<close> dist_norm field_simps cint)
-    done
-  have bim_g: "bounded (image f' (path_image \<gamma>))"
-    by (simp add: compact_imp_bounded compact_continuous_image compact_valid_path_image assms)
-  then obtain C where "C > 0" and C: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cmod (f' (\<gamma> x)) \<le> C"
-    by (force simp: bounded_pos path_image_def)
-  have twom: "\<forall>\<^sub>F n in at w.
-               \<forall>x\<in>path_image \<gamma>.
-                cmod ((inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k - inverse (x - w) ^ Suc k) < e"
-         if "0 < e" for e
-  proof -
-    have *: "cmod ((inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k) - inverse (x - w) ^ Suc k)   < e"
-            if x: "x \<in> path_image \<gamma>" and "u \<noteq> w" and uwd: "cmod (u - w) < d/2"
-                and uw_less: "cmod (u - w) < e * (d/2) ^ (k+2) / (1 + real k)"
-            for u x
-    proof -
-      define ff where [abs_def]:
-        "ff n w =
-          (if n = 0 then inverse(x - w)^k
-           else if n = 1 then k / (x - w)^(Suc k)
-           else (k * of_real(Suc k)) / (x - w)^(k + 2))" for n :: nat and w
-      have km1: "\<And>z::complex. z \<noteq> 0 \<Longrightarrow> z ^ (k - Suc 0) = z ^ k / z"
-        by (simp add: field_simps) (metis Suc_pred \<open>k \<noteq> 0\<close> neq0_conv power_Suc)
-      have ff1: "(ff i has_field_derivative ff (Suc i) z) (at z within ball w (d/2))"
-              if "z \<in> ball w (d/2)" "i \<le> 1" for i z
-      proof -
-        have "z \<notin> path_image \<gamma>"
-          using \<open>x \<in> path_image \<gamma>\<close> d that ball_divide_subset_numeral by blast
-        then have xz[simp]: "x \<noteq> z" using \<open>x \<in> path_image \<gamma>\<close> by blast
-        then have neq: "x * x + z * z \<noteq> x * (z * 2)"
-          by (blast intro: dest!: sum_sqs_eq)
-        with xz have "\<And>v. v \<noteq> 0 \<Longrightarrow> (x * x + z * z) * v \<noteq> (x * (z * 2) * v)" by auto
-        then have neqq: "\<And>v. v \<noteq> 0 \<Longrightarrow> x * (x * v) + z * (z * v) \<noteq> x * (z * (2 * v))"
-          by (simp add: algebra_simps)
-        show ?thesis using \<open>i \<le> 1\<close>
-          apply (simp add: ff_def dist_norm Nat.le_Suc_eq km1, safe)
-          apply (rule derivative_eq_intros | simp add: km1 | simp add: field_simps neq neqq)+
-          done
-      qed
-      { fix a::real and b::real assume ab: "a > 0" "b > 0"
-        then have "k * (1 + real k) * (1 / a) \<le> k * (1 + real k) * (4 / b) \<longleftrightarrow> b \<le> 4 * a"
-          by (subst mult_le_cancel_left_pos)
-            (use \<open>k \<noteq> 0\<close> in \<open>auto simp: divide_simps\<close>)
-        with ab have "real k * (1 + real k) / a \<le> (real k * 4 + real k * real k * 4) / b \<longleftrightarrow> b \<le> 4 * a"
-          by (simp add: field_simps)
-      } note canc = this
-      have ff2: "cmod (ff (Suc 1) v) \<le> real (k * (k + 1)) / (d/2) ^ (k + 2)"
-                if "v \<in> ball w (d/2)" for v
-      proof -
-        have lessd: "\<And>z. cmod (\<gamma> z - v) < d/2 \<Longrightarrow> cmod (w - \<gamma> z) < d"
-          by (metis that norm_minus_commute norm_triangle_half_r dist_norm mem_ball)
-        have "d/2 \<le> cmod (x - v)" using d x that
-          using lessd d x
-          by (auto simp add: dist_norm path_image_def ball_def not_less [symmetric] del: divide_const_simps)
-        then have "d \<le> cmod (x - v) * 2"
-          by (simp add: field_split_simps)
-        then have dpow_le: "d ^ (k+2) \<le> (cmod (x - v) * 2) ^ (k+2)"
-          using \<open>0 < d\<close> order_less_imp_le power_mono by blast
-        have "x \<noteq> v" using that
-          using \<open>x \<in> path_image \<gamma>\<close> ball_divide_subset_numeral d by fastforce
-        then show ?thesis
-        using \<open>d > 0\<close> apply (simp add: ff_def norm_mult norm_divide norm_power dist_norm canc)
-        using dpow_le apply (simp add: field_split_simps)
-        done
-      qed
-      have ub: "u \<in> ball w (d/2)"
-        using uwd by (simp add: dist_commute dist_norm)
-      have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
-                  \<le> (real k * 4 + real k * real k * 4) * (cmod (u - w) * cmod (u - w)) / (d * (d * (d/2) ^ k))"
-        using complex_Taylor [OF _ ff1 ff2 _ ub, of w, simplified]
-        by (simp add: ff_def \<open>0 < d\<close>)
-      then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
-                  \<le> (cmod (u - w) * real k) * (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)"
-        by (simp add: field_simps)
-      then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
-                 / (cmod (u - w) * real k)
-                  \<le> (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)"
-        using \<open>k \<noteq> 0\<close> \<open>u \<noteq> w\<close> by (simp add: mult_ac zero_less_mult_iff pos_divide_le_eq)
-      also have "\<dots> < e"
-        using uw_less \<open>0 < d\<close> by (simp add: mult_ac divide_simps)
-      finally have e: "cmod (inverse (x-u)^k - (inverse (x-w)^k + of_nat k * (u-w) / ((x-w) * (x-w)^k)))
-                        / cmod ((u - w) * real k)   <   e"
-        by (simp add: norm_mult)
-      have "x \<noteq> u"
-        using uwd \<open>0 < d\<close> x d by (force simp: dist_norm ball_def norm_minus_commute)
-      show ?thesis
-        apply (rule le_less_trans [OF _ e])
-        using \<open>k \<noteq> 0\<close> \<open>x \<noteq> u\<close> \<open>u \<noteq> w\<close>
-        apply (simp add: field_simps norm_divide [symmetric])
-        done
-    qed
-    show ?thesis
-      unfolding eventually_at
-      apply (rule_tac x = "min (d/2) ((e*(d/2)^(k + 2))/(Suc k))" in exI)
-      apply (force simp: \<open>d > 0\<close> dist_norm that simp del: power_Suc intro: *)
-      done
-  qed
-  have 2: "uniform_limit (path_image \<gamma>) (\<lambda>n x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k) (\<lambda>x. f' x / (x - w) ^ Suc k) (at w)"
-    unfolding uniform_limit_iff dist_norm
-  proof clarify
-    fix e::real
-    assume "0 < e"
-    have *: "cmod (f' (\<gamma> x) * (inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                        f' (\<gamma> x) / ((\<gamma> x - w) * (\<gamma> x - w) ^ k)) < e"
-              if ec: "cmod ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                      inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k) < e / C"
-                 and x: "0 \<le> x" "x \<le> 1"
-              for u x
-    proof (cases "(f' (\<gamma> x)) = 0")
-      case True then show ?thesis by (simp add: \<open>0 < e\<close>)
-    next
-      case False
-      have "cmod (f' (\<gamma> x) * (inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                        f' (\<gamma> x) / ((\<gamma> x - w) * (\<gamma> x - w) ^ k)) =
-            cmod (f' (\<gamma> x) * ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                             inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k))"
-        by (simp add: field_simps)
-      also have "\<dots> = cmod (f' (\<gamma> x)) *
-                       cmod ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
-                             inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k)"
-        by (simp add: norm_mult)
-      also have "\<dots> < cmod (f' (\<gamma> x)) * (e/C)"
-        using False mult_strict_left_mono [OF ec] by force
-      also have "\<dots> \<le> e" using C
-        by (metis False \<open>0 < e\<close> frac_le less_eq_real_def mult.commute pos_le_divide_eq x zero_less_norm_iff)
-      finally show ?thesis .
-    qed
-    show "\<forall>\<^sub>F n in at w.
-              \<forall>x\<in>path_image \<gamma>.
-               cmod (f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k - f' x / (x - w) ^ Suc k) < e"
-      using twom [OF divide_pos_pos [OF \<open>0 < e\<close> \<open>C > 0\<close>]]   unfolding path_image_def
-      by (force intro: * elim: eventually_mono)
-  qed
-  show "(\<lambda>u. f' u / (u - w) ^ (Suc k)) contour_integrable_on \<gamma>"
-    by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto
-  have *: "(\<lambda>n. contour_integral \<gamma> (\<lambda>x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k))
-           \<midarrow>w\<rightarrow> contour_integral \<gamma> (\<lambda>u. f' u / (u - w) ^ (Suc k))"
-    by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto
-  have **: "contour_integral \<gamma> (\<lambda>x. f' x * (inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k)) =
-              (f u - f w) / (u - w) / k"
-    if "dist u w < d" for u
-  proof -
-    have u: "u \<in> s - path_image \<gamma>"
-      by (metis subsetD d dist_commute mem_ball that)
-    show ?thesis
-      apply (rule contour_integral_unique)
-      apply (simp add: diff_divide_distrib algebra_simps)
-      apply (intro has_contour_integral_diff has_contour_integral_div)
-      using u w apply (simp_all add: field_simps int)
-      done
-  qed
-  show ?thes2
-    apply (simp add: has_field_derivative_iff del: power_Suc)
-    apply (rule Lim_transform_within [OF tendsto_mult_left [OF *] \<open>0 < d\<close> ])
-    apply (simp add: \<open>k \<noteq> 0\<close> **)
-    done
-qed
-
-lemma Cauchy_next_derivative_circlepath:
-  assumes contf: "continuous_on (path_image (circlepath z r)) f"
-      and int: "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>u. f u / (u - w)^k) has_contour_integral g w) (circlepath z r)"
-      and k: "k \<noteq> 0"
-      and w: "w \<in> ball z r"
-    shows "(\<lambda>u. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)"
-           (is "?thes1")
-      and "(g has_field_derivative (k * contour_integral (circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k)))) (at w)"
-           (is "?thes2")
-proof -
-  have "r > 0" using w
-    using ball_eq_empty by fastforce
-  have wim: "w \<in> ball z r - path_image (circlepath z r)"
-    using w by (auto simp: dist_norm)
-  show ?thes1 ?thes2
-    by (rule Cauchy_next_derivative [OF contf _ int k open_ball valid_path_circlepath wim, where B = "2 * pi * \<bar>r\<bar>"];
-        auto simp: vector_derivative_circlepath norm_mult)+
-qed
-
-
-text\<open> In particular, the first derivative formula.\<close>
-
-lemma Cauchy_derivative_integral_circlepath:
-  assumes contf: "continuous_on (cball z r) f"
-      and holf: "f holomorphic_on ball z r"
-      and w: "w \<in> ball z r"
-    shows "(\<lambda>u. f u/(u - w)^2) contour_integrable_on (circlepath z r)"
-           (is "?thes1")
-      and "(f has_field_derivative (1 / (2 * of_real pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u / (u - w)^2))) (at w)"
-           (is "?thes2")
-proof -
-  have [simp]: "r \<ge> 0" using w
-    using ball_eq_empty by fastforce
-  have f: "continuous_on (path_image (circlepath z r)) f"
-    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def)
-  have int: "\<And>w. dist z w < r \<Longrightarrow>
-                 ((\<lambda>u. f u / (u - w)) has_contour_integral (\<lambda>x. 2 * of_real pi * \<i> * f x) w) (circlepath z r)"
-    by (rule Cauchy_integral_circlepath [OF contf holf]) (simp add: dist_norm norm_minus_commute)
-  show ?thes1
-    apply (simp add: power2_eq_square)
-    apply (rule Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1, simplified])
-    apply (blast intro: int)
-    done
-  have "((\<lambda>x. 2 * of_real pi * \<i> * f x) has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2)) (at w)"
-    apply (simp add: power2_eq_square)
-    apply (rule Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and g = "\<lambda>x. 2 * of_real pi * \<i> * f x", simplified])
-    apply (blast intro: int)
-    done
-  then have fder: "(f has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2) / (2 * of_real pi * \<i>)) (at w)"
-    by (rule DERIV_cdivide [where f = "\<lambda>x. 2 * of_real pi * \<i> * f x" and c = "2 * of_real pi * \<i>", simplified])
-  show ?thes2
-    by simp (rule fder)
-qed
-
-subsection\<open>Existence of all higher derivatives\<close>
-
-proposition derivative_is_holomorphic:
-  assumes "open S"
-      and fder: "\<And>z. z \<in> S \<Longrightarrow> (f has_field_derivative f' z) (at z)"
-    shows "f' holomorphic_on S"
-proof -
-  have *: "\<exists>h. (f' has_field_derivative h) (at z)" if "z \<in> S" for z
-  proof -
-    obtain r where "r > 0" and r: "cball z r \<subseteq> S"
-      using open_contains_cball \<open>z \<in> S\<close> \<open>open S\<close> by blast
-    then have holf_cball: "f holomorphic_on cball z r"
-      apply (simp add: holomorphic_on_def)
-      using field_differentiable_at_within field_differentiable_def fder by blast
-    then have "continuous_on (path_image (circlepath z r)) f"
-      using \<open>r > 0\<close> by (force elim: holomorphic_on_subset [THEN holomorphic_on_imp_continuous_on])
-    then have contfpi: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1/(2 * of_real pi*\<i>) * f x)"
-      by (auto intro: continuous_intros)+
-    have contf_cball: "continuous_on (cball z r) f" using holf_cball
-      by (simp add: holomorphic_on_imp_continuous_on holomorphic_on_subset)
-    have holf_ball: "f holomorphic_on ball z r" using holf_cball
-      using ball_subset_cball holomorphic_on_subset by blast
-    { fix w  assume w: "w \<in> ball z r"
-      have intf: "(\<lambda>u. f u / (u - w)\<^sup>2) contour_integrable_on circlepath z r"
-        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
-      have fder': "(f has_field_derivative 1 / (2 * of_real pi * \<i>) * contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2))
-                  (at w)"
-        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
-      have f'_eq: "f' w = contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>)"
-        using fder' ball_subset_cball r w by (force intro: DERIV_unique [OF fder])
-      have "((\<lambda>u. f u / (u - w)\<^sup>2 / (2 * of_real pi * \<i>)) has_contour_integral
-                contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>))
-                (circlepath z r)"
-        by (rule has_contour_integral_div [OF has_contour_integral_integral [OF intf]])
-      then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u - w)\<^sup>2)) has_contour_integral
-                contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>))
-                (circlepath z r)"
-        by (simp add: algebra_simps)
-      then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u - w)\<^sup>2)) has_contour_integral f' w) (circlepath z r)"
-        by (simp add: f'_eq)
-    } note * = this
-    show ?thesis
-      apply (rule exI)
-      apply (rule Cauchy_next_derivative_circlepath [OF contfpi, of 2 f', simplified])
-      apply (simp_all add: \<open>0 < r\<close> * dist_norm)
-      done
-  qed
-  show ?thesis
-    by (simp add: holomorphic_on_open [OF \<open>open S\<close>] *)
-qed
-
-lemma holomorphic_deriv [holomorphic_intros]:
-    "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv f) holomorphic_on S"
-by (metis DERIV_deriv_iff_field_differentiable at_within_open derivative_is_holomorphic holomorphic_on_def)
-
-lemma analytic_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv f) analytic_on S"
-  using analytic_on_holomorphic holomorphic_deriv by auto
-
-lemma holomorphic_higher_deriv [holomorphic_intros]: "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv ^^ n) f holomorphic_on S"
-  by (induction n) (auto simp: holomorphic_deriv)
-
-lemma analytic_higher_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv ^^ n) f analytic_on S"
-  unfolding analytic_on_def using holomorphic_higher_deriv by blast
-
-lemma has_field_derivative_higher_deriv:
-     "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk>
-      \<Longrightarrow> ((deriv ^^ n) f has_field_derivative (deriv ^^ (Suc n)) f x) (at x)"
-by (metis (no_types, hide_lams) DERIV_deriv_iff_field_differentiable at_within_open comp_apply
-         funpow.simps(2) holomorphic_higher_deriv holomorphic_on_def)
-
-lemma valid_path_compose_holomorphic:
-  assumes "valid_path g" and holo:"f holomorphic_on S" and "open S" "path_image g \<subseteq> S"
-  shows "valid_path (f \<circ> g)"
-proof (rule valid_path_compose[OF \<open>valid_path g\<close>])
-  fix x assume "x \<in> path_image g"
-  then show "f field_differentiable at x"
-    using analytic_on_imp_differentiable_at analytic_on_open assms holo by blast
-next
-  have "deriv f holomorphic_on S"
-    using holomorphic_deriv holo \<open>open S\<close> by auto
-  then show "continuous_on (path_image g) (deriv f)"
-    using assms(4) holomorphic_on_imp_continuous_on holomorphic_on_subset by auto
-qed
-
-
-subsection\<open>Morera's theorem\<close>
-
-lemma Morera_local_triangle_ball:
-  assumes "\<And>z. z \<in> S
-          \<Longrightarrow> \<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and>
-                    (\<forall>b c. closed_segment b c \<subseteq> ball a e
-                           \<longrightarrow> contour_integral (linepath a b) f +
-                               contour_integral (linepath b c) f +
-                               contour_integral (linepath c a) f = 0)"
-  shows "f analytic_on S"
-proof -
-  { fix z  assume "z \<in> S"
-    with assms obtain e a where
-            "0 < e" and z: "z \<in> ball a e" and contf: "continuous_on (ball a e) f"
-        and 0: "\<And>b c. closed_segment b c \<subseteq> ball a e
-                      \<Longrightarrow> contour_integral (linepath a b) f +
-                          contour_integral (linepath b c) f +
-                          contour_integral (linepath c a) f = 0"
-      by fastforce
-    have az: "dist a z < e" using mem_ball z by blast
-    have sb_ball: "ball z (e - dist a z) \<subseteq> ball a e"
-      by (simp add: dist_commute ball_subset_ball_iff)
-    have "\<exists>e>0. f holomorphic_on ball z e"
-    proof (intro exI conjI)
-      have sub_ball: "\<And>y. dist a y < e \<Longrightarrow> closed_segment a y \<subseteq> ball a e"
-        by (meson \<open>0 < e\<close> centre_in_ball convex_ball convex_contains_segment mem_ball)
-      show "f holomorphic_on ball z (e - dist a z)"
-        apply (rule holomorphic_on_subset [OF _ sb_ball])
-        apply (rule derivative_is_holomorphic[OF open_ball])
-        apply (rule triangle_contour_integrals_starlike_primitive [OF contf _ open_ball, of a])
-           apply (simp_all add: 0 \<open>0 < e\<close> sub_ball)
-        done
-    qed (simp add: az)
-  }
-  then show ?thesis
-    by (simp add: analytic_on_def)
-qed
-
-lemma Morera_local_triangle:
-  assumes "\<And>z. z \<in> S
-          \<Longrightarrow> \<exists>t. open t \<and> z \<in> t \<and> continuous_on t f \<and>
-                  (\<forall>a b c. convex hull {a,b,c} \<subseteq> t
-                              \<longrightarrow> contour_integral (linepath a b) f +
-                                  contour_integral (linepath b c) f +
-                                  contour_integral (linepath c a) f = 0)"
-  shows "f analytic_on S"
-proof -
-  { fix z  assume "z \<in> S"
-    with assms obtain t where
-            "open t" and z: "z \<in> t" and contf: "continuous_on t f"
-        and 0: "\<And>a b c. convex hull {a,b,c} \<subseteq> t
-                      \<Longrightarrow> contour_integral (linepath a b) f +
-                          contour_integral (linepath b c) f +
-                          contour_integral (linepath c a) f = 0"
-      by force
-    then obtain e where "e>0" and e: "ball z e \<subseteq> t"
-      using open_contains_ball by blast
-    have [simp]: "continuous_on (ball z e) f" using contf
-      using continuous_on_subset e by blast
-    have eq0: "\<And>b c. closed_segment b c \<subseteq> ball z e \<Longrightarrow>
-                         contour_integral (linepath z b) f +
-                         contour_integral (linepath b c) f +
-                         contour_integral (linepath c z) f = 0"
-      by (meson 0 z \<open>0 < e\<close> centre_in_ball closed_segment_subset convex_ball dual_order.trans e starlike_convex_subset)
-    have "\<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and>
-                (\<forall>b c. closed_segment b c \<subseteq> ball a e \<longrightarrow>
-                       contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f = 0)"
-      using \<open>e > 0\<close> eq0 by force
-  }
-  then show ?thesis
-    by (simp add: Morera_local_triangle_ball)
-qed
-
-proposition Morera_triangle:
-    "\<lbrakk>continuous_on S f; open S;
-      \<And>a b c. convex hull {a,b,c} \<subseteq> S
-              \<longrightarrow> contour_integral (linepath a b) f +
-                  contour_integral (linepath b c) f +
-                  contour_integral (linepath c a) f = 0\<rbrakk>
-     \<Longrightarrow> f analytic_on S"
-  using Morera_local_triangle by blast
-
-subsection\<open>Combining theorems for higher derivatives including Leibniz rule\<close>
-
-lemma higher_deriv_linear [simp]:
-    "(deriv ^^ n) (\<lambda>w. c*w) = (\<lambda>z. if n = 0 then c*z else if n = 1 then c else 0)"
-  by (induction n) auto
-
-lemma higher_deriv_const [simp]: "(deriv ^^ n) (\<lambda>w. c) = (\<lambda>w. if n=0 then c else 0)"
-  by (induction n) auto
-
-lemma higher_deriv_ident [simp]:
-     "(deriv ^^ n) (\<lambda>w. w) z = (if n = 0 then z else if n = 1 then 1 else 0)"
-  apply (induction n, simp)
-  apply (metis higher_deriv_linear lambda_one)
-  done
-
-lemma higher_deriv_id [simp]:
-     "(deriv ^^ n) id z = (if n = 0 then z else if n = 1 then 1 else 0)"
-  by (simp add: id_def)
-
-lemma has_complex_derivative_funpow_1:
-     "\<lbrakk>(f has_field_derivative 1) (at z); f z = z\<rbrakk> \<Longrightarrow> (f^^n has_field_derivative 1) (at z)"
-  apply (induction n, auto)
-  apply (simp add: id_def)
-  by (metis DERIV_chain comp_funpow comp_id funpow_swap1 mult.right_neutral)
-
-lemma higher_deriv_uminus:
-  assumes "f holomorphic_on S" "open S" and z: "z \<in> S"
-    shows "(deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
-using z
-proof (induction n arbitrary: z)
-  case 0 then show ?case by simp
-next
-  case (Suc n z)
-  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
-    using Suc.prems assms has_field_derivative_higher_deriv by auto
-  have "((deriv ^^ n) (\<lambda>w. - f w) has_field_derivative - deriv ((deriv ^^ n) f) z) (at z)"
-    apply (rule has_field_derivative_transform_within_open [of "\<lambda>w. -((deriv ^^ n) f w)"])
-       apply (rule derivative_eq_intros | rule * refl assms)+
-     apply (auto simp add: Suc)
-    done
-  then show ?case
-    by (simp add: DERIV_imp_deriv)
-qed
-
-lemma higher_deriv_add:
-  fixes z::complex
-  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
-    shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
-using z
-proof (induction n arbitrary: z)
-  case 0 then show ?case by simp
-next
-  case (Suc n z)
-  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
-          "((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
-    using Suc.prems assms has_field_derivative_higher_deriv by auto
-  have "((deriv ^^ n) (\<lambda>w. f w + g w) has_field_derivative
-        deriv ((deriv ^^ n) f) z + deriv ((deriv ^^ n) g) z) (at z)"
-    apply (rule has_field_derivative_transform_within_open [of "\<lambda>w. (deriv ^^ n) f w + (deriv ^^ n) g w"])
-       apply (rule derivative_eq_intros | rule * refl assms)+
-     apply (auto simp add: Suc)
-    done
-  then show ?case
-    by (simp add: DERIV_imp_deriv)
-qed
-
-lemma higher_deriv_diff:
-  fixes z::complex
-  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
-    shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
-  apply (simp only: Groups.group_add_class.diff_conv_add_uminus higher_deriv_add)
-  apply (subst higher_deriv_add)
-  using assms holomorphic_on_minus apply (auto simp: higher_deriv_uminus)
-  done
-
-lemma bb: "Suc n choose k = (n choose k) + (if k = 0 then 0 else (n choose (k - 1)))"
-  by (cases k) simp_all
-
-lemma higher_deriv_mult:
-  fixes z::complex
-  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
-    shows "(deriv ^^ n) (\<lambda>w. f w * g w) z =
-           (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)"
-using z
-proof (induction n arbitrary: z)
-  case 0 then show ?case by simp
-next
-  case (Suc n z)
-  have *: "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
-          "\<And>n. ((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
-    using Suc.prems assms has_field_derivative_higher_deriv by auto
-  have sumeq: "(\<Sum>i = 0..n.
-               of_nat (n choose i) * (deriv ((deriv ^^ i) f) z * (deriv ^^ (n - i)) g z + deriv ((deriv ^^ (n - i)) g) z * (deriv ^^ i) f z)) =
-            g z * deriv ((deriv ^^ n) f) z + (\<Sum>i = 0..n. (deriv ^^ i) f z * (of_nat (Suc n choose i) * (deriv ^^ (Suc n - i)) g z))"
-    apply (simp add: bb algebra_simps sum.distrib)
-    apply (subst (4) sum_Suc_reindex)
-    apply (auto simp: algebra_simps Suc_diff_le intro: sum.cong)
-    done
-  have "((deriv ^^ n) (\<lambda>w. f w * g w) has_field_derivative
-         (\<Sum>i = 0..Suc n. (Suc n choose i) * (deriv ^^ i) f z * (deriv ^^ (Suc n - i)) g z))
-        (at z)"
-    apply (rule has_field_derivative_transform_within_open
-        [of "\<lambda>w. (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f w * (deriv ^^ (n - i)) g w)"])
-       apply (simp add: algebra_simps)
-       apply (rule DERIV_cong [OF DERIV_sum])
-        apply (rule DERIV_cmult)
-        apply (auto intro: DERIV_mult * sumeq \<open>open S\<close> Suc.prems Suc.IH [symmetric])
-    done
-  then show ?case
-    unfolding funpow.simps o_apply
-    by (simp add: DERIV_imp_deriv)
-qed
-
-lemma higher_deriv_transform_within_open:
-  fixes z::complex
-  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
-      and fg: "\<And>w. w \<in> S \<Longrightarrow> f w = g w"
-    shows "(deriv ^^ i) f z = (deriv ^^ i) g z"
-using z
-by (induction i arbitrary: z)
-   (auto simp: fg intro: complex_derivative_transform_within_open holomorphic_higher_deriv assms)
-
-lemma higher_deriv_compose_linear:
-  fixes z::complex
-  assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S"
-      and fg: "\<And>w. w \<in> S \<Longrightarrow> u * w \<in> T"
-    shows "(deriv ^^ n) (\<lambda>w. f (u * w)) z = u^n * (deriv ^^ n) f (u * z)"
-using z
-proof (induction n arbitrary: z)
-  case 0 then show ?case by simp
-next
-  case (Suc n z)
-  have holo0: "f holomorphic_on (*) u ` S"
-    by (meson fg f holomorphic_on_subset image_subset_iff)
-  have holo2: "(deriv ^^ n) f holomorphic_on (*) u ` S"
-    by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff T)
-  have holo3: "(\<lambda>z. u ^ n * (deriv ^^ n) f (u * z)) holomorphic_on S"
-    by (intro holo2 holomorphic_on_compose [where g="(deriv ^^ n) f", unfolded o_def] holomorphic_intros)
-  have holo1: "(\<lambda>w. f (u * w)) holomorphic_on S"
-    apply (rule holomorphic_on_compose [where g=f, unfolded o_def])
-    apply (rule holo0 holomorphic_intros)+
-    done
-  have "deriv ((deriv ^^ n) (\<lambda>w. f (u * w))) z = deriv (\<lambda>z. u^n * (deriv ^^ n) f (u*z)) z"
-    apply (rule complex_derivative_transform_within_open [OF _ holo3 S Suc.prems])
-    apply (rule holomorphic_higher_deriv [OF holo1 S])
-    apply (simp add: Suc.IH)
-    done
-  also have "\<dots> = u^n * deriv (\<lambda>z. (deriv ^^ n) f (u * z)) z"
-    apply (rule deriv_cmult)
-    apply (rule analytic_on_imp_differentiable_at [OF _ Suc.prems])
-    apply (rule analytic_on_compose_gen [where g="(deriv ^^ n) f" and T=T, unfolded o_def])
-      apply (simp)
-     apply (simp add: analytic_on_open f holomorphic_higher_deriv T)
-    apply (blast intro: fg)
-    done
-  also have "\<dots> = u * u ^ n * deriv ((deriv ^^ n) f) (u * z)"
-      apply (subst complex_derivative_chain [where g = "(deriv ^^ n) f" and f = "(*) u", unfolded o_def])
-      apply (rule derivative_intros)
-      using Suc.prems field_differentiable_def f fg has_field_derivative_higher_deriv T apply blast
-      apply (simp)
-      done
-  finally show ?case
-    by simp
-qed
-
-lemma higher_deriv_add_at:
-  assumes "f analytic_on {z}" "g analytic_on {z}"
-    shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
-proof -
-  have "f analytic_on {z} \<and> g analytic_on {z}"
-    using assms by blast
-  with higher_deriv_add show ?thesis
-    by (auto simp: analytic_at_two)
-qed
-
-lemma higher_deriv_diff_at:
-  assumes "f analytic_on {z}" "g analytic_on {z}"
-    shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
-proof -
-  have "f analytic_on {z} \<and> g analytic_on {z}"
-    using assms by blast
-  with higher_deriv_diff show ?thesis
-    by (auto simp: analytic_at_two)
-qed
-
-lemma higher_deriv_uminus_at:
-   "f analytic_on {z}  \<Longrightarrow> (deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
-  using higher_deriv_uminus
-    by (auto simp: analytic_at)
-
-lemma higher_deriv_mult_at:
-  assumes "f analytic_on {z}" "g analytic_on {z}"
-    shows "(deriv ^^ n) (\<lambda>w. f w * g w) z =
-           (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)"
-proof -
-  have "f analytic_on {z} \<and> g analytic_on {z}"
-    using assms by blast
-  with higher_deriv_mult show ?thesis
-    by (auto simp: analytic_at_two)
-qed
 
 
-text\<open> Nonexistence of isolated singularities and a stronger integral formula.\<close>
-
-proposition no_isolated_singularity:
-  fixes z::complex
-  assumes f: "continuous_on S f" and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K"
-    shows "f holomorphic_on S"
-proof -
-  { fix z
-    assume "z \<in> S" and cdf: "\<And>x. x \<in> S - K \<Longrightarrow> f field_differentiable at x"
-    have "f field_differentiable at z"
-    proof (cases "z \<in> K")
-      case False then show ?thesis by (blast intro: cdf \<open>z \<in> S\<close>)
-    next
-      case True
-      with finite_set_avoid [OF K, of z]
-      obtain d where "d>0" and d: "\<And>x. \<lbrakk>x\<in>K; x \<noteq> z\<rbrakk> \<Longrightarrow> d \<le> dist z x"
-        by blast
-      obtain e where "e>0" and e: "ball z e \<subseteq> S"
-        using  S \<open>z \<in> S\<close> by (force simp: open_contains_ball)
-      have fde: "continuous_on (ball z (min d e)) f"
-        by (metis Int_iff ball_min_Int continuous_on_subset e f subsetI)
-      have cont: "{a,b,c} \<subseteq> ball z (min d e) \<Longrightarrow> continuous_on (convex hull {a, b, c}) f" for a b c
-        by (simp add: hull_minimal continuous_on_subset [OF fde])
-      have fd: "\<lbrakk>{a,b,c} \<subseteq> ball z (min d e); x \<in> interior (convex hull {a, b, c}) - K\<rbrakk>
-            \<Longrightarrow> f field_differentiable at x" for a b c x
-        by (metis cdf Diff_iff Int_iff ball_min_Int subsetD convex_ball e interior_mono interior_subset subset_hull)
-      obtain g where "\<And>w. w \<in> ball z (min d e) \<Longrightarrow> (g has_field_derivative f w) (at w within ball z (min d e))"
-        apply (rule contour_integral_convex_primitive
-                     [OF convex_ball fde Cauchy_theorem_triangle_cofinite [OF _ K]])
-        using cont fd by auto
-      then have "f holomorphic_on ball z (min d e)"
-        by (metis open_ball at_within_open derivative_is_holomorphic)
-      then show ?thesis
-        unfolding holomorphic_on_def
-        by (metis open_ball \<open>0 < d\<close> \<open>0 < e\<close> at_within_open centre_in_ball min_less_iff_conj)
-    qed
-  }
-  with holf S K show ?thesis
-    by (simp add: holomorphic_on_open open_Diff finite_imp_closed field_differentiable_def [symmetric])
-qed
-
-lemma no_isolated_singularity':
-  fixes z::complex
-  assumes f: "\<And>z. z \<in> K \<Longrightarrow> (f \<longlongrightarrow> f z) (at z within S)"
-      and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K"
-    shows "f holomorphic_on S"
-proof (rule no_isolated_singularity[OF _ assms(2-)])
-  show "continuous_on S f" unfolding continuous_on_def
-  proof
-    fix z assume z: "z \<in> S"
-    show "(f \<longlongrightarrow> f z) (at z within S)"
-    proof (cases "z \<in> K")
-      case False
-      from holf have "continuous_on (S - K) f"
-        by (rule holomorphic_on_imp_continuous_on)
-      with z False have "(f \<longlongrightarrow> f z) (at z within (S - K))"
-        by (simp add: continuous_on_def)
-      also from z K S False have "at z within (S - K) = at z within S"
-        by (subst (1 2) at_within_open) (auto intro: finite_imp_closed)
-      finally show "(f \<longlongrightarrow> f z) (at z within S)" .
-    qed (insert assms z, simp_all)
-  qed
-qed
-
-proposition Cauchy_integral_formula_convex:
-  assumes S: "convex S" and K: "finite K" and contf: "continuous_on S f"
-    and fcd: "(\<And>x. x \<in> interior S - K \<Longrightarrow> f field_differentiable at x)"
-    and z: "z \<in> interior S" and vpg: "valid_path \<gamma>"
-    and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-  shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-proof -
-  have *: "\<And>x. x \<in> interior S \<Longrightarrow> f field_differentiable at x"
-    unfolding holomorphic_on_open [symmetric] field_differentiable_def
-    using no_isolated_singularity [where S = "interior S"]
-    by (meson K contf continuous_at_imp_continuous_on continuous_on_interior fcd
-          field_differentiable_at_within field_differentiable_def holomorphic_onI
-          holomorphic_on_imp_differentiable_at open_interior)
-  show ?thesis
-    by (rule Cauchy_integral_formula_weak [OF S finite.emptyI contf]) (use * assms in auto)
-qed
-
-text\<open> Formula for higher derivatives.\<close>
-
-lemma Cauchy_has_contour_integral_higher_derivative_circlepath:
-  assumes contf: "continuous_on (cball z r) f"
-      and holf: "f holomorphic_on ball z r"
-      and w: "w \<in> ball z r"
-    shows "((\<lambda>u. f u / (u - w) ^ (Suc k)) has_contour_integral ((2 * pi * \<i>) / (fact k) * (deriv ^^ k) f w))
-           (circlepath z r)"
-using w
-proof (induction k arbitrary: w)
-  case 0 then show ?case
-    using assms by (auto simp: Cauchy_integral_circlepath dist_commute dist_norm)
-next
-  case (Suc k)
-  have [simp]: "r > 0" using w
-    using ball_eq_empty by fastforce
-  have f: "continuous_on (path_image (circlepath z r)) f"
-    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def less_imp_le)
-  obtain X where X: "((\<lambda>u. f u / (u - w) ^ Suc (Suc k)) has_contour_integral X) (circlepath z r)"
-    using Cauchy_next_derivative_circlepath(1) [OF f Suc.IH _ Suc.prems]
-    by (auto simp: contour_integrable_on_def)
-  then have con: "contour_integral (circlepath z r) ((\<lambda>u. f u / (u - w) ^ Suc (Suc k))) = X"
-    by (rule contour_integral_unique)
-  have "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) w) (at w)"
-    using Suc.prems assms has_field_derivative_higher_deriv by auto
-  then have dnf_diff: "\<And>n. (deriv ^^ n) f field_differentiable (at w)"
-    by (force simp: field_differentiable_def)
-  have "deriv (\<lambda>w. complex_of_real (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w) w =
-          of_nat (Suc k) * contour_integral (circlepath z r) (\<lambda>u. f u / (u - w) ^ Suc (Suc k))"
-    by (force intro!: DERIV_imp_deriv Cauchy_next_derivative_circlepath [OF f Suc.IH _ Suc.prems])
-  also have "\<dots> = of_nat (Suc k) * X"
-    by (simp only: con)
-  finally have "deriv (\<lambda>w. ((2 * pi) * \<i> / (fact k)) * (deriv ^^ k) f w) w = of_nat (Suc k) * X" .
-  then have "((2 * pi) * \<i> / (fact k)) * deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X"
-    by (metis deriv_cmult dnf_diff)
-  then have "deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X / ((2 * pi) * \<i> / (fact k))"
-    by (simp add: field_simps)
-  then show ?case
-  using of_nat_eq_0_iff X by fastforce
-qed
-
-lemma Cauchy_higher_derivative_integral_circlepath:
-  assumes contf: "continuous_on (cball z r) f"
-      and holf: "f holomorphic_on ball z r"
-      and w: "w \<in> ball z r"
-    shows "(\<lambda>u. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)"
-           (is "?thes1")
-      and "(deriv ^^ k) f w = (fact k) / (2 * pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k))"
-           (is "?thes2")
-proof -
-  have *: "((\<lambda>u. f u / (u - w) ^ Suc k) has_contour_integral (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w)
-           (circlepath z r)"
-    using Cauchy_has_contour_integral_higher_derivative_circlepath [OF assms]
-    by simp
-  show ?thes1 using *
-    using contour_integrable_on_def by blast
-  show ?thes2
-    unfolding contour_integral_unique [OF *] by (simp add: field_split_simps)
-qed
-
-corollary Cauchy_contour_integral_circlepath:
-  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r"
-    shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k)) = (2 * pi * \<i>) * (deriv ^^ k) f w / (fact k)"
-by (simp add: Cauchy_higher_derivative_integral_circlepath [OF assms])
-
-lemma Cauchy_contour_integral_circlepath_2:
-  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r"
-    shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^2) = (2 * pi * \<i>) * deriv f w"
-  using Cauchy_contour_integral_circlepath [OF assms, of 1]
-  by (simp add: power2_eq_square)
-
-
-subsection\<open>A holomorphic function is analytic, i.e. has local power series\<close>
-
-theorem holomorphic_power_series:
-  assumes holf: "f holomorphic_on ball z r"
-      and w: "w \<in> ball z r"
-    shows "((\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
-proof -
-  \<comment> \<open>Replacing \<^term>\<open>r\<close> and the original (weak) premises with stronger ones\<close>
-  obtain r where "r > 0" and holfc: "f holomorphic_on cball z r" and w: "w \<in> ball z r"
-  proof
-    have "cball z ((r + dist w z) / 2) \<subseteq> ball z r"
-      using w by (simp add: dist_commute field_sum_of_halves subset_eq)
-    then show "f holomorphic_on cball z ((r + dist w z) / 2)"
-      by (rule holomorphic_on_subset [OF holf])
-    have "r > 0"
-      using w by clarsimp (metis dist_norm le_less_trans norm_ge_zero)
-    then show "0 < (r + dist w z) / 2"
-      by simp (use zero_le_dist [of w z] in linarith)
-  qed (use w in \<open>auto simp: dist_commute\<close>)
-  then have holf: "f holomorphic_on ball z r"
-    using ball_subset_cball holomorphic_on_subset by blast
-  have contf: "continuous_on (cball z r) f"
-    by (simp add: holfc holomorphic_on_imp_continuous_on)
-  have cint: "\<And>k. (\<lambda>u. f u / (u - z) ^ Suc k) contour_integrable_on circlepath z r"
-    by (rule Cauchy_higher_derivative_integral_circlepath [OF contf holf]) (simp add: \<open>0 < r\<close>)
-  obtain B where "0 < B" and B: "\<And>u. u \<in> cball z r \<Longrightarrow> norm(f u) \<le> B"
-    by (metis (no_types) bounded_pos compact_cball compact_continuous_image compact_imp_bounded contf image_eqI)
-  obtain k where k: "0 < k" "k \<le> r" and wz_eq: "norm(w - z) = r - k"
-             and kle: "\<And>u. norm(u - z) = r \<Longrightarrow> k \<le> norm(u - w)"
-  proof
-    show "\<And>u. cmod (u - z) = r \<Longrightarrow> r - dist z w \<le> cmod (u - w)"
-      by (metis add_diff_eq diff_add_cancel dist_norm norm_diff_ineq)
-  qed (use w in \<open>auto simp: dist_norm norm_minus_commute\<close>)
-  have ul: "uniform_limit (sphere z r) (\<lambda>n x. (\<Sum>k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k))) (\<lambda>x. f x / (x - w)) sequentially"
-    unfolding uniform_limit_iff dist_norm
-  proof clarify
-    fix e::real
-    assume "0 < e"
-    have rr: "0 \<le> (r - k) / r" "(r - k) / r < 1" using  k by auto
-    obtain n where n: "((r - k) / r) ^ n < e / B * k"
-      using real_arch_pow_inv [of "e/B*k" "(r - k)/r"] \<open>0 < e\<close> \<open>0 < B\<close> k by force
-    have "norm ((\<Sum>k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) - f u / (u - w)) < e"
-         if "n \<le> N" and r: "r = dist z u"  for N u
-    proof -
-      have N: "((r - k) / r) ^ N < e / B * k"
-        apply (rule le_less_trans [OF power_decreasing n])
-        using  \<open>n \<le> N\<close> k by auto
-      have u [simp]: "(u \<noteq> z) \<and> (u \<noteq> w)"
-        using \<open>0 < r\<close> r w by auto
-      have wzu_not1: "(w - z) / (u - z) \<noteq> 1"
-        by (metis (no_types) dist_norm divide_eq_1_iff less_irrefl mem_ball norm_minus_commute r w)
-      have "norm ((\<Sum>k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) * (u - w) - f u)
-            = norm ((\<Sum>k<N. (((w - z) / (u - z)) ^ k)) * f u * (u - w) / (u - z) - f u)"
-        unfolding sum_distrib_right sum_divide_distrib power_divide by (simp add: algebra_simps)
-      also have "\<dots> = norm ((((w - z) / (u - z)) ^ N - 1) * (u - w) / (((w - z) / (u - z) - 1) * (u - z)) - 1) * norm (f u)"
-        using \<open>0 < B\<close>
-        apply (auto simp: geometric_sum [OF wzu_not1])
-        apply (simp add: field_simps norm_mult [symmetric])
-        done
-      also have "\<dots> = norm ((u-z) ^ N * (w - u) - ((w - z) ^ N - (u-z) ^ N) * (u-w)) / (r ^ N * norm (u-w)) * norm (f u)"
-        using \<open>0 < r\<close> r by (simp add: divide_simps norm_mult norm_divide norm_power dist_norm norm_minus_commute)
-      also have "\<dots> = norm ((w - z) ^ N * (w - u)) / (r ^ N * norm (u - w)) * norm (f u)"
-        by (simp add: algebra_simps)
-      also have "\<dots> = norm (w - z) ^ N * norm (f u) / r ^ N"
-        by (simp add: norm_mult norm_power norm_minus_commute)
-      also have "\<dots> \<le> (((r - k)/r)^N) * B"
-        using \<open>0 < r\<close> w k
-        apply (simp add: divide_simps)
-        apply (rule mult_mono [OF power_mono])
-        apply (auto simp: norm_divide wz_eq norm_power dist_norm norm_minus_commute B r)
-        done
-      also have "\<dots> < e * k"
-        using \<open>0 < B\<close> N by (simp add: divide_simps)
-      also have "\<dots> \<le> e * norm (u - w)"
-        using r kle \<open>0 < e\<close> by (simp add: dist_commute dist_norm)
-      finally show ?thesis
-        by (simp add: field_split_simps norm_divide del: power_Suc)
-    qed
-    with \<open>0 < r\<close> show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>sphere z r.
-                norm ((\<Sum>k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k)) - f x / (x - w)) < e"
-      by (auto simp: mult_ac less_imp_le eventually_sequentially Ball_def)
-  qed
-  have eq: "\<forall>\<^sub>F x in sequentially.
-             contour_integral (circlepath z r) (\<lambda>u. \<Sum>k<x. (w - z) ^ k * (f u / (u - z) ^ Suc k)) =
-             (\<Sum>k<x. contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc k) * (w - z) ^ k)"
-    apply (rule eventuallyI)
-    apply (subst contour_integral_sum, simp)
-    using contour_integrable_lmul [OF cint, of "(w - z) ^ a" for a] apply (simp add: field_simps)
-    apply (simp only: contour_integral_lmul cint algebra_simps)
-    done
-  have cic: "\<And>u. (\<lambda>y. \<Sum>k<u. (w - z) ^ k * (f y / (y - z) ^ Suc k)) contour_integrable_on circlepath z r"
-    apply (intro contour_integrable_sum contour_integrable_lmul, simp)
-    using \<open>0 < r\<close> by (force intro!: Cauchy_higher_derivative_integral_circlepath [OF contf holf])
-  have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u - z)^(Suc k)) * (w - z)^k)
-        sums contour_integral (circlepath z r) (\<lambda>u. f u/(u - w))"
-    unfolding sums_def
-    apply (intro Lim_transform_eventually [OF _ eq] contour_integral_uniform_limit_circlepath [OF eventuallyI ul] cic)
-    using \<open>0 < r\<close> apply auto
-    done
-  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u - z)^(Suc k)) * (w - z)^k)
-             sums (2 * of_real pi * \<i> * f w)"
-    using w by (auto simp: dist_commute dist_norm contour_integral_unique [OF Cauchy_integral_circlepath_simple [OF holfc]])
-  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc k) * (w - z)^k / (\<i> * (of_real pi * 2)))
-            sums ((2 * of_real pi * \<i> * f w) / (\<i> * (complex_of_real pi * 2)))"
-    by (rule sums_divide)
-  then have "(\<lambda>n. (w - z) ^ n * contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc n) / (\<i> * (of_real pi * 2)))
-            sums f w"
-    by (simp add: field_simps)
-  then show ?thesis
-    by (simp add: field_simps \<open>0 < r\<close> Cauchy_higher_derivative_integral_circlepath [OF contf holf])
-qed
-
-
-subsection\<open>The Liouville theorem and the Fundamental Theorem of Algebra\<close>
-
-text\<open> These weak Liouville versions don't even need the derivative formula.\<close>
-
-lemma Liouville_weak_0:
-  assumes holf: "f holomorphic_on UNIV" and inf: "(f \<longlongrightarrow> 0) at_infinity"
-    shows "f z = 0"
-proof (rule ccontr)
-  assume fz: "f z \<noteq> 0"
-  with inf [unfolded Lim_at_infinity, rule_format, of "norm(f z)/2"]
-  obtain B where B: "\<And>x. B \<le> cmod x \<Longrightarrow> norm (f x) * 2 < cmod (f z)"
-    by (auto simp: dist_norm)
-  define R where "R = 1 + \<bar>B\<bar> + norm z"
-  have "R > 0" unfolding R_def
-  proof -
-    have "0 \<le> cmod z + \<bar>B\<bar>"
-      by (metis (full_types) add_nonneg_nonneg norm_ge_zero real_norm_def)
-    then show "0 < 1 + \<bar>B\<bar> + cmod z"
-      by linarith
-  qed
-  have *: "((\<lambda>u. f u / (u - z)) has_contour_integral 2 * complex_of_real pi * \<i> * f z) (circlepath z R)"
-    apply (rule Cauchy_integral_circlepath)
-    using \<open>R > 0\<close> apply (auto intro: holomorphic_on_subset [OF holf] holomorphic_on_imp_continuous_on)+
-    done
-  have "cmod (x - z) = R \<Longrightarrow> cmod (f x) * 2 < cmod (f z)" for x
-    unfolding R_def
-    by (rule B) (use norm_triangle_ineq4 [of x z] in auto)
-  with \<open>R > 0\<close> fz show False
-    using has_contour_integral_bound_circlepath [OF *, of "norm(f z)/2/R"]
-    by (auto simp: less_imp_le norm_mult norm_divide field_split_simps)
-qed
-
-proposition Liouville_weak:
-  assumes "f holomorphic_on UNIV" and "(f \<longlongrightarrow> l) at_infinity"
-    shows "f z = l"
-  using Liouville_weak_0 [of "\<lambda>z. f z - l"]
-  by (simp add: assms holomorphic_on_diff LIM_zero)
-
-proposition Liouville_weak_inverse:
-  assumes "f holomorphic_on UNIV" and unbounded: "\<And>B. eventually (\<lambda>x. norm (f x) \<ge> B) at_infinity"
-    obtains z where "f z = 0"
-proof -
-  { assume f: "\<And>z. f z \<noteq> 0"
-    have 1: "(\<lambda>x. 1 / f x) holomorphic_on UNIV"
-      by (simp add: holomorphic_on_divide assms f)
-    have 2: "((\<lambda>x. 1 / f x) \<longlongrightarrow> 0) at_infinity"
-      apply (rule tendstoI [OF eventually_mono])
-      apply (rule_tac B="2/e" in unbounded)
-      apply (simp add: dist_norm norm_divide field_split_simps)
-      done
-    have False
-      using Liouville_weak_0 [OF 1 2] f by simp
-  }
-  then show ?thesis
-    using that by blast
-qed
-
-text\<open> In particular we get the Fundamental Theorem of Algebra.\<close>
-
-theorem fundamental_theorem_of_algebra:
-    fixes a :: "nat \<Rightarrow> complex"
-  assumes "a 0 = 0 \<or> (\<exists>i \<in> {1..n}. a i \<noteq> 0)"
-  obtains z where "(\<Sum>i\<le>n. a i * z^i) = 0"
-using assms
-proof (elim disjE bexE)
-  assume "a 0 = 0" then show ?thesis
-    by (auto simp: that [of 0])
-next
-  fix i
-  assume i: "i \<in> {1..n}" and nz: "a i \<noteq> 0"
-  have 1: "(\<lambda>z. \<Sum>i\<le>n. a i * z^i) holomorphic_on UNIV"
-    by (rule holomorphic_intros)+
-  show thesis
-  proof (rule Liouville_weak_inverse [OF 1])
-    show "\<forall>\<^sub>F x in at_infinity. B \<le> cmod (\<Sum>i\<le>n. a i * x ^ i)" for B
-      using i polyfun_extremal nz by force
-  qed (use that in auto)
-qed
-
-subsection\<open>Weierstrass convergence theorem\<close>
-
-lemma holomorphic_uniform_limit:
-  assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and> (f n) holomorphic_on ball z r) F"
-      and ulim: "uniform_limit (cball z r) f g F"
-      and F:  "\<not> trivial_limit F"
-  obtains "continuous_on (cball z r) g" "g holomorphic_on ball z r"
-proof (cases r "0::real" rule: linorder_cases)
-  case less then show ?thesis by (force simp: ball_empty less_imp_le continuous_on_def holomorphic_on_def intro: that)
-next
-  case equal then show ?thesis
-    by (force simp: holomorphic_on_def intro: that)
-next
-  case greater
-  have contg: "continuous_on (cball z r) g"
-    using cont uniform_limit_theorem [OF eventually_mono ulim F]  by blast
-  have "path_image (circlepath z r) \<subseteq> cball z r"
-    using \<open>0 < r\<close> by auto
-  then have 1: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1 / (2 * complex_of_real pi * \<i>) * g x)"
-    by (intro continuous_intros continuous_on_subset [OF contg])
-  have 2: "((\<lambda>u. 1 / (2 * of_real pi * \<i>) * g u / (u - w) ^ 1) has_contour_integral g w) (circlepath z r)"
-       if w: "w \<in> ball z r" for w
-  proof -
-    define d where "d = (r - norm(w - z))"
-    have "0 < d"  "d \<le> r" using w by (auto simp: norm_minus_commute d_def dist_norm)
-    have dle: "\<And>u. cmod (z - u) = r \<Longrightarrow> d \<le> cmod (u - w)"
-      unfolding d_def by (metis add_diff_eq diff_add_cancel norm_diff_ineq norm_minus_commute)
-    have ev_int: "\<forall>\<^sub>F n in F. (\<lambda>u. f n u / (u - w)) contour_integrable_on circlepath z r"
-      apply (rule eventually_mono [OF cont])
-      using w
-      apply (auto intro: Cauchy_higher_derivative_integral_circlepath [where k=0, simplified])
-      done
-    have ul_less: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - w)) (\<lambda>x. g x / (x - w)) F"
-      using greater \<open>0 < d\<close>
-      apply (clarsimp simp add: uniform_limit_iff dist_norm norm_divide diff_divide_distrib [symmetric] divide_simps)
-      apply (rule_tac e1="e * d" in eventually_mono [OF uniform_limitD [OF ulim]])
-       apply (force simp: dist_norm intro: dle mult_left_mono less_le_trans)+
-      done
-    have g_cint: "(\<lambda>u. g u/(u - w)) contour_integrable_on circlepath z r"
-      by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>])
-    have cif_tends_cig: "((\<lambda>n. contour_integral(circlepath z r) (\<lambda>u. f n u / (u - w))) \<longlongrightarrow> contour_integral(circlepath z r) (\<lambda>u. g u/(u - w))) F"
-      by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>])
-    have f_tends_cig: "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> contour_integral (circlepath z r) (\<lambda>u. g u / (u - w))) F"
-    proof (rule Lim_transform_eventually)
-      show "\<forall>\<^sub>F x in F. contour_integral (circlepath z r) (\<lambda>u. f x u / (u - w))
-                     = 2 * of_real pi * \<i> * f x w"
-        apply (rule eventually_mono [OF cont contour_integral_unique [OF Cauchy_integral_circlepath]])
-        using w\<open>0 < d\<close> d_def by auto
-    qed (auto simp: cif_tends_cig)
-    have "\<And>e. 0 < e \<Longrightarrow> \<forall>\<^sub>F n in F. dist (f n w) (g w) < e"
-      by (rule eventually_mono [OF uniform_limitD [OF ulim]]) (use w in auto)
-    then have "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> 2 * of_real pi * \<i> * g w) F"
-      by (rule tendsto_mult_left [OF tendstoI])
-    then have "((\<lambda>u. g u / (u - w)) has_contour_integral 2 * of_real pi * \<i> * g w) (circlepath z r)"
-      using has_contour_integral_integral [OF g_cint] tendsto_unique [OF F f_tends_cig] w
-      by fastforce
-    then have "((\<lambda>u. g u / (2 * of_real pi * \<i> * (u - w))) has_contour_integral g w) (circlepath z r)"
-      using has_contour_integral_div [where c = "2 * of_real pi * \<i>"]
-      by (force simp: field_simps)
-    then show ?thesis
-      by (simp add: dist_norm)
-  qed
-  show ?thesis
-    using Cauchy_next_derivative_circlepath(2) [OF 1 2, simplified]
-    by (fastforce simp add: holomorphic_on_open contg intro: that)
-qed
-
-
-text\<open> Version showing that the limit is the limit of the derivatives.\<close>
-
-proposition has_complex_derivative_uniform_limit:
-  fixes z::complex
-  assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and>
-                               (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))) F"
-      and ulim: "uniform_limit (cball z r) f g F"
-      and F:  "\<not> trivial_limit F" and "0 < r"
-  obtains g' where
-      "continuous_on (cball z r) g"
-      "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F"
-proof -
-  let ?conint = "contour_integral (circlepath z r)"
-  have g: "continuous_on (cball z r) g" "g holomorphic_on ball z r"
-    by (rule holomorphic_uniform_limit [OF eventually_mono [OF cont] ulim F];
-             auto simp: holomorphic_on_open field_differentiable_def)+
-  then obtain g' where g': "\<And>x. x \<in> ball z r \<Longrightarrow> (g has_field_derivative g' x) (at x)"
-    using DERIV_deriv_iff_has_field_derivative
-    by (fastforce simp add: holomorphic_on_open)
-  then have derg: "\<And>x. x \<in> ball z r \<Longrightarrow> deriv g x = g' x"
-    by (simp add: DERIV_imp_deriv)
-  have tends_f'n_g': "((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F" if w: "w \<in> ball z r" for w
-  proof -
-    have eq_f': "?conint (\<lambda>x. f n x / (x - w)\<^sup>2) - ?conint (\<lambda>x. g x / (x - w)\<^sup>2) = (f' n w - g' w) * (2 * of_real pi * \<i>)"
-             if cont_fn: "continuous_on (cball z r) (f n)"
-             and fnd: "\<And>w. w \<in> ball z r \<Longrightarrow> (f n has_field_derivative f' n w) (at w)" for n
-    proof -
-      have hol_fn: "f n holomorphic_on ball z r"
-        using fnd by (force simp: holomorphic_on_open)
-      have "(f n has_field_derivative 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u - w)\<^sup>2)) (at w)"
-        by (rule Cauchy_derivative_integral_circlepath [OF cont_fn hol_fn w])
-      then have f': "f' n w = 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u - w)\<^sup>2)"
-        using DERIV_unique [OF fnd] w by blast
-      show ?thesis
-        by (simp add: f' Cauchy_contour_integral_circlepath_2 [OF g w] derg [OF w] field_split_simps)
-    qed
-    define d where "d = (r - norm(w - z))^2"
-    have "d > 0"
-      using w by (simp add: dist_commute dist_norm d_def)
-    have dle: "d \<le> cmod ((y - w)\<^sup>2)" if "r = cmod (z - y)" for y
-    proof -
-      have "w \<in> ball z (cmod (z - y))"
-        using that w by fastforce
-      then have "cmod (w - z) \<le> cmod (z - y)"
-        by (simp add: dist_complex_def norm_minus_commute)
-      moreover have "cmod (z - y) - cmod (w - z) \<le> cmod (y - w)"
-        by (metis diff_add_cancel diff_add_eq_diff_diff_swap norm_minus_commute norm_triangle_ineq2)
-      ultimately show ?thesis
-        using that by (simp add: d_def norm_power power_mono)
-    qed
-    have 1: "\<forall>\<^sub>F n in F. (\<lambda>x. f n x / (x - w)\<^sup>2) contour_integrable_on circlepath z r"
-      by (force simp: holomorphic_on_open intro: w Cauchy_derivative_integral_circlepath eventually_mono [OF cont])
-    have 2: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - w)\<^sup>2) (\<lambda>x. g x / (x - w)\<^sup>2) F"
-      unfolding uniform_limit_iff
-    proof clarify
-      fix e::real
-      assume "0 < e"
-      with \<open>r > 0\<close> show "\<forall>\<^sub>F n in F. \<forall>x\<in>sphere z r. dist (f n x / (x - w)\<^sup>2) (g x / (x - w)\<^sup>2) < e"
-        apply (simp add: norm_divide field_split_simps sphere_def dist_norm)
-        apply (rule eventually_mono [OF uniform_limitD [OF ulim], of "e*d"])
-         apply (simp add: \<open>0 < d\<close>)
-        apply (force simp: dist_norm dle intro: less_le_trans)
-        done
-    qed
-    have "((\<lambda>n. contour_integral (circlepath z r) (\<lambda>x. f n x / (x - w)\<^sup>2))
-             \<longlongrightarrow> contour_integral (circlepath z r) ((\<lambda>x. g x / (x - w)\<^sup>2))) F"
-      by (rule contour_integral_uniform_limit_circlepath [OF 1 2 F \<open>0 < r\<close>])
-    then have tendsto_0: "((\<lambda>n. 1 / (2 * of_real pi * \<i>) * (?conint (\<lambda>x. f n x / (x - w)\<^sup>2) - ?conint (\<lambda>x. g x / (x - w)\<^sup>2))) \<longlongrightarrow> 0) F"
-      using Lim_null by (force intro!: tendsto_mult_right_zero)
-    have "((\<lambda>n. f' n w - g' w) \<longlongrightarrow> 0) F"
-      apply (rule Lim_transform_eventually [OF tendsto_0])
-      apply (force simp: divide_simps intro: eq_f' eventually_mono [OF cont])
-      done
-    then show ?thesis using Lim_null by blast
-  qed
-  obtain g' where "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F"
-      by (blast intro: tends_f'n_g' g')
-  then show ?thesis using g
-    using that by blast
-qed
-
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Some more simple/convenient versions for applications\<close>
-
-lemma holomorphic_uniform_sequence:
-  assumes S: "open S"
-      and hol_fn: "\<And>n. (f n) holomorphic_on S"
-      and ulim_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially"
-  shows "g holomorphic_on S"
-proof -
-  have "\<exists>f'. (g has_field_derivative f') (at z)" if "z \<in> S" for z
-  proof -
-    obtain r where "0 < r" and r: "cball z r \<subseteq> S"
-               and ul: "uniform_limit (cball z r) f g sequentially"
-      using ulim_g [OF \<open>z \<in> S\<close>] by blast
-    have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and> f n holomorphic_on ball z r"
-    proof (intro eventuallyI conjI)
-      show "continuous_on (cball z r) (f x)" for x
-        using hol_fn holomorphic_on_imp_continuous_on holomorphic_on_subset r by blast
-      show "f x holomorphic_on ball z r" for x
-        by (metis hol_fn holomorphic_on_subset interior_cball interior_subset r)
-    qed
-    show ?thesis
-      apply (rule holomorphic_uniform_limit [OF *])
-      using \<open>0 < r\<close> centre_in_ball ul
-      apply (auto simp: holomorphic_on_open)
-      done
-  qed
-  with S show ?thesis
-    by (simp add: holomorphic_on_open)
-qed
-
-lemma has_complex_derivative_uniform_sequence:
-  fixes S :: "complex set"
-  assumes S: "open S"
-      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> ((f n) has_field_derivative f' n x) (at x)"
-      and ulim_g: "\<And>x. x \<in> S
-             \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially"
-  shows "\<exists>g'. \<forall>x \<in> S. (g has_field_derivative g' x) (at x) \<and> ((\<lambda>n. f' n x) \<longlongrightarrow> g' x) sequentially"
-proof -
-  have y: "\<exists>y. (g has_field_derivative y) (at z) \<and> (\<lambda>n. f' n z) \<longlonglongrightarrow> y" if "z \<in> S" for z
-  proof -
-    obtain r where "0 < r" and r: "cball z r \<subseteq> S"
-               and ul: "uniform_limit (cball z r) f g sequentially"
-      using ulim_g [OF \<open>z \<in> S\<close>] by blast
-    have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and>
-                                   (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))"
-    proof (intro eventuallyI conjI ballI)
-      show "continuous_on (cball z r) (f x)" for x
-        by (meson S continuous_on_subset hfd holomorphic_on_imp_continuous_on holomorphic_on_open r)
-      show "w \<in> ball z r \<Longrightarrow> (f x has_field_derivative f' x w) (at w)" for w x
-        using ball_subset_cball hfd r by blast
-    qed
-    show ?thesis
-      by (rule has_complex_derivative_uniform_limit [OF *, of g]) (use \<open>0 < r\<close> ul in \<open>force+\<close>)
-  qed
-  show ?thesis
-    by (rule bchoice) (blast intro: y)
-qed
-
-subsection\<open>On analytic functions defined by a series\<close>
-
-lemma series_and_derivative_comparison:
-  fixes S :: "complex set"
-  assumes S: "open S"
-      and h: "summable h"
-      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
-      and to_g: "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. norm (f n x) \<le> h n"
-  obtains g g' where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-proof -
-  obtain g where g: "uniform_limit S (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
-    using Weierstrass_m_test_ev [OF to_g h]  by force
-  have *: "\<exists>d>0. cball x d \<subseteq> S \<and> uniform_limit (cball x d) (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
-         if "x \<in> S" for x
-  proof -
-    obtain d where "d>0" and d: "cball x d \<subseteq> S"
-      using open_contains_cball [of "S"] \<open>x \<in> S\<close> S by blast
-    show ?thesis
-    proof (intro conjI exI)
-      show "uniform_limit (cball x d) (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
-        using d g uniform_limit_on_subset by (force simp: dist_norm eventually_sequentially)
-    qed (use \<open>d > 0\<close> d in auto)
-  qed
-  have "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. \<Sum>i<n. f i x) \<longlonglongrightarrow> g x"
-    by (metis tendsto_uniform_limitI [OF g])
-  moreover have "\<exists>g'. \<forall>x\<in>S. (g has_field_derivative g' x) (at x) \<and> (\<lambda>n. \<Sum>i<n. f' i x) \<longlonglongrightarrow> g' x"
-    by (rule has_complex_derivative_uniform_sequence [OF S]) (auto intro: * hfd DERIV_sum)+
-  ultimately show ?thesis
-    by (metis sums_def that)
-qed
-
-text\<open>A version where we only have local uniform/comparative convergence.\<close>
-
-lemma series_and_derivative_comparison_local:
-  fixes S :: "complex set"
-  assumes S: "open S"
-      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
-      and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. norm (f n y) \<le> h n)"
-  shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-proof -
-  have "\<exists>y. (\<lambda>n. f n z) sums (\<Sum>n. f n z) \<and> (\<lambda>n. f' n z) sums y \<and> ((\<lambda>x. \<Sum>n. f n x) has_field_derivative y) (at z)"
-       if "z \<in> S" for z
-  proof -
-    obtain d h where "0 < d" "summable h" and le_h: "\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball z d \<inter> S. norm (f n y) \<le> h n"
-      using to_g \<open>z \<in> S\<close> by meson
-    then obtain r where "r>0" and r: "ball z r \<subseteq> ball z d \<inter> S" using \<open>z \<in> S\<close> S
-      by (metis Int_iff open_ball centre_in_ball open_Int open_contains_ball_eq)
-    have 1: "open (ball z d \<inter> S)"
-      by (simp add: open_Int S)
-    have 2: "\<And>n x. x \<in> ball z d \<inter> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
-      by (auto simp: hfd)
-    obtain g g' where gg': "\<forall>x \<in> ball z d \<inter> S. ((\<lambda>n. f n x) sums g x) \<and>
-                                    ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-      by (auto intro: le_h series_and_derivative_comparison [OF 1 \<open>summable h\<close> hfd])
-    then have "(\<lambda>n. f' n z) sums g' z"
-      by (meson \<open>0 < r\<close> centre_in_ball contra_subsetD r)
-    moreover have "(\<lambda>n. f n z) sums (\<Sum>n. f n z)"
-      using  summable_sums centre_in_ball \<open>0 < d\<close> \<open>summable h\<close> le_h
-      by (metis (full_types) Int_iff gg' summable_def that)
-    moreover have "((\<lambda>x. \<Sum>n. f n x) has_field_derivative g' z) (at z)"
-    proof (rule has_field_derivative_transform_within)
-      show "\<And>x. dist x z < r \<Longrightarrow> g x = (\<Sum>n. f n x)"
-        by (metis subsetD dist_commute gg' mem_ball r sums_unique)
-    qed (use \<open>0 < r\<close> gg' \<open>z \<in> S\<close> \<open>0 < d\<close> in auto)
-    ultimately show ?thesis by auto
-  qed
-  then show ?thesis
-    by (rule_tac x="\<lambda>x. suminf (\<lambda>n. f n x)" in exI) meson
-qed
-
-
-text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
-
-lemma series_and_derivative_comparison_complex:
-  fixes S :: "complex set"
-  assumes S: "open S"
-      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
-      and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
-  shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-apply (rule series_and_derivative_comparison_local [OF S hfd], assumption)
-apply (rule ex_forward [OF to_g], assumption)
-apply (erule exE)
-apply (rule_tac x="Re \<circ> h" in exI)
-apply (force simp: summable_Re o_def nonneg_Reals_cmod_eq_Re image_subset_iff)
-done
-
-text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
-lemma series_differentiable_comparison_complex:
-  fixes S :: "complex set"
-  assumes S: "open S"
-    and hfd: "\<And>n x. x \<in> S \<Longrightarrow> f n field_differentiable (at x)"
-    and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
-  obtains g where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> g field_differentiable (at x)"
-proof -
-  have hfd': "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative deriv (f n) x) (at x)"
-    using hfd field_differentiable_derivI by blast
-  have "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. deriv (f n) x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
-    by (metis series_and_derivative_comparison_complex [OF S hfd' to_g])
-  then show ?thesis
-    using field_differentiable_def that by blast
-qed
-
-text\<open>In particular, a power series is analytic inside circle of convergence.\<close>
-
-lemma power_series_and_derivative_0:
-  fixes a :: "nat \<Rightarrow> complex" and r::real
-  assumes "summable (\<lambda>n. a n * r^n)"
-    shows "\<exists>g g'. \<forall>z. cmod z < r \<longrightarrow>
-             ((\<lambda>n. a n * z^n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * z^(n - 1)) sums g' z) \<and> (g has_field_derivative g' z) (at z)"
-proof (cases "0 < r")
-  case True
-    have der: "\<And>n z. ((\<lambda>x. a n * x ^ n) has_field_derivative of_nat n * a n * z ^ (n - 1)) (at z)"
-      by (rule derivative_eq_intros | simp)+
-    have y_le: "\<lbrakk>cmod (z - y) * 2 < r - cmod z\<rbrakk> \<Longrightarrow> cmod y \<le> cmod (of_real r + of_real (cmod z)) / 2" for z y
-      using \<open>r > 0\<close>
-      apply (auto simp: algebra_simps norm_mult norm_divide norm_power simp flip: of_real_add)
-      using norm_triangle_ineq2 [of y z]
-      apply (simp only: diff_le_eq norm_minus_commute mult_2)
-      done
-    have "summable (\<lambda>n. a n * complex_of_real r ^ n)"
-      using assms \<open>r > 0\<close> by simp
-    moreover have "\<And>z. cmod z < r \<Longrightarrow> cmod ((of_real r + of_real (cmod z)) / 2) < cmod (of_real r)"
-      using \<open>r > 0\<close>
-      by (simp flip: of_real_add)
-    ultimately have sum: "\<And>z. cmod z < r \<Longrightarrow> summable (\<lambda>n. of_real (cmod (a n)) * ((of_real r + complex_of_real (cmod z)) / 2) ^ n)"
-      by (rule power_series_conv_imp_absconv_weak)
-    have "\<exists>g g'. \<forall>z \<in> ball 0 r. (\<lambda>n.  (a n) * z ^ n) sums g z \<and>
-               (\<lambda>n. of_nat n * (a n) * z ^ (n - 1)) sums g' z \<and> (g has_field_derivative g' z) (at z)"
-      apply (rule series_and_derivative_comparison_complex [OF open_ball der])
-      apply (rule_tac x="(r - norm z)/2" in exI)
-      apply (rule_tac x="\<lambda>n. of_real(norm(a n)*((r + norm z)/2)^n)" in exI)
-      using \<open>r > 0\<close>
-      apply (auto simp: sum eventually_sequentially norm_mult norm_power dist_norm intro!: mult_left_mono power_mono y_le)
-      done
-  then show ?thesis
-    by (simp add: ball_def)
-next
-  case False then show ?thesis
-    apply (simp add: not_less)
-    using less_le_trans norm_not_less_zero by blast
-qed
-
-proposition\<^marker>\<open>tag unimportant\<close> power_series_and_derivative:
-  fixes a :: "nat \<Rightarrow> complex" and r::real
-  assumes "summable (\<lambda>n. a n * r^n)"
-    obtains g g' where "\<forall>z \<in> ball w r.
-             ((\<lambda>n. a n * (z - w) ^ n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * (z - w) ^ (n - 1)) sums g' z) \<and>
-              (g has_field_derivative g' z) (at z)"
-  using power_series_and_derivative_0 [OF assms]
-  apply clarify
-  apply (rule_tac g="(\<lambda>z. g(z - w))" in that)
-  using DERIV_shift [where z="-w"]
-  apply (auto simp: norm_minus_commute Ball_def dist_norm)
-  done
-
-proposition\<^marker>\<open>tag unimportant\<close> power_series_holomorphic:
-  assumes "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>n. a n*(w - z)^n) sums f w)"
-    shows "f holomorphic_on ball z r"
-proof -
-  have "\<exists>f'. (f has_field_derivative f') (at w)" if w: "dist z w < r" for w
-  proof -
-    have inb: "z + complex_of_real ((dist z w + r) / 2) \<in> ball z r"
-    proof -
-      have wz: "cmod (w - z) < r" using w
-        by (auto simp: field_split_simps dist_norm norm_minus_commute)
-      then have "0 \<le> r"
-        by (meson less_eq_real_def norm_ge_zero order_trans)
-      show ?thesis
-        using w by (simp add: dist_norm \<open>0\<le>r\<close> flip: of_real_add)
-    qed
-    have sum: "summable (\<lambda>n. a n * of_real (((cmod (z - w) + r) / 2) ^ n))"
-      using assms [OF inb] by (force simp: summable_def dist_norm)
-    obtain g g' where gg': "\<And>u. u \<in> ball z ((cmod (z - w) + r) / 2) \<Longrightarrow>
-                               (\<lambda>n. a n * (u - z) ^ n) sums g u \<and>
-                               (\<lambda>n. of_nat n * a n * (u - z) ^ (n - 1)) sums g' u \<and> (g has_field_derivative g' u) (at u)"
-      by (rule power_series_and_derivative [OF sum, of z]) fastforce
-    have [simp]: "g u = f u" if "cmod (u - w) < (r - cmod (z - w)) / 2" for u
-    proof -
-      have less: "cmod (z - u) * 2 < cmod (z - w) + r"
-        using that dist_triangle2 [of z u w]
-        by (simp add: dist_norm [symmetric] algebra_simps)
-      show ?thesis
-        apply (rule sums_unique2 [of "\<lambda>n. a n*(u - z)^n"])
-        using gg' [of u] less w
-        apply (auto simp: assms dist_norm)
-        done
-    qed
-    have "(f has_field_derivative g' w) (at w)"
-      by (rule has_field_derivative_transform_within [where d="(r - norm(z - w))/2"])
-      (use w gg' [of w] in \<open>(force simp: dist_norm)+\<close>)
-    then show ?thesis ..
-  qed
-  then show ?thesis by (simp add: holomorphic_on_open)
-qed
-
-corollary holomorphic_iff_power_series:
-     "f holomorphic_on ball z r \<longleftrightarrow>
-      (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
-  apply (intro iffI ballI holomorphic_power_series, assumption+)
-  apply (force intro: power_series_holomorphic [where a = "\<lambda>n. (deriv ^^ n) f z / (fact n)"])
-  done
-
-lemma power_series_analytic:
-     "(\<And>w. w \<in> ball z r \<Longrightarrow> (\<lambda>n. a n*(w - z)^n) sums f w) \<Longrightarrow> f analytic_on ball z r"
-  by (force simp: analytic_on_open intro!: power_series_holomorphic)
-
-lemma analytic_iff_power_series:
-     "f analytic_on ball z r \<longleftrightarrow>
-      (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)"
-  by (simp add: analytic_on_open holomorphic_iff_power_series)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Equality between holomorphic functions, on open ball then connected set\<close>
-
-lemma holomorphic_fun_eq_on_ball:
-   "\<lbrakk>f holomorphic_on ball z r; g holomorphic_on ball z r;
-     w \<in> ball z r;
-     \<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z\<rbrakk>
-     \<Longrightarrow> f w = g w"
-  apply (rule sums_unique2 [of "\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n"])
-  apply (auto simp: holomorphic_iff_power_series)
-  done
-
-lemma holomorphic_fun_eq_0_on_ball:
-   "\<lbrakk>f holomorphic_on ball z r;  w \<in> ball z r;
-     \<And>n. (deriv ^^ n) f z = 0\<rbrakk>
-     \<Longrightarrow> f w = 0"
-  apply (rule sums_unique2 [of "\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n"])
-  apply (auto simp: holomorphic_iff_power_series)
-  done
-
-lemma holomorphic_fun_eq_0_on_connected:
-  assumes holf: "f holomorphic_on S" and "open S"
-      and cons: "connected S"
-      and der: "\<And>n. (deriv ^^ n) f z = 0"
-      and "z \<in> S" "w \<in> S"
-    shows "f w = 0"
-proof -
-  have *: "ball x e \<subseteq> (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
-    if "\<forall>u. (deriv ^^ u) f x = 0" "ball x e \<subseteq> S" for x e
-  proof -
-    have "\<And>x' n. dist x x' < e \<Longrightarrow> (deriv ^^ n) f x' = 0"
-      apply (rule holomorphic_fun_eq_0_on_ball [OF holomorphic_higher_deriv])
-         apply (rule holomorphic_on_subset [OF holf])
-      using that apply simp_all
-      by (metis funpow_add o_apply)
-    with that show ?thesis by auto
-  qed
-  have 1: "openin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
-    apply (rule open_subset, force)
-    using \<open>open S\<close>
-    apply (simp add: open_contains_ball Ball_def)
-    apply (erule all_forward)
-    using "*" by auto blast+
-  have 2: "closedin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
-    using assms
-    by (auto intro: continuous_closedin_preimage_constant holomorphic_on_imp_continuous_on holomorphic_higher_deriv)
-  obtain e where "e>0" and e: "ball w e \<subseteq> S" using openE [OF \<open>open S\<close> \<open>w \<in> S\<close>] .
-  then have holfb: "f holomorphic_on ball w e"
-    using holf holomorphic_on_subset by blast
-  have 3: "(\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0}) = S \<Longrightarrow> f w = 0"
-    using \<open>e>0\<close> e by (force intro: holomorphic_fun_eq_0_on_ball [OF holfb])
-  show ?thesis
-    using cons der \<open>z \<in> S\<close>
-    apply (simp add: connected_clopen)
-    apply (drule_tac x="\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0}" in spec)
-    apply (auto simp: 1 2 3)
-    done
-qed
-
-lemma holomorphic_fun_eq_on_connected:
-  assumes "f holomorphic_on S" "g holomorphic_on S" and "open S"  "connected S"
-      and "\<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z"
-      and "z \<in> S" "w \<in> S"
-    shows "f w = g w"
-proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>x. f x - g x" S z, simplified])
-  show "(\<lambda>x. f x - g x) holomorphic_on S"
-    by (intro assms holomorphic_intros)
-  show "\<And>n. (deriv ^^ n) (\<lambda>x. f x - g x) z = 0"
-    using assms higher_deriv_diff by auto
-qed (use assms in auto)
-
-lemma holomorphic_fun_eq_const_on_connected:
-  assumes holf: "f holomorphic_on S" and "open S"
-      and cons: "connected S"
-      and der: "\<And>n. 0 < n \<Longrightarrow> (deriv ^^ n) f z = 0"
-      and "z \<in> S" "w \<in> S"
-    shows "f w = f z"
-proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>w. f w - f z" S z, simplified])
-  show "(\<lambda>w. f w - f z) holomorphic_on S"
-    by (intro assms holomorphic_intros)
-  show "\<And>n. (deriv ^^ n) (\<lambda>w. f w - f z) z = 0"
-    by (subst higher_deriv_diff) (use assms in \<open>auto intro: holomorphic_intros\<close>)
-qed (use assms in auto)
-
-subsection\<^marker>\<open>tag unimportant\<close> \<open>Some basic lemmas about poles/singularities\<close>
-
-lemma pole_lemma:
-  assumes holf: "f holomorphic_on S" and a: "a \<in> interior S"
-    shows "(\<lambda>z. if z = a then deriv f a
-                 else (f z - f a) / (z - a)) holomorphic_on S" (is "?F holomorphic_on S")
-proof -
-  have F1: "?F field_differentiable (at u within S)" if "u \<in> S" "u \<noteq> a" for u
-  proof -
-    have fcd: "f field_differentiable at u within S"
-      using holf holomorphic_on_def by (simp add: \<open>u \<in> S\<close>)
-    have cd: "(\<lambda>z. (f z - f a) / (z - a)) field_differentiable at u within S"
-      by (rule fcd derivative_intros | simp add: that)+
-    have "0 < dist a u" using that dist_nz by blast
-    then show ?thesis
-      by (rule field_differentiable_transform_within [OF _ _ _ cd]) (auto simp: \<open>u \<in> S\<close>)
-  qed
-  have F2: "?F field_differentiable at a" if "0 < e" "ball a e \<subseteq> S" for e
-  proof -
-    have holfb: "f holomorphic_on ball a e"
-      by (rule holomorphic_on_subset [OF holf \<open>ball a e \<subseteq> S\<close>])
-    have 2: "?F holomorphic_on ball a e - {a}"
-      apply (simp add: holomorphic_on_def flip: field_differentiable_def)
-      using mem_ball that
-      apply (auto intro: F1 field_differentiable_within_subset)
-      done
-    have "isCont (\<lambda>z. if z = a then deriv f a else (f z - f a) / (z - a)) x"
-            if "dist a x < e" for x
-    proof (cases "x=a")
-      case True
-      then have "f field_differentiable at a"
-        using holfb \<open>0 < e\<close> holomorphic_on_imp_differentiable_at by auto
-      with True show ?thesis
-        by (auto simp: continuous_at has_field_derivative_iff simp flip: DERIV_deriv_iff_field_differentiable
-                elim: rev_iffD1 [OF _ LIM_equal])
-    next
-      case False with 2 that show ?thesis
-        by (force simp: holomorphic_on_open open_Diff field_differentiable_def [symmetric] field_differentiable_imp_continuous_at)
-    qed
-    then have 1: "continuous_on (ball a e) ?F"
-      by (clarsimp simp:  continuous_on_eq_continuous_at)
-    have "?F holomorphic_on ball a e"
-      by (auto intro: no_isolated_singularity [OF 1 2])
-    with that show ?thesis
-      by (simp add: holomorphic_on_open field_differentiable_def [symmetric]
-                    field_differentiable_at_within)
-  qed
-  show ?thesis
-  proof
-    fix x assume "x \<in> S" show "?F field_differentiable at x within S"
-    proof (cases "x=a")
-      case True then show ?thesis
-      using a by (auto simp: mem_interior intro: field_differentiable_at_within F2)
-    next
-      case False with F1 \<open>x \<in> S\<close>
-      show ?thesis by blast
-    qed
-  qed
-qed
-
-lemma pole_theorem:
-  assumes holg: "g holomorphic_on S" and a: "a \<in> interior S"
-      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
-    shows "(\<lambda>z. if z = a then deriv g a
-                 else f z - g a/(z - a)) holomorphic_on S"
-  using pole_lemma [OF holg a]
-  by (rule holomorphic_transform) (simp add: eq field_split_simps)
-
-lemma pole_lemma_open:
-  assumes "f holomorphic_on S" "open S"
-    shows "(\<lambda>z. if z = a then deriv f a else (f z - f a)/(z - a)) holomorphic_on S"
-proof (cases "a \<in> S")
-  case True with assms interior_eq pole_lemma
-    show ?thesis by fastforce
-next
-  case False with assms show ?thesis
-    apply (simp add: holomorphic_on_def field_differentiable_def [symmetric], clarify)
-    apply (rule field_differentiable_transform_within [where f = "\<lambda>z. (f z - f a)/(z - a)" and d = 1])
-    apply (rule derivative_intros | force)+
-    done
-qed
-
-lemma pole_theorem_open:
-  assumes holg: "g holomorphic_on S" and S: "open S"
-      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
-    shows "(\<lambda>z. if z = a then deriv g a
-                 else f z - g a/(z - a)) holomorphic_on S"
-  using pole_lemma_open [OF holg S]
-  by (rule holomorphic_transform) (auto simp: eq divide_simps)
-
-lemma pole_theorem_0:
-  assumes holg: "g holomorphic_on S" and a: "a \<in> interior S"
-      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
-      and [simp]: "f a = deriv g a" "g a = 0"
-    shows "f holomorphic_on S"
-  using pole_theorem [OF holg a eq]
-  by (rule holomorphic_transform) (auto simp: eq field_split_simps)
-
-lemma pole_theorem_open_0:
-  assumes holg: "g holomorphic_on S" and S: "open S"
-      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
-      and [simp]: "f a = deriv g a" "g a = 0"
-    shows "f holomorphic_on S"
-  using pole_theorem_open [OF holg S eq]
-  by (rule holomorphic_transform) (auto simp: eq field_split_simps)
-
-lemma pole_theorem_analytic:
-  assumes g: "g analytic_on S"
-      and eq: "\<And>z. z \<in> S
-             \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w - a) * f w)"
-    shows "(\<lambda>z. if z = a then deriv g a else f z - g a/(z - a)) analytic_on S" (is "?F analytic_on S")
-  unfolding analytic_on_def
-proof
-  fix x
-  assume "x \<in> S"
-  with g obtain e where "0 < e" and e: "g holomorphic_on ball x e"
-    by (auto simp add: analytic_on_def)
-  obtain d where "0 < d" and d: "\<And>w. w \<in> ball x d - {a} \<Longrightarrow> g w = (w - a) * f w"
-    using \<open>x \<in> S\<close> eq by blast
-  have "?F holomorphic_on ball x (min d e)"
-    using d e \<open>x \<in> S\<close> by (fastforce simp: holomorphic_on_subset subset_ball intro!: pole_theorem_open)
-  then show "\<exists>e>0. ?F holomorphic_on ball x e"
-    using \<open>0 < d\<close> \<open>0 < e\<close> not_le by fastforce
-qed
-
-lemma pole_theorem_analytic_0:
-  assumes g: "g analytic_on S"
-      and eq: "\<And>z. z \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w - a) * f w)"
-      and [simp]: "f a = deriv g a" "g a = 0"
-    shows "f analytic_on S"
-proof -
-  have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z - a)) = f"
-    by auto
-  show ?thesis
-    using pole_theorem_analytic [OF g eq] by simp
-qed
-
-lemma pole_theorem_analytic_open_superset:
-  assumes g: "g analytic_on S" and "S \<subseteq> T" "open T"
-      and eq: "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z - a) * f z"
-    shows "(\<lambda>z. if z = a then deriv g a
-                 else f z - g a/(z - a)) analytic_on S"
-proof (rule pole_theorem_analytic [OF g])
-  fix z
-  assume "z \<in> S"
-  then obtain e where "0 < e" and e: "ball z e \<subseteq> T"
-    using assms openE by blast
-  then show "\<exists>d>0. \<forall>w\<in>ball z d - {a}. g w = (w - a) * f w"
-    using eq by auto
-qed
-
-lemma pole_theorem_analytic_open_superset_0:
-  assumes g: "g analytic_on S" "S \<subseteq> T" "open T" "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z - a) * f z"
-      and [simp]: "f a = deriv g a" "g a = 0"
-    shows "f analytic_on S"
-proof -
-  have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z - a)) = f"
-    by auto
-  have "(\<lambda>z. if z = a then deriv g a else f z - g a/(z - a)) analytic_on S"
-    by (rule pole_theorem_analytic_open_superset [OF g])
-  then show ?thesis by simp
-qed
-
-
-subsection\<open>General, homology form of Cauchy's theorem\<close>
-
-text\<open>Proof is based on Dixon's, as presented in Lang's "Complex Analysis" book (page 147).\<close>
-
-lemma contour_integral_continuous_on_linepath_2D:
-  assumes "open U" and cont_dw: "\<And>w. w \<in> U \<Longrightarrow> F w contour_integrable_on (linepath a b)"
-      and cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). F x y)"
-      and abu: "closed_segment a b \<subseteq> U"
-    shows "continuous_on U (\<lambda>w. contour_integral (linepath a b) (F w))"
-proof -
-  have *: "\<exists>d>0. \<forall>x'\<in>U. dist x' w < d \<longrightarrow>
-                         dist (contour_integral (linepath a b) (F x'))
-                              (contour_integral (linepath a b) (F w)) \<le> \<epsilon>"
-          if "w \<in> U" "0 < \<epsilon>" "a \<noteq> b" for w \<epsilon>
-  proof -
-    obtain \<delta> where "\<delta>>0" and \<delta>: "cball w \<delta> \<subseteq> U" using open_contains_cball \<open>open U\<close> \<open>w \<in> U\<close> by force
-    let ?TZ = "cball w \<delta>  \<times> closed_segment a b"
-    have "uniformly_continuous_on ?TZ (\<lambda>(x,y). F x y)"
-    proof (rule compact_uniformly_continuous)
-      show "continuous_on ?TZ (\<lambda>(x,y). F x y)"
-        by (rule continuous_on_subset[OF cond_uu]) (use SigmaE \<delta> abu in blast)
-      show "compact ?TZ"
-        by (simp add: compact_Times)
-    qed
-    then obtain \<eta> where "\<eta>>0"
-        and \<eta>: "\<And>x x'. \<lbrakk>x\<in>?TZ; x'\<in>?TZ; dist x' x < \<eta>\<rbrakk> \<Longrightarrow>
-                         dist ((\<lambda>(x,y). F x y) x') ((\<lambda>(x,y). F x y) x) < \<epsilon>/norm(b - a)"
-      apply (rule uniformly_continuous_onE [where e = "\<epsilon>/norm(b - a)"])
-      using \<open>0 < \<epsilon>\<close> \<open>a \<noteq> b\<close> by auto
-    have \<eta>: "\<lbrakk>norm (w - x1) \<le> \<delta>;   x2 \<in> closed_segment a b;
-              norm (w - x1') \<le> \<delta>;  x2' \<in> closed_segment a b; norm ((x1', x2') - (x1, x2)) < \<eta>\<rbrakk>
-              \<Longrightarrow> norm (F x1' x2' - F x1 x2) \<le> \<epsilon> / cmod (b - a)"
-             for x1 x2 x1' x2'
-      using \<eta> [of "(x1,x2)" "(x1',x2')"] by (force simp: dist_norm)
-    have le_ee: "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>"
-                if "x' \<in> U" "cmod (x' - w) < \<delta>" "cmod (x' - w) < \<eta>"  for x'
-    proof -
-      have "(\<lambda>x. F x' x - F w x) contour_integrable_on linepath a b"
-        by (simp add: \<open>w \<in> U\<close> cont_dw contour_integrable_diff that)
-      then have "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>/norm(b - a) * norm(b - a)"
-        apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_integral _ \<eta>])
-        using \<open>0 < \<epsilon>\<close> \<open>0 < \<delta>\<close> that apply (auto simp: norm_minus_commute)
-        done
-      also have "\<dots> = \<epsilon>" using \<open>a \<noteq> b\<close> by simp
-      finally show ?thesis .
-    qed
-    show ?thesis
-      apply (rule_tac x="min \<delta> \<eta>" in exI)
-      using \<open>0 < \<delta>\<close> \<open>0 < \<eta>\<close>
-      apply (auto simp: dist_norm contour_integral_diff [OF cont_dw cont_dw, symmetric] \<open>w \<in> U\<close> intro: le_ee)
-      done
-  qed
-  show ?thesis
-  proof (cases "a=b")
-    case True
-    then show ?thesis by simp
-  next
-    case False
-    show ?thesis
-      by (rule continuous_onI) (use False in \<open>auto intro: *\<close>)
-  qed
-qed
-
-text\<open>This version has \<^term>\<open>polynomial_function \<gamma>\<close> as an additional assumption.\<close>
-lemma Cauchy_integral_formula_global_weak:
-  assumes "open U" and holf: "f holomorphic_on U"
-        and z: "z \<in> U" and \<gamma>: "polynomial_function \<gamma>"
-        and pasz: "path_image \<gamma> \<subseteq> U - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-        and zero: "\<And>w. w \<notin> U \<Longrightarrow> winding_number \<gamma> w = 0"
-      shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-proof -
-  obtain \<gamma>' where pf\<gamma>': "polynomial_function \<gamma>'" and \<gamma>': "\<And>x. (\<gamma> has_vector_derivative (\<gamma>' x)) (at x)"
-    using has_vector_derivative_polynomial_function [OF \<gamma>] by blast
-  then have "bounded(path_image \<gamma>')"
-    by (simp add: path_image_def compact_imp_bounded compact_continuous_image continuous_on_polymonial_function)
-  then obtain B where "B>0" and B: "\<And>x. x \<in> path_image \<gamma>' \<Longrightarrow> norm x \<le> B"
-    using bounded_pos by force
-  define d where [abs_def]: "d z w = (if w = z then deriv f z else (f w - f z)/(w - z))" for z w
-  define v where "v = {w. w \<notin> path_image \<gamma> \<and> winding_number \<gamma> w = 0}"
-  have "path \<gamma>" "valid_path \<gamma>" using \<gamma>
-    by (auto simp: path_polynomial_function valid_path_polynomial_function)
-  then have ov: "open v"
-    by (simp add: v_def open_winding_number_levelsets loop)
-  have uv_Un: "U \<union> v = UNIV"
-    using pasz zero by (auto simp: v_def)
-  have conf: "continuous_on U f"
-    by (metis holf holomorphic_on_imp_continuous_on)
-  have hol_d: "(d y) holomorphic_on U" if "y \<in> U" for y
-  proof -
-    have *: "(\<lambda>c. if c = y then deriv f y else (f c - f y) / (c - y)) holomorphic_on U"
-      by (simp add: holf pole_lemma_open \<open>open U\<close>)
-    then have "isCont (\<lambda>x. if x = y then deriv f y else (f x - f y) / (x - y)) y"
-      using at_within_open field_differentiable_imp_continuous_at holomorphic_on_def that \<open>open U\<close> by fastforce
-    then have "continuous_on U (d y)"
-      apply (simp add: d_def continuous_on_eq_continuous_at \<open>open U\<close>, clarify)
-      using * holomorphic_on_def
-      by (meson field_differentiable_within_open field_differentiable_imp_continuous_at \<open>open U\<close>)
-    moreover have "d y holomorphic_on U - {y}"
-    proof -
-      have "\<And>w. w \<in> U - {y} \<Longrightarrow>
-                 (\<lambda>w. if w = y then deriv f y else (f w - f y) / (w - y)) field_differentiable at w"
-        apply (rule_tac d="dist w y" and f = "\<lambda>w. (f w - f y)/(w - y)" in field_differentiable_transform_within)
-           apply (auto simp: dist_pos_lt dist_commute intro!: derivative_intros)
-        using \<open>open U\<close> holf holomorphic_on_imp_differentiable_at by blast
-      then show ?thesis
-        unfolding field_differentiable_def by (simp add: d_def holomorphic_on_open \<open>open U\<close> open_delete)
-    qed
-    ultimately show ?thesis
-      by (rule no_isolated_singularity) (auto simp: \<open>open U\<close>)
-  qed
-  have cint_fxy: "(\<lambda>x. (f x - f y) / (x - y)) contour_integrable_on \<gamma>" if "y \<notin> path_image \<gamma>" for y
-  proof (rule contour_integrable_holomorphic_simple [where S = "U-{y}"])
-    show "(\<lambda>x. (f x - f y) / (x - y)) holomorphic_on U - {y}"
-      by (force intro: holomorphic_intros holomorphic_on_subset [OF holf])
-    show "path_image \<gamma> \<subseteq> U - {y}"
-      using pasz that by blast
-  qed (auto simp: \<open>open U\<close> open_delete \<open>valid_path \<gamma>\<close>)
-  define h where
-    "h z = (if z \<in> U then contour_integral \<gamma> (d z) else contour_integral \<gamma> (\<lambda>w. f w/(w - z)))" for z
-  have U: "((d z) has_contour_integral h z) \<gamma>" if "z \<in> U" for z
-  proof -
-    have "d z holomorphic_on U"
-      by (simp add: hol_d that)
-    with that show ?thesis
-    apply (simp add: h_def)
-      by (meson Diff_subset \<open>open U\<close> \<open>valid_path \<gamma>\<close> contour_integrable_holomorphic_simple has_contour_integral_integral pasz subset_trans)
-  qed
-  have V: "((\<lambda>w. f w / (w - z)) has_contour_integral h z) \<gamma>" if z: "z \<in> v" for z
-  proof -
-    have 0: "0 = (f z) * 2 * of_real (2 * pi) * \<i> * winding_number \<gamma> z"
-      using v_def z by auto
-    then have "((\<lambda>x. 1 / (x - z)) has_contour_integral 0) \<gamma>"
-     using z v_def  has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close>] by fastforce
-    then have "((\<lambda>x. f z * (1 / (x - z))) has_contour_integral 0) \<gamma>"
-      using has_contour_integral_lmul by fastforce
-    then have "((\<lambda>x. f z / (x - z)) has_contour_integral 0) \<gamma>"
-      by (simp add: field_split_simps)
-    moreover have "((\<lambda>x. (f x - f z) / (x - z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>"
-      using z
-      apply (auto simp: v_def)
-      apply (metis (no_types, lifting) contour_integrable_eq d_def has_contour_integral_eq has_contour_integral_integral cint_fxy)
-      done
-    ultimately have *: "((\<lambda>x. f z / (x - z) + (f x - f z) / (x - z)) has_contour_integral (0 + contour_integral \<gamma> (d z))) \<gamma>"
-      by (rule has_contour_integral_add)
-    have "((\<lambda>w. f w / (w - z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>"
-            if  "z \<in> U"
-      using * by (auto simp: divide_simps has_contour_integral_eq)
-    moreover have "((\<lambda>w. f w / (w - z)) has_contour_integral contour_integral \<gamma> (\<lambda>w. f w / (w - z))) \<gamma>"
-            if "z \<notin> U"
-      apply (rule has_contour_integral_integral [OF contour_integrable_holomorphic_simple [where S=U]])
-      using U pasz \<open>valid_path \<gamma>\<close> that
-      apply (auto intro: holomorphic_on_imp_continuous_on hol_d)
-       apply (rule continuous_intros conf holomorphic_intros holf assms | force)+
-      done
-    ultimately show ?thesis
-      using z by (simp add: h_def)
-  qed
-  have znot: "z \<notin> path_image \<gamma>"
-    using pasz by blast
-  obtain d0 where "d0>0" and d0: "\<And>x y. x \<in> path_image \<gamma> \<Longrightarrow> y \<in> - U \<Longrightarrow> d0 \<le> dist x y"
-    using separate_compact_closed [of "path_image \<gamma>" "-U"] pasz \<open>open U\<close>
-    by (fastforce simp add: \<open>path \<gamma>\<close> compact_path_image)
-  obtain dd where "0 < dd" and dd: "{y + k | y k. y \<in> path_image \<gamma> \<and> k \<in> ball 0 dd} \<subseteq> U"
-    apply (rule that [of "d0/2"])
-    using \<open>0 < d0\<close>
-    apply (auto simp: dist_norm dest: d0)
-    done
-  have "\<And>x x'. \<lbrakk>x \<in> path_image \<gamma>; dist x x' * 2 < dd\<rbrakk> \<Longrightarrow> \<exists>y k. x' = y + k \<and> y \<in> path_image \<gamma> \<and> dist 0 k * 2 \<le> dd"
-    apply (rule_tac x=x in exI)
-    apply (rule_tac x="x'-x" in exI)
-    apply (force simp: dist_norm)
-    done
-  then have 1: "path_image \<gamma> \<subseteq> interior {y + k |y k. y \<in> path_image \<gamma> \<and> k \<in> cball 0 (dd / 2)}"
-    apply (clarsimp simp add: mem_interior)
-    using \<open>0 < dd\<close>
-    apply (rule_tac x="dd/2" in exI, auto)
-    done
-  obtain T where "compact T" and subt: "path_image \<gamma> \<subseteq> interior T" and T: "T \<subseteq> U"
-    apply (rule that [OF _ 1])
-    apply (fastforce simp add: \<open>valid_path \<gamma>\<close> compact_valid_path_image intro!: compact_sums)
-    apply (rule order_trans [OF _ dd])
-    using \<open>0 < dd\<close> by fastforce
-  obtain L where "L>0"
-           and L: "\<And>f B. \<lbrakk>f holomorphic_on interior T; \<And>z. z\<in>interior T \<Longrightarrow> cmod (f z) \<le> B\<rbrakk> \<Longrightarrow>
-                         cmod (contour_integral \<gamma> f) \<le> L * B"
-      using contour_integral_bound_exists [OF open_interior \<open>valid_path \<gamma>\<close> subt]
-      by blast
-  have "bounded(f ` T)"
-    by (meson \<open>compact T\<close> compact_continuous_image compact_imp_bounded conf continuous_on_subset T)
-  then obtain D where "D>0" and D: "\<And>x. x \<in> T \<Longrightarrow> norm (f x) \<le> D"
-    by (auto simp: bounded_pos)
-  obtain C where "C>0" and C: "\<And>x. x \<in> T \<Longrightarrow> norm x \<le> C"
-    using \<open>compact T\<close> bounded_pos compact_imp_bounded by force
-  have "dist (h y) 0 \<le> e" if "0 < e" and le: "D * L / e + C \<le> cmod y" for e y
-  proof -
-    have "D * L / e > 0"  using \<open>D>0\<close> \<open>L>0\<close> \<open>e>0\<close> by simp
-    with le have ybig: "norm y > C" by force
-    with C have "y \<notin> T"  by force
-    then have ynot: "y \<notin> path_image \<gamma>"
-      using subt interior_subset by blast
-    have [simp]: "winding_number \<gamma> y = 0"
-      apply (rule winding_number_zero_outside [of _ "cball 0 C"])
-      using ybig interior_subset subt
-      apply (force simp: loop \<open>path \<gamma>\<close> dist_norm intro!: C)+
-      done
-    have [simp]: "h y = contour_integral \<gamma> (\<lambda>w. f w/(w - y))"
-      by (rule contour_integral_unique [symmetric]) (simp add: v_def ynot V)
-    have holint: "(\<lambda>w. f w / (w - y)) holomorphic_on interior T"
-      apply (rule holomorphic_on_divide)
-      using holf holomorphic_on_subset interior_subset T apply blast
-      apply (rule holomorphic_intros)+
-      using \<open>y \<notin> T\<close> interior_subset by auto
-    have leD: "cmod (f z / (z - y)) \<le> D * (e / L / D)" if z: "z \<in> interior T" for z
-    proof -
-      have "D * L / e + cmod z \<le> cmod y"
-        using le C [of z] z using interior_subset by force
-      then have DL2: "D * L / e \<le> cmod (z - y)"
-        using norm_triangle_ineq2 [of y z] by (simp add: norm_minus_commute)
-      have "cmod (f z / (z - y)) = cmod (f z) * inverse (cmod (z - y))"
-        by (simp add: norm_mult norm_inverse Fields.field_class.field_divide_inverse)
-      also have "\<dots> \<le> D * (e / L / D)"
-        apply (rule mult_mono)
-        using that D interior_subset apply blast
-        using \<open>L>0\<close> \<open>e>0\<close> \<open>D>0\<close> DL2
-        apply (auto simp: norm_divide field_split_simps)
-        done
-      finally show ?thesis .
-    qed
-    have "dist (h y) 0 = cmod (contour_integral \<gamma> (\<lambda>w. f w / (w - y)))"
-      by (simp add: dist_norm)
-    also have "\<dots> \<le> L * (D * (e / L / D))"
-      by (rule L [OF holint leD])
-    also have "\<dots> = e"
-      using  \<open>L>0\<close> \<open>0 < D\<close> by auto
-    finally show ?thesis .
-  qed
-  then have "(h \<longlongrightarrow> 0) at_infinity"
-    by (meson Lim_at_infinityI)
-  moreover have "h holomorphic_on UNIV"
-  proof -
-    have con_ff: "continuous (at (x,z)) (\<lambda>(x,y). (f y - f x) / (y - x))"
-                 if "x \<in> U" "z \<in> U" "x \<noteq> z" for x z
-      using that conf
-      apply (simp add: split_def continuous_on_eq_continuous_at \<open>open U\<close>)
-      apply (simp | rule continuous_intros continuous_within_compose2 [where g=f])+
-      done
-    have con_fstsnd: "continuous_on UNIV (\<lambda>x. (fst x - snd x) ::complex)"
-      by (rule continuous_intros)+
-    have open_uu_Id: "open (U \<times> U - Id)"
-      apply (rule open_Diff)
-      apply (simp add: open_Times \<open>open U\<close>)
-      using continuous_closed_preimage_constant [OF con_fstsnd closed_UNIV, of 0]
-      apply (auto simp: Id_fstsnd_eq algebra_simps)
-      done
-    have con_derf: "continuous (at z) (deriv f)" if "z \<in> U" for z
-      apply (rule continuous_on_interior [of U])
-      apply (simp add: holf holomorphic_deriv holomorphic_on_imp_continuous_on \<open>open U\<close>)
-      by (simp add: interior_open that \<open>open U\<close>)
-    have tendsto_f': "((\<lambda>(x,y). if y = x then deriv f (x)
-                                else (f (y) - f (x)) / (y - x)) \<longlongrightarrow> deriv f x)
-                      (at (x, x) within U \<times> U)" if "x \<in> U" for x
-    proof (rule Lim_withinI)
-      fix e::real assume "0 < e"
-      obtain k1 where "k1>0" and k1: "\<And>x'. norm (x' - x) \<le> k1 \<Longrightarrow> norm (deriv f x' - deriv f x) < e"
-        using \<open>0 < e\<close> continuous_within_E [OF con_derf [OF \<open>x \<in> U\<close>]]
-        by (metis UNIV_I dist_norm)
-      obtain k2 where "k2>0" and k2: "ball x k2 \<subseteq> U"
-        by (blast intro: openE [OF \<open>open U\<close>] \<open>x \<in> U\<close>)
-      have neq: "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e"
-                    if "z' \<noteq> x'" and less_k1: "norm (x'-x, z'-x) < k1" and less_k2: "norm (x'-x, z'-x) < k2"
-                 for x' z'
-      proof -
-        have cs_less: "w \<in> closed_segment x' z' \<Longrightarrow> cmod (w - x) \<le> norm (x'-x, z'-x)" for w
-          apply (drule segment_furthest_le [where y=x])
-          by (metis (no_types) dist_commute dist_norm norm_fst_le norm_snd_le order_trans)
-        have derf_le: "w \<in> closed_segment x' z' \<Longrightarrow> z' \<noteq> x' \<Longrightarrow> cmod (deriv f w - deriv f x) \<le> e" for w
-          by (blast intro: cs_less less_k1 k1 [unfolded divide_const_simps dist_norm] less_imp_le le_less_trans)
-        have f_has_der: "\<And>x. x \<in> U \<Longrightarrow> (f has_field_derivative deriv f x) (at x within U)"
-          by (metis DERIV_deriv_iff_field_differentiable at_within_open holf holomorphic_on_def \<open>open U\<close>)
-        have "closed_segment x' z' \<subseteq> U"
-          by (rule order_trans [OF _ k2]) (simp add: cs_less  le_less_trans [OF _ less_k2] dist_complex_def norm_minus_commute subset_iff)
-        then have cint_derf: "(deriv f has_contour_integral f z' - f x') (linepath x' z')"
-          using contour_integral_primitive [OF f_has_der valid_path_linepath] pasz  by simp
-        then have *: "((\<lambda>x. deriv f x / (z' - x')) has_contour_integral (f z' - f x') / (z' - x')) (linepath x' z')"
-          by (rule has_contour_integral_div)
-        have "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e/norm(z' - x') * norm(z' - x')"
-          apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_diff [OF *]])
-          using has_contour_integral_div [where c = "z' - x'", OF has_contour_integral_const_linepath [of "deriv f x" z' x']]
-                 \<open>e > 0\<close>  \<open>z' \<noteq> x'\<close>
-          apply (auto simp: norm_divide divide_simps derf_le)
-          done
-        also have "\<dots> \<le> e" using \<open>0 < e\<close> by simp
-        finally show ?thesis .
-      qed
-      show "\<exists>d>0. \<forall>xa\<in>U \<times> U.
-                  0 < dist xa (x, x) \<and> dist xa (x, x) < d \<longrightarrow>
-                  dist (case xa of (x, y) \<Rightarrow> if y = x then deriv f x else (f y - f x) / (y - x)) (deriv f x) \<le> e"
-        apply (rule_tac x="min k1 k2" in exI)
-        using \<open>k1>0\<close> \<open>k2>0\<close> \<open>e>0\<close>
-        apply (force simp: dist_norm neq intro: dual_order.strict_trans2 k1 less_imp_le norm_fst_le)
-        done
-    qed
-    have con_pa_f: "continuous_on (path_image \<gamma>) f"
-      by (meson holf holomorphic_on_imp_continuous_on holomorphic_on_subset interior_subset subt T)
-    have le_B: "\<And>T. T \<in> {0..1} \<Longrightarrow> cmod (vector_derivative \<gamma> (at T)) \<le> B"
-      apply (rule B)
-      using \<gamma>' using path_image_def vector_derivative_at by fastforce
-    have f_has_cint: "\<And>w. w \<in> v - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f u / (u - w) ^ 1) has_contour_integral h w) \<gamma>"
-      by (simp add: V)
-    have cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). d x y)"
-      apply (simp add: continuous_on_eq_continuous_within d_def continuous_within tendsto_f')
-      apply (simp add: tendsto_within_open_NO_MATCH open_Times \<open>open U\<close>, clarify)
-      apply (rule Lim_transform_within_open [OF _ open_uu_Id, where f = "(\<lambda>(x,y). (f y - f x) / (y - x))"])
-      using con_ff
-      apply (auto simp: continuous_within)
-      done
-    have hol_dw: "(\<lambda>z. d z w) holomorphic_on U" if "w \<in> U" for w
-    proof -
-      have "continuous_on U ((\<lambda>(x,y). d x y) \<circ> (\<lambda>z. (w,z)))"
-        by (rule continuous_on_compose continuous_intros continuous_on_subset [OF cond_uu] | force intro: that)+
-      then have *: "continuous_on U (\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z))"
-        by (rule rev_iffD1 [OF _ continuous_on_cong [OF refl]]) (simp add: d_def field_simps)
-      have **: "\<And>x. \<lbrakk>x \<in> U; x \<noteq> w\<rbrakk> \<Longrightarrow> (\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z)) field_differentiable at x"
-        apply (rule_tac f = "\<lambda>x. (f w - f x)/(w - x)" and d = "dist x w" in field_differentiable_transform_within)
-        apply (rule \<open>open U\<close> derivative_intros holomorphic_on_imp_differentiable_at [OF holf] | force simp: dist_commute)+
-        done
-      show ?thesis
-        unfolding d_def
-        apply (rule no_isolated_singularity [OF * _ \<open>open U\<close>, where K = "{w}"])
-        apply (auto simp: field_differentiable_def [symmetric] holomorphic_on_open open_Diff \<open>open U\<close> **)
-        done
-    qed
-    { fix a b
-      assume abu: "closed_segment a b \<subseteq> U"
-      then have "\<And>w. w \<in> U \<Longrightarrow> (\<lambda>z. d z w) contour_integrable_on (linepath a b)"
-        by (metis hol_dw continuous_on_subset contour_integrable_continuous_linepath holomorphic_on_imp_continuous_on)
-      then have cont_cint_d: "continuous_on U (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
-        apply (rule contour_integral_continuous_on_linepath_2D [OF \<open>open U\<close> _ _ abu])
-        apply (auto intro: continuous_on_swap_args cond_uu)
-        done
-      have cont_cint_d\<gamma>: "continuous_on {0..1} ((\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) \<circ> \<gamma>)"
-      proof (rule continuous_on_compose)
-        show "continuous_on {0..1} \<gamma>"
-          using \<open>path \<gamma>\<close> path_def by blast
-        show "continuous_on (\<gamma> ` {0..1}) (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
-          using pasz unfolding path_image_def
-          by (auto intro!: continuous_on_subset [OF cont_cint_d])
-      qed
-      have cint_cint: "(\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) contour_integrable_on \<gamma>"
-        apply (simp add: contour_integrable_on)
-        apply (rule integrable_continuous_real)
-        apply (rule continuous_on_mult [OF cont_cint_d\<gamma> [unfolded o_def]])
-        using pf\<gamma>'
-        by (simp add: continuous_on_polymonial_function vector_derivative_at [OF \<gamma>'])
-      have "contour_integral (linepath a b) h = contour_integral (linepath a b) (\<lambda>z. contour_integral \<gamma> (d z))"
-        using abu  by (force simp: h_def intro: contour_integral_eq)
-      also have "\<dots> =  contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
-        apply (rule contour_integral_swap)
-        apply (rule continuous_on_subset [OF cond_uu])
-        using abu pasz \<open>valid_path \<gamma>\<close>
-        apply (auto intro!: continuous_intros)
-        by (metis \<gamma>' continuous_on_eq path_def path_polynomial_function pf\<gamma>' vector_derivative_at)
-      finally have cint_h_eq:
-          "contour_integral (linepath a b) h =
-                    contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))" .
-      note cint_cint cint_h_eq
-    } note cint_h = this
-    have conthu: "continuous_on U h"
-    proof (simp add: continuous_on_sequentially, clarify)
-      fix a x
-      assume x: "x \<in> U" and au: "\<forall>n. a n \<in> U" and ax: "a \<longlonglongrightarrow> x"
-      then have A1: "\<forall>\<^sub>F n in sequentially. d (a n) contour_integrable_on \<gamma>"
-        by (meson U contour_integrable_on_def eventuallyI)
-      obtain dd where "dd>0" and dd: "cball x dd \<subseteq> U" using open_contains_cball \<open>open U\<close> x by force
-      have A2: "uniform_limit (path_image \<gamma>) (\<lambda>n. d (a n)) (d x) sequentially"
-        unfolding uniform_limit_iff dist_norm
-      proof clarify
-        fix ee::real
-        assume "0 < ee"
-        show "\<forall>\<^sub>F n in sequentially. \<forall>\<xi>\<in>path_image \<gamma>. cmod (d (a n) \<xi> - d x \<xi>) < ee"
-        proof -
-          let ?ddpa = "{(w,z) |w z. w \<in> cball x dd \<and> z \<in> path_image \<gamma>}"
-          have "uniformly_continuous_on ?ddpa (\<lambda>(x,y). d x y)"
-            apply (rule compact_uniformly_continuous [OF continuous_on_subset[OF cond_uu]])
-            using dd pasz \<open>valid_path \<gamma>\<close>
-             apply (auto simp: compact_Times compact_valid_path_image simp del: mem_cball)
-            done
-          then obtain kk where "kk>0"
-            and kk: "\<And>x x'. \<lbrakk>x \<in> ?ddpa; x' \<in> ?ddpa; dist x' x < kk\<rbrakk> \<Longrightarrow>
-                             dist ((\<lambda>(x,y). d x y) x') ((\<lambda>(x,y). d x y) x) < ee"
-            by (rule uniformly_continuous_onE [where e = ee]) (use \<open>0 < ee\<close> in auto)
-          have kk: "\<lbrakk>norm (w - x) \<le> dd; z \<in> path_image \<gamma>; norm ((w, z) - (x, z)) < kk\<rbrakk> \<Longrightarrow> norm (d w z - d x z) < ee"
-            for  w z
-            using \<open>dd>0\<close> kk [of "(x,z)" "(w,z)"] by (force simp: norm_minus_commute dist_norm)
-          show ?thesis
-            using ax unfolding lim_sequentially eventually_sequentially
-            apply (drule_tac x="min dd kk" in spec)
-            using \<open>dd > 0\<close> \<open>kk > 0\<close>
-            apply (fastforce simp: kk dist_norm)
-            done
-        qed
-      qed
-      have "(\<lambda>n. contour_integral \<gamma> (d (a n))) \<longlonglongrightarrow> contour_integral \<gamma> (d x)"
-        by (rule contour_integral_uniform_limit [OF A1 A2 le_B]) (auto simp: \<open>valid_path \<gamma>\<close>)
-      then have tendsto_hx: "(\<lambda>n. contour_integral \<gamma> (d (a n))) \<longlonglongrightarrow> h x"
-        by (simp add: h_def x)
-      then show "(h \<circ> a) \<longlonglongrightarrow> h x"
-        by (simp add: h_def x au o_def)
-    qed
-    show ?thesis
-    proof (simp add: holomorphic_on_open field_differentiable_def [symmetric], clarify)
-      fix z0
-      consider "z0 \<in> v" | "z0 \<in> U" using uv_Un by blast
-      then show "h field_differentiable at z0"
-      proof cases
-        assume "z0 \<in> v" then show ?thesis
-          using Cauchy_next_derivative [OF con_pa_f le_B f_has_cint _ ov] V f_has_cint \<open>valid_path \<gamma>\<close>
-          by (auto simp: field_differentiable_def v_def)
-      next
-        assume "z0 \<in> U" then
-        obtain e where "e>0" and e: "ball z0 e \<subseteq> U" by (blast intro: openE [OF \<open>open U\<close>])
-        have *: "contour_integral (linepath a b) h + contour_integral (linepath b c) h + contour_integral (linepath c a) h = 0"
-                if abc_subset: "convex hull {a, b, c} \<subseteq> ball z0 e"  for a b c
-        proof -
-          have *: "\<And>x1 x2 z. z \<in> U \<Longrightarrow> closed_segment x1 x2 \<subseteq> U \<Longrightarrow> (\<lambda>w. d w z) contour_integrable_on linepath x1 x2"
-            using  hol_dw holomorphic_on_imp_continuous_on \<open>open U\<close>
-            by (auto intro!: contour_integrable_holomorphic_simple)
-          have abc: "closed_segment a b \<subseteq> U"  "closed_segment b c \<subseteq> U"  "closed_segment c a \<subseteq> U"
-            using that e segments_subset_convex_hull by fastforce+
-          have eq0: "\<And>w. w \<in> U \<Longrightarrow> contour_integral (linepath a b +++ linepath b c +++ linepath c a) (\<lambda>z. d z w) = 0"
-            apply (rule contour_integral_unique [OF Cauchy_theorem_triangle])
-            apply (rule holomorphic_on_subset [OF hol_dw])
-            using e abc_subset by auto
-          have "contour_integral \<gamma>
-                   (\<lambda>x. contour_integral (linepath a b) (\<lambda>z. d z x) +
-                        (contour_integral (linepath b c) (\<lambda>z. d z x) +
-                         contour_integral (linepath c a) (\<lambda>z. d z x)))  =  0"
-            apply (rule contour_integral_eq_0)
-            using abc pasz U
-            apply (subst contour_integral_join [symmetric], auto intro: eq0 *)+
-            done
-          then show ?thesis
-            by (simp add: cint_h abc contour_integrable_add contour_integral_add [symmetric] add_ac)
-        qed
-        show ?thesis
-          using e \<open>e > 0\<close>
-          by (auto intro!: holomorphic_on_imp_differentiable_at [OF _ open_ball] analytic_imp_holomorphic
-                           Morera_triangle continuous_on_subset [OF conthu] *)
-      qed
-    qed
-  qed
-  ultimately have [simp]: "h z = 0" for z
-    by (meson Liouville_weak)
-  have "((\<lambda>w. 1 / (w - z)) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z) \<gamma>"
-    by (rule has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close> znot])
-  then have "((\<lambda>w. f z * (1 / (w - z))) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z * f z) \<gamma>"
-    by (metis mult.commute has_contour_integral_lmul)
-  then have 1: "((\<lambda>w. f z / (w - z)) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z * f z) \<gamma>"
-    by (simp add: field_split_simps)
-  moreover have 2: "((\<lambda>w. (f w - f z) / (w - z)) has_contour_integral 0) \<gamma>"
-    using U [OF z] pasz d_def by (force elim: has_contour_integral_eq [where g = "\<lambda>w. (f w - f z)/(w - z)"])
-  show ?thesis
-    using has_contour_integral_add [OF 1 2]  by (simp add: diff_divide_distrib)
-qed
-
-theorem Cauchy_integral_formula_global:
-    assumes S: "open S" and holf: "f holomorphic_on S"
-        and z: "z \<in> S" and vpg: "valid_path \<gamma>"
-        and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-        and zero: "\<And>w. w \<notin> S \<Longrightarrow> winding_number \<gamma> w = 0"
-      shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
-proof -
-  have "path \<gamma>" using vpg by (blast intro: valid_path_imp_path)
-  have hols: "(\<lambda>w. f w / (w - z)) holomorphic_on S - {z}" "(\<lambda>w. 1 / (w - z)) holomorphic_on S - {z}"
-    by (rule holomorphic_intros holomorphic_on_subset [OF holf] | force)+
-  then have cint_fw: "(\<lambda>w. f w / (w - z)) contour_integrable_on \<gamma>"
-    by (meson contour_integrable_holomorphic_simple holomorphic_on_imp_continuous_on open_delete S vpg pasz)
-  obtain d where "d>0"
-      and d: "\<And>g h. \<lbrakk>valid_path g; valid_path h; \<forall>t\<in>{0..1}. cmod (g t - \<gamma> t) < d \<and> cmod (h t - \<gamma> t) < d;
-                     pathstart h = pathstart g \<and> pathfinish h = pathfinish g\<rbrakk>
-                     \<Longrightarrow> path_image h \<subseteq> S - {z} \<and> (\<forall>f. f holomorphic_on S - {z} \<longrightarrow> contour_integral h f = contour_integral g f)"
-    using contour_integral_nearby_ends [OF _ \<open>path \<gamma>\<close> pasz] S by (simp add: open_Diff) metis
-  obtain p where polyp: "polynomial_function p"
-             and ps: "pathstart p = pathstart \<gamma>" and pf: "pathfinish p = pathfinish \<gamma>" and led: "\<forall>t\<in>{0..1}. cmod (p t - \<gamma> t) < d"
-    using path_approx_polynomial_function [OF \<open>path \<gamma>\<close> \<open>d > 0\<close>] by blast
-  then have ploop: "pathfinish p = pathstart p" using loop by auto
-  have vpp: "valid_path p"  using polyp valid_path_polynomial_function by blast
-  have [simp]: "z \<notin> path_image \<gamma>" using pasz by blast
-  have paps: "path_image p \<subseteq> S - {z}" and cint_eq: "(\<And>f. f holomorphic_on S - {z} \<Longrightarrow> contour_integral p f = contour_integral \<gamma> f)"
-    using pf ps led d [OF vpg vpp] \<open>d > 0\<close> by auto
-  have wn_eq: "winding_number p z = winding_number \<gamma> z"
-    using vpp paps
-    by (simp add: subset_Diff_insert vpg valid_path_polynomial_function winding_number_valid_path cint_eq hols)
-  have "winding_number p w = winding_number \<gamma> w" if "w \<notin> S" for w
-  proof -
-    have hol: "(\<lambda>v. 1 / (v - w)) holomorphic_on S - {z}"
-      using that by (force intro: holomorphic_intros holomorphic_on_subset [OF holf])
-   have "w \<notin> path_image p" "w \<notin> path_image \<gamma>" using paps pasz that by auto
-   then show ?thesis
-    using vpp vpg by (simp add: subset_Diff_insert valid_path_polynomial_function winding_number_valid_path cint_eq [OF hol])
-  qed
-  then have wn0: "\<And>w. w \<notin> S \<Longrightarrow> winding_number p w = 0"
-    by (simp add: zero)
-  show ?thesis
-    using Cauchy_integral_formula_global_weak [OF S holf z polyp paps ploop wn0] hols
-    by (metis wn_eq cint_eq has_contour_integral_eqpath cint_fw cint_eq)
-qed
-
-theorem Cauchy_theorem_global:
-    assumes S: "open S" and holf: "f holomorphic_on S"
-        and vpg: "valid_path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
-        and pas: "path_image \<gamma> \<subseteq> S"
-        and zero: "\<And>w. w \<notin> S \<Longrightarrow> winding_number \<gamma> w = 0"
-      shows "(f has_contour_integral 0) \<gamma>"
-proof -
-  obtain z where "z \<in> S" and znot: "z \<notin> path_image \<gamma>"
-  proof -
-    have "compact (path_image \<gamma>)"
-      using compact_valid_path_image vpg by blast
-    then have "path_image \<gamma> \<noteq> S"
-      by (metis (no_types) compact_open path_image_nonempty S)
-    with pas show ?thesis by (blast intro: that)
-  qed
-  then have pasz: "path_image \<gamma> \<subseteq> S - {z}" using pas by blast
-  have hol: "(\<lambda>w. (w - z) * f w) holomorphic_on S"
-    by (rule holomorphic_intros holf)+
-  show ?thesis
-    using Cauchy_integral_formula_global [OF S hol \<open>z \<in> S\<close> vpg pasz loop zero]
-    by (auto simp: znot elim!: has_contour_integral_eq)
-qed
-
-corollary Cauchy_theorem_global_outside:
-    assumes "open S" "f holomorphic_on S" "valid_path \<gamma>"  "pathfinish \<gamma> = pathstart \<gamma>" "path_image \<gamma> \<subseteq> S"
-            "\<And>w. w \<notin> S \<Longrightarrow> w \<in> outside(path_image \<gamma>)"
-      shows "(f has_contour_integral 0) \<gamma>"
-by (metis Cauchy_theorem_global assms winding_number_zero_in_outside valid_path_imp_path)
-
-lemma simply_connected_imp_winding_number_zero:
-  assumes "simply_connected S" "path g"
-           "path_image g \<subseteq> S" "pathfinish g = pathstart g" "z \<notin> S"
-    shows "winding_number g z = 0"
-proof -
-  have hom: "homotopic_loops S g (linepath (pathstart g) (pathstart g))"
-    by (meson assms homotopic_paths_imp_homotopic_loops pathfinish_linepath simply_connected_eq_contractible_path)
-  then have "homotopic_paths (- {z}) g (linepath (pathstart g) (pathstart g))"
-    by (meson \<open>z \<notin> S\<close> homotopic_loops_imp_homotopic_paths_null homotopic_paths_subset subset_Compl_singleton)
-  then have "winding_number g z = winding_number(linepath (pathstart g) (pathstart g)) z"
-    by (rule winding_number_homotopic_paths)
-  also have "\<dots> = 0"
-    using assms by (force intro: winding_number_trivial)
-  finally show ?thesis .
-qed
-
-lemma Cauchy_theorem_simply_connected:
-  assumes "open S" "simply_connected S" "f holomorphic_on S" "valid_path g"
-           "path_image g \<subseteq> S" "pathfinish g = pathstart g"
-    shows "(f has_contour_integral 0) g"
-using assms
-apply (simp add: simply_connected_eq_contractible_path)
-apply (auto intro!: Cauchy_theorem_null_homotopic [where a = "pathstart g"]
-                         homotopic_paths_imp_homotopic_loops)
-using valid_path_imp_path by blast
-
-proposition\<^marker>\<open>tag unimportant\<close> holomorphic_logarithm_exists:
-  assumes A: "convex A" "open A"
-      and f: "f holomorphic_on A" "\<And>x. x \<in> A \<Longrightarrow> f x \<noteq> 0"
-      and z0: "z0 \<in> A"
-    obtains g where "g holomorphic_on A" and "\<And>x. x \<in> A \<Longrightarrow> exp (g x) = f x"
-proof -
-  note f' = holomorphic_derivI [OF f(1) A(2)]
-  obtain g where g: "\<And>x. x \<in> A \<Longrightarrow> (g has_field_derivative deriv f x / f x) (at x)"
-  proof (rule holomorphic_convex_primitive' [OF A])
-    show "(\<lambda>x. deriv f x / f x) holomorphic_on A"
-      by (intro holomorphic_intros f A)
-  qed (auto simp: A at_within_open[of _ A])
-  define h where "h = (\<lambda>x. -g z0 + ln (f z0) + g x)"
-  from g and A have g_holo: "g holomorphic_on A"
-    by (auto simp: holomorphic_on_def at_within_open[of _ A] field_differentiable_def)
-  hence h_holo: "h holomorphic_on A"
-    by (auto simp: h_def intro!: holomorphic_intros)
-  have "\<exists>c. \<forall>x\<in>A. f x / exp (h x) - 1 = c"
-  proof (rule has_field_derivative_zero_constant, goal_cases)
-    case (2 x)
-    note [simp] = at_within_open[OF _ \<open>open A\<close>]
-    from 2 and z0 and f show ?case
-      by (auto simp: h_def exp_diff field_simps intro!: derivative_eq_intros g f')
-  qed fact+
-  then obtain c where c: "\<And>x. x \<in> A \<Longrightarrow> f x / exp (h x) - 1 = c"
-    by blast
-  from c[OF z0] and z0 and f have "c = 0"
-    by (simp add: h_def)
-  with c have "\<And>x. x \<in> A \<Longrightarrow> exp (h x) = f x" by simp
-  from that[OF h_holo this] show ?thesis .
-qed
 
 end
--- a/src/HOL/Analysis/Complex_Transcendental.thy	Wed Nov 27 16:54:33 2019 +0000
+++ b/src/HOL/Analysis/Complex_Transcendental.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -4053,4 +4053,6 @@
   apply (auto simp: Re_complex_div_eq_0 exp_of_nat_mult [symmetric] mult_ac exp_Euler)
   done
 
+
+
 end
--- a/src/HOL/Analysis/Conformal_Mappings.thy	Wed Nov 27 16:54:33 2019 +0000
+++ b/src/HOL/Analysis/Conformal_Mappings.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -5,12 +5,10 @@
 text\<open>Also Cauchy's residue theorem by Wenda Li (2016)\<close>
 
 theory Conformal_Mappings
-imports Cauchy_Integral_Theorem
-
+imports Cauchy_Integral_Formula
 begin
 
-(* FIXME mv to Cauchy_Integral_Theorem.thy *)
-subsection\<open>Cauchy's inequality and more versions of Liouville\<close>
+subsection\<open>Liouville's theorem\<close>
 
 lemma Cauchy_higher_deriv_bound:
     assumes holf: "f holomorphic_on (ball z r)"
@@ -55,6 +53,7 @@
     by (auto simp: norm_divide norm_mult norm_power field_simps der_dif le_B0)
 qed
 
+
 lemma Cauchy_inequality:
     assumes holf: "f holomorphic_on (ball \<xi> r)"
         and contf: "continuous_on (cball \<xi> r) f"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Contour_Integration.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -0,0 +1,2681 @@
+section \<open>Contour Integration\<close>
+
+theory Contour_Integration
+  imports Henstock_Kurzweil_Integration Path_Connected Complex_Transcendental
+begin
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Piecewise differentiable functions\<close>
+
+definition piecewise_differentiable_on
+           (infixr "piecewise'_differentiable'_on" 50)
+  where "f piecewise_differentiable_on i  \<equiv>
+           continuous_on i f \<and>
+           (\<exists>S. finite S \<and> (\<forall>x \<in> i - S. f differentiable (at x within i)))"
+
+lemma piecewise_differentiable_on_imp_continuous_on:
+    "f piecewise_differentiable_on S \<Longrightarrow> continuous_on S f"
+by (simp add: piecewise_differentiable_on_def)
+
+lemma piecewise_differentiable_on_subset:
+    "f piecewise_differentiable_on S \<Longrightarrow> T \<le> S \<Longrightarrow> f piecewise_differentiable_on T"
+  using continuous_on_subset
+  unfolding piecewise_differentiable_on_def
+  apply safe
+  apply (blast elim: continuous_on_subset)
+  by (meson Diff_iff differentiable_within_subset subsetCE)
+
+lemma differentiable_on_imp_piecewise_differentiable:
+  fixes a:: "'a::{linorder_topology,real_normed_vector}"
+  shows "f differentiable_on {a..b} \<Longrightarrow> f piecewise_differentiable_on {a..b}"
+  apply (simp add: piecewise_differentiable_on_def differentiable_imp_continuous_on)
+  apply (rule_tac x="{a,b}" in exI, simp add: differentiable_on_def)
+  done
+
+lemma differentiable_imp_piecewise_differentiable:
+    "(\<And>x. x \<in> S \<Longrightarrow> f differentiable (at x within S))
+         \<Longrightarrow> f piecewise_differentiable_on S"
+by (auto simp: piecewise_differentiable_on_def differentiable_imp_continuous_on differentiable_on_def
+         intro: differentiable_within_subset)
+
+lemma piecewise_differentiable_const [iff]: "(\<lambda>x. z) piecewise_differentiable_on S"
+  by (simp add: differentiable_imp_piecewise_differentiable)
+
+lemma piecewise_differentiable_compose:
+    "\<lbrakk>f piecewise_differentiable_on S; g piecewise_differentiable_on (f ` S);
+      \<And>x. finite (S \<inter> f-`{x})\<rbrakk>
+      \<Longrightarrow> (g \<circ> f) piecewise_differentiable_on S"
+  apply (simp add: piecewise_differentiable_on_def, safe)
+  apply (blast intro: continuous_on_compose2)
+  apply (rename_tac A B)
+  apply (rule_tac x="A \<union> (\<Union>x\<in>B. S \<inter> f-`{x})" in exI)
+  apply (blast intro!: differentiable_chain_within)
+  done
+
+lemma piecewise_differentiable_affine:
+  fixes m::real
+  assumes "f piecewise_differentiable_on ((\<lambda>x. m *\<^sub>R x + c) ` S)"
+  shows "(f \<circ> (\<lambda>x. m *\<^sub>R x + c)) piecewise_differentiable_on S"
+proof (cases "m = 0")
+  case True
+  then show ?thesis
+    unfolding o_def
+    by (force intro: differentiable_imp_piecewise_differentiable differentiable_const)
+next
+  case False
+  show ?thesis
+    apply (rule piecewise_differentiable_compose [OF differentiable_imp_piecewise_differentiable])
+    apply (rule assms derivative_intros | simp add: False vimage_def real_vector_affinity_eq)+
+    done
+qed
+
+lemma piecewise_differentiable_cases:
+  fixes c::real
+  assumes "f piecewise_differentiable_on {a..c}"
+          "g piecewise_differentiable_on {c..b}"
+           "a \<le> c" "c \<le> b" "f c = g c"
+  shows "(\<lambda>x. if x \<le> c then f x else g x) piecewise_differentiable_on {a..b}"
+proof -
+  obtain S T where st: "finite S" "finite T"
+               and fd: "\<And>x. x \<in> {a..c} - S \<Longrightarrow> f differentiable at x within {a..c}"
+               and gd: "\<And>x. x \<in> {c..b} - T \<Longrightarrow> g differentiable at x within {c..b}"
+    using assms
+    by (auto simp: piecewise_differentiable_on_def)
+  have finabc: "finite ({a,b,c} \<union> (S \<union> T))"
+    by (metis \<open>finite S\<close> \<open>finite T\<close> finite_Un finite_insert finite.emptyI)
+  have "continuous_on {a..c} f" "continuous_on {c..b} g"
+    using assms piecewise_differentiable_on_def by auto
+  then have "continuous_on {a..b} (\<lambda>x. if x \<le> c then f x else g x)"
+    using continuous_on_cases [OF closed_real_atLeastAtMost [of a c],
+                               OF closed_real_atLeastAtMost [of c b],
+                               of f g "\<lambda>x. x\<le>c"]  assms
+    by (force simp: ivl_disj_un_two_touch)
+  moreover
+  { fix x
+    assume x: "x \<in> {a..b} - ({a,b,c} \<union> (S \<union> T))"
+    have "(\<lambda>x. if x \<le> c then f x else g x) differentiable at x within {a..b}" (is "?diff_fg")
+    proof (cases x c rule: le_cases)
+      case le show ?diff_fg
+      proof (rule differentiable_transform_within [where d = "dist x c"])
+        have "f differentiable at x"
+          using x le fd [of x] at_within_interior [of x "{a..c}"] by simp
+        then show "f differentiable at x within {a..b}"
+          by (simp add: differentiable_at_withinI)
+      qed (use x le st dist_real_def in auto)
+    next
+      case ge show ?diff_fg
+      proof (rule differentiable_transform_within [where d = "dist x c"])
+        have "g differentiable at x"
+          using x ge gd [of x] at_within_interior [of x "{c..b}"] by simp
+        then show "g differentiable at x within {a..b}"
+          by (simp add: differentiable_at_withinI)
+      qed (use x ge st dist_real_def in auto)
+    qed
+  }
+  then have "\<exists>S. finite S \<and>
+                 (\<forall>x\<in>{a..b} - S. (\<lambda>x. if x \<le> c then f x else g x) differentiable at x within {a..b})"
+    by (meson finabc)
+  ultimately show ?thesis
+    by (simp add: piecewise_differentiable_on_def)
+qed
+
+lemma piecewise_differentiable_neg:
+    "f piecewise_differentiable_on S \<Longrightarrow> (\<lambda>x. -(f x)) piecewise_differentiable_on S"
+  by (auto simp: piecewise_differentiable_on_def continuous_on_minus)
+
+lemma piecewise_differentiable_add:
+  assumes "f piecewise_differentiable_on i"
+          "g piecewise_differentiable_on i"
+    shows "(\<lambda>x. f x + g x) piecewise_differentiable_on i"
+proof -
+  obtain S T where st: "finite S" "finite T"
+                       "\<forall>x\<in>i - S. f differentiable at x within i"
+                       "\<forall>x\<in>i - T. g differentiable at x within i"
+    using assms by (auto simp: piecewise_differentiable_on_def)
+  then have "finite (S \<union> T) \<and> (\<forall>x\<in>i - (S \<union> T). (\<lambda>x. f x + g x) differentiable at x within i)"
+    by auto
+  moreover have "continuous_on i f" "continuous_on i g"
+    using assms piecewise_differentiable_on_def by auto
+  ultimately show ?thesis
+    by (auto simp: piecewise_differentiable_on_def continuous_on_add)
+qed
+
+lemma piecewise_differentiable_diff:
+    "\<lbrakk>f piecewise_differentiable_on S;  g piecewise_differentiable_on S\<rbrakk>
+     \<Longrightarrow> (\<lambda>x. f x - g x) piecewise_differentiable_on S"
+  unfolding diff_conv_add_uminus
+  by (metis piecewise_differentiable_add piecewise_differentiable_neg)
+
+lemma continuous_on_joinpaths_D1:
+    "continuous_on {0..1} (g1 +++ g2) \<Longrightarrow> continuous_on {0..1} g1"
+  apply (rule continuous_on_eq [of _ "(g1 +++ g2) \<circ> ((*)(inverse 2))"])
+  apply (rule continuous_intros | simp)+
+  apply (auto elim!: continuous_on_subset simp: joinpaths_def)
+  done
+
+lemma continuous_on_joinpaths_D2:
+    "\<lbrakk>continuous_on {0..1} (g1 +++ g2); pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> continuous_on {0..1} g2"
+  apply (rule continuous_on_eq [of _ "(g1 +++ g2) \<circ> (\<lambda>x. inverse 2*x + 1/2)"])
+  apply (rule continuous_intros | simp)+
+  apply (auto elim!: continuous_on_subset simp add: joinpaths_def pathfinish_def pathstart_def Ball_def)
+  done
+
+lemma piecewise_differentiable_D1:
+  assumes "(g1 +++ g2) piecewise_differentiable_on {0..1}"
+  shows "g1 piecewise_differentiable_on {0..1}"
+proof -
+  obtain S where cont: "continuous_on {0..1} g1" and "finite S"
+    and S: "\<And>x. x \<in> {0..1} - S \<Longrightarrow> g1 +++ g2 differentiable at x within {0..1}"
+    using assms unfolding piecewise_differentiable_on_def
+    by (blast dest!: continuous_on_joinpaths_D1)
+  show ?thesis
+    unfolding piecewise_differentiable_on_def
+  proof (intro exI conjI ballI cont)
+    show "finite (insert 1 (((*)2) ` S))"
+      by (simp add: \<open>finite S\<close>)
+    show "g1 differentiable at x within {0..1}" if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
+    proof (rule_tac d="dist (x/2) (1/2)" in differentiable_transform_within)
+      have "g1 +++ g2 differentiable at (x / 2) within {0..1/2}"
+        by (rule differentiable_subset [OF S [of "x/2"]] | use that in force)+
+      then show "g1 +++ g2 \<circ> (*) (inverse 2) differentiable at x within {0..1}"
+        using image_affinity_atLeastAtMost_div [of 2 0 "0::real" 1]
+        by (auto intro: differentiable_chain_within)
+    qed (use that in \<open>auto simp: joinpaths_def\<close>)
+  qed
+qed
+
+lemma piecewise_differentiable_D2:
+  assumes "(g1 +++ g2) piecewise_differentiable_on {0..1}" and eq: "pathfinish g1 = pathstart g2"
+  shows "g2 piecewise_differentiable_on {0..1}"
+proof -
+  have [simp]: "g1 1 = g2 0"
+    using eq by (simp add: pathfinish_def pathstart_def)
+  obtain S where cont: "continuous_on {0..1} g2" and "finite S"
+    and S: "\<And>x. x \<in> {0..1} - S \<Longrightarrow> g1 +++ g2 differentiable at x within {0..1}"
+    using assms unfolding piecewise_differentiable_on_def
+    by (blast dest!: continuous_on_joinpaths_D2)
+  show ?thesis
+    unfolding piecewise_differentiable_on_def
+  proof (intro exI conjI ballI cont)
+    show "finite (insert 0 ((\<lambda>x. 2*x-1)`S))"
+      by (simp add: \<open>finite S\<close>)
+    show "g2 differentiable at x within {0..1}" if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1)`S)" for x
+    proof (rule_tac d="dist ((x+1)/2) (1/2)" in differentiable_transform_within)
+      have x2: "(x + 1) / 2 \<notin> S"
+        using that
+        apply (clarsimp simp: image_iff)
+        by (metis add.commute add_diff_cancel_left' mult_2 field_sum_of_halves)
+      have "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
+        by (rule differentiable_chain_within differentiable_subset [OF S [of "(x+1)/2"]] | use x2 that in force)+
+      then show "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
+        by (auto intro: differentiable_chain_within)
+      show "(g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2)) x' = g2 x'" if "x' \<in> {0..1}" "dist x' x < dist ((x + 1) / 2) (1/2)" for x'
+      proof -
+        have [simp]: "(2*x'+2)/2 = x'+1"
+          by (simp add: field_split_simps)
+        show ?thesis
+          using that by (auto simp: joinpaths_def)
+      qed
+    qed (use that in \<open>auto simp: joinpaths_def\<close>)
+  qed
+qed
+
+
+subsection\<open>The concept of continuously differentiable\<close>
+
+text \<open>
+John Harrison writes as follows:
+
+``The usual assumption in complex analysis texts is that a path \<open>\<gamma>\<close> should be piecewise
+continuously differentiable, which ensures that the path integral exists at least for any continuous
+f, since all piecewise continuous functions are integrable. However, our notion of validity is
+weaker, just piecewise differentiability\ldots{} [namely] continuity plus differentiability except on a
+finite set\ldots{} [Our] underlying theory of integration is the Kurzweil-Henstock theory. In contrast to
+the Riemann or Lebesgue theory (but in common with a simple notion based on antiderivatives), this
+can integrate all derivatives.''
+
+"Formalizing basic complex analysis." From Insight to Proof: Festschrift in Honour of Andrzej Trybulec.
+Studies in Logic, Grammar and Rhetoric 10.23 (2007): 151-165.
+
+And indeed he does not assume that his derivatives are continuous, but the penalty is unreasonably
+difficult proofs concerning winding numbers. We need a self-contained and straightforward theorem
+asserting that all derivatives can be integrated before we can adopt Harrison's choice.\<close>
+
+definition\<^marker>\<open>tag important\<close> C1_differentiable_on :: "(real \<Rightarrow> 'a::real_normed_vector) \<Rightarrow> real set \<Rightarrow> bool"
+           (infix "C1'_differentiable'_on" 50)
+  where
+  "f C1_differentiable_on S \<longleftrightarrow>
+   (\<exists>D. (\<forall>x \<in> S. (f has_vector_derivative (D x)) (at x)) \<and> continuous_on S D)"
+
+lemma C1_differentiable_on_eq:
+    "f C1_differentiable_on S \<longleftrightarrow>
+     (\<forall>x \<in> S. f differentiable at x) \<and> continuous_on S (\<lambda>x. vector_derivative f (at x))"
+     (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  then show ?rhs
+    unfolding C1_differentiable_on_def
+    by (metis (no_types, lifting) continuous_on_eq  differentiableI_vector vector_derivative_at)
+next
+  assume ?rhs
+  then show ?lhs
+    using C1_differentiable_on_def vector_derivative_works by fastforce
+qed
+
+lemma C1_differentiable_on_subset:
+  "f C1_differentiable_on T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> f C1_differentiable_on S"
+  unfolding C1_differentiable_on_def  continuous_on_eq_continuous_within
+  by (blast intro:  continuous_within_subset)
+
+lemma C1_differentiable_compose:
+  assumes fg: "f C1_differentiable_on S" "g C1_differentiable_on (f ` S)" and fin: "\<And>x. finite (S \<inter> f-`{x})"
+  shows "(g \<circ> f) C1_differentiable_on S"
+proof -
+  have "\<And>x. x \<in> S \<Longrightarrow> g \<circ> f differentiable at x"
+    by (meson C1_differentiable_on_eq assms differentiable_chain_at imageI)
+  moreover have "continuous_on S (\<lambda>x. vector_derivative (g \<circ> f) (at x))"
+  proof (rule continuous_on_eq [of _ "\<lambda>x. vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x))"])
+    show "continuous_on S (\<lambda>x. vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x)))"
+      using fg
+      apply (clarsimp simp add: C1_differentiable_on_eq)
+      apply (rule Limits.continuous_on_scaleR, assumption)
+      by (metis (mono_tags, lifting) continuous_at_imp_continuous_on continuous_on_compose continuous_on_cong differentiable_imp_continuous_within o_def)
+    show "\<And>x. x \<in> S \<Longrightarrow> vector_derivative f (at x) *\<^sub>R vector_derivative g (at (f x)) = vector_derivative (g \<circ> f) (at x)"
+      by (metis (mono_tags, hide_lams) C1_differentiable_on_eq fg imageI vector_derivative_chain_at)
+  qed
+  ultimately show ?thesis
+    by (simp add: C1_differentiable_on_eq)
+qed
+
+lemma C1_diff_imp_diff: "f C1_differentiable_on S \<Longrightarrow> f differentiable_on S"
+  by (simp add: C1_differentiable_on_eq differentiable_at_imp_differentiable_on)
+
+lemma C1_differentiable_on_ident [simp, derivative_intros]: "(\<lambda>x. x) C1_differentiable_on S"
+  by (auto simp: C1_differentiable_on_eq)
+
+lemma C1_differentiable_on_const [simp, derivative_intros]: "(\<lambda>z. a) C1_differentiable_on S"
+  by (auto simp: C1_differentiable_on_eq)
+
+lemma C1_differentiable_on_add [simp, derivative_intros]:
+  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x + g x) C1_differentiable_on S"
+  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
+
+lemma C1_differentiable_on_minus [simp, derivative_intros]:
+  "f C1_differentiable_on S \<Longrightarrow> (\<lambda>x. - f x) C1_differentiable_on S"
+  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
+
+lemma C1_differentiable_on_diff [simp, derivative_intros]:
+  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x - g x) C1_differentiable_on S"
+  unfolding C1_differentiable_on_eq  by (auto intro: continuous_intros)
+
+lemma C1_differentiable_on_mult [simp, derivative_intros]:
+  fixes f g :: "real \<Rightarrow> 'a :: real_normed_algebra"
+  shows "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x * g x) C1_differentiable_on S"
+  unfolding C1_differentiable_on_eq
+  by (auto simp: continuous_on_add continuous_on_mult continuous_at_imp_continuous_on differentiable_imp_continuous_within)
+
+lemma C1_differentiable_on_scaleR [simp, derivative_intros]:
+  "f C1_differentiable_on S \<Longrightarrow> g C1_differentiable_on S \<Longrightarrow> (\<lambda>x. f x *\<^sub>R g x) C1_differentiable_on S"
+  unfolding C1_differentiable_on_eq
+  by (rule continuous_intros | simp add: continuous_at_imp_continuous_on differentiable_imp_continuous_within)+
+
+
+definition\<^marker>\<open>tag important\<close> piecewise_C1_differentiable_on
+           (infixr "piecewise'_C1'_differentiable'_on" 50)
+  where "f piecewise_C1_differentiable_on i  \<equiv>
+           continuous_on i f \<and>
+           (\<exists>S. finite S \<and> (f C1_differentiable_on (i - S)))"
+
+lemma C1_differentiable_imp_piecewise:
+    "f C1_differentiable_on S \<Longrightarrow> f piecewise_C1_differentiable_on S"
+  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_at_imp_continuous_on differentiable_imp_continuous_within)
+
+lemma piecewise_C1_imp_differentiable:
+    "f piecewise_C1_differentiable_on i \<Longrightarrow> f piecewise_differentiable_on i"
+  by (auto simp: piecewise_C1_differentiable_on_def piecewise_differentiable_on_def
+           C1_differentiable_on_def differentiable_def has_vector_derivative_def
+           intro: has_derivative_at_withinI)
+
+lemma piecewise_C1_differentiable_compose:
+  assumes fg: "f piecewise_C1_differentiable_on S" "g piecewise_C1_differentiable_on (f ` S)" and fin: "\<And>x. finite (S \<inter> f-`{x})"
+  shows "(g \<circ> f) piecewise_C1_differentiable_on S"
+proof -
+  have "continuous_on S (\<lambda>x. g (f x))"
+    by (metis continuous_on_compose2 fg order_refl piecewise_C1_differentiable_on_def)
+  moreover have "\<exists>T. finite T \<and> g \<circ> f C1_differentiable_on S - T"
+  proof -
+    obtain F where "finite F" and F: "f C1_differentiable_on S - F" and f: "f piecewise_C1_differentiable_on S"
+      using fg by (auto simp: piecewise_C1_differentiable_on_def)
+    obtain G where "finite G" and G: "g C1_differentiable_on f ` S - G" and g: "g piecewise_C1_differentiable_on f ` S"
+      using fg by (auto simp: piecewise_C1_differentiable_on_def)
+    show ?thesis
+    proof (intro exI conjI)
+      show "finite (F \<union> (\<Union>x\<in>G. S \<inter> f-`{x}))"
+        using fin by (auto simp only: Int_Union \<open>finite F\<close> \<open>finite G\<close> finite_UN finite_imageI)
+      show "g \<circ> f C1_differentiable_on S - (F \<union> (\<Union>x\<in>G. S \<inter> f -` {x}))"
+        apply (rule C1_differentiable_compose)
+          apply (blast intro: C1_differentiable_on_subset [OF F])
+          apply (blast intro: C1_differentiable_on_subset [OF G])
+        by (simp add:  C1_differentiable_on_subset G Diff_Int_distrib2 fin)
+    qed
+  qed
+  ultimately show ?thesis
+    by (simp add: piecewise_C1_differentiable_on_def)
+qed
+
+lemma piecewise_C1_differentiable_on_subset:
+    "f piecewise_C1_differentiable_on S \<Longrightarrow> T \<le> S \<Longrightarrow> f piecewise_C1_differentiable_on T"
+  by (auto simp: piecewise_C1_differentiable_on_def elim!: continuous_on_subset C1_differentiable_on_subset)
+
+lemma C1_differentiable_imp_continuous_on:
+  "f C1_differentiable_on S \<Longrightarrow> continuous_on S f"
+  unfolding C1_differentiable_on_eq continuous_on_eq_continuous_within
+  using differentiable_at_withinI differentiable_imp_continuous_within by blast
+
+lemma C1_differentiable_on_empty [iff]: "f C1_differentiable_on {}"
+  unfolding C1_differentiable_on_def
+  by auto
+
+lemma piecewise_C1_differentiable_affine:
+  fixes m::real
+  assumes "f piecewise_C1_differentiable_on ((\<lambda>x. m * x + c) ` S)"
+  shows "(f \<circ> (\<lambda>x. m *\<^sub>R x + c)) piecewise_C1_differentiable_on S"
+proof (cases "m = 0")
+  case True
+  then show ?thesis
+    unfolding o_def by (auto simp: piecewise_C1_differentiable_on_def)
+next
+  case False
+  have *: "\<And>x. finite (S \<inter> {y. m * y + c = x})"
+    using False not_finite_existsD by fastforce
+  show ?thesis
+    apply (rule piecewise_C1_differentiable_compose [OF C1_differentiable_imp_piecewise])
+    apply (rule * assms derivative_intros | simp add: False vimage_def)+
+    done
+qed
+
+lemma piecewise_C1_differentiable_cases:
+  fixes c::real
+  assumes "f piecewise_C1_differentiable_on {a..c}"
+          "g piecewise_C1_differentiable_on {c..b}"
+           "a \<le> c" "c \<le> b" "f c = g c"
+  shows "(\<lambda>x. if x \<le> c then f x else g x) piecewise_C1_differentiable_on {a..b}"
+proof -
+  obtain S T where st: "f C1_differentiable_on ({a..c} - S)"
+                       "g C1_differentiable_on ({c..b} - T)"
+                       "finite S" "finite T"
+    using assms
+    by (force simp: piecewise_C1_differentiable_on_def)
+  then have f_diff: "f differentiable_on {a..<c} - S"
+        and g_diff: "g differentiable_on {c<..b} - T"
+    by (simp_all add: C1_differentiable_on_eq differentiable_at_withinI differentiable_on_def)
+  have "continuous_on {a..c} f" "continuous_on {c..b} g"
+    using assms piecewise_C1_differentiable_on_def by auto
+  then have cab: "continuous_on {a..b} (\<lambda>x. if x \<le> c then f x else g x)"
+    using continuous_on_cases [OF closed_real_atLeastAtMost [of a c],
+                               OF closed_real_atLeastAtMost [of c b],
+                               of f g "\<lambda>x. x\<le>c"]  assms
+    by (force simp: ivl_disj_un_two_touch)
+  { fix x
+    assume x: "x \<in> {a..b} - insert c (S \<union> T)"
+    have "(\<lambda>x. if x \<le> c then f x else g x) differentiable at x" (is "?diff_fg")
+    proof (cases x c rule: le_cases)
+      case le show ?diff_fg
+        apply (rule differentiable_transform_within [where f=f and d = "dist x c"])
+        using x dist_real_def le st by (auto simp: C1_differentiable_on_eq)
+    next
+      case ge show ?diff_fg
+        apply (rule differentiable_transform_within [where f=g and d = "dist x c"])
+        using dist_nz x dist_real_def ge st x by (auto simp: C1_differentiable_on_eq)
+    qed
+  }
+  then have "(\<forall>x \<in> {a..b} - insert c (S \<union> T). (\<lambda>x. if x \<le> c then f x else g x) differentiable at x)"
+    by auto
+  moreover
+  { assume fcon: "continuous_on ({a<..<c} - S) (\<lambda>x. vector_derivative f (at x))"
+       and gcon: "continuous_on ({c<..<b} - T) (\<lambda>x. vector_derivative g (at x))"
+    have "open ({a<..<c} - S)"  "open ({c<..<b} - T)"
+      using st by (simp_all add: open_Diff finite_imp_closed)
+    moreover have "continuous_on ({a<..<c} - S) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
+    proof -
+      have "((\<lambda>x. if x \<le> c then f x else g x) has_vector_derivative vector_derivative f (at x))            (at x)"
+        if "a < x" "x < c" "x \<notin> S" for x
+      proof -
+        have f: "f differentiable at x"
+          by (meson C1_differentiable_on_eq Diff_iff atLeastAtMost_iff less_eq_real_def st(1) that)
+        show ?thesis
+          using that
+          apply (rule_tac f=f and d="dist x c" in has_vector_derivative_transform_within)
+             apply (auto simp: dist_norm vector_derivative_works [symmetric] f)
+          done
+      qed
+      then show ?thesis
+        by (metis (no_types, lifting) continuous_on_eq [OF fcon] DiffE greaterThanLessThan_iff vector_derivative_at)
+    qed
+    moreover have "continuous_on ({c<..<b} - T) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
+    proof -
+      have "((\<lambda>x. if x \<le> c then f x else g x) has_vector_derivative vector_derivative g (at x))            (at x)"
+        if "c < x" "x < b" "x \<notin> T" for x
+      proof -
+        have g: "g differentiable at x"
+          by (metis C1_differentiable_on_eq DiffD1 DiffI atLeastAtMost_diff_ends greaterThanLessThan_iff st(2) that)
+        show ?thesis
+          using that
+          apply (rule_tac f=g and d="dist x c" in has_vector_derivative_transform_within)
+             apply (auto simp: dist_norm vector_derivative_works [symmetric] g)
+          done
+      qed
+      then show ?thesis
+        by (metis (no_types, lifting) continuous_on_eq [OF gcon] DiffE greaterThanLessThan_iff vector_derivative_at)
+    qed
+    ultimately have "continuous_on ({a<..<b} - insert c (S \<union> T))
+        (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
+      by (rule continuous_on_subset [OF continuous_on_open_Un], auto)
+  } note * = this
+  have "continuous_on ({a<..<b} - insert c (S \<union> T)) (\<lambda>x. vector_derivative (\<lambda>x. if x \<le> c then f x else g x) (at x))"
+    using st
+    by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset intro: *)
+  ultimately have "\<exists>S. finite S \<and> ((\<lambda>x. if x \<le> c then f x else g x) C1_differentiable_on {a..b} - S)"
+    apply (rule_tac x="{a,b,c} \<union> S \<union> T" in exI)
+    using st  by (auto simp: C1_differentiable_on_eq elim!: continuous_on_subset)
+  with cab show ?thesis
+    by (simp add: piecewise_C1_differentiable_on_def)
+qed
+
+lemma piecewise_C1_differentiable_neg:
+    "f piecewise_C1_differentiable_on S \<Longrightarrow> (\<lambda>x. -(f x)) piecewise_C1_differentiable_on S"
+  unfolding piecewise_C1_differentiable_on_def
+  by (auto intro!: continuous_on_minus C1_differentiable_on_minus)
+
+lemma piecewise_C1_differentiable_add:
+  assumes "f piecewise_C1_differentiable_on i"
+          "g piecewise_C1_differentiable_on i"
+    shows "(\<lambda>x. f x + g x) piecewise_C1_differentiable_on i"
+proof -
+  obtain S t where st: "finite S" "finite t"
+                       "f C1_differentiable_on (i-S)"
+                       "g C1_differentiable_on (i-t)"
+    using assms by (auto simp: piecewise_C1_differentiable_on_def)
+  then have "finite (S \<union> t) \<and> (\<lambda>x. f x + g x) C1_differentiable_on i - (S \<union> t)"
+    by (auto intro: C1_differentiable_on_add elim!: C1_differentiable_on_subset)
+  moreover have "continuous_on i f" "continuous_on i g"
+    using assms piecewise_C1_differentiable_on_def by auto
+  ultimately show ?thesis
+    by (auto simp: piecewise_C1_differentiable_on_def continuous_on_add)
+qed
+
+lemma piecewise_C1_differentiable_diff:
+    "\<lbrakk>f piecewise_C1_differentiable_on S;  g piecewise_C1_differentiable_on S\<rbrakk>
+     \<Longrightarrow> (\<lambda>x. f x - g x) piecewise_C1_differentiable_on S"
+  unfolding diff_conv_add_uminus
+  by (metis piecewise_C1_differentiable_add piecewise_C1_differentiable_neg)
+
+lemma piecewise_C1_differentiable_D1:
+  fixes g1 :: "real \<Rightarrow> 'a::real_normed_field"
+  assumes "(g1 +++ g2) piecewise_C1_differentiable_on {0..1}"
+    shows "g1 piecewise_C1_differentiable_on {0..1}"
+proof -
+  obtain S where "finite S"
+             and co12: "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
+             and g12D: "\<forall>x\<in>{0..1} - S. g1 +++ g2 differentiable at x"
+    using assms  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  have g1D: "g1 differentiable at x" if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
+  proof (rule differentiable_transform_within)
+    show "g1 +++ g2 \<circ> (*) (inverse 2) differentiable at x"
+      using that g12D
+      apply (simp only: joinpaths_def)
+      by (rule differentiable_chain_at derivative_intros | force)+
+    show "\<And>x'. \<lbrakk>dist x' x < dist (x/2) (1/2)\<rbrakk>
+          \<Longrightarrow> (g1 +++ g2 \<circ> (*) (inverse 2)) x' = g1 x'"
+      using that by (auto simp: dist_real_def joinpaths_def)
+  qed (use that in \<open>auto simp: dist_real_def\<close>)
+  have [simp]: "vector_derivative (g1 \<circ> (*) 2) (at (x/2)) = 2 *\<^sub>R vector_derivative g1 (at x)"
+               if "x \<in> {0..1} - insert 1 ((*) 2 ` S)" for x
+    apply (subst vector_derivative_chain_at)
+    using that
+    apply (rule derivative_eq_intros g1D | simp)+
+    done
+  have "continuous_on ({0..1/2} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
+    using co12 by (rule continuous_on_subset) force
+  then have coDhalf: "continuous_on ({0..1/2} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 \<circ> (*)2) (at x))"
+  proof (rule continuous_on_eq [OF _ vector_derivative_at])
+    show "(g1 +++ g2 has_vector_derivative vector_derivative (g1 \<circ> (*) 2) (at x)) (at x)"
+      if "x \<in> {0..1/2} - insert (1/2) S" for x
+    proof (rule has_vector_derivative_transform_within)
+      show "(g1 \<circ> (*) 2 has_vector_derivative vector_derivative (g1 \<circ> (*) 2) (at x)) (at x)"
+        using that
+        by (force intro: g1D differentiable_chain_at simp: vector_derivative_works [symmetric])
+      show "\<And>x'. \<lbrakk>dist x' x < dist x (1/2)\<rbrakk> \<Longrightarrow> (g1 \<circ> (*) 2) x' = (g1 +++ g2) x'"
+        using that by (auto simp: dist_norm joinpaths_def)
+    qed (use that in \<open>auto simp: dist_norm\<close>)
+  qed
+  have "continuous_on ({0..1} - insert 1 ((*) 2 ` S))
+                      ((\<lambda>x. 1/2 * vector_derivative (g1 \<circ> (*)2) (at x)) \<circ> (*)(1/2))"
+    apply (rule continuous_intros)+
+    using coDhalf
+    apply (simp add: scaleR_conv_of_real image_set_diff image_image)
+    done
+  then have con_g1: "continuous_on ({0..1} - insert 1 ((*) 2 ` S)) (\<lambda>x. vector_derivative g1 (at x))"
+    by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
+  have "continuous_on {0..1} g1"
+    using continuous_on_joinpaths_D1 assms piecewise_C1_differentiable_on_def by blast
+  with \<open>finite S\<close> show ?thesis
+    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+    apply (rule_tac x="insert 1 (((*)2)`S)" in exI)
+    apply (simp add: g1D con_g1)
+  done
+qed
+
+lemma piecewise_C1_differentiable_D2:
+  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
+  assumes "(g1 +++ g2) piecewise_C1_differentiable_on {0..1}" "pathfinish g1 = pathstart g2"
+    shows "g2 piecewise_C1_differentiable_on {0..1}"
+proof -
+  obtain S where "finite S"
+             and co12: "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
+             and g12D: "\<forall>x\<in>{0..1} - S. g1 +++ g2 differentiable at x"
+    using assms  by (auto simp: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  have g2D: "g2 differentiable at x" if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)" for x
+  proof (rule differentiable_transform_within)
+    show "g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2) differentiable at x"
+      using g12D that
+      apply (simp only: joinpaths_def)
+      apply (drule_tac x= "(x+1) / 2" in bspec, force simp: field_split_simps)
+      apply (rule differentiable_chain_at derivative_intros | force)+
+      done
+    show "\<And>x'. dist x' x < dist ((x + 1) / 2) (1/2) \<Longrightarrow> (g1 +++ g2 \<circ> (\<lambda>x. (x + 1) / 2)) x' = g2 x'"
+      using that by (auto simp: dist_real_def joinpaths_def field_simps)
+    qed (use that in \<open>auto simp: dist_norm\<close>)
+  have [simp]: "vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at ((x+1)/2)) = 2 *\<^sub>R vector_derivative g2 (at x)"
+               if "x \<in> {0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)" for x
+    using that  by (auto simp: vector_derivative_chain_at field_split_simps g2D)
+  have "continuous_on ({1/2..1} - insert (1/2) S) (\<lambda>x. vector_derivative (g1 +++ g2) (at x))"
+    using co12 by (rule continuous_on_subset) force
+  then have coDhalf: "continuous_on ({1/2..1} - insert (1/2) S) (\<lambda>x. vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at x))"
+  proof (rule continuous_on_eq [OF _ vector_derivative_at])
+    show "(g1 +++ g2 has_vector_derivative vector_derivative (g2 \<circ> (\<lambda>x. 2 * x - 1)) (at x))
+          (at x)"
+      if "x \<in> {1 / 2..1} - insert (1 / 2) S" for x
+    proof (rule_tac f="g2 \<circ> (\<lambda>x. 2*x-1)" and d="dist (3/4) ((x+1)/2)" in has_vector_derivative_transform_within)
+      show "(g2 \<circ> (\<lambda>x. 2 * x - 1) has_vector_derivative vector_derivative (g2 \<circ> (\<lambda>x. 2 * x - 1)) (at x))
+            (at x)"
+        using that by (force intro: g2D differentiable_chain_at simp: vector_derivative_works [symmetric])
+      show "\<And>x'. \<lbrakk>dist x' x < dist (3 / 4) ((x + 1) / 2)\<rbrakk> \<Longrightarrow> (g2 \<circ> (\<lambda>x. 2 * x - 1)) x' = (g1 +++ g2) x'"
+        using that by (auto simp: dist_norm joinpaths_def add_divide_distrib)
+    qed (use that in \<open>auto simp: dist_norm\<close>)
+  qed
+  have [simp]: "((\<lambda>x. (x+1) / 2) ` ({0..1} - insert 0 ((\<lambda>x. 2 * x - 1) ` S))) = ({1/2..1} - insert (1/2) S)"
+    apply (simp add: image_set_diff inj_on_def image_image)
+    apply (auto simp: image_affinity_atLeastAtMost_div add_divide_distrib)
+    done
+  have "continuous_on ({0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S))
+                      ((\<lambda>x. 1/2 * vector_derivative (g2 \<circ> (\<lambda>x. 2*x-1)) (at x)) \<circ> (\<lambda>x. (x+1)/2))"
+    by (rule continuous_intros | simp add:  coDhalf)+
+  then have con_g2: "continuous_on ({0..1} - insert 0 ((\<lambda>x. 2*x-1) ` S)) (\<lambda>x. vector_derivative g2 (at x))"
+    by (rule continuous_on_eq) (simp add: scaleR_conv_of_real)
+  have "continuous_on {0..1} g2"
+    using continuous_on_joinpaths_D2 assms piecewise_C1_differentiable_on_def by blast
+  with \<open>finite S\<close> show ?thesis
+    apply (clarsimp simp add: piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+    apply (rule_tac x="insert 0 ((\<lambda>x. 2 * x - 1) ` S)" in exI)
+    apply (simp add: g2D con_g2)
+  done
+qed
+
+subsection \<open>Valid paths, and their start and finish\<close>
+
+definition\<^marker>\<open>tag important\<close> valid_path :: "(real \<Rightarrow> 'a :: real_normed_vector) \<Rightarrow> bool"
+  where "valid_path f \<equiv> f piecewise_C1_differentiable_on {0..1::real}"
+
+definition closed_path :: "(real \<Rightarrow> 'a :: real_normed_vector) \<Rightarrow> bool"
+  where "closed_path g \<equiv> g 0 = g 1"
+
+text\<open>In particular, all results for paths apply\<close>
+
+lemma valid_path_imp_path: "valid_path g \<Longrightarrow> path g"
+  by (simp add: path_def piecewise_C1_differentiable_on_def valid_path_def)
+
+lemma connected_valid_path_image: "valid_path g \<Longrightarrow> connected(path_image g)"
+  by (metis connected_path_image valid_path_imp_path)
+
+lemma compact_valid_path_image: "valid_path g \<Longrightarrow> compact(path_image g)"
+  by (metis compact_path_image valid_path_imp_path)
+
+lemma bounded_valid_path_image: "valid_path g \<Longrightarrow> bounded(path_image g)"
+  by (metis bounded_path_image valid_path_imp_path)
+
+lemma closed_valid_path_image: "valid_path g \<Longrightarrow> closed(path_image g)"
+  by (metis closed_path_image valid_path_imp_path)
+
+lemma valid_path_compose:
+  assumes "valid_path g"
+      and der: "\<And>x. x \<in> path_image g \<Longrightarrow> f field_differentiable (at x)"
+      and con: "continuous_on (path_image g) (deriv f)"
+    shows "valid_path (f \<circ> g)"
+proof -
+  obtain S where "finite S" and g_diff: "g C1_differentiable_on {0..1} - S"
+    using \<open>valid_path g\<close> unfolding valid_path_def piecewise_C1_differentiable_on_def by auto
+  have "f \<circ> g differentiable at t" when "t\<in>{0..1} - S" for t
+    proof (rule differentiable_chain_at)
+      show "g differentiable at t" using \<open>valid_path g\<close>
+        by (meson C1_differentiable_on_eq \<open>g C1_differentiable_on {0..1} - S\<close> that)
+    next
+      have "g t\<in>path_image g" using that DiffD1 image_eqI path_image_def by metis
+      then show "f differentiable at (g t)"
+        using der[THEN field_differentiable_imp_differentiable] by auto
+    qed
+  moreover have "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative (f \<circ> g) (at x))"
+    proof (rule continuous_on_eq [where f = "\<lambda>x. vector_derivative g (at x) * deriv f (g x)"],
+        rule continuous_intros)
+      show "continuous_on ({0..1} - S) (\<lambda>x. vector_derivative g (at x))"
+        using g_diff C1_differentiable_on_eq by auto
+    next
+      have "continuous_on {0..1} (\<lambda>x. deriv f (g x))"
+        using continuous_on_compose[OF _ con[unfolded path_image_def],unfolded comp_def]
+          \<open>valid_path g\<close> piecewise_C1_differentiable_on_def valid_path_def
+        by blast
+      then show "continuous_on ({0..1} - S) (\<lambda>x. deriv f (g x))"
+        using continuous_on_subset by blast
+    next
+      show "vector_derivative g (at t) * deriv f (g t) = vector_derivative (f \<circ> g) (at t)"
+          when "t \<in> {0..1} - S" for t
+        proof (rule vector_derivative_chain_at_general[symmetric])
+          show "g differentiable at t" by (meson C1_differentiable_on_eq g_diff that)
+        next
+          have "g t\<in>path_image g" using that DiffD1 image_eqI path_image_def by metis
+          then show "f field_differentiable at (g t)" using der by auto
+        qed
+    qed
+  ultimately have "f \<circ> g C1_differentiable_on {0..1} - S"
+    using C1_differentiable_on_eq by blast
+  moreover have "path (f \<circ> g)"
+    apply (rule path_continuous_image[OF valid_path_imp_path[OF \<open>valid_path g\<close>]])
+    using der
+    by (simp add: continuous_at_imp_continuous_on field_differentiable_imp_continuous_at)
+  ultimately show ?thesis unfolding valid_path_def piecewise_C1_differentiable_on_def path_def
+    using \<open>finite S\<close> by auto
+qed
+  
+lemma valid_path_uminus_comp[simp]:
+  fixes g::"real \<Rightarrow> 'a ::real_normed_field"
+  shows "valid_path (uminus \<circ> g) \<longleftrightarrow> valid_path g"
+proof 
+  show "valid_path g \<Longrightarrow> valid_path (uminus \<circ> g)" for g::"real \<Rightarrow> 'a"
+    by (auto intro!: valid_path_compose derivative_intros simp add: deriv_linear[of "-1",simplified])  
+  then show "valid_path g" when "valid_path (uminus \<circ> g)"
+    by (metis fun.map_comp group_add_class.minus_comp_minus id_comp that)
+qed
+
+lemma valid_path_offset[simp]:
+  shows "valid_path (\<lambda>t. g t - z) \<longleftrightarrow> valid_path g"  
+proof 
+  show *: "valid_path (g::real\<Rightarrow>'a) \<Longrightarrow> valid_path (\<lambda>t. g t - z)" for g z
+    unfolding valid_path_def
+    by (fastforce intro:derivative_intros C1_differentiable_imp_piecewise piecewise_C1_differentiable_diff)
+  show "valid_path (\<lambda>t. g t - z) \<Longrightarrow> valid_path g"
+    using *[of "\<lambda>t. g t - z" "-z",simplified] .
+qed
+  
+
+subsection\<open>Contour Integrals along a path\<close>
+
+text\<open>This definition is for complex numbers only, and does not generalise to line integrals in a vector field\<close>
+
+text\<open>piecewise differentiable function on [0,1]\<close>
+
+definition\<^marker>\<open>tag important\<close> has_contour_integral :: "(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> bool"
+           (infixr "has'_contour'_integral" 50)
+  where "(f has_contour_integral i) g \<equiv>
+           ((\<lambda>x. f(g x) * vector_derivative g (at x within {0..1}))
+            has_integral i) {0..1}"
+
+definition\<^marker>\<open>tag important\<close> contour_integrable_on
+           (infixr "contour'_integrable'_on" 50)
+  where "f contour_integrable_on g \<equiv> \<exists>i. (f has_contour_integral i) g"
+
+definition\<^marker>\<open>tag important\<close> contour_integral
+  where "contour_integral g f \<equiv> SOME i. (f has_contour_integral i) g \<or> \<not> f contour_integrable_on g \<and> i=0"
+
+lemma not_integrable_contour_integral: "\<not> f contour_integrable_on g \<Longrightarrow> contour_integral g f = 0"
+  unfolding contour_integrable_on_def contour_integral_def by blast
+
+lemma contour_integral_unique: "(f has_contour_integral i) g \<Longrightarrow> contour_integral g f = i"
+  apply (simp add: contour_integral_def has_contour_integral_def contour_integrable_on_def)
+  using has_integral_unique by blast
+
+lemma has_contour_integral_eqpath:
+     "\<lbrakk>(f has_contour_integral y) p; f contour_integrable_on \<gamma>;
+       contour_integral p f = contour_integral \<gamma> f\<rbrakk>
+      \<Longrightarrow> (f has_contour_integral y) \<gamma>"
+using contour_integrable_on_def contour_integral_unique by auto
+
+lemma has_contour_integral_integral:
+    "f contour_integrable_on i \<Longrightarrow> (f has_contour_integral (contour_integral i f)) i"
+  by (metis contour_integral_unique contour_integrable_on_def)
+
+lemma has_contour_integral_unique:
+    "(f has_contour_integral i) g \<Longrightarrow> (f has_contour_integral j) g \<Longrightarrow> i = j"
+  using has_integral_unique
+  by (auto simp: has_contour_integral_def)
+
+lemma has_contour_integral_integrable: "(f has_contour_integral i) g \<Longrightarrow> f contour_integrable_on g"
+  using contour_integrable_on_def by blast
+
+text\<open>Show that we can forget about the localized derivative.\<close>
+
+lemma has_integral_localized_vector_derivative:
+    "((\<lambda>x. f (g x) * vector_derivative g (at x within {a..b})) has_integral i) {a..b} \<longleftrightarrow>
+     ((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {a..b}"
+proof -
+  have *: "{a..b} - {a,b} = interior {a..b}"
+    by (simp add: atLeastAtMost_diff_ends)
+  show ?thesis
+    apply (rule has_integral_spike_eq [of "{a,b}"])
+    apply (auto simp: at_within_interior [of _ "{a..b}"])
+    done
+qed
+
+lemma integrable_on_localized_vector_derivative:
+    "(\<lambda>x. f (g x) * vector_derivative g (at x within {a..b})) integrable_on {a..b} \<longleftrightarrow>
+     (\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on {a..b}"
+  by (simp add: integrable_on_def has_integral_localized_vector_derivative)
+
+lemma has_contour_integral:
+     "(f has_contour_integral i) g \<longleftrightarrow>
+      ((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {0..1}"
+  by (simp add: has_integral_localized_vector_derivative has_contour_integral_def)
+
+lemma contour_integrable_on:
+     "f contour_integrable_on g \<longleftrightarrow>
+      (\<lambda>t. f(g t) * vector_derivative g (at t)) integrable_on {0..1}"
+  by (simp add: has_contour_integral integrable_on_def contour_integrable_on_def)
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Reversing a path\<close>
+
+lemma valid_path_imp_reverse:
+  assumes "valid_path g"
+    shows "valid_path(reversepath g)"
+proof -
+  obtain S where "finite S" and S: "g C1_differentiable_on ({0..1} - S)"
+    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
+  then have "finite ((-) 1 ` S)"
+    by auto
+  moreover have "(reversepath g C1_differentiable_on ({0..1} - (-) 1 ` S))"
+    unfolding reversepath_def
+    apply (rule C1_differentiable_compose [of "\<lambda>x::real. 1-x" _ g, unfolded o_def])
+    using S
+    by (force simp: finite_vimageI inj_on_def C1_differentiable_on_eq elim!: continuous_on_subset)+
+  ultimately show ?thesis using assms
+    by (auto simp: valid_path_def piecewise_C1_differentiable_on_def path_def [symmetric])
+qed
+
+lemma valid_path_reversepath [simp]: "valid_path(reversepath g) \<longleftrightarrow> valid_path g"
+  using valid_path_imp_reverse by force
+
+lemma has_contour_integral_reversepath:
+  assumes "valid_path g" and f: "(f has_contour_integral i) g"
+    shows "(f has_contour_integral (-i)) (reversepath g)"
+proof -
+  { fix S x
+    assume xs: "g C1_differentiable_on ({0..1} - S)" "x \<notin> (-) 1 ` S" "0 \<le> x" "x \<le> 1"
+    have "vector_derivative (\<lambda>x. g (1 - x)) (at x within {0..1}) =
+            - vector_derivative g (at (1 - x) within {0..1})"
+    proof -
+      obtain f' where f': "(g has_vector_derivative f') (at (1 - x))"
+        using xs
+        by (force simp: has_vector_derivative_def C1_differentiable_on_def)
+      have "(g \<circ> (\<lambda>x. 1 - x) has_vector_derivative -1 *\<^sub>R f') (at x)"
+        by (intro vector_diff_chain_within has_vector_derivative_at_within [OF f'] derivative_eq_intros | simp)+
+      then have mf': "((\<lambda>x. g (1 - x)) has_vector_derivative -f') (at x)"
+        by (simp add: o_def)
+      show ?thesis
+        using xs
+        by (auto simp: vector_derivative_at_within_ivl [OF mf'] vector_derivative_at_within_ivl [OF f'])
+    qed
+  } note * = this
+  obtain S where S: "continuous_on {0..1} g" "finite S" "g C1_differentiable_on {0..1} - S"
+    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
+  have "((\<lambda>x. - (f (g (1 - x)) * vector_derivative g (at (1 - x) within {0..1}))) has_integral -i)
+       {0..1}"
+    using has_integral_affinity01 [where m= "-1" and c=1, OF f [unfolded has_contour_integral_def]]
+    by (simp add: has_integral_neg)
+  then show ?thesis
+    using S
+    apply (clarsimp simp: reversepath_def has_contour_integral_def)
+    apply (rule_tac S = "(\<lambda>x. 1 - x) ` S" in has_integral_spike_finite)
+      apply (auto simp: *)
+    done
+qed
+
+lemma contour_integrable_reversepath:
+    "valid_path g \<Longrightarrow> f contour_integrable_on g \<Longrightarrow> f contour_integrable_on (reversepath g)"
+  using has_contour_integral_reversepath contour_integrable_on_def by blast
+
+lemma contour_integrable_reversepath_eq:
+    "valid_path g \<Longrightarrow> (f contour_integrable_on (reversepath g) \<longleftrightarrow> f contour_integrable_on g)"
+  using contour_integrable_reversepath valid_path_reversepath by fastforce
+
+lemma contour_integral_reversepath:
+  assumes "valid_path g"
+    shows "contour_integral (reversepath g) f = - (contour_integral g f)"
+proof (cases "f contour_integrable_on g")
+  case True then show ?thesis
+    by (simp add: assms contour_integral_unique has_contour_integral_integral has_contour_integral_reversepath)
+next
+  case False then have "\<not> f contour_integrable_on (reversepath g)"
+    by (simp add: assms contour_integrable_reversepath_eq)
+  with False show ?thesis by (simp add: not_integrable_contour_integral)
+qed
+
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Joining two paths together\<close>
+
+lemma valid_path_join:
+  assumes "valid_path g1" "valid_path g2" "pathfinish g1 = pathstart g2"
+    shows "valid_path(g1 +++ g2)"
+proof -
+  have "g1 1 = g2 0"
+    using assms by (auto simp: pathfinish_def pathstart_def)
+  moreover have "(g1 \<circ> (\<lambda>x. 2*x)) piecewise_C1_differentiable_on {0..1/2}"
+    apply (rule piecewise_C1_differentiable_compose)
+    using assms
+    apply (auto simp: valid_path_def piecewise_C1_differentiable_on_def continuous_on_joinpaths)
+    apply (force intro: finite_vimageI [where h = "(*)2"] inj_onI)
+    done
+  moreover have "(g2 \<circ> (\<lambda>x. 2*x-1)) piecewise_C1_differentiable_on {1/2..1}"
+    apply (rule piecewise_C1_differentiable_compose)
+    using assms unfolding valid_path_def piecewise_C1_differentiable_on_def
+    by (auto intro!: continuous_intros finite_vimageI [where h = "(\<lambda>x. 2*x - 1)"] inj_onI
+             simp: image_affinity_atLeastAtMost_diff continuous_on_joinpaths)
+  ultimately show ?thesis
+    apply (simp only: valid_path_def continuous_on_joinpaths joinpaths_def)
+    apply (rule piecewise_C1_differentiable_cases)
+    apply (auto simp: o_def)
+    done
+qed
+
+lemma valid_path_join_D1:
+  fixes g1 :: "real \<Rightarrow> 'a::real_normed_field"
+  shows "valid_path (g1 +++ g2) \<Longrightarrow> valid_path g1"
+  unfolding valid_path_def
+  by (rule piecewise_C1_differentiable_D1)
+
+lemma valid_path_join_D2:
+  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
+  shows "\<lbrakk>valid_path (g1 +++ g2); pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> valid_path g2"
+  unfolding valid_path_def
+  by (rule piecewise_C1_differentiable_D2)
+
+lemma valid_path_join_eq [simp]:
+  fixes g2 :: "real \<Rightarrow> 'a::real_normed_field"
+  shows "pathfinish g1 = pathstart g2 \<Longrightarrow> (valid_path(g1 +++ g2) \<longleftrightarrow> valid_path g1 \<and> valid_path g2)"
+  using valid_path_join_D1 valid_path_join_D2 valid_path_join by blast
+
+lemma has_contour_integral_join:
+  assumes "(f has_contour_integral i1) g1" "(f has_contour_integral i2) g2"
+          "valid_path g1" "valid_path g2"
+    shows "(f has_contour_integral (i1 + i2)) (g1 +++ g2)"
+proof -
+  obtain s1 s2
+    where s1: "finite s1" "\<forall>x\<in>{0..1} - s1. g1 differentiable at x"
+      and s2: "finite s2" "\<forall>x\<in>{0..1} - s2. g2 differentiable at x"
+    using assms
+    by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  have 1: "((\<lambda>x. f (g1 x) * vector_derivative g1 (at x)) has_integral i1) {0..1}"
+   and 2: "((\<lambda>x. f (g2 x) * vector_derivative g2 (at x)) has_integral i2) {0..1}"
+    using assms
+    by (auto simp: has_contour_integral)
+  have i1: "((\<lambda>x. (2*f (g1 (2*x))) * vector_derivative g1 (at (2*x))) has_integral i1) {0..1/2}"
+   and i2: "((\<lambda>x. (2*f (g2 (2*x - 1))) * vector_derivative g2 (at (2*x - 1))) has_integral i2) {1/2..1}"
+    using has_integral_affinity01 [OF 1, where m= 2 and c=0, THEN has_integral_cmul [where c=2]]
+          has_integral_affinity01 [OF 2, where m= 2 and c="-1", THEN has_integral_cmul [where c=2]]
+    by (simp_all only: image_affinity_atLeastAtMost_div_diff, simp_all add: scaleR_conv_of_real mult_ac)
+  have g1: "\<lbrakk>0 \<le> z; z*2 < 1; z*2 \<notin> s1\<rbrakk> \<Longrightarrow>
+            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at z) =
+            2 *\<^sub>R vector_derivative g1 (at (z*2))" for z
+    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g1(2*x))" and d = "\<bar>z - 1/2\<bar>"]])
+    apply (simp_all add: dist_real_def abs_if split: if_split_asm)
+    apply (rule vector_diff_chain_at [of "\<lambda>x. 2*x" 2 _ g1, simplified o_def])
+    apply (simp add: has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
+    using s1
+    apply (auto simp: algebra_simps vector_derivative_works)
+    done
+  have g2: "\<lbrakk>1 < z*2; z \<le> 1; z*2 - 1 \<notin> s2\<rbrakk> \<Longrightarrow>
+            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at z) =
+            2 *\<^sub>R vector_derivative g2 (at (z*2 - 1))" for z
+    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g2 (2*x - 1))" and d = "\<bar>z - 1/2\<bar>"]])
+    apply (simp_all add: dist_real_def abs_if split: if_split_asm)
+    apply (rule vector_diff_chain_at [of "\<lambda>x. 2*x - 1" 2 _ g2, simplified o_def])
+    apply (simp add: has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
+    using s2
+    apply (auto simp: algebra_simps vector_derivative_works)
+    done
+  have "((\<lambda>x. f ((g1 +++ g2) x) * vector_derivative (g1 +++ g2) (at x)) has_integral i1) {0..1/2}"
+    apply (rule has_integral_spike_finite [OF _ _ i1, of "insert (1/2) ((*)2 -` s1)"])
+    using s1
+    apply (force intro: finite_vimageI [where h = "(*)2"] inj_onI)
+    apply (clarsimp simp add: joinpaths_def scaleR_conv_of_real mult_ac g1)
+    done
+  moreover have "((\<lambda>x. f ((g1 +++ g2) x) * vector_derivative (g1 +++ g2) (at x)) has_integral i2) {1/2..1}"
+    apply (rule has_integral_spike_finite [OF _ _ i2, of "insert (1/2) ((\<lambda>x. 2*x-1) -` s2)"])
+    using s2
+    apply (force intro: finite_vimageI [where h = "\<lambda>x. 2*x-1"] inj_onI)
+    apply (clarsimp simp add: joinpaths_def scaleR_conv_of_real mult_ac g2)
+    done
+  ultimately
+  show ?thesis
+    apply (simp add: has_contour_integral)
+    apply (rule has_integral_combine [where c = "1/2"], auto)
+    done
+qed
+
+lemma contour_integrable_joinI:
+  assumes "f contour_integrable_on g1" "f contour_integrable_on g2"
+          "valid_path g1" "valid_path g2"
+    shows "f contour_integrable_on (g1 +++ g2)"
+  using assms
+  by (meson has_contour_integral_join contour_integrable_on_def)
+
+lemma contour_integrable_joinD1:
+  assumes "f contour_integrable_on (g1 +++ g2)" "valid_path g1"
+    shows "f contour_integrable_on g1"
+proof -
+  obtain s1
+    where s1: "finite s1" "\<forall>x\<in>{0..1} - s1. g1 differentiable at x"
+    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  have "(\<lambda>x. f ((g1 +++ g2) (x/2)) * vector_derivative (g1 +++ g2) (at (x/2))) integrable_on {0..1}"
+    using assms
+    apply (auto simp: contour_integrable_on)
+    apply (drule integrable_on_subcbox [where a=0 and b="1/2"])
+    apply (auto intro: integrable_affinity [of _ 0 "1/2::real" "1/2" 0, simplified])
+    done
+  then have *: "(\<lambda>x. (f ((g1 +++ g2) (x/2))/2) * vector_derivative (g1 +++ g2) (at (x/2))) integrable_on {0..1}"
+    by (auto dest: integrable_cmul [where c="1/2"] simp: scaleR_conv_of_real)
+  have g1: "\<lbrakk>0 < z; z < 1; z \<notin> s1\<rbrakk> \<Longrightarrow>
+            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at (z/2)) =
+            2 *\<^sub>R vector_derivative g1 (at z)"  for z
+    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g1(2*x))" and d = "\<bar>(z-1)/2\<bar>"]])
+    apply (simp_all add: field_simps dist_real_def abs_if split: if_split_asm)
+    apply (rule vector_diff_chain_at [of "\<lambda>x. x*2" 2 _ g1, simplified o_def])
+    using s1
+    apply (auto simp: vector_derivative_works has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
+    done
+  show ?thesis
+    using s1
+    apply (auto simp: contour_integrable_on)
+    apply (rule integrable_spike_finite [of "{0,1} \<union> s1", OF _ _ *])
+    apply (auto simp: joinpaths_def scaleR_conv_of_real g1)
+    done
+qed
+
+lemma contour_integrable_joinD2:
+  assumes "f contour_integrable_on (g1 +++ g2)" "valid_path g2"
+    shows "f contour_integrable_on g2"
+proof -
+  obtain s2
+    where s2: "finite s2" "\<forall>x\<in>{0..1} - s2. g2 differentiable at x"
+    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  have "(\<lambda>x. f ((g1 +++ g2) (x/2 + 1/2)) * vector_derivative (g1 +++ g2) (at (x/2 + 1/2))) integrable_on {0..1}"
+    using assms
+    apply (auto simp: contour_integrable_on)
+    apply (drule integrable_on_subcbox [where a="1/2" and b=1], auto)
+    apply (drule integrable_affinity [of _ "1/2::real" 1 "1/2" "1/2", simplified])
+    apply (simp add: image_affinity_atLeastAtMost_diff)
+    done
+  then have *: "(\<lambda>x. (f ((g1 +++ g2) (x/2 + 1/2))/2) * vector_derivative (g1 +++ g2) (at (x/2 + 1/2)))
+                integrable_on {0..1}"
+    by (auto dest: integrable_cmul [where c="1/2"] simp: scaleR_conv_of_real)
+  have g2: "\<lbrakk>0 < z; z < 1; z \<notin> s2\<rbrakk> \<Longrightarrow>
+            vector_derivative (\<lambda>x. if x*2 \<le> 1 then g1 (2*x) else g2 (2*x - 1)) (at (z/2+1/2)) =
+            2 *\<^sub>R vector_derivative g2 (at z)" for z
+    apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g2(2*x-1))" and d = "\<bar>z/2\<bar>"]])
+    apply (simp_all add: field_simps dist_real_def abs_if split: if_split_asm)
+    apply (rule vector_diff_chain_at [of "\<lambda>x. x*2-1" 2 _ g2, simplified o_def])
+    using s2
+    apply (auto simp: has_vector_derivative_def has_derivative_def bounded_linear_mult_left
+                      vector_derivative_works add_divide_distrib)
+    done
+  show ?thesis
+    using s2
+    apply (auto simp: contour_integrable_on)
+    apply (rule integrable_spike_finite [of "{0,1} \<union> s2", OF _ _ *])
+    apply (auto simp: joinpaths_def scaleR_conv_of_real g2)
+    done
+qed
+
+lemma contour_integrable_join [simp]:
+  shows
+    "\<lbrakk>valid_path g1; valid_path g2\<rbrakk>
+     \<Longrightarrow> f contour_integrable_on (g1 +++ g2) \<longleftrightarrow> f contour_integrable_on g1 \<and> f contour_integrable_on g2"
+using contour_integrable_joinD1 contour_integrable_joinD2 contour_integrable_joinI by blast
+
+lemma contour_integral_join [simp]:
+  shows
+    "\<lbrakk>f contour_integrable_on g1; f contour_integrable_on g2; valid_path g1; valid_path g2\<rbrakk>
+        \<Longrightarrow> contour_integral (g1 +++ g2) f = contour_integral g1 f + contour_integral g2 f"
+  by (simp add: has_contour_integral_integral has_contour_integral_join contour_integral_unique)
+
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Shifting the starting point of a (closed) path\<close>
+
+lemma shiftpath_alt_def: "shiftpath a f = (\<lambda>x. if x \<le> 1-a then f (a + x) else f (a + x - 1))"
+  by (auto simp: shiftpath_def)
+
+lemma valid_path_shiftpath [intro]:
+  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
+    shows "valid_path(shiftpath a g)"
+  using assms
+  apply (auto simp: valid_path_def shiftpath_alt_def)
+  apply (rule piecewise_C1_differentiable_cases)
+  apply (auto simp: algebra_simps)
+  apply (rule piecewise_C1_differentiable_affine [of g 1 a, simplified o_def scaleR_one])
+  apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
+  apply (rule piecewise_C1_differentiable_affine [of g 1 "a-1", simplified o_def scaleR_one algebra_simps])
+  apply (auto simp: pathfinish_def pathstart_def elim: piecewise_C1_differentiable_on_subset)
+  done
+
+lemma has_contour_integral_shiftpath:
+  assumes f: "(f has_contour_integral i) g" "valid_path g"
+      and a: "a \<in> {0..1}"
+    shows "(f has_contour_integral i) (shiftpath a g)"
+proof -
+  obtain s
+    where s: "finite s" and g: "\<forall>x\<in>{0..1} - s. g differentiable at x"
+    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  have *: "((\<lambda>x. f (g x) * vector_derivative g (at x)) has_integral i) {0..1}"
+    using assms by (auto simp: has_contour_integral)
+  then have i: "i = integral {a..1} (\<lambda>x. f (g x) * vector_derivative g (at x)) +
+                    integral {0..a} (\<lambda>x. f (g x) * vector_derivative g (at x))"
+    apply (rule has_integral_unique)
+    apply (subst add.commute)
+    apply (subst integral_combine)
+    using assms * integral_unique by auto
+  { fix x
+    have "0 \<le> x \<Longrightarrow> x + a < 1 \<Longrightarrow> x \<notin> (\<lambda>x. x - a) ` s \<Longrightarrow>
+         vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x + a))"
+      unfolding shiftpath_def
+      apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g(a+x))" and d = "dist(1-a) x"]])
+        apply (auto simp: field_simps dist_real_def abs_if split: if_split_asm)
+      apply (rule vector_diff_chain_at [of "\<lambda>x. x+a" 1 _ g, simplified o_def scaleR_one])
+       apply (intro derivative_eq_intros | simp)+
+      using g
+       apply (drule_tac x="x+a" in bspec)
+      using a apply (auto simp: has_vector_derivative_def vector_derivative_works image_def add.commute)
+      done
+  } note vd1 = this
+  { fix x
+    have "1 < x + a \<Longrightarrow> x \<le> 1 \<Longrightarrow> x \<notin> (\<lambda>x. x - a + 1) ` s \<Longrightarrow>
+          vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x + a - 1))"
+      unfolding shiftpath_def
+      apply (rule vector_derivative_at [OF has_vector_derivative_transform_within [where f = "(\<lambda>x. g(a+x-1))" and d = "dist (1-a) x"]])
+        apply (auto simp: field_simps dist_real_def abs_if split: if_split_asm)
+      apply (rule vector_diff_chain_at [of "\<lambda>x. x+a-1" 1 _ g, simplified o_def scaleR_one])
+       apply (intro derivative_eq_intros | simp)+
+      using g
+      apply (drule_tac x="x+a-1" in bspec)
+      using a apply (auto simp: has_vector_derivative_def vector_derivative_works image_def add.commute)
+      done
+  } note vd2 = this
+  have va1: "(\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on ({a..1})"
+    using * a   by (fastforce intro: integrable_subinterval_real)
+  have v0a: "(\<lambda>x. f (g x) * vector_derivative g (at x)) integrable_on ({0..a})"
+    apply (rule integrable_subinterval_real)
+    using * a by auto
+  have "((\<lambda>x. f (shiftpath a g x) * vector_derivative (shiftpath a g) (at x))
+        has_integral  integral {a..1} (\<lambda>x. f (g x) * vector_derivative g (at x)))  {0..1 - a}"
+    apply (rule has_integral_spike_finite
+             [where S = "{1-a} \<union> (\<lambda>x. x-a) ` s" and f = "\<lambda>x. f(g(a+x)) * vector_derivative g (at(a+x))"])
+      using s apply blast
+     using a apply (auto simp: algebra_simps vd1)
+     apply (force simp: shiftpath_def add.commute)
+    using has_integral_affinity [where m=1 and c=a, simplified, OF integrable_integral [OF va1]]
+    apply (simp add: image_affinity_atLeastAtMost_diff [where m=1 and c=a, simplified] add.commute)
+    done
+  moreover
+  have "((\<lambda>x. f (shiftpath a g x) * vector_derivative (shiftpath a g) (at x))
+        has_integral  integral {0..a} (\<lambda>x. f (g x) * vector_derivative g (at x)))  {1 - a..1}"
+    apply (rule has_integral_spike_finite
+             [where S = "{1-a} \<union> (\<lambda>x. x-a+1) ` s" and f = "\<lambda>x. f(g(a+x-1)) * vector_derivative g (at(a+x-1))"])
+      using s apply blast
+     using a apply (auto simp: algebra_simps vd2)
+     apply (force simp: shiftpath_def add.commute)
+    using has_integral_affinity [where m=1 and c="a-1", simplified, OF integrable_integral [OF v0a]]
+    apply (simp add: image_affinity_atLeastAtMost [where m=1 and c="1-a", simplified])
+    apply (simp add: algebra_simps)
+    done
+  ultimately show ?thesis
+    using a
+    by (auto simp: i has_contour_integral intro: has_integral_combine [where c = "1-a"])
+qed
+
+lemma has_contour_integral_shiftpath_D:
+  assumes "(f has_contour_integral i) (shiftpath a g)"
+          "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
+    shows "(f has_contour_integral i) g"
+proof -
+  obtain s
+    where s: "finite s" and g: "\<forall>x\<in>{0..1} - s. g differentiable at x"
+    using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
+  { fix x
+    assume x: "0 < x" "x < 1" "x \<notin> s"
+    then have gx: "g differentiable at x"
+      using g by auto
+    have "vector_derivative g (at x within {0..1}) =
+          vector_derivative (shiftpath (1 - a) (shiftpath a g)) (at x within {0..1})"
+      apply (rule vector_derivative_at_within_ivl
+                  [OF has_vector_derivative_transform_within_open
+                      [where f = "(shiftpath (1 - a) (shiftpath a g))" and S = "{0<..<1}-s"]])
+      using s g assms x
+      apply (auto simp: finite_imp_closed open_Diff shiftpath_shiftpath
+                        at_within_interior [of _ "{0..1}"] vector_derivative_works [symmetric])
+      apply (rule differentiable_transform_within [OF gx, of "min x (1-x)"])
+      apply (auto simp: dist_real_def shiftpath_shiftpath abs_if split: if_split_asm)
+      done
+  } note vd = this
+  have fi: "(f has_contour_integral i) (shiftpath (1 - a) (shiftpath a g))"
+    using assms  by (auto intro!: has_contour_integral_shiftpath)
+  show ?thesis
+    apply (simp add: has_contour_integral_def)
+    apply (rule has_integral_spike_finite [of "{0,1} \<union> s", OF _ _  fi [unfolded has_contour_integral_def]])
+    using s assms vd
+    apply (auto simp: Path_Connected.shiftpath_shiftpath)
+    done
+qed
+
+lemma has_contour_integral_shiftpath_eq:
+  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
+    shows "(f has_contour_integral i) (shiftpath a g) \<longleftrightarrow> (f has_contour_integral i) g"
+  using assms has_contour_integral_shiftpath has_contour_integral_shiftpath_D by blast
+
+lemma contour_integrable_on_shiftpath_eq:
+  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
+    shows "f contour_integrable_on (shiftpath a g) \<longleftrightarrow> f contour_integrable_on g"
+using assms contour_integrable_on_def has_contour_integral_shiftpath_eq by auto
+
+lemma contour_integral_shiftpath:
+  assumes "valid_path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
+    shows "contour_integral (shiftpath a g) f = contour_integral g f"
+   using assms
+   by (simp add: contour_integral_def contour_integrable_on_def has_contour_integral_shiftpath_eq)
+
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>More about straight-line paths\<close>
+
+lemma has_vector_derivative_linepath_within:
+    "(linepath a b has_vector_derivative (b - a)) (at x within s)"
+apply (simp add: linepath_def has_vector_derivative_def algebra_simps)
+apply (rule derivative_eq_intros | simp)+
+done
+
+lemma vector_derivative_linepath_within:
+    "x \<in> {0..1} \<Longrightarrow> vector_derivative (linepath a b) (at x within {0..1}) = b - a"
+  apply (rule vector_derivative_within_cbox [of 0 "1::real", simplified])
+  apply (auto simp: has_vector_derivative_linepath_within)
+  done
+
+lemma vector_derivative_linepath_at [simp]: "vector_derivative (linepath a b) (at x) = b - a"
+  by (simp add: has_vector_derivative_linepath_within vector_derivative_at)
+
+lemma valid_path_linepath [iff]: "valid_path (linepath a b)"
+  apply (simp add: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq continuous_on_linepath)
+  apply (rule_tac x="{}" in exI)
+  apply (simp add: differentiable_on_def differentiable_def)
+  using has_vector_derivative_def has_vector_derivative_linepath_within
+  apply (fastforce simp add: continuous_on_eq_continuous_within)
+  done
+
+lemma has_contour_integral_linepath:
+  shows "(f has_contour_integral i) (linepath a b) \<longleftrightarrow>
+         ((\<lambda>x. f(linepath a b x) * (b - a)) has_integral i) {0..1}"
+  by (simp add: has_contour_integral)
+
+lemma linepath_in_path:
+  shows "x \<in> {0..1} \<Longrightarrow> linepath a b x \<in> closed_segment a b"
+  by (auto simp: segment linepath_def)
+
+lemma linepath_image_01: "linepath a b ` {0..1} = closed_segment a b"
+  by (auto simp: segment linepath_def)
+
+lemma linepath_in_convex_hull:
+    fixes x::real
+    assumes a: "a \<in> convex hull s"
+        and b: "b \<in> convex hull s"
+        and x: "0\<le>x" "x\<le>1"
+       shows "linepath a b x \<in> convex hull s"
+  apply (rule closed_segment_subset_convex_hull [OF a b, THEN subsetD])
+  using x
+  apply (auto simp: linepath_image_01 [symmetric])
+  done
+
+lemma Re_linepath: "Re(linepath (of_real a) (of_real b) x) = (1 - x)*a + x*b"
+  by (simp add: linepath_def)
+
+lemma Im_linepath: "Im(linepath (of_real a) (of_real b) x) = 0"
+  by (simp add: linepath_def)
+
+lemma has_contour_integral_trivial [iff]: "(f has_contour_integral 0) (linepath a a)"
+  by (simp add: has_contour_integral_linepath)
+
+lemma has_contour_integral_trivial_iff [simp]: "(f has_contour_integral i) (linepath a a) \<longleftrightarrow> i=0"
+  using has_contour_integral_unique by blast
+
+lemma contour_integral_trivial [simp]: "contour_integral (linepath a a) f = 0"
+  using has_contour_integral_trivial contour_integral_unique by blast
+
+lemma differentiable_linepath [intro]: "linepath a b differentiable at x within A"
+  by (auto simp: linepath_def)
+
+lemma bounded_linear_linepath:
+  assumes "bounded_linear f"
+  shows   "f (linepath a b x) = linepath (f a) (f b) x"
+proof -
+  interpret f: bounded_linear f by fact
+  show ?thesis by (simp add: linepath_def f.add f.scale)
+qed
+
+lemma bounded_linear_linepath':
+  assumes "bounded_linear f"
+  shows   "f \<circ> linepath a b = linepath (f a) (f b)"
+  using bounded_linear_linepath[OF assms] by (simp add: fun_eq_iff)
+
+lemma cnj_linepath: "cnj (linepath a b x) = linepath (cnj a) (cnj b) x"
+  by (simp add: linepath_def)
+
+lemma cnj_linepath': "cnj \<circ> linepath a b = linepath (cnj a) (cnj b)"
+  by (simp add: linepath_def fun_eq_iff)
+
+subsection\<open>Relation to subpath construction\<close>
+
+lemma valid_path_subpath:
+  fixes g :: "real \<Rightarrow> 'a :: real_normed_vector"
+  assumes "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}"
+    shows "valid_path(subpath u v g)"
+proof (cases "v=u")
+  case True
+  then show ?thesis
+    unfolding valid_path_def subpath_def
+    by (force intro: C1_differentiable_on_const C1_differentiable_imp_piecewise)
+next
+  case False
+  have "(g \<circ> (\<lambda>x. ((v-u) * x + u))) piecewise_C1_differentiable_on {0..1}"
+    apply (rule piecewise_C1_differentiable_compose)
+    apply (simp add: C1_differentiable_imp_piecewise)
+     apply (simp add: image_affinity_atLeastAtMost)
+    using assms False
+    apply (auto simp: algebra_simps valid_path_def piecewise_C1_differentiable_on_subset)
+    apply (subst Int_commute)
+    apply (auto simp: inj_on_def algebra_simps crossproduct_eq finite_vimage_IntI)
+    done
+  then show ?thesis
+    by (auto simp: o_def valid_path_def subpath_def)
+qed
+
+lemma has_contour_integral_subpath_refl [iff]: "(f has_contour_integral 0) (subpath u u g)"
+  by (simp add: has_contour_integral subpath_def)
+
+lemma contour_integrable_subpath_refl [iff]: "f contour_integrable_on (subpath u u g)"
+  using has_contour_integral_subpath_refl contour_integrable_on_def by blast
+
+lemma contour_integral_subpath_refl [simp]: "contour_integral (subpath u u g) f = 0"
+  by (simp add: contour_integral_unique)
+
+lemma has_contour_integral_subpath:
+  assumes f: "f contour_integrable_on g" and g: "valid_path g"
+      and uv: "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
+    shows "(f has_contour_integral  integral {u..v} (\<lambda>x. f(g x) * vector_derivative g (at x)))
+           (subpath u v g)"
+proof (cases "v=u")
+  case True
+  then show ?thesis
+    using f   by (simp add: contour_integrable_on_def subpath_def has_contour_integral)
+next
+  case False
+  obtain s where s: "\<And>x. x \<in> {0..1} - s \<Longrightarrow> g differentiable at x" and fs: "finite s"
+    using g unfolding piecewise_C1_differentiable_on_def C1_differentiable_on_eq valid_path_def by blast
+  have *: "((\<lambda>x. f (g ((v - u) * x + u)) * vector_derivative g (at ((v - u) * x + u)))
+            has_integral (1 / (v - u)) * integral {u..v} (\<lambda>t. f (g t) * vector_derivative g (at t)))
+           {0..1}"
+    using f uv
+    apply (simp add: contour_integrable_on subpath_def has_contour_integral)
+    apply (drule integrable_on_subcbox [where a=u and b=v, simplified])
+    apply (simp_all add: has_integral_integral)
+    apply (drule has_integral_affinity [where m="v-u" and c=u, simplified])
+    apply (simp_all add: False image_affinity_atLeastAtMost_div_diff scaleR_conv_of_real)
+    apply (simp add: divide_simps False)
+    done
+  { fix x
+    have "x \<in> {0..1} \<Longrightarrow>
+           x \<notin> (\<lambda>t. (v-u) *\<^sub>R t + u) -` s \<Longrightarrow>
+           vector_derivative (\<lambda>x. g ((v-u) * x + u)) (at x) = (v-u) *\<^sub>R vector_derivative g (at ((v-u) * x + u))"
+      apply (rule vector_derivative_at [OF vector_diff_chain_at [simplified o_def]])
+      apply (intro derivative_eq_intros | simp)+
+      apply (cut_tac s [of "(v - u) * x + u"])
+      using uv mult_left_le [of x "v-u"]
+      apply (auto simp:  vector_derivative_works)
+      done
+  } note vd = this
+  show ?thesis
+    apply (cut_tac has_integral_cmul [OF *, where c = "v-u"])
+    using fs assms
+    apply (simp add: False subpath_def has_contour_integral)
+    apply (rule_tac S = "(\<lambda>t. ((v-u) *\<^sub>R t + u)) -` s" in has_integral_spike_finite)
+    apply (auto simp: inj_on_def False finite_vimageI vd scaleR_conv_of_real)
+    done
+qed
+
+lemma contour_integrable_subpath:
+  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}"
+    shows "f contour_integrable_on (subpath u v g)"
+  apply (cases u v rule: linorder_class.le_cases)
+   apply (metis contour_integrable_on_def has_contour_integral_subpath [OF assms])
+  apply (subst reversepath_subpath [symmetric])
+  apply (rule contour_integrable_reversepath)
+   using assms apply (blast intro: valid_path_subpath)
+  apply (simp add: contour_integrable_on_def)
+  using assms apply (blast intro: has_contour_integral_subpath)
+  done
+
+lemma has_integral_contour_integral_subpath:
+  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
+    shows "(((\<lambda>x. f(g x) * vector_derivative g (at x)))
+            has_integral  contour_integral (subpath u v g) f) {u..v}"
+  using assms
+  apply (auto simp: has_integral_integrable_integral)
+  apply (rule integrable_on_subcbox [where a=u and b=v and S = "{0..1}", simplified])
+  apply (auto simp: contour_integral_unique [OF has_contour_integral_subpath] contour_integrable_on)
+  done
+
+lemma contour_integral_subcontour_integral:
+  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<le> v"
+    shows "contour_integral (subpath u v g) f =
+           integral {u..v} (\<lambda>x. f(g x) * vector_derivative g (at x))"
+  using assms has_contour_integral_subpath contour_integral_unique by blast
+
+lemma contour_integral_subpath_combine_less:
+  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "w \<in> {0..1}"
+          "u<v" "v<w"
+    shows "contour_integral (subpath u v g) f + contour_integral (subpath v w g) f =
+           contour_integral (subpath u w g) f"
+  using assms apply (auto simp: contour_integral_subcontour_integral)
+  apply (rule integral_combine, auto)
+  apply (rule integrable_on_subcbox [where a=u and b=w and S = "{0..1}", simplified])
+  apply (auto simp: contour_integrable_on)
+  done
+
+lemma contour_integral_subpath_combine:
+  assumes "f contour_integrable_on g" "valid_path g" "u \<in> {0..1}" "v \<in> {0..1}" "w \<in> {0..1}"
+    shows "contour_integral (subpath u v g) f + contour_integral (subpath v w g) f =
+           contour_integral (subpath u w g) f"
+proof (cases "u\<noteq>v \<and> v\<noteq>w \<and> u\<noteq>w")
+  case True
+    have *: "subpath v u g = reversepath(subpath u v g) \<and>
+             subpath w u g = reversepath(subpath u w g) \<and>
+             subpath w v g = reversepath(subpath v w g)"
+      by (auto simp: reversepath_subpath)
+    have "u < v \<and> v < w \<or>
+          u < w \<and> w < v \<or>
+          v < u \<and> u < w \<or>
+          v < w \<and> w < u \<or>
+          w < u \<and> u < v \<or>
+          w < v \<and> v < u"
+      using True assms by linarith
+    with assms show ?thesis
+      using contour_integral_subpath_combine_less [of f g u v w]
+            contour_integral_subpath_combine_less [of f g u w v]
+            contour_integral_subpath_combine_less [of f g v u w]
+            contour_integral_subpath_combine_less [of f g v w u]
+            contour_integral_subpath_combine_less [of f g w u v]
+            contour_integral_subpath_combine_less [of f g w v u]
+      apply simp
+      apply (elim disjE)
+      apply (auto simp: * contour_integral_reversepath contour_integrable_subpath
+               valid_path_subpath algebra_simps)
+      done
+next
+  case False
+  then show ?thesis
+    apply (auto)
+    using assms
+    by (metis eq_neg_iff_add_eq_0 contour_integral_reversepath reversepath_subpath valid_path_subpath)
+qed
+
+lemma contour_integral_integral:
+     "contour_integral g f = integral {0..1} (\<lambda>x. f (g x) * vector_derivative g (at x))"
+  by (simp add: contour_integral_def integral_def has_contour_integral contour_integrable_on)
+
+lemma contour_integral_cong:
+  assumes "g = g'" "\<And>x. x \<in> path_image g \<Longrightarrow> f x = f' x"
+  shows   "contour_integral g f = contour_integral g' f'"
+  unfolding contour_integral_integral using assms
+  by (intro integral_cong) (auto simp: path_image_def)
+
+
+text \<open>Contour integral along a segment on the real axis\<close>
+
+lemma has_contour_integral_linepath_Reals_iff:
+  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
+  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
+  shows   "(f has_contour_integral I) (linepath a b) \<longleftrightarrow>
+             ((\<lambda>x. f (of_real x)) has_integral I) {Re a..Re b}"
+proof -
+  from assms have [simp]: "of_real (Re a) = a" "of_real (Re b) = b"
+    by (simp_all add: complex_eq_iff)
+  from assms have "a \<noteq> b" by auto
+  have "((\<lambda>x. f (of_real x)) has_integral I) (cbox (Re a) (Re b)) \<longleftrightarrow>
+          ((\<lambda>x. f (a + b * of_real x - a * of_real x)) has_integral I /\<^sub>R (Re b - Re a)) {0..1}"
+    by (subst has_integral_affinity_iff [of "Re b - Re a" _ "Re a", symmetric])
+       (insert assms, simp_all add: field_simps scaleR_conv_of_real)
+  also have "(\<lambda>x. f (a + b * of_real x - a * of_real x)) =
+               (\<lambda>x. (f (a + b * of_real x - a * of_real x) * (b - a)) /\<^sub>R (Re b - Re a))"
+    using \<open>a \<noteq> b\<close> by (auto simp: field_simps fun_eq_iff scaleR_conv_of_real)
+  also have "(\<dots> has_integral I /\<^sub>R (Re b - Re a)) {0..1} \<longleftrightarrow> 
+               ((\<lambda>x. f (linepath a b x) * (b - a)) has_integral I) {0..1}" using assms
+    by (subst has_integral_cmul_iff) (auto simp: linepath_def scaleR_conv_of_real algebra_simps)
+  also have "\<dots> \<longleftrightarrow> (f has_contour_integral I) (linepath a b)" unfolding has_contour_integral_def
+    by (intro has_integral_cong) (simp add: vector_derivative_linepath_within)
+  finally show ?thesis by simp
+qed
+
+lemma contour_integrable_linepath_Reals_iff:
+  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
+  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
+  shows   "(f contour_integrable_on linepath a b) \<longleftrightarrow>
+             (\<lambda>x. f (of_real x)) integrable_on {Re a..Re b}"
+  using has_contour_integral_linepath_Reals_iff[OF assms, of f]
+  by (auto simp: contour_integrable_on_def integrable_on_def)
+
+lemma contour_integral_linepath_Reals_eq:
+  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
+  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
+  shows   "contour_integral (linepath a b) f = integral {Re a..Re b} (\<lambda>x. f (of_real x))"
+proof (cases "f contour_integrable_on linepath a b")
+  case True
+  thus ?thesis using has_contour_integral_linepath_Reals_iff[OF assms, of f]
+    using has_contour_integral_integral has_contour_integral_unique by blast
+next
+  case False
+  thus ?thesis using contour_integrable_linepath_Reals_iff[OF assms, of f]
+    by (simp add: not_integrable_contour_integral not_integrable_integral)
+qed
+
+
+
+text\<open>Cauchy's theorem where there's a primitive\<close>
+
+lemma contour_integral_primitive_lemma:
+  fixes f :: "complex \<Rightarrow> complex" and g :: "real \<Rightarrow> complex"
+  assumes "a \<le> b"
+      and "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
+      and "g piecewise_differentiable_on {a..b}"  "\<And>x. x \<in> {a..b} \<Longrightarrow> g x \<in> s"
+    shows "((\<lambda>x. f'(g x) * vector_derivative g (at x within {a..b}))
+             has_integral (f(g b) - f(g a))) {a..b}"
+proof -
+  obtain k where k: "finite k" "\<forall>x\<in>{a..b} - k. g differentiable (at x within {a..b})" and cg: "continuous_on {a..b} g"
+    using assms by (auto simp: piecewise_differentiable_on_def)
+  have cfg: "continuous_on {a..b} (\<lambda>x. f (g x))"
+    apply (rule continuous_on_compose [OF cg, unfolded o_def])
+    using assms
+    apply (metis field_differentiable_def field_differentiable_imp_continuous_at continuous_on_eq_continuous_within continuous_on_subset image_subset_iff)
+    done
+  { fix x::real
+    assume a: "a < x" and b: "x < b" and xk: "x \<notin> k"
+    then have "g differentiable at x within {a..b}"
+      using k by (simp add: differentiable_at_withinI)
+    then have "(g has_vector_derivative vector_derivative g (at x within {a..b})) (at x within {a..b})"
+      by (simp add: vector_derivative_works has_field_derivative_def scaleR_conv_of_real)
+    then have gdiff: "(g has_derivative (\<lambda>u. u * vector_derivative g (at x within {a..b}))) (at x within {a..b})"
+      by (simp add: has_vector_derivative_def scaleR_conv_of_real)
+    have "(f has_field_derivative (f' (g x))) (at (g x) within g ` {a..b})"
+      using assms by (metis a atLeastAtMost_iff b DERIV_subset image_subset_iff less_eq_real_def)
+    then have fdiff: "(f has_derivative (*) (f' (g x))) (at (g x) within g ` {a..b})"
+      by (simp add: has_field_derivative_def)
+    have "((\<lambda>x. f (g x)) has_vector_derivative f' (g x) * vector_derivative g (at x within {a..b})) (at x within {a..b})"
+      using diff_chain_within [OF gdiff fdiff]
+      by (simp add: has_vector_derivative_def scaleR_conv_of_real o_def mult_ac)
+  } note * = this
+  show ?thesis
+    apply (rule fundamental_theorem_of_calculus_interior_strong)
+    using k assms cfg *
+    apply (auto simp: at_within_Icc_at)
+    done
+qed
+
+lemma contour_integral_primitive:
+  assumes "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
+      and "valid_path g" "path_image g \<subseteq> s"
+    shows "(f' has_contour_integral (f(pathfinish g) - f(pathstart g))) g"
+  using assms
+  apply (simp add: valid_path_def path_image_def pathfinish_def pathstart_def has_contour_integral_def)
+  apply (auto intro!: piecewise_C1_imp_differentiable contour_integral_primitive_lemma [of 0 1 s])
+  done
+
+corollary Cauchy_theorem_primitive:
+  assumes "\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative f' x) (at x within s)"
+      and "valid_path g"  "path_image g \<subseteq> s" "pathfinish g = pathstart g"
+    shows "(f' has_contour_integral 0) g"
+  using assms
+  by (metis diff_self contour_integral_primitive)
+
+text\<open>Existence of path integral for continuous function\<close>
+lemma contour_integrable_continuous_linepath:
+  assumes "continuous_on (closed_segment a b) f"
+  shows "f contour_integrable_on (linepath a b)"
+proof -
+  have "continuous_on {0..1} ((\<lambda>x. f x * (b - a)) \<circ> linepath a b)"
+    apply (rule continuous_on_compose [OF continuous_on_linepath], simp add: linepath_image_01)
+    apply (rule continuous_intros | simp add: assms)+
+    done
+  then show ?thesis
+    apply (simp add: contour_integrable_on_def has_contour_integral_def integrable_on_def [symmetric])
+    apply (rule integrable_continuous [of 0 "1::real", simplified])
+    apply (rule continuous_on_eq [where f = "\<lambda>x. f(linepath a b x)*(b - a)"])
+    apply (auto simp: vector_derivative_linepath_within)
+    done
+qed
+
+lemma has_field_der_id: "((\<lambda>x. x\<^sup>2 / 2) has_field_derivative x) (at x)"
+  by (rule has_derivative_imp_has_field_derivative)
+     (rule derivative_intros | simp)+
+
+lemma contour_integral_id [simp]: "contour_integral (linepath a b) (\<lambda>y. y) = (b^2 - a^2)/2"
+  apply (rule contour_integral_unique)
+  using contour_integral_primitive [of UNIV "\<lambda>x. x^2/2" "\<lambda>x. x" "linepath a b"]
+  apply (auto simp: field_simps has_field_der_id)
+  done
+
+lemma contour_integrable_on_const [iff]: "(\<lambda>x. c) contour_integrable_on (linepath a b)"
+  by (simp add: contour_integrable_continuous_linepath)
+
+lemma contour_integrable_on_id [iff]: "(\<lambda>x. x) contour_integrable_on (linepath a b)"
+  by (simp add: contour_integrable_continuous_linepath)
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetical combining theorems\<close>
+
+lemma has_contour_integral_neg:
+    "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. -(f x)) has_contour_integral (-i)) g"
+  by (simp add: has_integral_neg has_contour_integral_def)
+
+lemma has_contour_integral_add:
+    "\<lbrakk>(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g\<rbrakk>
+     \<Longrightarrow> ((\<lambda>x. f1 x + f2 x) has_contour_integral (i1 + i2)) g"
+  by (simp add: has_integral_add has_contour_integral_def algebra_simps)
+
+lemma has_contour_integral_diff:
+  "\<lbrakk>(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g\<rbrakk>
+         \<Longrightarrow> ((\<lambda>x. f1 x - f2 x) has_contour_integral (i1 - i2)) g"
+  by (simp add: has_integral_diff has_contour_integral_def algebra_simps)
+
+lemma has_contour_integral_lmul:
+  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. c * (f x)) has_contour_integral (c*i)) g"
+apply (simp add: has_contour_integral_def)
+apply (drule has_integral_mult_right)
+apply (simp add: algebra_simps)
+done
+
+lemma has_contour_integral_rmul:
+  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. (f x) * c) has_contour_integral (i*c)) g"
+apply (drule has_contour_integral_lmul)
+apply (simp add: mult.commute)
+done
+
+lemma has_contour_integral_div:
+  "(f has_contour_integral i) g \<Longrightarrow> ((\<lambda>x. f x/c) has_contour_integral (i/c)) g"
+  by (simp add: field_class.field_divide_inverse) (metis has_contour_integral_rmul)
+
+lemma has_contour_integral_eq:
+    "\<lbrakk>(f has_contour_integral y) p; \<And>x. x \<in> path_image p \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> (g has_contour_integral y) p"
+apply (simp add: path_image_def has_contour_integral_def)
+by (metis (no_types, lifting) image_eqI has_integral_eq)
+
+lemma has_contour_integral_bound_linepath:
+  assumes "(f has_contour_integral i) (linepath a b)"
+          "0 \<le> B" "\<And>x. x \<in> closed_segment a b \<Longrightarrow> norm(f x) \<le> B"
+    shows "norm i \<le> B * norm(b - a)"
+proof -
+  { fix x::real
+    assume x: "0 \<le> x" "x \<le> 1"
+  have "norm (f (linepath a b x)) *
+        norm (vector_derivative (linepath a b) (at x within {0..1})) \<le> B * norm (b - a)"
+    by (auto intro: mult_mono simp: assms linepath_in_path of_real_linepath vector_derivative_linepath_within x)
+  } note * = this
+  have "norm i \<le> (B * norm (b - a)) * content (cbox 0 (1::real))"
+    apply (rule has_integral_bound
+       [of _ "\<lambda>x. f (linepath a b x) * vector_derivative (linepath a b) (at x within {0..1})"])
+    using assms * unfolding has_contour_integral_def
+    apply (auto simp: norm_mult)
+    done
+  then show ?thesis
+    by (auto simp: content_real)
+qed
+
+(*UNUSED
+lemma has_contour_integral_bound_linepath_strong:
+  fixes a :: real and f :: "complex \<Rightarrow> real"
+  assumes "(f has_contour_integral i) (linepath a b)"
+          "finite k"
+          "0 \<le> B" "\<And>x::real. x \<in> closed_segment a b - k \<Longrightarrow> norm(f x) \<le> B"
+    shows "norm i \<le> B*norm(b - a)"
+*)
+
+lemma has_contour_integral_const_linepath: "((\<lambda>x. c) has_contour_integral c*(b - a))(linepath a b)"
+  unfolding has_contour_integral_linepath
+  by (metis content_real diff_0_right has_integral_const_real lambda_one of_real_1 scaleR_conv_of_real zero_le_one)
+
+lemma has_contour_integral_0: "((\<lambda>x. 0) has_contour_integral 0) g"
+  by (simp add: has_contour_integral_def)
+
+lemma has_contour_integral_is_0:
+    "(\<And>z. z \<in> path_image g \<Longrightarrow> f z = 0) \<Longrightarrow> (f has_contour_integral 0) g"
+  by (rule has_contour_integral_eq [OF has_contour_integral_0]) auto
+
+lemma has_contour_integral_sum:
+    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a has_contour_integral i a) p\<rbrakk>
+     \<Longrightarrow> ((\<lambda>x. sum (\<lambda>a. f a x) s) has_contour_integral sum i s) p"
+  by (induction s rule: finite_induct) (auto simp: has_contour_integral_0 has_contour_integral_add)
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Operations on path integrals\<close>
+
+lemma contour_integral_const_linepath [simp]: "contour_integral (linepath a b) (\<lambda>x. c) = c*(b - a)"
+  by (rule contour_integral_unique [OF has_contour_integral_const_linepath])
+
+lemma contour_integral_neg:
+    "f contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. -(f x)) = -(contour_integral g f)"
+  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_neg)
+
+lemma contour_integral_add:
+    "f1 contour_integrable_on g \<Longrightarrow> f2 contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. f1 x + f2 x) =
+                contour_integral g f1 + contour_integral g f2"
+  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_add)
+
+lemma contour_integral_diff:
+    "f1 contour_integrable_on g \<Longrightarrow> f2 contour_integrable_on g \<Longrightarrow> contour_integral g (\<lambda>x. f1 x - f2 x) =
+                contour_integral g f1 - contour_integral g f2"
+  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_diff)
+
+lemma contour_integral_lmul:
+  shows "f contour_integrable_on g
+           \<Longrightarrow> contour_integral g (\<lambda>x. c * f x) = c*contour_integral g f"
+  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_lmul)
+
+lemma contour_integral_rmul:
+  shows "f contour_integrable_on g
+        \<Longrightarrow> contour_integral g (\<lambda>x. f x * c) = contour_integral g f * c"
+  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_rmul)
+
+lemma contour_integral_div:
+  shows "f contour_integrable_on g
+        \<Longrightarrow> contour_integral g (\<lambda>x. f x / c) = contour_integral g f / c"
+  by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_div)
+
+lemma contour_integral_eq:
+    "(\<And>x. x \<in> path_image p \<Longrightarrow> f x = g x) \<Longrightarrow> contour_integral p f = contour_integral p g"
+  apply (simp add: contour_integral_def)
+  using has_contour_integral_eq
+  by (metis contour_integral_unique has_contour_integral_integrable has_contour_integral_integral)
+
+lemma contour_integral_eq_0:
+    "(\<And>z. z \<in> path_image g \<Longrightarrow> f z = 0) \<Longrightarrow> contour_integral g f = 0"
+  by (simp add: has_contour_integral_is_0 contour_integral_unique)
+
+lemma contour_integral_bound_linepath:
+  shows
+    "\<lbrakk>f contour_integrable_on (linepath a b);
+      0 \<le> B; \<And>x. x \<in> closed_segment a b \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
+     \<Longrightarrow> norm(contour_integral (linepath a b) f) \<le> B*norm(b - a)"
+  apply (rule has_contour_integral_bound_linepath [of f])
+  apply (auto simp: has_contour_integral_integral)
+  done
+
+lemma contour_integral_0 [simp]: "contour_integral g (\<lambda>x. 0) = 0"
+  by (simp add: contour_integral_unique has_contour_integral_0)
+
+lemma contour_integral_sum:
+    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a) contour_integrable_on p\<rbrakk>
+     \<Longrightarrow> contour_integral p (\<lambda>x. sum (\<lambda>a. f a x) s) = sum (\<lambda>a. contour_integral p (f a)) s"
+  by (auto simp: contour_integral_unique has_contour_integral_sum has_contour_integral_integral)
+
+lemma contour_integrable_eq:
+    "\<lbrakk>f contour_integrable_on p; \<And>x. x \<in> path_image p \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g contour_integrable_on p"
+  unfolding contour_integrable_on_def
+  by (metis has_contour_integral_eq)
+
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetic theorems for path integrability\<close>
+
+lemma contour_integrable_neg:
+    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. -(f x)) contour_integrable_on g"
+  using has_contour_integral_neg contour_integrable_on_def by blast
+
+lemma contour_integrable_add:
+    "\<lbrakk>f1 contour_integrable_on g; f2 contour_integrable_on g\<rbrakk> \<Longrightarrow> (\<lambda>x. f1 x + f2 x) contour_integrable_on g"
+  using has_contour_integral_add contour_integrable_on_def
+  by fastforce
+
+lemma contour_integrable_diff:
+    "\<lbrakk>f1 contour_integrable_on g; f2 contour_integrable_on g\<rbrakk> \<Longrightarrow> (\<lambda>x. f1 x - f2 x) contour_integrable_on g"
+  using has_contour_integral_diff contour_integrable_on_def
+  by fastforce
+
+lemma contour_integrable_lmul:
+    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. c * f x) contour_integrable_on g"
+  using has_contour_integral_lmul contour_integrable_on_def
+  by fastforce
+
+lemma contour_integrable_rmul:
+    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. f x * c) contour_integrable_on g"
+  using has_contour_integral_rmul contour_integrable_on_def
+  by fastforce
+
+lemma contour_integrable_div:
+    "f contour_integrable_on g \<Longrightarrow> (\<lambda>x. f x / c) contour_integrable_on g"
+  using has_contour_integral_div contour_integrable_on_def
+  by fastforce
+
+lemma contour_integrable_sum:
+    "\<lbrakk>finite s; \<And>a. a \<in> s \<Longrightarrow> (f a) contour_integrable_on p\<rbrakk>
+     \<Longrightarrow> (\<lambda>x. sum (\<lambda>a. f a x) s) contour_integrable_on p"
+   unfolding contour_integrable_on_def
+   by (metis has_contour_integral_sum)
+
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Reversing a path integral\<close>
+
+lemma has_contour_integral_reverse_linepath:
+    "(f has_contour_integral i) (linepath a b)
+     \<Longrightarrow> (f has_contour_integral (-i)) (linepath b a)"
+  using has_contour_integral_reversepath valid_path_linepath by fastforce
+
+lemma contour_integral_reverse_linepath:
+    "continuous_on (closed_segment a b) f
+     \<Longrightarrow> contour_integral (linepath a b) f = - (contour_integral(linepath b a) f)"
+apply (rule contour_integral_unique)
+apply (rule has_contour_integral_reverse_linepath)
+by (simp add: closed_segment_commute contour_integrable_continuous_linepath has_contour_integral_integral)
+
+
+(* Splitting a path integral in a flat way.*)
+
+lemma has_contour_integral_split:
+  assumes f: "(f has_contour_integral i) (linepath a c)" "(f has_contour_integral j) (linepath c b)"
+      and k: "0 \<le> k" "k \<le> 1"
+      and c: "c - a = k *\<^sub>R (b - a)"
+    shows "(f has_contour_integral (i + j)) (linepath a b)"
+proof (cases "k = 0 \<or> k = 1")
+  case True
+  then show ?thesis
+    using assms by auto
+next
+  case False
+  then have k: "0 < k" "k < 1" "complex_of_real k \<noteq> 1"
+    using assms by auto
+  have c': "c = k *\<^sub>R (b - a) + a"
+    by (metis diff_add_cancel c)
+  have bc: "(b - c) = (1 - k) *\<^sub>R (b - a)"
+    by (simp add: algebra_simps c')
+  { assume *: "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R c) * (c - a)) has_integral i) {0..1}"
+    have **: "\<And>x. ((k - x) / k) *\<^sub>R a + (x / k) *\<^sub>R c = (1 - x) *\<^sub>R a + x *\<^sub>R b"
+      using False apply (simp add: c' algebra_simps)
+      apply (simp add: real_vector.scale_left_distrib [symmetric] field_split_simps)
+      done
+    have "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R b) * (b - a)) has_integral i) {0..k}"
+      using k has_integral_affinity01 [OF *, of "inverse k" "0"]
+      apply (simp add: divide_simps mult.commute [of _ "k"] image_affinity_atLeastAtMost ** c)
+      apply (auto dest: has_integral_cmul [where c = "inverse k"])
+      done
+  } note fi = this
+  { assume *: "((\<lambda>x. f ((1 - x) *\<^sub>R c + x *\<^sub>R b) * (b - c)) has_integral j) {0..1}"
+    have **: "\<And>x. (((1 - x) / (1 - k)) *\<^sub>R c + ((x - k) / (1 - k)) *\<^sub>R b) = ((1 - x) *\<^sub>R a + x *\<^sub>R b)"
+      using k
+      apply (simp add: c' field_simps)
+      apply (simp add: scaleR_conv_of_real divide_simps)
+      apply (simp add: field_simps)
+      done
+    have "((\<lambda>x. f ((1 - x) *\<^sub>R a + x *\<^sub>R b) * (b - a)) has_integral j) {k..1}"
+      using k has_integral_affinity01 [OF *, of "inverse(1 - k)" "-(k/(1 - k))"]
+      apply (simp add: divide_simps mult.commute [of _ "1-k"] image_affinity_atLeastAtMost ** bc)
+      apply (auto dest: has_integral_cmul [where k = "(1 - k) *\<^sub>R j" and c = "inverse (1 - k)"])
+      done
+  } note fj = this
+  show ?thesis
+    using f k
+    apply (simp add: has_contour_integral_linepath)
+    apply (simp add: linepath_def)
+    apply (rule has_integral_combine [OF _ _ fi fj], simp_all)
+    done
+qed
+
+lemma continuous_on_closed_segment_transform:
+  assumes f: "continuous_on (closed_segment a b) f"
+      and k: "0 \<le> k" "k \<le> 1"
+      and c: "c - a = k *\<^sub>R (b - a)"
+    shows "continuous_on (closed_segment a c) f"
+proof -
+  have c': "c = (1 - k) *\<^sub>R a + k *\<^sub>R b"
+    using c by (simp add: algebra_simps)
+  have "closed_segment a c \<subseteq> closed_segment a b"
+    by (metis c' ends_in_segment(1) in_segment(1) k subset_closed_segment)
+  then show "continuous_on (closed_segment a c) f"
+    by (rule continuous_on_subset [OF f])
+qed
+
+lemma contour_integral_split:
+  assumes f: "continuous_on (closed_segment a b) f"
+      and k: "0 \<le> k" "k \<le> 1"
+      and c: "c - a = k *\<^sub>R (b - a)"
+    shows "contour_integral(linepath a b) f = contour_integral(linepath a c) f + contour_integral(linepath c b) f"
+proof -
+  have c': "c = (1 - k) *\<^sub>R a + k *\<^sub>R b"
+    using c by (simp add: algebra_simps)
+  have "closed_segment a c \<subseteq> closed_segment a b"
+    by (metis c' ends_in_segment(1) in_segment(1) k subset_closed_segment)
+  moreover have "closed_segment c b \<subseteq> closed_segment a b"
+    by (metis c' ends_in_segment(2) in_segment(1) k subset_closed_segment)
+  ultimately
+  have *: "continuous_on (closed_segment a c) f" "continuous_on (closed_segment c b) f"
+    by (auto intro: continuous_on_subset [OF f])
+  show ?thesis
+    by (rule contour_integral_unique) (meson "*" c contour_integrable_continuous_linepath has_contour_integral_integral has_contour_integral_split k)
+qed
+
+lemma contour_integral_split_linepath:
+  assumes f: "continuous_on (closed_segment a b) f"
+      and c: "c \<in> closed_segment a b"
+    shows "contour_integral(linepath a b) f = contour_integral(linepath a c) f + contour_integral(linepath c b) f"
+  using c by (auto simp: closed_segment_def algebra_simps intro!: contour_integral_split [OF f])
+
+subsection\<open>Partial circle path\<close>
+
+definition\<^marker>\<open>tag important\<close> part_circlepath :: "[complex, real, real, real, real] \<Rightarrow> complex"
+  where "part_circlepath z r s t \<equiv> \<lambda>x. z + of_real r * exp (\<i> * of_real (linepath s t x))"
+
+lemma pathstart_part_circlepath [simp]:
+     "pathstart(part_circlepath z r s t) = z + r*exp(\<i> * s)"
+by (metis part_circlepath_def pathstart_def pathstart_linepath)
+
+lemma pathfinish_part_circlepath [simp]:
+     "pathfinish(part_circlepath z r s t) = z + r*exp(\<i>*t)"
+by (metis part_circlepath_def pathfinish_def pathfinish_linepath)
+
+lemma reversepath_part_circlepath[simp]:
+    "reversepath (part_circlepath z r s t) = part_circlepath z r t s"
+  unfolding part_circlepath_def reversepath_def linepath_def 
+  by (auto simp:algebra_simps)
+    
+lemma has_vector_derivative_part_circlepath [derivative_intros]:
+    "((part_circlepath z r s t) has_vector_derivative
+      (\<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)))
+     (at x within X)"
+  apply (simp add: part_circlepath_def linepath_def scaleR_conv_of_real)
+  apply (rule has_vector_derivative_real_field)
+  apply (rule derivative_eq_intros | simp)+
+  done
+
+lemma differentiable_part_circlepath:
+  "part_circlepath c r a b differentiable at x within A"
+  using has_vector_derivative_part_circlepath[of c r a b x A] differentiableI_vector by blast
+
+lemma vector_derivative_part_circlepath:
+    "vector_derivative (part_circlepath z r s t) (at x) =
+       \<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)"
+  using has_vector_derivative_part_circlepath vector_derivative_at by blast
+
+lemma vector_derivative_part_circlepath01:
+    "\<lbrakk>0 \<le> x; x \<le> 1\<rbrakk>
+     \<Longrightarrow> vector_derivative (part_circlepath z r s t) (at x within {0..1}) =
+          \<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)"
+  using has_vector_derivative_part_circlepath
+  by (auto simp: vector_derivative_at_within_ivl)
+
+lemma valid_path_part_circlepath [simp]: "valid_path (part_circlepath z r s t)"
+  apply (simp add: valid_path_def)
+  apply (rule C1_differentiable_imp_piecewise)
+  apply (auto simp: C1_differentiable_on_eq vector_derivative_works vector_derivative_part_circlepath has_vector_derivative_part_circlepath
+              intro!: continuous_intros)
+  done
+
+lemma path_part_circlepath [simp]: "path (part_circlepath z r s t)"
+  by (simp add: valid_path_imp_path)
+
+proposition path_image_part_circlepath:
+  assumes "s \<le> t"
+    shows "path_image (part_circlepath z r s t) = {z + r * exp(\<i> * of_real x) | x. s \<le> x \<and> x \<le> t}"
+proof -
+  { fix z::real
+    assume "0 \<le> z" "z \<le> 1"
+    with \<open>s \<le> t\<close> have "\<exists>x. (exp (\<i> * linepath s t z) = exp (\<i> * of_real x)) \<and> s \<le> x \<and> x \<le> t"
+      apply (rule_tac x="(1 - z) * s + z * t" in exI)
+      apply (simp add: linepath_def scaleR_conv_of_real algebra_simps)
+      apply (rule conjI)
+      using mult_right_mono apply blast
+      using affine_ineq  by (metis "mult.commute")
+  }
+  moreover
+  { fix z
+    assume "s \<le> z" "z \<le> t"
+    then have "z + of_real r * exp (\<i> * of_real z) \<in> (\<lambda>x. z + of_real r * exp (\<i> * linepath s t x)) ` {0..1}"
+      apply (rule_tac x="(z - s)/(t - s)" in image_eqI)
+      apply (simp add: linepath_def scaleR_conv_of_real divide_simps exp_eq)
+      apply (auto simp: field_split_simps)
+      done
+  }
+  ultimately show ?thesis
+    by (fastforce simp add: path_image_def part_circlepath_def)
+qed
+
+lemma path_image_part_circlepath':
+  "path_image (part_circlepath z r s t) = (\<lambda>x. z + r * cis x) ` closed_segment s t"
+proof -
+  have "path_image (part_circlepath z r s t) = 
+          (\<lambda>x. z + r * exp(\<i> * of_real x)) ` linepath s t ` {0..1}"
+    by (simp add: image_image path_image_def part_circlepath_def)
+  also have "linepath s t ` {0..1} = closed_segment s t"
+    by (rule linepath_image_01)
+  finally show ?thesis by (simp add: cis_conv_exp)
+qed
+
+lemma path_image_part_circlepath_subset:
+    "\<lbrakk>s \<le> t; 0 \<le> r\<rbrakk> \<Longrightarrow> path_image(part_circlepath z r s t) \<subseteq> sphere z r"
+by (auto simp: path_image_part_circlepath sphere_def dist_norm algebra_simps norm_mult)
+
+lemma in_path_image_part_circlepath:
+  assumes "w \<in> path_image(part_circlepath z r s t)" "s \<le> t" "0 \<le> r"
+    shows "norm(w - z) = r"
+proof -
+  have "w \<in> {c. dist z c = r}"
+    by (metis (no_types) path_image_part_circlepath_subset sphere_def subset_eq assms)
+  thus ?thesis
+    by (simp add: dist_norm norm_minus_commute)
+qed
+
+lemma path_image_part_circlepath_subset':
+  assumes "r \<ge> 0"
+  shows   "path_image (part_circlepath z r s t) \<subseteq> sphere z r"
+proof (cases "s \<le> t")
+  case True
+  thus ?thesis using path_image_part_circlepath_subset[of s t r z] assms by simp
+next
+  case False
+  thus ?thesis using path_image_part_circlepath_subset[of t s r z] assms
+    by (subst reversepath_part_circlepath [symmetric], subst path_image_reversepath) simp_all
+qed
+
+lemma part_circlepath_cnj: "cnj (part_circlepath c r a b x) = part_circlepath (cnj c) r (-a) (-b) x"
+  by (simp add: part_circlepath_def exp_cnj linepath_def algebra_simps)
+
+lemma contour_integral_bound_part_circlepath:
+  assumes "f contour_integrable_on part_circlepath c r a b"
+  assumes "B \<ge> 0" "r \<ge> 0" "\<And>x. x \<in> path_image (part_circlepath c r a b) \<Longrightarrow> norm (f x) \<le> B"
+  shows   "norm (contour_integral (part_circlepath c r a b) f) \<le> B * r * \<bar>b - a\<bar>"
+proof -
+  let ?I = "integral {0..1} (\<lambda>x. f (part_circlepath c r a b x) * \<i> * of_real (r * (b - a)) *
+              exp (\<i> * linepath a b x))"
+  have "norm ?I \<le> integral {0..1} (\<lambda>x::real. B * 1 * (r * \<bar>b - a\<bar>) * 1)"
+  proof (rule integral_norm_bound_integral, goal_cases)
+    case 1
+    with assms(1) show ?case
+      by (simp add: contour_integrable_on vector_derivative_part_circlepath mult_ac)
+  next
+    case (3 x)
+    with assms(2-) show ?case unfolding norm_mult norm_of_real abs_mult
+      by (intro mult_mono) (auto simp: path_image_def)
+  qed auto
+  also have "?I = contour_integral (part_circlepath c r a b) f"
+    by (simp add: contour_integral_integral vector_derivative_part_circlepath mult_ac)
+  finally show ?thesis by simp
+qed
+
+lemma has_contour_integral_part_circlepath_iff:
+  assumes "a < b"
+  shows "(f has_contour_integral I) (part_circlepath c r a b) \<longleftrightarrow>
+           ((\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) has_integral I) {a..b}"
+proof -
+  have "(f has_contour_integral I) (part_circlepath c r a b) \<longleftrightarrow>
+          ((\<lambda>x. f (part_circlepath c r a b x) * vector_derivative (part_circlepath c r a b)
+           (at x within {0..1})) has_integral I) {0..1}"
+    unfolding has_contour_integral_def ..
+  also have "\<dots> \<longleftrightarrow> ((\<lambda>x. f (part_circlepath c r a b x) * r * (b - a) * \<i> *
+                            cis (linepath a b x)) has_integral I) {0..1}"
+    by (intro has_integral_cong, subst vector_derivative_part_circlepath01)
+       (simp_all add: cis_conv_exp)
+  also have "\<dots> \<longleftrightarrow> ((\<lambda>x. f (c + r * exp (\<i> * linepath (of_real a) (of_real b) x)) *
+                       r * \<i> * exp (\<i> * linepath (of_real a) (of_real b) x) *
+                       vector_derivative (linepath (of_real a) (of_real b)) 
+                         (at x within {0..1})) has_integral I) {0..1}"
+    by (intro has_integral_cong, subst vector_derivative_linepath_within)
+       (auto simp: part_circlepath_def cis_conv_exp of_real_linepath [symmetric])
+  also have "\<dots> \<longleftrightarrow> ((\<lambda>z. f (c + r * exp (\<i> * z)) * r * \<i> * exp (\<i> * z)) has_contour_integral I)
+                      (linepath (of_real a) (of_real b))"
+    by (simp add: has_contour_integral_def)
+  also have "\<dots> \<longleftrightarrow> ((\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) has_integral I) {a..b}" using assms
+    by (subst has_contour_integral_linepath_Reals_iff) (simp_all add: cis_conv_exp)
+  finally show ?thesis .
+qed
+
+lemma contour_integrable_part_circlepath_iff:
+  assumes "a < b"
+  shows "f contour_integrable_on (part_circlepath c r a b) \<longleftrightarrow>
+           (\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}"
+  using assms by (auto simp: contour_integrable_on_def integrable_on_def 
+                             has_contour_integral_part_circlepath_iff)
+
+lemma contour_integral_part_circlepath_eq:
+  assumes "a < b"
+  shows "contour_integral (part_circlepath c r a b) f =
+           integral {a..b} (\<lambda>t. f (c + r * cis t) * r * \<i> * cis t)"
+proof (cases "f contour_integrable_on part_circlepath c r a b")
+  case True
+  hence "(\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}" 
+    using assms by (simp add: contour_integrable_part_circlepath_iff)
+  with True show ?thesis
+    using has_contour_integral_part_circlepath_iff[OF assms]
+          contour_integral_unique has_integral_integrable_integral by blast
+next
+  case False
+  hence "\<not>(\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}" 
+    using assms by (simp add: contour_integrable_part_circlepath_iff)
+  with False show ?thesis
+    by (simp add: not_integrable_contour_integral not_integrable_integral)
+qed
+
+lemma contour_integral_part_circlepath_reverse:
+  "contour_integral (part_circlepath c r a b) f = -contour_integral (part_circlepath c r b a) f"
+  by (subst reversepath_part_circlepath [symmetric], subst contour_integral_reversepath) simp_all
+
+lemma contour_integral_part_circlepath_reverse':
+  "b < a \<Longrightarrow> contour_integral (part_circlepath c r a b) f = 
+               -contour_integral (part_circlepath c r b a) f"
+  by (rule contour_integral_part_circlepath_reverse)
+
+lemma finite_bounded_log: "finite {z::complex. norm z \<le> b \<and> exp z = w}"
+proof (cases "w = 0")
+  case True then show ?thesis by auto
+next
+  case False
+  have *: "finite {x. cmod (complex_of_real (2 * real_of_int x * pi) * \<i>) \<le> b + cmod (Ln w)}"
+    apply (simp add: norm_mult finite_int_iff_bounded_le)
+    apply (rule_tac x="\<lfloor>(b + cmod (Ln w)) / (2*pi)\<rfloor>" in exI)
+    apply (auto simp: field_split_simps le_floor_iff)
+    done
+  have [simp]: "\<And>P f. {z. P z \<and> (\<exists>n. z = f n)} = f ` {n. P (f n)}"
+    by blast
+  show ?thesis
+    apply (subst exp_Ln [OF False, symmetric])
+    apply (simp add: exp_eq)
+    using norm_add_leD apply (fastforce intro: finite_subset [OF _ *])
+    done
+qed
+
+lemma finite_bounded_log2:
+  fixes a::complex
+    assumes "a \<noteq> 0"
+    shows "finite {z. norm z \<le> b \<and> exp(a*z) = w}"
+proof -
+  have *: "finite ((\<lambda>z. z / a) ` {z. cmod z \<le> b * cmod a \<and> exp z = w})"
+    by (rule finite_imageI [OF finite_bounded_log])
+  show ?thesis
+    by (rule finite_subset [OF _ *]) (force simp: assms norm_mult)
+qed
+
+lemma has_contour_integral_bound_part_circlepath_strong:
+  assumes fi: "(f has_contour_integral i) (part_circlepath z r s t)"
+      and "finite k" and le: "0 \<le> B" "0 < r" "s \<le> t"
+      and B: "\<And>x. x \<in> path_image(part_circlepath z r s t) - k \<Longrightarrow> norm(f x) \<le> B"
+    shows "cmod i \<le> B * r * (t - s)"
+proof -
+  consider "s = t" | "s < t" using \<open>s \<le> t\<close> by linarith
+  then show ?thesis
+  proof cases
+    case 1 with fi [unfolded has_contour_integral]
+    have "i = 0"  by (simp add: vector_derivative_part_circlepath)
+    with assms show ?thesis by simp
+  next
+    case 2
+    have [simp]: "\<bar>r\<bar> = r" using \<open>r > 0\<close> by linarith
+    have [simp]: "cmod (complex_of_real t - complex_of_real s) = t-s"
+      by (metis "2" abs_of_pos diff_gt_0_iff_gt norm_of_real of_real_diff)
+    have "finite (part_circlepath z r s t -` {y} \<inter> {0..1})" if "y \<in> k" for y
+    proof -
+      define w where "w = (y - z)/of_real r / exp(\<i> * of_real s)"
+      have fin: "finite (of_real -` {z. cmod z \<le> 1 \<and> exp (\<i> * complex_of_real (t - s) * z) = w})"
+        apply (rule finite_vimageI [OF finite_bounded_log2])
+        using \<open>s < t\<close> apply (auto simp: inj_of_real)
+        done
+      show ?thesis
+        apply (simp add: part_circlepath_def linepath_def vimage_def)
+        apply (rule finite_subset [OF _ fin])
+        using le
+        apply (auto simp: w_def algebra_simps scaleR_conv_of_real exp_add exp_diff)
+        done
+    qed
+    then have fin01: "finite ((part_circlepath z r s t) -` k \<inter> {0..1})"
+      by (rule finite_finite_vimage_IntI [OF \<open>finite k\<close>])
+    have **: "((\<lambda>x. if (part_circlepath z r s t x) \<in> k then 0
+                    else f(part_circlepath z r s t x) *
+                       vector_derivative (part_circlepath z r s t) (at x)) has_integral i)  {0..1}"
+      by (rule has_integral_spike [OF negligible_finite [OF fin01]])  (use fi has_contour_integral in auto)
+    have *: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1; part_circlepath z r s t x \<notin> k\<rbrakk> \<Longrightarrow> cmod (f (part_circlepath z r s t x)) \<le> B"
+      by (auto intro!: B [unfolded path_image_def image_def, simplified])
+    show ?thesis
+      apply (rule has_integral_bound [where 'a=real, simplified, OF _ **, simplified])
+      using assms apply force
+      apply (simp add: norm_mult vector_derivative_part_circlepath)
+      using le * "2" \<open>r > 0\<close> by auto
+  qed
+qed
+
+lemma has_contour_integral_bound_part_circlepath:
+      "\<lbrakk>(f has_contour_integral i) (part_circlepath z r s t);
+        0 \<le> B; 0 < r; s \<le> t;
+        \<And>x. x \<in> path_image(part_circlepath z r s t) \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
+       \<Longrightarrow> norm i \<le> B*r*(t - s)"
+  by (auto intro: has_contour_integral_bound_part_circlepath_strong)
+
+lemma contour_integrable_continuous_part_circlepath:
+     "continuous_on (path_image (part_circlepath z r s t)) f
+      \<Longrightarrow> f contour_integrable_on (part_circlepath z r s t)"
+  apply (simp add: contour_integrable_on has_contour_integral_def vector_derivative_part_circlepath path_image_def)
+  apply (rule integrable_continuous_real)
+  apply (fast intro: path_part_circlepath [unfolded path_def] continuous_intros continuous_on_compose2 [where g=f, OF _ _ order_refl])
+  done
+
+lemma simple_path_part_circlepath:
+    "simple_path(part_circlepath z r s t) \<longleftrightarrow> (r \<noteq> 0 \<and> s \<noteq> t \<and> \<bar>s - t\<bar> \<le> 2*pi)"
+proof (cases "r = 0 \<or> s = t")
+  case True
+  then show ?thesis
+    unfolding part_circlepath_def simple_path_def
+    by (rule disjE) (force intro: bexI [where x = "1/4"] bexI [where x = "1/3"])+
+next
+  case False then have "r \<noteq> 0" "s \<noteq> t" by auto
+  have *: "\<And>x y z s t. \<i>*((1 - x) * s + x * t) = \<i>*(((1 - y) * s + y * t)) + z  \<longleftrightarrow> \<i>*(x - y) * (t - s) = z"
+    by (simp add: algebra_simps)
+  have abs01: "\<And>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1
+                      \<Longrightarrow> (x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0 \<longleftrightarrow> \<bar>x - y\<bar> \<in> {0,1})"
+    by auto
+  have **: "\<And>x y. (\<exists>n. (complex_of_real x - of_real y) * (of_real t - of_real s) = 2 * (of_int n * of_real pi)) \<longleftrightarrow>
+                  (\<exists>n. \<bar>x - y\<bar> * (t - s) = 2 * (of_int n * pi))"
+    by (force simp: algebra_simps abs_if dest: arg_cong [where f=Re] arg_cong [where f=complex_of_real]
+                    intro: exI [where x = "-n" for n])
+  have 1: "\<bar>s - t\<bar> \<le> 2 * pi"
+    if "\<And>x. 0 \<le> x \<and> x \<le> 1 \<Longrightarrow> (\<exists>n. x * (t - s) = 2 * (real_of_int n * pi)) \<longrightarrow> x = 0 \<or> x = 1"
+  proof (rule ccontr)
+    assume "\<not> \<bar>s - t\<bar> \<le> 2 * pi"
+    then have *: "\<And>n. t - s \<noteq> of_int n * \<bar>s - t\<bar>"
+      using False that [of "2*pi / \<bar>t - s\<bar>"]
+      by (simp add: abs_minus_commute divide_simps)
+    show False
+      using * [of 1] * [of "-1"] by auto
+  qed
+  have 2: "\<bar>s - t\<bar> = \<bar>2 * (real_of_int n * pi) / x\<bar>" if "x \<noteq> 0" "x * (t - s) = 2 * (real_of_int n * pi)" for x n
+  proof -
+    have "t-s = 2 * (real_of_int n * pi)/x"
+      using that by (simp add: field_simps)
+    then show ?thesis by (metis abs_minus_commute)
+  qed
+  have abs_away: "\<And>P. (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. P \<bar>x - y\<bar>) \<longleftrightarrow> (\<forall>x::real. 0 \<le> x \<and> x \<le> 1 \<longrightarrow> P x)"
+    by force
+  show ?thesis using False
+    apply (simp add: simple_path_def)
+    apply (simp add: part_circlepath_def linepath_def exp_eq  * ** abs01  del: Set.insert_iff)
+    apply (subst abs_away)
+    apply (auto simp: 1)
+    apply (rule ccontr)
+    apply (auto simp: 2 field_split_simps abs_mult dest: of_int_leD)
+    done
+qed
+
+lemma arc_part_circlepath:
+  assumes "r \<noteq> 0" "s \<noteq> t" "\<bar>s - t\<bar> < 2*pi"
+    shows "arc (part_circlepath z r s t)"
+proof -
+  have *: "x = y" if eq: "\<i> * (linepath s t x) = \<i> * (linepath s t y) + 2 * of_int n * complex_of_real pi * \<i>"
+    and x: "x \<in> {0..1}" and y: "y \<in> {0..1}" for x y n
+  proof (rule ccontr)
+    assume "x \<noteq> y"
+    have "(linepath s t x) = (linepath s t y) + 2 * of_int n * complex_of_real pi"
+      by (metis add_divide_eq_iff complex_i_not_zero mult.commute nonzero_mult_div_cancel_left eq)
+    then have "s*y + t*x = s*x + (t*y + of_int n * (pi * 2))"
+      by (force simp: algebra_simps linepath_def dest: arg_cong [where f=Re])
+    with \<open>x \<noteq> y\<close> have st: "s-t = (of_int n * (pi * 2) / (y-x))"
+      by (force simp: field_simps)
+    have "\<bar>real_of_int n\<bar> < \<bar>y - x\<bar>"
+      using assms \<open>x \<noteq> y\<close> by (simp add: st abs_mult field_simps)
+    then show False
+      using assms x y st by (auto dest: of_int_lessD)
+  qed
+  show ?thesis
+    using assms
+    apply (simp add: arc_def)
+    apply (simp add: part_circlepath_def inj_on_def exp_eq)
+    apply (blast intro: *)
+    done
+qed
+
+subsection\<open>Special case of one complete circle\<close>
+
+definition\<^marker>\<open>tag important\<close> circlepath :: "[complex, real, real] \<Rightarrow> complex"
+  where "circlepath z r \<equiv> part_circlepath z r 0 (2*pi)"
+
+lemma circlepath: "circlepath z r = (\<lambda>x. z + r * exp(2 * of_real pi * \<i> * of_real x))"
+  by (simp add: circlepath_def part_circlepath_def linepath_def algebra_simps)
+
+lemma pathstart_circlepath [simp]: "pathstart (circlepath z r) = z + r"
+  by (simp add: circlepath_def)
+
+lemma pathfinish_circlepath [simp]: "pathfinish (circlepath z r) = z + r"
+  by (simp add: circlepath_def) (metis exp_two_pi_i mult.commute)
+
+lemma circlepath_minus: "circlepath z (-r) x = circlepath z r (x + 1/2)"
+proof -
+  have "z + of_real r * exp (2 * pi * \<i> * (x + 1/2)) =
+        z + of_real r * exp (2 * pi * \<i> * x + pi * \<i>)"
+    by (simp add: divide_simps) (simp add: algebra_simps)
+  also have "\<dots> = z - r * exp (2 * pi * \<i> * x)"
+    by (simp add: exp_add)
+  finally show ?thesis
+    by (simp add: circlepath path_image_def sphere_def dist_norm)
+qed
+
+lemma circlepath_add1: "circlepath z r (x+1) = circlepath z r x"
+  using circlepath_minus [of z r "x+1/2"] circlepath_minus [of z "-r" x]
+  by (simp add: add.commute)
+
+lemma circlepath_add_half: "circlepath z r (x + 1/2) = circlepath z r (x - 1/2)"
+  using circlepath_add1 [of z r "x-1/2"]
+  by (simp add: add.commute)
+
+lemma path_image_circlepath_minus_subset:
+     "path_image (circlepath z (-r)) \<subseteq> path_image (circlepath z r)"
+  apply (simp add: path_image_def image_def circlepath_minus, clarify)
+  apply (case_tac "xa \<le> 1/2", force)
+  apply (force simp: circlepath_add_half)+
+  done
+
+lemma path_image_circlepath_minus: "path_image (circlepath z (-r)) = path_image (circlepath z r)"
+  using path_image_circlepath_minus_subset by fastforce
+
+lemma has_vector_derivative_circlepath [derivative_intros]:
+ "((circlepath z r) has_vector_derivative (2 * pi * \<i> * r * exp (2 * of_real pi * \<i> * of_real x)))
+   (at x within X)"
+  apply (simp add: circlepath_def scaleR_conv_of_real)
+  apply (rule derivative_eq_intros)
+  apply (simp add: algebra_simps)
+  done
+
+lemma vector_derivative_circlepath:
+   "vector_derivative (circlepath z r) (at x) =
+    2 * pi * \<i> * r * exp(2 * of_real pi * \<i> * x)"
+using has_vector_derivative_circlepath vector_derivative_at by blast
+
+lemma vector_derivative_circlepath01:
+    "\<lbrakk>0 \<le> x; x \<le> 1\<rbrakk>
+     \<Longrightarrow> vector_derivative (circlepath z r) (at x within {0..1}) =
+          2 * pi * \<i> * r * exp(2 * of_real pi * \<i> * x)"
+  using has_vector_derivative_circlepath
+  by (auto simp: vector_derivative_at_within_ivl)
+
+lemma valid_path_circlepath [simp]: "valid_path (circlepath z r)"
+  by (simp add: circlepath_def)
+
+lemma path_circlepath [simp]: "path (circlepath z r)"
+  by (simp add: valid_path_imp_path)
+
+lemma path_image_circlepath_nonneg:
+  assumes "0 \<le> r" shows "path_image (circlepath z r) = sphere z r"
+proof -
+  have *: "x \<in> (\<lambda>u. z + (cmod (x - z)) * exp (\<i> * (of_real u * (of_real pi * 2)))) ` {0..1}" for x
+  proof (cases "x = z")
+    case True then show ?thesis by force
+  next
+    case False
+    define w where "w = x - z"
+    then have "w \<noteq> 0" by (simp add: False)
+    have **: "\<And>t. \<lbrakk>Re w = cos t * cmod w; Im w = sin t * cmod w\<rbrakk> \<Longrightarrow> w = of_real (cmod w) * exp (\<i> * t)"
+      using cis_conv_exp complex_eq_iff by auto
+    show ?thesis
+      apply (rule sincos_total_2pi [of "Re(w/of_real(norm w))" "Im(w/of_real(norm w))"])
+      apply (simp add: divide_simps \<open>w \<noteq> 0\<close> cmod_power2 [symmetric])
+      apply (rule_tac x="t / (2*pi)" in image_eqI)
+      apply (simp add: field_simps \<open>w \<noteq> 0\<close>)
+      using False **
+      apply (auto simp: w_def)
+      done
+  qed
+  show ?thesis
+    unfolding circlepath path_image_def sphere_def dist_norm
+    by (force simp: assms algebra_simps norm_mult norm_minus_commute intro: *)
+qed
+
+lemma path_image_circlepath [simp]:
+    "path_image (circlepath z r) = sphere z \<bar>r\<bar>"
+  using path_image_circlepath_minus
+  by (force simp: path_image_circlepath_nonneg abs_if)
+
+lemma has_contour_integral_bound_circlepath_strong:
+      "\<lbrakk>(f has_contour_integral i) (circlepath z r);
+        finite k; 0 \<le> B; 0 < r;
+        \<And>x. \<lbrakk>norm(x - z) = r; x \<notin> k\<rbrakk> \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
+        \<Longrightarrow> norm i \<le> B*(2*pi*r)"
+  unfolding circlepath_def
+  by (auto simp: algebra_simps in_path_image_part_circlepath dest!: has_contour_integral_bound_part_circlepath_strong)
+
+lemma has_contour_integral_bound_circlepath:
+      "\<lbrakk>(f has_contour_integral i) (circlepath z r);
+        0 \<le> B; 0 < r; \<And>x. norm(x - z) = r \<Longrightarrow> norm(f x) \<le> B\<rbrakk>
+        \<Longrightarrow> norm i \<le> B*(2*pi*r)"
+  by (auto intro: has_contour_integral_bound_circlepath_strong)
+
+lemma contour_integrable_continuous_circlepath:
+    "continuous_on (path_image (circlepath z r)) f
+     \<Longrightarrow> f contour_integrable_on (circlepath z r)"
+  by (simp add: circlepath_def contour_integrable_continuous_part_circlepath)
+
+lemma simple_path_circlepath: "simple_path(circlepath z r) \<longleftrightarrow> (r \<noteq> 0)"
+  by (simp add: circlepath_def simple_path_part_circlepath)
+
+lemma notin_path_image_circlepath [simp]: "cmod (w - z) < r \<Longrightarrow> w \<notin> path_image (circlepath z r)"
+  by (simp add: sphere_def dist_norm norm_minus_commute)
+
+lemma contour_integral_circlepath:
+  assumes "r > 0"
+  shows "contour_integral (circlepath z r) (\<lambda>w. 1 / (w - z)) = 2 * complex_of_real pi * \<i>"
+proof (rule contour_integral_unique)
+  show "((\<lambda>w. 1 / (w - z)) has_contour_integral 2 * complex_of_real pi * \<i>) (circlepath z r)"
+    unfolding has_contour_integral_def using assms
+    apply (subst has_integral_cong)
+     apply (simp add: vector_derivative_circlepath01)
+    using has_integral_const_real [of _ 0 1] apply (force simp: circlepath)
+    done
+qed
+
+
+subsection\<open> Uniform convergence of path integral\<close>
+
+text\<open>Uniform convergence when the derivative of the path is bounded, and in particular for the special case of a circle.\<close>
+
+proposition contour_integral_uniform_limit:
+  assumes ev_fint: "eventually (\<lambda>n::'a. (f n) contour_integrable_on \<gamma>) F"
+      and ul_f: "uniform_limit (path_image \<gamma>) f l F"
+      and noleB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B"
+      and \<gamma>: "valid_path \<gamma>"
+      and [simp]: "\<not> trivial_limit F"
+  shows "l contour_integrable_on \<gamma>" "((\<lambda>n. contour_integral \<gamma> (f n)) \<longlongrightarrow> contour_integral \<gamma> l) F"
+proof -
+  have "0 \<le> B" by (meson noleB [of 0] atLeastAtMost_iff norm_ge_zero order_refl order_trans zero_le_one)
+  { fix e::real
+    assume "0 < e"
+    then have "0 < e / (\<bar>B\<bar> + 1)" by simp
+    then have "\<forall>\<^sub>F n in F. \<forall>x\<in>path_image \<gamma>. cmod (f n x - l x) < e / (\<bar>B\<bar> + 1)"
+      using ul_f [unfolded uniform_limit_iff dist_norm] by auto
+    with ev_fint
+    obtain a where fga: "\<And>x. x \<in> {0..1} \<Longrightarrow> cmod (f a (\<gamma> x) - l (\<gamma> x)) < e / (\<bar>B\<bar> + 1)"
+               and inta: "(\<lambda>t. f a (\<gamma> t) * vector_derivative \<gamma> (at t)) integrable_on {0..1}"
+      using eventually_happens [OF eventually_conj]
+      by (fastforce simp: contour_integrable_on path_image_def)
+    have Ble: "B * e / (\<bar>B\<bar> + 1) \<le> e"
+      using \<open>0 \<le> B\<close>  \<open>0 < e\<close> by (simp add: field_split_simps)
+    have "\<exists>h. (\<forall>x\<in>{0..1}. cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - h x) \<le> e) \<and> h integrable_on {0..1}"
+    proof (intro exI conjI ballI)
+      show "cmod (l (\<gamma> x) * vector_derivative \<gamma> (at x) - f a (\<gamma> x) * vector_derivative \<gamma> (at x)) \<le> e"
+        if "x \<in> {0..1}" for x
+        apply (rule order_trans [OF _ Ble])
+        using noleB [OF that] fga [OF that] \<open>0 \<le> B\<close> \<open>0 < e\<close>
+        apply (simp add: norm_mult left_diff_distrib [symmetric] norm_minus_commute divide_simps)
+        apply (fastforce simp: mult_ac dest: mult_mono [OF less_imp_le])
+        done
+    qed (rule inta)
+  }
+  then show lintg: "l contour_integrable_on \<gamma>"
+    unfolding contour_integrable_on by (metis (mono_tags, lifting)integrable_uniform_limit_real)
+  { fix e::real
+    define B' where "B' = B + 1"
+    have B': "B' > 0" "B' > B" using  \<open>0 \<le> B\<close> by (auto simp: B'_def)
+    assume "0 < e"
+    then have ev_no': "\<forall>\<^sub>F n in F. \<forall>x\<in>path_image \<gamma>. 2 * cmod (f n x - l x) < e / B'"
+      using ul_f [unfolded uniform_limit_iff dist_norm, rule_format, of "e / B' / 2"] B'
+        by (simp add: field_simps)
+    have ie: "integral {0..1::real} (\<lambda>x. e / 2) < e" using \<open>0 < e\<close> by simp
+    have *: "cmod (f x (\<gamma> t) * vector_derivative \<gamma> (at t) - l (\<gamma> t) * vector_derivative \<gamma> (at t)) \<le> e / 2"
+             if t: "t\<in>{0..1}" and leB': "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) < e / B'" for x t
+    proof -
+      have "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) * cmod (vector_derivative \<gamma> (at t)) \<le> e * (B/ B')"
+        using mult_mono [OF less_imp_le [OF leB'] noleB] B' \<open>0 < e\<close> t by auto
+      also have "\<dots> < e"
+        by (simp add: B' \<open>0 < e\<close> mult_imp_div_pos_less)
+      finally have "2 * cmod (f x (\<gamma> t) - l (\<gamma> t)) * cmod (vector_derivative \<gamma> (at t)) < e" .
+      then show ?thesis
+        by (simp add: left_diff_distrib [symmetric] norm_mult)
+    qed
+    have le_e: "\<And>x. \<lbrakk>\<forall>xa\<in>{0..1}. 2 * cmod (f x (\<gamma> xa) - l (\<gamma> xa)) < e / B'; f x contour_integrable_on \<gamma>\<rbrakk>
+         \<Longrightarrow> cmod (integral {0..1}
+                    (\<lambda>u. f x (\<gamma> u) * vector_derivative \<gamma> (at u) - l (\<gamma> u) * vector_derivative \<gamma> (at u))) < e"
+      apply (rule le_less_trans [OF integral_norm_bound_integral ie])
+        apply (simp add: lintg integrable_diff contour_integrable_on [symmetric])
+       apply (blast intro: *)+
+      done
+    have "\<forall>\<^sub>F x in F. dist (contour_integral \<gamma> (f x)) (contour_integral \<gamma> l) < e"
+      apply (rule eventually_mono [OF eventually_conj [OF ev_no' ev_fint]])
+      apply (simp add: dist_norm contour_integrable_on path_image_def contour_integral_integral)
+      apply (simp add: lintg integral_diff [symmetric] contour_integrable_on [symmetric] le_e)
+      done
+  }
+  then show "((\<lambda>n. contour_integral \<gamma> (f n)) \<longlongrightarrow> contour_integral \<gamma> l) F"
+    by (rule tendstoI)
+qed
+
+corollary\<^marker>\<open>tag unimportant\<close> contour_integral_uniform_limit_circlepath:
+  assumes "\<forall>\<^sub>F n::'a in F. (f n) contour_integrable_on (circlepath z r)"
+      and "uniform_limit (sphere z r) f l F"
+      and "\<not> trivial_limit F" "0 < r"
+    shows "l contour_integrable_on (circlepath z r)"
+          "((\<lambda>n. contour_integral (circlepath z r) (f n)) \<longlongrightarrow> contour_integral (circlepath z r) l) F"
+  using assms by (auto simp: vector_derivative_circlepath norm_mult intro!: contour_integral_uniform_limit)
+
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>General stepping result for derivative formulas\<close>
+
+lemma Cauchy_next_derivative:
+  assumes "continuous_on (path_image \<gamma>) f'"
+      and leB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B"
+      and int: "\<And>w. w \<in> s - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f' u / (u - w)^k) has_contour_integral f w) \<gamma>"
+      and k: "k \<noteq> 0"
+      and "open s"
+      and \<gamma>: "valid_path \<gamma>"
+      and w: "w \<in> s - path_image \<gamma>"
+    shows "(\<lambda>u. f' u / (u - w)^(Suc k)) contour_integrable_on \<gamma>"
+      and "(f has_field_derivative (k * contour_integral \<gamma> (\<lambda>u. f' u/(u - w)^(Suc k))))
+           (at w)"  (is "?thes2")
+proof -
+  have "open (s - path_image \<gamma>)" using \<open>open s\<close> closed_valid_path_image \<gamma> by blast
+  then obtain d where "d>0" and d: "ball w d \<subseteq> s - path_image \<gamma>" using w
+    using open_contains_ball by blast
+  have [simp]: "\<And>n. cmod (1 + of_nat n) = 1 + of_nat n"
+    by (metis norm_of_nat of_nat_Suc)
+  have cint: "\<And>x. \<lbrakk>x \<noteq> w; cmod (x - w) < d\<rbrakk>
+         \<Longrightarrow> (\<lambda>z. (f' z / (z - x) ^ k - f' z / (z - w) ^ k) / (x * k - w * k)) contour_integrable_on \<gamma>"
+    apply (rule contour_integrable_div [OF contour_integrable_diff])
+    using int w d
+    by (force simp: dist_norm norm_minus_commute intro!: has_contour_integral_integrable)+
+  have 1: "\<forall>\<^sub>F n in at w. (\<lambda>x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k)
+                         contour_integrable_on \<gamma>"
+    unfolding eventually_at
+    apply (rule_tac x=d in exI)
+    apply (simp add: \<open>d > 0\<close> dist_norm field_simps cint)
+    done
+  have bim_g: "bounded (image f' (path_image \<gamma>))"
+    by (simp add: compact_imp_bounded compact_continuous_image compact_valid_path_image assms)
+  then obtain C where "C > 0" and C: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cmod (f' (\<gamma> x)) \<le> C"
+    by (force simp: bounded_pos path_image_def)
+  have twom: "\<forall>\<^sub>F n in at w.
+               \<forall>x\<in>path_image \<gamma>.
+                cmod ((inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k - inverse (x - w) ^ Suc k) < e"
+         if "0 < e" for e
+  proof -
+    have *: "cmod ((inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k) - inverse (x - w) ^ Suc k)   < e"
+            if x: "x \<in> path_image \<gamma>" and "u \<noteq> w" and uwd: "cmod (u - w) < d/2"
+                and uw_less: "cmod (u - w) < e * (d/2) ^ (k+2) / (1 + real k)"
+            for u x
+    proof -
+      define ff where [abs_def]:
+        "ff n w =
+          (if n = 0 then inverse(x - w)^k
+           else if n = 1 then k / (x - w)^(Suc k)
+           else (k * of_real(Suc k)) / (x - w)^(k + 2))" for n :: nat and w
+      have km1: "\<And>z::complex. z \<noteq> 0 \<Longrightarrow> z ^ (k - Suc 0) = z ^ k / z"
+        by (simp add: field_simps) (metis Suc_pred \<open>k \<noteq> 0\<close> neq0_conv power_Suc)
+      have ff1: "(ff i has_field_derivative ff (Suc i) z) (at z within ball w (d/2))"
+              if "z \<in> ball w (d/2)" "i \<le> 1" for i z
+      proof -
+        have "z \<notin> path_image \<gamma>"
+          using \<open>x \<in> path_image \<gamma>\<close> d that ball_divide_subset_numeral by blast
+        then have xz[simp]: "x \<noteq> z" using \<open>x \<in> path_image \<gamma>\<close> by blast
+        then have neq: "x * x + z * z \<noteq> x * (z * 2)"
+          by (blast intro: dest!: sum_sqs_eq)
+        with xz have "\<And>v. v \<noteq> 0 \<Longrightarrow> (x * x + z * z) * v \<noteq> (x * (z * 2) * v)" by auto
+        then have neqq: "\<And>v. v \<noteq> 0 \<Longrightarrow> x * (x * v) + z * (z * v) \<noteq> x * (z * (2 * v))"
+          by (simp add: algebra_simps)
+        show ?thesis using \<open>i \<le> 1\<close>
+          apply (simp add: ff_def dist_norm Nat.le_Suc_eq km1, safe)
+          apply (rule derivative_eq_intros | simp add: km1 | simp add: field_simps neq neqq)+
+          done
+      qed
+      { fix a::real and b::real assume ab: "a > 0" "b > 0"
+        then have "k * (1 + real k) * (1 / a) \<le> k * (1 + real k) * (4 / b) \<longleftrightarrow> b \<le> 4 * a"
+          by (subst mult_le_cancel_left_pos)
+            (use \<open>k \<noteq> 0\<close> in \<open>auto simp: divide_simps\<close>)
+        with ab have "real k * (1 + real k) / a \<le> (real k * 4 + real k * real k * 4) / b \<longleftrightarrow> b \<le> 4 * a"
+          by (simp add: field_simps)
+      } note canc = this
+      have ff2: "cmod (ff (Suc 1) v) \<le> real (k * (k + 1)) / (d/2) ^ (k + 2)"
+                if "v \<in> ball w (d/2)" for v
+      proof -
+        have lessd: "\<And>z. cmod (\<gamma> z - v) < d/2 \<Longrightarrow> cmod (w - \<gamma> z) < d"
+          by (metis that norm_minus_commute norm_triangle_half_r dist_norm mem_ball)
+        have "d/2 \<le> cmod (x - v)" using d x that
+          using lessd d x
+          by (auto simp add: dist_norm path_image_def ball_def not_less [symmetric] del: divide_const_simps)
+        then have "d \<le> cmod (x - v) * 2"
+          by (simp add: field_split_simps)
+        then have dpow_le: "d ^ (k+2) \<le> (cmod (x - v) * 2) ^ (k+2)"
+          using \<open>0 < d\<close> order_less_imp_le power_mono by blast
+        have "x \<noteq> v" using that
+          using \<open>x \<in> path_image \<gamma>\<close> ball_divide_subset_numeral d by fastforce
+        then show ?thesis
+        using \<open>d > 0\<close> apply (simp add: ff_def norm_mult norm_divide norm_power dist_norm canc)
+        using dpow_le apply (simp add: field_split_simps)
+        done
+      qed
+      have ub: "u \<in> ball w (d/2)"
+        using uwd by (simp add: dist_commute dist_norm)
+      have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
+                  \<le> (real k * 4 + real k * real k * 4) * (cmod (u - w) * cmod (u - w)) / (d * (d * (d/2) ^ k))"
+        using complex_Taylor [OF _ ff1 ff2 _ ub, of w, simplified]
+        by (simp add: ff_def \<open>0 < d\<close>)
+      then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
+                  \<le> (cmod (u - w) * real k) * (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)"
+        by (simp add: field_simps)
+      then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k)))
+                 / (cmod (u - w) * real k)
+                  \<le> (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)"
+        using \<open>k \<noteq> 0\<close> \<open>u \<noteq> w\<close> by (simp add: mult_ac zero_less_mult_iff pos_divide_le_eq)
+      also have "\<dots> < e"
+        using uw_less \<open>0 < d\<close> by (simp add: mult_ac divide_simps)
+      finally have e: "cmod (inverse (x-u)^k - (inverse (x-w)^k + of_nat k * (u-w) / ((x-w) * (x-w)^k)))
+                        / cmod ((u - w) * real k)   <   e"
+        by (simp add: norm_mult)
+      have "x \<noteq> u"
+        using uwd \<open>0 < d\<close> x d by (force simp: dist_norm ball_def norm_minus_commute)
+      show ?thesis
+        apply (rule le_less_trans [OF _ e])
+        using \<open>k \<noteq> 0\<close> \<open>x \<noteq> u\<close> \<open>u \<noteq> w\<close>
+        apply (simp add: field_simps norm_divide [symmetric])
+        done
+    qed
+    show ?thesis
+      unfolding eventually_at
+      apply (rule_tac x = "min (d/2) ((e*(d/2)^(k + 2))/(Suc k))" in exI)
+      apply (force simp: \<open>d > 0\<close> dist_norm that simp del: power_Suc intro: *)
+      done
+  qed
+  have 2: "uniform_limit (path_image \<gamma>) (\<lambda>n x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k) (\<lambda>x. f' x / (x - w) ^ Suc k) (at w)"
+    unfolding uniform_limit_iff dist_norm
+  proof clarify
+    fix e::real
+    assume "0 < e"
+    have *: "cmod (f' (\<gamma> x) * (inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
+                        f' (\<gamma> x) / ((\<gamma> x - w) * (\<gamma> x - w) ^ k)) < e"
+              if ec: "cmod ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
+                      inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k) < e / C"
+                 and x: "0 \<le> x" "x \<le> 1"
+              for u x
+    proof (cases "(f' (\<gamma> x)) = 0")
+      case True then show ?thesis by (simp add: \<open>0 < e\<close>)
+    next
+      case False
+      have "cmod (f' (\<gamma> x) * (inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
+                        f' (\<gamma> x) / ((\<gamma> x - w) * (\<gamma> x - w) ^ k)) =
+            cmod (f' (\<gamma> x) * ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
+                             inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k))"
+        by (simp add: field_simps)
+      also have "\<dots> = cmod (f' (\<gamma> x)) *
+                       cmod ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) -
+                             inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k)"
+        by (simp add: norm_mult)
+      also have "\<dots> < cmod (f' (\<gamma> x)) * (e/C)"
+        using False mult_strict_left_mono [OF ec] by force
+      also have "\<dots> \<le> e" using C
+        by (metis False \<open>0 < e\<close> frac_le less_eq_real_def mult.commute pos_le_divide_eq x zero_less_norm_iff)
+      finally show ?thesis .
+    qed
+    show "\<forall>\<^sub>F n in at w.
+              \<forall>x\<in>path_image \<gamma>.
+               cmod (f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k - f' x / (x - w) ^ Suc k) < e"
+      using twom [OF divide_pos_pos [OF \<open>0 < e\<close> \<open>C > 0\<close>]]   unfolding path_image_def
+      by (force intro: * elim: eventually_mono)
+  qed
+  show "(\<lambda>u. f' u / (u - w) ^ (Suc k)) contour_integrable_on \<gamma>"
+    by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto
+  have *: "(\<lambda>n. contour_integral \<gamma> (\<lambda>x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k))
+           \<midarrow>w\<rightarrow> contour_integral \<gamma> (\<lambda>u. f' u / (u - w) ^ (Suc k))"
+    by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto
+  have **: "contour_integral \<gamma> (\<lambda>x. f' x * (inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k)) =
+              (f u - f w) / (u - w) / k"
+    if "dist u w < d" for u
+  proof -
+    have u: "u \<in> s - path_image \<gamma>"
+      by (metis subsetD d dist_commute mem_ball that)
+    show ?thesis
+      apply (rule contour_integral_unique)
+      apply (simp add: diff_divide_distrib algebra_simps)
+      apply (intro has_contour_integral_diff has_contour_integral_div)
+      using u w apply (simp_all add: field_simps int)
+      done
+  qed
+  show ?thes2
+    apply (simp add: has_field_derivative_iff del: power_Suc)
+    apply (rule Lim_transform_within [OF tendsto_mult_left [OF *] \<open>0 < d\<close> ])
+    apply (simp add: \<open>k \<noteq> 0\<close> **)
+    done
+qed
+
+lemma Cauchy_next_derivative_circlepath:
+  assumes contf: "continuous_on (path_image (circlepath z r)) f"
+      and int: "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>u. f u / (u - w)^k) has_contour_integral g w) (circlepath z r)"
+      and k: "k \<noteq> 0"
+      and w: "w \<in> ball z r"
+    shows "(\<lambda>u. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)"
+           (is "?thes1")
+      and "(g has_field_derivative (k * contour_integral (circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k)))) (at w)"
+           (is "?thes2")
+proof -
+  have "r > 0" using w
+    using ball_eq_empty by fastforce
+  have wim: "w \<in> ball z r - path_image (circlepath z r)"
+    using w by (auto simp: dist_norm)
+  show ?thes1 ?thes2
+    by (rule Cauchy_next_derivative [OF contf _ int k open_ball valid_path_circlepath wim, where B = "2 * pi * \<bar>r\<bar>"];
+        auto simp: vector_derivative_circlepath norm_mult)+
+qed
+
+
+
+end
\ No newline at end of file
--- a/src/HOL/Analysis/Homeomorphism.thy	Wed Nov 27 16:54:33 2019 +0000
+++ b/src/HOL/Analysis/Homeomorphism.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -2184,7 +2184,6 @@
   qed
 qed
 
-
 corollary covering_space_lift_stronger:
   fixes p :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
     and f :: "'c::real_normed_vector \<Rightarrow> 'b"
@@ -2252,4 +2251,36 @@
     by (metis that covering_space_lift_strong [OF cov _ \<open>z \<in> U\<close> U contf fim])
 qed
 
+subsection\<^marker>\<open>tag unimportant\<close> \<open>Homeomorphisms of arc images\<close>
+
+lemma homeomorphism_arc:
+  fixes g :: "real \<Rightarrow> 'a::t2_space"
+  assumes "arc g"
+  obtains h where "homeomorphism {0..1} (path_image g) g h"
+using assms by (force simp: arc_def homeomorphism_compact path_def path_image_def)
+
+lemma homeomorphic_arc_image_interval:
+  fixes g :: "real \<Rightarrow> 'a::t2_space" and a::real
+  assumes "arc g" "a < b"
+  shows "(path_image g) homeomorphic {a..b}"
+proof -
+  have "(path_image g) homeomorphic {0..1::real}"
+    by (meson assms(1) homeomorphic_def homeomorphic_sym homeomorphism_arc)
+  also have "\<dots> homeomorphic {a..b}"
+    using assms by (force intro: homeomorphic_closed_intervals_real)
+  finally show ?thesis .
+qed
+
+lemma homeomorphic_arc_images:
+  fixes g :: "real \<Rightarrow> 'a::t2_space" and h :: "real \<Rightarrow> 'b::t2_space"
+  assumes "arc g" "arc h"
+  shows "(path_image g) homeomorphic (path_image h)"
+proof -
+  have "(path_image g) homeomorphic {0..1::real}"
+    by (meson assms homeomorphic_def homeomorphic_sym homeomorphism_arc)
+  also have "\<dots> homeomorphic (path_image h)"
+    by (meson assms homeomorphic_def homeomorphism_arc)
+  finally show ?thesis .
+qed
+
 end
--- a/src/HOL/Analysis/Path_Connected.thy	Wed Nov 27 16:54:33 2019 +0000
+++ b/src/HOL/Analysis/Path_Connected.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -4003,4 +4003,5 @@
   shows "\<exists>g. homeomorphism S T f g"
   using assms injective_into_1d_eq_homeomorphism by blast
 
+
 end
--- a/src/HOL/Analysis/Retracts.thy	Wed Nov 27 16:54:33 2019 +0000
+++ b/src/HOL/Analysis/Retracts.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -2591,4 +2591,51 @@
   shows "connected(-S)"
   using assms path_connected_complement_homeomorphic_interval path_connected_imp_connected by blast
 
+
+lemma path_connected_arc_complement:
+  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
+  assumes "arc \<gamma>" "2 \<le> DIM('a)"
+  shows "path_connected(- path_image \<gamma>)"
+proof -
+  have "path_image \<gamma> homeomorphic {0..1::real}"
+    by (simp add: assms homeomorphic_arc_image_interval)
+  then
+  show ?thesis
+    apply (rule path_connected_complement_homeomorphic_convex_compact)
+      apply (auto simp: assms)
+    done
+qed
+
+lemma connected_arc_complement:
+  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
+  assumes "arc \<gamma>" "2 \<le> DIM('a)"
+  shows "connected(- path_image \<gamma>)"
+  by (simp add: assms path_connected_arc_complement path_connected_imp_connected)
+
+lemma inside_arc_empty:
+  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
+  assumes "arc \<gamma>"
+    shows "inside(path_image \<gamma>) = {}"
+proof (cases "DIM('a) = 1")
+  case True
+  then show ?thesis
+    using assms connected_arc_image connected_convex_1_gen inside_convex by blast
+next
+  case False
+  show ?thesis
+  proof (rule inside_bounded_complement_connected_empty)
+    show "connected (- path_image \<gamma>)"
+      apply (rule connected_arc_complement [OF assms])
+      using False
+      by (metis DIM_ge_Suc0 One_nat_def Suc_1 not_less_eq_eq order_class.order.antisym)
+    show "bounded (path_image \<gamma>)"
+      by (simp add: assms bounded_arc_image)
+  qed
+qed
+
+lemma inside_simple_curve_imp_closed:
+  fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
+    shows "\<lbrakk>simple_path \<gamma>; x \<in> inside(path_image \<gamma>)\<rbrakk> \<Longrightarrow> pathfinish \<gamma> = pathstart \<gamma>"
+  using arc_simple_path  inside_arc_empty by blast
+
 end
--- a/src/HOL/Analysis/Winding_Numbers.thy	Wed Nov 27 16:54:33 2019 +0000
+++ b/src/HOL/Analysis/Winding_Numbers.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -1,1211 +1,1330 @@
 section \<open>Winding Numbers\<close>
-
-text\<open>By John Harrison et al.  Ported from HOL Light by L C Paulson (2017)\<close>
-
-theory Winding_Numbers
-imports
-  Polytope
-  Jordan_Curve
-  Riemann_Mapping
+theory Winding_Numbers 
+  imports Cauchy_Integral_Theorem
 begin
 
-lemma simply_connected_inside_simple_path:
-  fixes p :: "real \<Rightarrow> complex"
-  shows "simple_path p \<Longrightarrow> simply_connected(inside(path_image p))"
-  using Jordan_inside_outside connected_simple_path_image inside_simple_curve_imp_closed simply_connected_eq_frontier_properties
-  by fastforce
+text\<open>We can treat even non-rectifiable paths as having a "length" for bounds on analytic functions in open sets.\<close>
+
+subsection \<open>Basic Winding Numbers\<close>
 
-lemma simply_connected_Int:
-  fixes S :: "complex set"
-  assumes "open S" "open T" "simply_connected S" "simply_connected T" "connected (S \<inter> T)"
-  shows "simply_connected (S \<inter> T)"
-  using assms by (force simp: simply_connected_eq_winding_number_zero open_Int)
+definition\<^marker>\<open>tag important\<close> winding_number_prop :: "[real \<Rightarrow> complex, complex, real, real \<Rightarrow> complex, complex] \<Rightarrow> bool" where
+  "winding_number_prop \<gamma> z e p n \<equiv>
+      valid_path p \<and> z \<notin> path_image p \<and>
+      pathstart p = pathstart \<gamma> \<and>
+      pathfinish p = pathfinish \<gamma> \<and>
+      (\<forall>t \<in> {0..1}. norm(\<gamma> t - p t) < e) \<and>
+      contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
 
-subsection\<open>Winding number for a triangle\<close>
+definition\<^marker>\<open>tag important\<close> winding_number:: "[real \<Rightarrow> complex, complex] \<Rightarrow> complex" where
+  "winding_number \<gamma> z \<equiv> SOME n. \<forall>e > 0. \<exists>p. winding_number_prop \<gamma> z e p n"
 
-lemma wn_triangle1:
-  assumes "0 \<in> interior(convex hull {a,b,c})"
-    shows "\<not> (Im(a/b) \<le> 0 \<and> 0 \<le> Im(b/c))"
+lemma winding_number:
+  assumes "path \<gamma>" "z \<notin> path_image \<gamma>" "0 < e"
+    shows "\<exists>p. winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
 proof -
-  { assume 0: "Im(a/b) \<le> 0" "0 \<le> Im(b/c)"
-    have "0 \<notin> interior (convex hull {a,b,c})"
-    proof (cases "a=0 \<or> b=0 \<or> c=0")
-      case True then show ?thesis
-        by (auto simp: not_in_interior_convex_hull_3)
-    next
-      case False
-      then have "b \<noteq> 0" by blast
-      { fix x y::complex and u::real
-        assume eq_f': "Im x * Re b \<le> Im b * Re x" "Im y * Re b \<le> Im b * Re y" "0 \<le> u" "u \<le> 1"
-        then have "((1 - u) * Im x) * Re b \<le> Im b * ((1 - u) * Re x)"
-          by (simp add: mult_left_mono mult.assoc mult.left_commute [of "Im b"])
-        then have "((1 - u) * Im x + u * Im y) * Re b \<le> Im b * ((1 - u) * Re x + u * Re y)"
-          using eq_f' ordered_comm_semiring_class.comm_mult_left_mono
-          by (fastforce simp add: algebra_simps)
-      }
-      with False 0 have "convex hull {a,b,c} \<le> {z. Im z * Re b \<le> Im b * Re z}"
-        apply (simp add: Complex.Im_divide divide_simps complex_neq_0 [symmetric])
-        apply (simp add: algebra_simps)
-        apply (rule hull_minimal)
-        apply (auto simp: algebra_simps convex_alt)
+  have "path_image \<gamma> \<subseteq> UNIV - {z}"
+    using assms by blast
+  then obtain d
+    where d: "d>0"
+      and pi_eq: "\<And>h1 h2. valid_path h1 \<and> valid_path h2 \<and>
+                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < d \<and> cmod (h2 t - \<gamma> t) < d) \<and>
+                    pathstart h2 = pathstart h1 \<and> pathfinish h2 = pathfinish h1 \<longrightarrow>
+                      path_image h1 \<subseteq> UNIV - {z} \<and> path_image h2 \<subseteq> UNIV - {z} \<and>
+                      (\<forall>f. f holomorphic_on UNIV - {z} \<longrightarrow> contour_integral h2 f = contour_integral h1 f)"
+    using contour_integral_nearby_ends [of "UNIV - {z}" \<gamma>] assms by (auto simp: open_delete)
+  then obtain h where h: "polynomial_function h \<and> pathstart h = pathstart \<gamma> \<and> pathfinish h = pathfinish \<gamma> \<and>
+                          (\<forall>t \<in> {0..1}. norm(h t - \<gamma> t) < d/2)"
+    using path_approx_polynomial_function [OF \<open>path \<gamma>\<close>, of "d/2"] d by auto
+  define nn where "nn = 1/(2* pi*\<i>) * contour_integral h (\<lambda>w. 1/(w - z))"
+  have "\<exists>n. \<forall>e > 0. \<exists>p. winding_number_prop \<gamma> z e p n"
+    proof (rule_tac x=nn in exI, clarify)
+      fix e::real
+      assume e: "e>0"
+      obtain p where p: "polynomial_function p \<and>
+            pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma> \<and> (\<forall>t\<in>{0..1}. cmod (p t - \<gamma> t) < min e (d/2))"
+        using path_approx_polynomial_function [OF \<open>path \<gamma>\<close>, of "min e (d/2)"] d \<open>0<e\<close> by auto
+      have "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
+        by (auto simp: intro!: holomorphic_intros)
+      then show "\<exists>p. winding_number_prop \<gamma> z e p nn"
+        apply (rule_tac x=p in exI)
+        using pi_eq [of h p] h p d
+        apply (auto simp: valid_path_polynomial_function norm_minus_commute nn_def winding_number_prop_def)
         done
-      moreover have "0 \<notin> interior({z. Im z * Re b \<le> Im b * Re z})"
-      proof
-        assume "0 \<in> interior {z. Im z * Re b \<le> Im b * Re z}"
-        then obtain e where "e>0" and e: "ball 0 e \<subseteq> {z. Im z * Re b \<le> Im b * Re z}"
-          by (meson mem_interior)
-        define z where "z \<equiv> - sgn (Im b) * (e/3) + sgn (Re b) * (e/3) * \<i>"
-        have "z \<in> ball 0 e"
-          using \<open>e>0\<close>
-          apply (simp add: z_def dist_norm)
-          apply (rule le_less_trans [OF norm_triangle_ineq4])
-          apply (simp add: norm_mult abs_sgn_eq)
-          done
-        then have "z \<in> {z. Im z * Re b \<le> Im b * Re z}"
-          using e by blast
-        then show False
-          using \<open>e>0\<close> \<open>b \<noteq> 0\<close>
-          apply (simp add: z_def dist_norm sgn_if less_eq_real_def mult_less_0_iff complex.expand split: if_split_asm)
-          apply (auto simp: algebra_simps)
-          apply (meson less_asym less_trans mult_pos_pos neg_less_0_iff_less)
-          by (metis less_asym mult_pos_pos neg_less_0_iff_less)
-      qed
-      ultimately show ?thesis
-        using interior_mono by blast
     qed
-  } with assms show ?thesis by blast
+  then show ?thesis
+    unfolding winding_number_def by (rule someI2_ex) (blast intro: \<open>0<e\<close>)
 qed
 
-lemma wn_triangle2_0:
-  assumes "0 \<in> interior(convex hull {a,b,c})"
-  shows
-       "0 < Im((b - a) * cnj (b)) \<and>
-        0 < Im((c - b) * cnj (c)) \<and>
-        0 < Im((a - c) * cnj (a))
-        \<or>
-        Im((b - a) * cnj (b)) < 0 \<and>
-        0 < Im((b - c) * cnj (b)) \<and>
-        0 < Im((a - b) * cnj (a)) \<and>
-        0 < Im((c - a) * cnj (c))"
+lemma winding_number_unique:
+  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
+      and pi: "\<And>e. e>0 \<Longrightarrow> \<exists>p. winding_number_prop \<gamma> z e p n"
+   shows "winding_number \<gamma> z = n"
 proof -
-  have [simp]: "{b,c,a} = {a,b,c}" "{c,a,b} = {a,b,c}" by auto
-  show ?thesis
-    using wn_triangle1 [OF assms] wn_triangle1 [of b c a] wn_triangle1 [of c a b] assms
-    by (auto simp: algebra_simps Im_complex_div_gt_0 Im_complex_div_lt_0 not_le not_less)
+  have "path_image \<gamma> \<subseteq> UNIV - {z}"
+    using assms by blast
+  then obtain e
+    where e: "e>0"
+      and pi_eq: "\<And>h1 h2 f. \<lbrakk>valid_path h1; valid_path h2;
+                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < e \<and> cmod (h2 t - \<gamma> t) < e);
+                    pathstart h2 = pathstart h1; pathfinish h2 = pathfinish h1; f holomorphic_on UNIV - {z}\<rbrakk> \<Longrightarrow>
+                    contour_integral h2 f = contour_integral h1 f"
+    using contour_integral_nearby_ends [of "UNIV - {z}" \<gamma>] assms  by (auto simp: open_delete)
+  obtain p where p: "winding_number_prop \<gamma> z e p n"
+    using pi [OF e] by blast
+  obtain q where q: "winding_number_prop \<gamma> z e q (winding_number \<gamma> z)"
+    using winding_number [OF \<gamma> e] by blast
+  have "2 * complex_of_real pi * \<i> * n = contour_integral p (\<lambda>w. 1 / (w - z))"
+    using p by (auto simp: winding_number_prop_def)
+  also have "\<dots> = contour_integral q (\<lambda>w. 1 / (w - z))"
+  proof (rule pi_eq)
+    show "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
+      by (auto intro!: holomorphic_intros)
+  qed (use p q in \<open>auto simp: winding_number_prop_def norm_minus_commute\<close>)
+  also have "\<dots> = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z"
+    using q by (auto simp: winding_number_prop_def)
+  finally have "2 * complex_of_real pi * \<i> * n = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z" .
+  then show ?thesis
+    by simp
 qed
 
-lemma wn_triangle2:
-  assumes "z \<in> interior(convex hull {a,b,c})"
-   shows "0 < Im((b - a) * cnj (b - z)) \<and>
-          0 < Im((c - b) * cnj (c - z)) \<and>
-          0 < Im((a - c) * cnj (a - z))
-          \<or>
-          Im((b - a) * cnj (b - z)) < 0 \<and>
-          0 < Im((b - c) * cnj (b - z)) \<and>
-          0 < Im((a - b) * cnj (a - z)) \<and>
-          0 < Im((c - a) * cnj (c - z))"
+(*NB not winding_number_prop here due to the loop in p*)
+lemma winding_number_unique_loop:
+  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
+      and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+      and pi:
+        "\<And>e. e>0 \<Longrightarrow> \<exists>p. valid_path p \<and> z \<notin> path_image p \<and>
+                           pathfinish p = pathstart p \<and>
+                           (\<forall>t \<in> {0..1}. norm (\<gamma> t - p t) < e) \<and>
+                           contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
+   shows "winding_number \<gamma> z = n"
 proof -
-  have 0: "0 \<in> interior(convex hull {a-z, b-z, c-z})"
-    using assms convex_hull_translation [of "-z" "{a,b,c}"]
-                interior_translation [of "-z"]
-    by (simp cong: image_cong_simp)
-  show ?thesis using wn_triangle2_0 [OF 0]
+  have "path_image \<gamma> \<subseteq> UNIV - {z}"
+    using assms by blast
+  then obtain e
+    where e: "e>0"
+      and pi_eq: "\<And>h1 h2 f. \<lbrakk>valid_path h1; valid_path h2;
+                    (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < e \<and> cmod (h2 t - \<gamma> t) < e);
+                    pathfinish h1 = pathstart h1; pathfinish h2 = pathstart h2; f holomorphic_on UNIV - {z}\<rbrakk> \<Longrightarrow>
+                    contour_integral h2 f = contour_integral h1 f"
+    using contour_integral_nearby_loops [of "UNIV - {z}" \<gamma>] assms  by (auto simp: open_delete)
+  obtain p where p:
+     "valid_path p \<and> z \<notin> path_image p \<and> pathfinish p = pathstart p \<and>
+      (\<forall>t \<in> {0..1}. norm (\<gamma> t - p t) < e) \<and>
+      contour_integral p (\<lambda>w. 1/(w - z)) = 2 * pi * \<i> * n"
+    using pi [OF e] by blast
+  obtain q where q: "winding_number_prop \<gamma> z e q (winding_number \<gamma> z)"
+    using winding_number [OF \<gamma> e] by blast
+  have "2 * complex_of_real pi * \<i> * n = contour_integral p (\<lambda>w. 1 / (w - z))"
+    using p by auto
+  also have "\<dots> = contour_integral q (\<lambda>w. 1 / (w - z))"
+  proof (rule pi_eq)
+    show "(\<lambda>w. 1 / (w - z)) holomorphic_on UNIV - {z}"
+      by (auto intro!: holomorphic_intros)
+  qed (use p q loop in \<open>auto simp: winding_number_prop_def norm_minus_commute\<close>)
+  also have "\<dots> = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z"
+    using q by (auto simp: winding_number_prop_def)
+  finally have "2 * complex_of_real pi * \<i> * n = 2 * complex_of_real pi * \<i> * winding_number \<gamma> z" .
+  then show ?thesis
     by simp
 qed
 
-lemma wn_triangle3:
-  assumes z: "z \<in> interior(convex hull {a,b,c})"
-      and "0 < Im((b-a) * cnj (b-z))"
-          "0 < Im((c-b) * cnj (c-z))"
-          "0 < Im((a-c) * cnj (a-z))"
-    shows "winding_number (linepath a b +++ linepath b c +++ linepath c a) z = 1"
+proposition winding_number_valid_path:
+  assumes "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
+  shows "winding_number \<gamma> z = 1/(2*pi*\<i>) * contour_integral \<gamma> (\<lambda>w. 1/(w - z))"
+  by (rule winding_number_unique)
+  (use assms in \<open>auto simp: valid_path_imp_path winding_number_prop_def\<close>)
+
+proposition has_contour_integral_winding_number:
+  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
+    shows "((\<lambda>w. 1/(w - z)) has_contour_integral (2*pi*\<i>*winding_number \<gamma> z)) \<gamma>"
+by (simp add: winding_number_valid_path has_contour_integral_integral contour_integrable_inversediff assms)
+
+lemma winding_number_trivial [simp]: "z \<noteq> a \<Longrightarrow> winding_number(linepath a a) z = 0"
+  by (simp add: winding_number_valid_path)
+
+lemma winding_number_subpath_trivial [simp]: "z \<noteq> g x \<Longrightarrow> winding_number (subpath x x g) z = 0"
+  by (simp add: path_image_subpath winding_number_valid_path)
+
+lemma winding_number_join:
+  assumes \<gamma>1: "path \<gamma>1" "z \<notin> path_image \<gamma>1"
+      and \<gamma>2: "path \<gamma>2" "z \<notin> path_image \<gamma>2"
+      and "pathfinish \<gamma>1 = pathstart \<gamma>2"
+    shows "winding_number(\<gamma>1 +++ \<gamma>2) z = winding_number \<gamma>1 z + winding_number \<gamma>2 z"
+proof (rule winding_number_unique)
+  show "\<exists>p. winding_number_prop (\<gamma>1 +++ \<gamma>2) z e p
+              (winding_number \<gamma>1 z + winding_number \<gamma>2 z)" if "e > 0" for e
+  proof -
+    obtain p1 where "winding_number_prop \<gamma>1 z e p1 (winding_number \<gamma>1 z)"
+      using \<open>0 < e\<close> \<gamma>1 winding_number by blast
+    moreover
+    obtain p2 where "winding_number_prop \<gamma>2 z e p2 (winding_number \<gamma>2 z)"
+      using \<open>0 < e\<close> \<gamma>2 winding_number by blast
+    ultimately
+    have "winding_number_prop (\<gamma>1+++\<gamma>2) z e (p1+++p2) (winding_number \<gamma>1 z + winding_number \<gamma>2 z)"
+      using assms
+      apply (simp add: winding_number_prop_def not_in_path_image_join contour_integrable_inversediff algebra_simps)
+      apply (auto simp: joinpaths_def)
+      done
+    then show ?thesis
+      by blast
+  qed
+qed (use assms in \<open>auto simp: not_in_path_image_join\<close>)
+
+lemma winding_number_reversepath:
+  assumes "path \<gamma>" "z \<notin> path_image \<gamma>"
+    shows "winding_number(reversepath \<gamma>) z = - (winding_number \<gamma> z)"
+proof (rule winding_number_unique)
+  show "\<exists>p. winding_number_prop (reversepath \<gamma>) z e p (- winding_number \<gamma> z)" if "e > 0" for e
+  proof -
+    obtain p where "winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
+      using \<open>0 < e\<close> assms winding_number by blast
+    then have "winding_number_prop (reversepath \<gamma>) z e (reversepath p) (- winding_number \<gamma> z)"
+      using assms
+      apply (simp add: winding_number_prop_def contour_integral_reversepath contour_integrable_inversediff valid_path_imp_reverse)
+      apply (auto simp: reversepath_def)
+      done
+    then show ?thesis
+      by blast
+  qed
+qed (use assms in auto)
+
+lemma winding_number_shiftpath:
+  assumes \<gamma>: "path \<gamma>" "z \<notin> path_image \<gamma>"
+      and "pathfinish \<gamma> = pathstart \<gamma>" "a \<in> {0..1}"
+    shows "winding_number(shiftpath a \<gamma>) z = winding_number \<gamma> z"
+proof (rule winding_number_unique_loop)
+  show "\<exists>p. valid_path p \<and> z \<notin> path_image p \<and> pathfinish p = pathstart p \<and>
+            (\<forall>t\<in>{0..1}. cmod (shiftpath a \<gamma> t - p t) < e) \<and>
+            contour_integral p (\<lambda>w. 1 / (w - z)) =
+            complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
+    if "e > 0" for e
+  proof -
+    obtain p where "winding_number_prop \<gamma> z e p (winding_number \<gamma> z)"
+      using \<open>0 < e\<close> assms winding_number by blast
+    then show ?thesis
+      apply (rule_tac x="shiftpath a p" in exI)
+      using assms that
+      apply (auto simp: winding_number_prop_def path_image_shiftpath pathfinish_shiftpath pathstart_shiftpath contour_integral_shiftpath)
+      apply (simp add: shiftpath_def)
+      done
+  qed
+qed (use assms in \<open>auto simp: path_shiftpath path_image_shiftpath pathfinish_shiftpath pathstart_shiftpath\<close>)
+
+lemma winding_number_split_linepath:
+  assumes "c \<in> closed_segment a b" "z \<notin> closed_segment a b"
+    shows "winding_number(linepath a b) z = winding_number(linepath a c) z + winding_number(linepath c b) z"
 proof -
-  have znot[simp]: "z \<notin> closed_segment a b" "z \<notin> closed_segment b c" "z \<notin> closed_segment c a"
-    using z interior_of_triangle [of a b c]
-    by (auto simp: closed_segment_def)
-  have gt0: "0 < Re (winding_number (linepath a b +++ linepath b c +++ linepath c a) z)"
+  have "z \<notin> closed_segment a c" "z \<notin> closed_segment c b"
+    using assms  by (meson convex_contains_segment convex_segment ends_in_segment subsetCE)+
+  then show ?thesis
     using assms
-    by (simp add: winding_number_linepath_pos_lt path_image_join winding_number_join_pos_combined)
-  have lt2: "Re (winding_number (linepath a b +++ linepath b c +++ linepath c a) z) < 2"
-    using winding_number_lt_half_linepath [of _ a b]
-    using winding_number_lt_half_linepath [of _ b c]
-    using winding_number_lt_half_linepath [of _ c a] znot
-    apply (fastforce simp add: winding_number_join path_image_join)
+    by (simp add: winding_number_valid_path contour_integral_split_linepath [symmetric] continuous_on_inversediff field_simps)
+qed
+
+lemma winding_number_cong:
+   "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> p t = q t) \<Longrightarrow> winding_number p z = winding_number q z"
+  by (simp add: winding_number_def winding_number_prop_def pathstart_def pathfinish_def)
+
+lemma winding_number_constI:
+  assumes "c\<noteq>z" "\<And>t. \<lbrakk>0\<le>t; t\<le>1\<rbrakk> \<Longrightarrow> g t = c" 
+  shows "winding_number g z = 0"
+proof -
+  have "winding_number g z = winding_number (linepath c c) z"
+    apply (rule winding_number_cong)
+    using assms unfolding linepath_def by auto
+  moreover have "winding_number (linepath c c) z =0"
+    apply (rule winding_number_trivial)
+    using assms by auto
+  ultimately show ?thesis by auto
+qed
+
+lemma winding_number_offset: "winding_number p z = winding_number (\<lambda>w. p w - z) 0"
+  unfolding winding_number_def
+proof (intro ext arg_cong [where f = Eps] arg_cong [where f = All] imp_cong refl, safe)
+  fix n e g
+  assume "0 < e" and g: "winding_number_prop p z e g n"
+  then show "\<exists>r. winding_number_prop (\<lambda>w. p w - z) 0 e r n"
+    by (rule_tac x="\<lambda>t. g t - z" in exI)
+       (force simp: winding_number_prop_def contour_integral_integral valid_path_def path_defs
+                vector_derivative_def has_vector_derivative_diff_const piecewise_C1_differentiable_diff C1_differentiable_imp_piecewise)
+next
+  fix n e g
+  assume "0 < e" and g: "winding_number_prop (\<lambda>w. p w - z) 0 e g n"
+  then show "\<exists>r. winding_number_prop p z e r n"
+    apply (rule_tac x="\<lambda>t. g t + z" in exI)
+    apply (simp add: winding_number_prop_def contour_integral_integral valid_path_def path_defs
+        piecewise_C1_differentiable_add vector_derivative_def has_vector_derivative_add_const C1_differentiable_imp_piecewise)
+    apply (force simp: algebra_simps)
     done
-  show ?thesis
-    by (rule winding_number_eq_1) (simp_all add: path_image_join gt0 lt2)
 qed
 
-proposition winding_number_triangle:
-  assumes z: "z \<in> interior(convex hull {a,b,c})"
-    shows "winding_number(linepath a b +++ linepath b c +++ linepath c a) z =
-           (if 0 < Im((b - a) * cnj (b - z)) then 1 else -1)"
+subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Some lemmas about negating a path\<close>
+
+lemma valid_path_negatepath: "valid_path \<gamma> \<Longrightarrow> valid_path (uminus \<circ> \<gamma>)"
+   unfolding o_def using piecewise_C1_differentiable_neg valid_path_def by blast
+
+lemma has_contour_integral_negatepath:
+  assumes \<gamma>: "valid_path \<gamma>" and cint: "((\<lambda>z. f (- z)) has_contour_integral - i) \<gamma>"
+  shows "(f has_contour_integral i) (uminus \<circ> \<gamma>)"
+proof -
+  obtain S where cont: "continuous_on {0..1} \<gamma>" and "finite S" and diff: "\<gamma> C1_differentiable_on {0..1} - S"
+    using \<gamma> by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
+  have "((\<lambda>x. - (f (- \<gamma> x) * vector_derivative \<gamma> (at x within {0..1}))) has_integral i) {0..1}"
+    using cint by (auto simp: has_contour_integral_def dest: has_integral_neg)
+  then
+  have "((\<lambda>x. f (- \<gamma> x) * vector_derivative (uminus \<circ> \<gamma>) (at x within {0..1})) has_integral i) {0..1}"
+  proof (rule rev_iffD1 [OF _ has_integral_spike_eq])
+    show "negligible S"
+      by (simp add: \<open>finite S\<close> negligible_finite)
+    show "f (- \<gamma> x) * vector_derivative (uminus \<circ> \<gamma>) (at x within {0..1}) =
+         - (f (- \<gamma> x) * vector_derivative \<gamma> (at x within {0..1}))"
+      if "x \<in> {0..1} - S" for x
+    proof -
+      have "vector_derivative (uminus \<circ> \<gamma>) (at x within cbox 0 1) = - vector_derivative \<gamma> (at x within cbox 0 1)"
+      proof (rule vector_derivative_within_cbox)
+        show "(uminus \<circ> \<gamma> has_vector_derivative - vector_derivative \<gamma> (at x within cbox 0 1)) (at x within cbox 0 1)"
+          using that unfolding o_def
+          by (metis C1_differentiable_on_eq UNIV_I diff differentiable_subset has_vector_derivative_minus subsetI that vector_derivative_works)
+      qed (use that in auto)
+      then show ?thesis
+        by simp
+    qed
+  qed
+  then show ?thesis by (simp add: has_contour_integral_def)
+qed
+
+lemma winding_number_negatepath:
+  assumes \<gamma>: "valid_path \<gamma>" and 0: "0 \<notin> path_image \<gamma>"
+  shows "winding_number(uminus \<circ> \<gamma>) 0 = winding_number \<gamma> 0"
+proof -
+  have "(/) 1 contour_integrable_on \<gamma>"
+    using "0" \<gamma> contour_integrable_inversediff by fastforce
+  then have "((\<lambda>z. 1/z) has_contour_integral contour_integral \<gamma> ((/) 1)) \<gamma>"
+    by (rule has_contour_integral_integral)
+  then have "((\<lambda>z. 1 / - z) has_contour_integral - contour_integral \<gamma> ((/) 1)) \<gamma>"
+    using has_contour_integral_neg by auto
+  then show ?thesis
+    using assms
+    apply (simp add: winding_number_valid_path valid_path_negatepath image_def path_defs)
+    apply (simp add: contour_integral_unique has_contour_integral_negatepath)
+    done
+qed
+
+lemma contour_integrable_negatepath:
+  assumes \<gamma>: "valid_path \<gamma>" and pi: "(\<lambda>z. f (- z)) contour_integrable_on \<gamma>"
+  shows "f contour_integrable_on (uminus \<circ> \<gamma>)"
+  by (metis \<gamma> add.inverse_inverse contour_integrable_on_def has_contour_integral_negatepath pi)
+
+(* A combined theorem deducing several things piecewise.*)
+lemma winding_number_join_pos_combined:
+     "\<lbrakk>valid_path \<gamma>1; z \<notin> path_image \<gamma>1; 0 < Re(winding_number \<gamma>1 z);
+       valid_path \<gamma>2; z \<notin> path_image \<gamma>2; 0 < Re(winding_number \<gamma>2 z); pathfinish \<gamma>1 = pathstart \<gamma>2\<rbrakk>
+      \<Longrightarrow> valid_path(\<gamma>1 +++ \<gamma>2) \<and> z \<notin> path_image(\<gamma>1 +++ \<gamma>2) \<and> 0 < Re(winding_number(\<gamma>1 +++ \<gamma>2) z)"
+  by (simp add: valid_path_join path_image_join winding_number_join valid_path_imp_path)
+
+
+
+subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Useful sufficient conditions for the winding number to be positive\<close>
+
+lemma Re_winding_number:
+    "\<lbrakk>valid_path \<gamma>; z \<notin> path_image \<gamma>\<rbrakk>
+     \<Longrightarrow> Re(winding_number \<gamma> z) = Im(contour_integral \<gamma> (\<lambda>w. 1/(w - z))) / (2*pi)"
+by (simp add: winding_number_valid_path field_simps Re_divide power2_eq_square)
+
+lemma winding_number_pos_le:
+  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
+      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> 0 \<le> Im (vector_derivative \<gamma> (at x) * cnj(\<gamma> x - z))"
+    shows "0 \<le> Re(winding_number \<gamma> z)"
 proof -
-  have [simp]: "{a,c,b} = {a,b,c}"  by auto
-  have znot[simp]: "z \<notin> closed_segment a b" "z \<notin> closed_segment b c" "z \<notin> closed_segment c a"
-    using z interior_of_triangle [of a b c]
-    by (auto simp: closed_segment_def)
-  then have [simp]: "z \<notin> closed_segment b a" "z \<notin> closed_segment c b" "z \<notin> closed_segment a c"
-    using closed_segment_commute by blast+
-  have *: "winding_number (linepath a b +++ linepath b c +++ linepath c a) z =
-            winding_number (reversepath (linepath a c +++ linepath c b +++ linepath b a)) z"
-    by (simp add: reversepath_joinpaths winding_number_join not_in_path_image_join)
+  have ge0: "0 \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))" if x: "0 < x" "x < 1" for x
+    using ge by (simp add: Complex.Im_divide algebra_simps x)
+  let ?vd = "\<lambda>x. 1 / (\<gamma> x - z) * vector_derivative \<gamma> (at x)"
+  let ?int = "\<lambda>z. contour_integral \<gamma> (\<lambda>w. 1 / (w - z))"
+  have hi: "(?vd has_integral ?int z) (cbox 0 1)"
+    unfolding box_real
+    apply (subst has_contour_integral [symmetric])
+    using \<gamma> by (simp add: contour_integrable_inversediff has_contour_integral_integral)
+  have "0 \<le> Im (?int z)"
+  proof (rule has_integral_component_nonneg [of \<i>, simplified])
+    show "\<And>x. x \<in> cbox 0 1 \<Longrightarrow> 0 \<le> Im (if 0 < x \<and> x < 1 then ?vd x else 0)"
+      by (force simp: ge0)
+    show "((\<lambda>x. if 0 < x \<and> x < 1 then ?vd x else 0) has_integral ?int z) (cbox 0 1)"
+      by (rule has_integral_spike_interior [OF hi]) simp
+  qed
+  then show ?thesis
+    by (simp add: Re_winding_number [OF \<gamma>] field_simps)
+qed
+
+lemma winding_number_pos_lt_lemma:
+  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
+      and e: "0 < e"
+      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> e \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
+    shows "0 < Re(winding_number \<gamma> z)"
+proof -
+  let ?vd = "\<lambda>x. 1 / (\<gamma> x - z) * vector_derivative \<gamma> (at x)"
+  let ?int = "\<lambda>z. contour_integral \<gamma> (\<lambda>w. 1 / (w - z))"
+  have hi: "(?vd has_integral ?int z) (cbox 0 1)"
+    unfolding box_real
+    apply (subst has_contour_integral [symmetric])
+    using \<gamma> by (simp add: contour_integrable_inversediff has_contour_integral_integral)
+  have "e \<le> Im (contour_integral \<gamma> (\<lambda>w. 1 / (w - z)))"
+  proof (rule has_integral_component_le [of \<i> "\<lambda>x. \<i>*e" "\<i>*e" "{0..1}", simplified])
+    show "((\<lambda>x. if 0 < x \<and> x < 1 then ?vd x else \<i> * complex_of_real e) has_integral ?int z) {0..1}"
+      by (rule has_integral_spike_interior [OF hi, simplified box_real]) (use e in simp)
+    show "\<And>x. 0 \<le> x \<and> x \<le> 1 \<Longrightarrow>
+              e \<le> Im (if 0 < x \<and> x < 1 then ?vd x else \<i> * complex_of_real e)"
+      by (simp add: ge)
+  qed (use has_integral_const_real [of _ 0 1] in auto)
+  with e show ?thesis
+    by (simp add: Re_winding_number [OF \<gamma>] field_simps)
+qed
+
+lemma winding_number_pos_lt:
+  assumes \<gamma>: "valid_path \<gamma>" "z \<notin> path_image \<gamma>"
+      and e: "0 < e"
+      and ge: "\<And>x. \<lbrakk>0 < x; x < 1\<rbrakk> \<Longrightarrow> e \<le> Im (vector_derivative \<gamma> (at x) * cnj(\<gamma> x - z))"
+    shows "0 < Re (winding_number \<gamma> z)"
+proof -
+  have bm: "bounded ((\<lambda>w. w - z) ` (path_image \<gamma>))"
+    using bounded_translation [of _ "-z"] \<gamma> by (simp add: bounded_valid_path_image)
+  then obtain B where B: "B > 0" and Bno: "\<And>x. x \<in> (\<lambda>w. w - z) ` (path_image \<gamma>) \<Longrightarrow> norm x \<le> B"
+    using bounded_pos [THEN iffD1, OF bm] by blast
+  { fix x::real  assume x: "0 < x" "x < 1"
+    then have B2: "cmod (\<gamma> x - z)^2 \<le> B^2" using Bno [of "\<gamma> x - z"]
+      by (simp add: path_image_def power2_eq_square mult_mono')
+    with x have "\<gamma> x \<noteq> z" using \<gamma>
+      using path_image_def by fastforce
+    then have "e / B\<^sup>2 \<le> Im (vector_derivative \<gamma> (at x) * cnj (\<gamma> x - z)) / (cmod (\<gamma> x - z))\<^sup>2"
+      using B ge [OF x] B2 e
+      apply (rule_tac y="e / (cmod (\<gamma> x - z))\<^sup>2" in order_trans)
+      apply (auto simp: divide_left_mono divide_right_mono)
+      done
+    then have "e / B\<^sup>2 \<le> Im (vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
+      by (simp add: complex_div_cnj [of _ "\<gamma> x - z" for x] del: complex_cnj_diff times_complex.sel)
+  } note * = this
   show ?thesis
-    using wn_triangle2 [OF z] apply (rule disjE)
-    apply (simp add: wn_triangle3 z)
-    apply (simp add: path_image_join winding_number_reversepath * wn_triangle3 z)
+    using e B by (simp add: * winding_number_pos_lt_lemma [OF \<gamma>, of "e/B^2"])
+qed
+
+subsection\<open>The winding number is an integer\<close>
+
+text\<open>Proof from the book Complex Analysis by Lars V. Ahlfors, Chapter 4, section 2.1,
+     Also on page 134 of Serge Lang's book with the name title, etc.\<close>
+
+lemma exp_fg:
+  fixes z::complex
+  assumes g: "(g has_vector_derivative g') (at x within s)"
+      and f: "(f has_vector_derivative (g' / (g x - z))) (at x within s)"
+      and z: "g x \<noteq> z"
+    shows "((\<lambda>x. exp(-f x) * (g x - z)) has_vector_derivative 0) (at x within s)"
+proof -
+  have *: "(exp \<circ> (\<lambda>x. (- f x)) has_vector_derivative - (g' / (g x - z)) * exp (- f x)) (at x within s)"
+    using assms unfolding has_vector_derivative_def scaleR_conv_of_real
+    by (auto intro!: derivative_eq_intros)
+  show ?thesis
+    apply (rule has_vector_derivative_eq_rhs)
+    using z
+    apply (auto intro!: derivative_eq_intros * [unfolded o_def] g)
     done
 qed
 
-subsection\<open>Winding numbers for simple closed paths\<close>
-
-lemma winding_number_from_innerpath:
-  assumes "simple_path c1" and c1: "pathstart c1 = a" "pathfinish c1 = b"
-      and "simple_path c2" and c2: "pathstart c2 = a" "pathfinish c2 = b"
-      and "simple_path c" and c: "pathstart c = a" "pathfinish c = b"
-      and c1c2: "path_image c1 \<inter> path_image c2 = {a,b}"
-      and c1c:  "path_image c1 \<inter> path_image c = {a,b}"
-      and c2c:  "path_image c2 \<inter> path_image c = {a,b}"
-      and ne_12: "path_image c \<inter> inside(path_image c1 \<union> path_image c2) \<noteq> {}"
-      and z: "z \<in> inside(path_image c1 \<union> path_image c)"
-      and wn_d: "winding_number (c1 +++ reversepath c) z = d"
-      and "a \<noteq> b" "d \<noteq> 0"
-  obtains "z \<in> inside(path_image c1 \<union> path_image c2)" "winding_number (c1 +++ reversepath c2) z = d"
+lemma winding_number_exp_integral:
+  fixes z::complex
+  assumes \<gamma>: "\<gamma> piecewise_C1_differentiable_on {a..b}"
+      and ab: "a \<le> b"
+      and z: "z \<notin> \<gamma> ` {a..b}"
+    shows "(\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)) integrable_on {a..b}"
+          (is "?thesis1")
+          "exp (- (integral {a..b} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))) * (\<gamma> b - z) = \<gamma> a - z"
+          (is "?thesis2")
 proof -
-  obtain 0: "inside(path_image c1 \<union> path_image c) \<inter> inside(path_image c2 \<union> path_image c) = {}"
-     and 1: "inside(path_image c1 \<union> path_image c) \<union> inside(path_image c2 \<union> path_image c) \<union>
-             (path_image c - {a,b}) = inside(path_image c1 \<union> path_image c2)"
-    by (rule split_inside_simple_closed_curve
-              [OF \<open>simple_path c1\<close> c1 \<open>simple_path c2\<close> c2 \<open>simple_path c\<close> c \<open>a \<noteq> b\<close> c1c2 c1c c2c ne_12])
-  have znot: "z \<notin> path_image c"  "z \<notin> path_image c1" "z \<notin> path_image c2"
-    using union_with_outside z 1 by auto
-  have wn_cc2: "winding_number (c +++ reversepath c2) z = 0"
-    apply (rule winding_number_zero_in_outside)
-    apply (simp_all add: \<open>simple_path c2\<close> c c2 \<open>simple_path c\<close> simple_path_imp_path path_image_join)
-    by (metis "0" ComplI UnE disjoint_iff_not_equal sup.commute union_with_inside z znot)
-  show ?thesis
-  proof
-    show "z \<in> inside (path_image c1 \<union> path_image c2)"
-      using "1" z by blast
-    have "winding_number c1 z - winding_number c z = d "
-      using assms znot
-      by (metis wn_d winding_number_join simple_path_imp_path winding_number_reversepath add.commute path_image_reversepath path_reversepath pathstart_reversepath uminus_add_conv_diff)
-    then show "winding_number (c1 +++ reversepath c2) z = d"
-      using wn_cc2 by (simp add: winding_number_join simple_path_imp_path assms znot winding_number_reversepath)
-  qed
+  let ?D\<gamma> = "\<lambda>x. vector_derivative \<gamma> (at x)"
+  have [simp]: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<gamma> x \<noteq> z"
+    using z by force
+  have cong: "continuous_on {a..b} \<gamma>"
+    using \<gamma> by (simp add: piecewise_C1_differentiable_on_def)
+  obtain k where fink: "finite k" and g_C1_diff: "\<gamma> C1_differentiable_on ({a..b} - k)"
+    using \<gamma> by (force simp: piecewise_C1_differentiable_on_def)
+  have \<circ>: "open ({a<..<b} - k)"
+    using \<open>finite k\<close> by (simp add: finite_imp_closed open_Diff)
+  moreover have "{a<..<b} - k \<subseteq> {a..b} - k"
+    by force
+  ultimately have g_diff_at: "\<And>x. \<lbrakk>x \<notin> k; x \<in> {a<..<b}\<rbrakk> \<Longrightarrow> \<gamma> differentiable at x"
+    by (metis Diff_iff differentiable_on_subset C1_diff_imp_diff [OF g_C1_diff] differentiable_on_def at_within_open)
+  { fix w
+    assume "w \<noteq> z"
+    have "continuous_on (ball w (cmod (w - z))) (\<lambda>w. 1 / (w - z))"
+      by (auto simp: dist_norm intro!: continuous_intros)
+    moreover have "\<And>x. cmod (w - x) < cmod (w - z) \<Longrightarrow> \<exists>f'. ((\<lambda>w. 1 / (w - z)) has_field_derivative f') (at x)"
+      by (auto simp: intro!: derivative_eq_intros)
+    ultimately have "\<exists>h. \<forall>y. norm(y - w) < norm(w - z) \<longrightarrow> (h has_field_derivative 1/(y - z)) (at y)"
+      using holomorphic_convex_primitive [of "ball w (norm(w - z))" "{}" "\<lambda>w. 1/(w - z)"]
+      by (force simp: field_differentiable_def Ball_def dist_norm at_within_open_NO_MATCH norm_minus_commute)
+  }
+  then obtain h where h: "\<And>w y. w \<noteq> z \<Longrightarrow> norm(y - w) < norm(w - z) \<Longrightarrow> (h w has_field_derivative 1/(y - z)) (at y)"
+    by meson
+  have exy: "\<exists>y. ((\<lambda>x. inverse (\<gamma> x - z) * ?D\<gamma> x) has_integral y) {a..b}"
+    unfolding integrable_on_def [symmetric]
+  proof (rule contour_integral_local_primitive_any [OF piecewise_C1_imp_differentiable [OF \<gamma>]])
+    show "\<exists>d h. 0 < d \<and>
+               (\<forall>y. cmod (y - w) < d \<longrightarrow> (h has_field_derivative inverse (y - z))(at y within - {z}))"
+          if "w \<in> - {z}" for w
+      apply (rule_tac x="norm(w - z)" in exI)
+      using that inverse_eq_divide has_field_derivative_at_within h
+      by (metis Compl_insert DiffD2 insertCI right_minus_eq zero_less_norm_iff)
+  qed simp
+  have vg_int: "(\<lambda>x. ?D\<gamma> x / (\<gamma> x - z)) integrable_on {a..b}"
+    unfolding box_real [symmetric] divide_inverse_commute
+    by (auto intro!: exy integrable_subinterval simp add: integrable_on_def ab)
+  with ab show ?thesis1
+    by (simp add: divide_inverse_commute integral_def integrable_on_def)
+  { fix t
+    assume t: "t \<in> {a..b}"
+    have cball: "continuous_on (ball (\<gamma> t) (dist (\<gamma> t) z)) (\<lambda>x. inverse (x - z))"
+        using z by (auto intro!: continuous_intros simp: dist_norm)
+    have icd: "\<And>x. cmod (\<gamma> t - x) < cmod (\<gamma> t - z) \<Longrightarrow> (\<lambda>w. inverse (w - z)) field_differentiable at x"
+      unfolding field_differentiable_def by (force simp: intro!: derivative_eq_intros)
+    obtain h where h: "\<And>x. cmod (\<gamma> t - x) < cmod (\<gamma> t - z) \<Longrightarrow>
+                       (h has_field_derivative inverse (x - z)) (at x within {y. cmod (\<gamma> t - y) < cmod (\<gamma> t - z)})"
+      using holomorphic_convex_primitive [where f = "\<lambda>w. inverse(w - z)", OF convex_ball finite.emptyI cball icd]
+      by simp (auto simp: ball_def dist_norm that)
+    { fix x D
+      assume x: "x \<notin> k" "a < x" "x < b"
+      then have "x \<in> interior ({a..b} - k)"
+        using open_subset_interior [OF \<circ>] by fastforce
+      then have con: "isCont ?D\<gamma> x"
+        using g_C1_diff x by (auto simp: C1_differentiable_on_eq intro: continuous_on_interior)
+      then have con_vd: "continuous (at x within {a..b}) (\<lambda>x. ?D\<gamma> x)"
+        by (rule continuous_at_imp_continuous_within)
+      have gdx: "\<gamma> differentiable at x"
+        using x by (simp add: g_diff_at)
+      have "\<And>d. \<lbrakk>x \<notin> k; a < x; x < b;
+          (\<gamma> has_vector_derivative d) (at x); a \<le> t; t \<le> b\<rbrakk>
+         \<Longrightarrow> ((\<lambda>x. integral {a..x}
+                     (\<lambda>x. ?D\<gamma> x /
+                           (\<gamma> x - z))) has_vector_derivative
+              d / (\<gamma> x - z))
+              (at x within {a..b})"
+        apply (rule has_vector_derivative_eq_rhs)
+         apply (rule integral_has_vector_derivative_continuous_at [where S = "{}", simplified])
+        apply (rule con_vd continuous_intros cong vg_int | simp add: continuous_at_imp_continuous_within has_vector_derivative_continuous vector_derivative_at)+
+        done
+      then have "((\<lambda>c. exp (- integral {a..c} (\<lambda>x. ?D\<gamma> x / (\<gamma> x - z))) * (\<gamma> c - z)) has_derivative (\<lambda>h. 0))
+          (at x within {a..b})"
+        using x gdx t
+        apply (clarsimp simp add: differentiable_iff_scaleR)
+        apply (rule exp_fg [unfolded has_vector_derivative_def, simplified], blast intro: has_derivative_at_withinI)
+        apply (simp_all add: has_vector_derivative_def [symmetric])
+        done
+      } note * = this
+    have "exp (- (integral {a..t} (\<lambda>x. ?D\<gamma> x / (\<gamma> x - z)))) * (\<gamma> t - z) =\<gamma> a - z"
+      apply (rule has_derivative_zero_unique_strong_interval [of "{a,b} \<union> k" a b])
+      using t
+      apply (auto intro!: * continuous_intros fink cong indefinite_integral_continuous_1 [OF vg_int]  simp add: ab)+
+      done
+   }
+  with ab show ?thesis2
+    by (simp add: divide_inverse_commute integral_def)
 qed
 
-lemma simple_closed_path_wn1:
-  fixes a::complex and e::real
-  assumes "0 < e"
-    and sp_pl: "simple_path(p +++ linepath (a - e) (a + e))"
-    and psp:   "pathstart p = a + e"
-    and pfp:   "pathfinish p = a - e"
-    and disj:  "ball a e \<inter> path_image p = {}"
-obtains z where "z \<in> inside (path_image (p +++ linepath (a - e) (a + e)))"
-                "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) = 1"
+lemma winding_number_exp_2pi:
+    "\<lbrakk>path p; z \<notin> path_image p\<rbrakk>
+     \<Longrightarrow> pathfinish p - z = exp (2 * pi * \<i> * winding_number p z) * (pathstart p - z)"
+using winding_number [of p z 1] unfolding valid_path_def path_image_def pathstart_def pathfinish_def winding_number_prop_def
+  by (force dest: winding_number_exp_integral(2) [of _ 0 1 z] simp: field_simps contour_integral_integral exp_minus)
+
+lemma integer_winding_number_eq:
+  assumes \<gamma>: "path \<gamma>" and z: "z \<notin> path_image \<gamma>"
+  shows "winding_number \<gamma> z \<in> \<int> \<longleftrightarrow> pathfinish \<gamma> = pathstart \<gamma>"
 proof -
-  have "arc p" and arc_lp: "arc (linepath (a - e) (a + e))"
-    and pap: "path_image p \<inter> path_image (linepath (a - e) (a + e)) \<subseteq> {pathstart p, a-e}"
-    using simple_path_join_loop_eq [of "linepath (a - e) (a + e)" p] assms by auto
-  have mid_eq_a: "midpoint (a - e) (a + e) = a"
-    by (simp add: midpoint_def)
-  then have "a \<in> path_image(p +++ linepath (a - e) (a + e))"
-    apply (simp add: assms path_image_join)
-    by (metis midpoint_in_closed_segment)
-  have "a \<in> frontier(inside (path_image(p +++ linepath (a - e) (a + e))))"
-    apply (simp add: assms Jordan_inside_outside)
-    apply (simp_all add: assms path_image_join)
-    by (metis mid_eq_a midpoint_in_closed_segment)
-  with \<open>0 < e\<close> obtain c where c: "c \<in> inside (path_image(p +++ linepath (a - e) (a + e)))"
-                  and dac: "dist a c < e"
-    by (auto simp: frontier_straddle)
-  then have "c \<notin> path_image(p +++ linepath (a - e) (a + e))"
-    using inside_no_overlap by blast
-  then have "c \<notin> path_image p"
-            "c \<notin> closed_segment (a - of_real e) (a + of_real e)"
-    by (simp_all add: assms path_image_join)
-  with \<open>0 < e\<close> dac have "c \<notin> affine hull {a - of_real e, a + of_real e}"
-    by (simp add: segment_as_ball not_le)
-  with \<open>0 < e\<close> have *: "\<not> collinear {a - e, c,a + e}"
-    using collinear_3_affine_hull [of "a-e" "a+e"] by (auto simp: insert_commute)
-  have 13: "1/3 + 1/3 + 1/3 = (1::real)" by simp
-  have "(1/3) *\<^sub>R (a - of_real e) + (1/3) *\<^sub>R c + (1/3) *\<^sub>R (a + of_real e) \<in> interior(convex hull {a - e, c, a + e})"
-    using interior_convex_hull_3_minimal [OF * DIM_complex]
-    by clarsimp (metis 13 zero_less_divide_1_iff zero_less_numeral)
-  then obtain z where z: "z \<in> interior(convex hull {a - e, c, a + e})" by force
-  have [simp]: "z \<notin> closed_segment (a - e) c"
-    by (metis DIM_complex Diff_iff IntD2 inf_sup_absorb interior_of_triangle z)
-  have [simp]: "z \<notin> closed_segment (a + e) (a - e)"
-    by (metis DIM_complex DiffD2 Un_iff interior_of_triangle z)
-  have [simp]: "z \<notin> closed_segment c (a + e)"
-    by (metis (no_types, lifting) DIM_complex DiffD2 Un_insert_right inf_sup_aci(5) insertCI interior_of_triangle mk_disjoint_insert z)
-  show thesis
-  proof
-    have "norm (winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z) = 1"
-      using winding_number_triangle [OF z] by simp
-    have zin: "z \<in> inside (path_image (linepath (a + e) (a - e)) \<union> path_image p)"
-      and zeq: "winding_number (linepath (a + e) (a - e) +++ reversepath p) z =
-                winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
-    proof (rule winding_number_from_innerpath
-        [of "linepath (a + e) (a - e)" "a+e" "a-e" p
-          "linepath (a + e) c +++ linepath c (a - e)" z
-          "winding_number (linepath (a - e)  c +++ linepath  c (a + e) +++ linepath (a + e) (a - e)) z"])
-      show sp_aec: "simple_path (linepath (a + e) c +++ linepath c (a - e))"
-      proof (rule arc_imp_simple_path [OF arc_join])
-        show "arc (linepath (a + e) c)"
-          by (metis \<open>c \<notin> path_image p\<close> arc_linepath pathstart_in_path_image psp)
-        show "arc (linepath c (a - e))"
-          by (metis \<open>c \<notin> path_image p\<close> arc_linepath pathfinish_in_path_image pfp)
-        show "path_image (linepath (a + e) c) \<inter> path_image (linepath c (a - e)) \<subseteq> {pathstart (linepath c (a - e))}"
-          by clarsimp (metis "*" IntI Int_closed_segment closed_segment_commute singleton_iff)
-      qed auto
-      show "simple_path p"
-        using \<open>arc p\<close> arc_simple_path by blast
-      show sp_ae2: "simple_path (linepath (a + e) (a - e))"
-        using \<open>arc p\<close> arc_distinct_ends pfp psp by fastforce
-      show pa: "pathfinish (linepath (a + e) (a - e)) = a - e"
-           "pathstart (linepath (a + e) c +++ linepath c (a - e)) = a + e"
-           "pathfinish (linepath (a + e) c +++ linepath c (a - e)) = a - e"
-           "pathstart p = a + e" "pathfinish p = a - e"
-           "pathstart (linepath (a + e) (a - e)) = a + e"
-        by (simp_all add: assms)
-      show 1: "path_image (linepath (a + e) (a - e)) \<inter> path_image p = {a + e, a - e}"
-      proof
-        show "path_image (linepath (a + e) (a - e)) \<inter> path_image p \<subseteq> {a + e, a - e}"
-          using pap closed_segment_commute psp segment_convex_hull by fastforce
-        show "{a + e, a - e} \<subseteq> path_image (linepath (a + e) (a - e)) \<inter> path_image p"
-          using pap pathfinish_in_path_image pathstart_in_path_image pfp psp by fastforce
-      qed
-      show 2: "path_image (linepath (a + e) (a - e)) \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) =
-               {a + e, a - e}"  (is "?lhs = ?rhs")
-      proof
-        have "\<not> collinear {c, a + e, a - e}"
-          using * by (simp add: insert_commute)
-        then have "convex hull {a + e, a - e} \<inter> convex hull {a + e, c} = {a + e}"
-                  "convex hull {a + e, a - e} \<inter> convex hull {c, a - e} = {a - e}"
-          by (metis (full_types) Int_closed_segment insert_commute segment_convex_hull)+
-        then show "?lhs \<subseteq> ?rhs"
-          by (metis Int_Un_distrib equalityD1 insert_is_Un path_image_join path_image_linepath path_join_eq path_linepath segment_convex_hull simple_path_def sp_aec)
-        show "?rhs \<subseteq> ?lhs"
-          using segment_convex_hull by (simp add: path_image_join)
-      qed
-      have "path_image p \<inter> path_image (linepath (a + e) c) \<subseteq> {a + e}"
-      proof (clarsimp simp: path_image_join)
-        fix x
-        assume "x \<in> path_image p" and x_ac: "x \<in> closed_segment (a + e) c"
-        then have "dist x a \<ge> e"
-          by (metis IntI all_not_in_conv disj dist_commute mem_ball not_less)
-        with x_ac dac \<open>e > 0\<close> show "x = a + e"
-          by (auto simp: norm_minus_commute dist_norm closed_segment_eq_open dest: open_segment_furthest_le [where y=a])
-      qed
-      moreover
-      have "path_image p \<inter> path_image (linepath c (a - e)) \<subseteq> {a - e}"
-      proof (clarsimp simp: path_image_join)
-        fix x
-        assume "x \<in> path_image p" and x_ac: "x \<in> closed_segment c (a - e)"
-        then have "dist x a \<ge> e"
-          by (metis IntI all_not_in_conv disj dist_commute mem_ball not_less)
-        with x_ac dac \<open>e > 0\<close> show "x = a - e"
-          by (auto simp: norm_minus_commute dist_norm closed_segment_eq_open dest: open_segment_furthest_le [where y=a])
-      qed
-      ultimately
-      have "path_image p \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) \<subseteq> {a + e, a - e}"
-        by (force simp: path_image_join)
-      then show 3: "path_image p \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) = {a + e, a - e}"
-        apply (rule equalityI)
-        apply (clarsimp simp: path_image_join)
-        apply (metis pathstart_in_path_image psp pathfinish_in_path_image pfp)
-        done
-      show 4: "path_image (linepath (a + e) c +++ linepath c (a - e)) \<inter>
-               inside (path_image (linepath (a + e) (a - e)) \<union> path_image p) \<noteq> {}"
-        apply (clarsimp simp: path_image_join segment_convex_hull disjoint_iff_not_equal)
-        by (metis (no_types, hide_lams) UnI1 Un_commute c closed_segment_commute ends_in_segment(1) path_image_join
-                  path_image_linepath pathstart_linepath pfp segment_convex_hull)
-      show zin_inside: "z \<in> inside (path_image (linepath (a + e) (a - e)) \<union>
-                                    path_image (linepath (a + e) c +++ linepath c (a - e)))"
-        apply (simp add: path_image_join)
-        by (metis z inside_of_triangle DIM_complex Un_commute closed_segment_commute)
-      show 5: "winding_number
-             (linepath (a + e) (a - e) +++ reversepath (linepath (a + e) c +++ linepath c (a - e))) z =
-            winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
-        by (simp add: reversepath_joinpaths path_image_join winding_number_join)
-      show 6: "winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z \<noteq> 0"
-        by (simp add: winding_number_triangle z)
-      show "winding_number (linepath (a + e) (a - e) +++ reversepath p) z =
-            winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
-        by (metis 1 2 3 4 5 6 pa sp_aec sp_ae2 \<open>arc p\<close> \<open>simple_path p\<close> arc_distinct_ends winding_number_from_innerpath zin_inside)
-    qed (use assms \<open>e > 0\<close> in auto)
-    show "z \<in> inside (path_image (p +++ linepath (a - e) (a + e)))"
-      using zin by (simp add: assms path_image_join Un_commute closed_segment_commute)
-    then have "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) =
-               cmod ((winding_number(reversepath (p +++ linepath (a - e) (a + e))) z))"
-      apply (subst winding_number_reversepath)
-      using simple_path_imp_path sp_pl apply blast
-       apply (metis IntI emptyE inside_no_overlap)
-      by (simp add: inside_def)
-    also have "... = cmod (winding_number(linepath (a + e) (a - e) +++ reversepath p) z)"
-      by (simp add: pfp reversepath_joinpaths)
-    also have "... = cmod (winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z)"
-      by (simp add: zeq)
-    also have "... = 1"
-      using z by (simp add: interior_of_triangle winding_number_triangle)
-    finally show "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) = 1" .
-  qed
+  obtain p where p: "valid_path p" "z \<notin> path_image p"
+                    "pathstart p = pathstart \<gamma>" "pathfinish p = pathfinish \<gamma>"
+           and eq: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
+    using winding_number [OF assms, of 1] unfolding winding_number_prop_def by auto
+  then have wneq: "winding_number \<gamma> z = winding_number p z"
+      using eq winding_number_valid_path by force
+  have iff: "(winding_number \<gamma> z \<in> \<int>) \<longleftrightarrow> (exp (contour_integral p (\<lambda>w. 1 / (w - z))) = 1)"
+    using eq by (simp add: exp_eq_1 complex_is_Int_iff)
+  have "exp (contour_integral p (\<lambda>w. 1 / (w - z))) = (\<gamma> 1 - z) / (\<gamma> 0 - z)"
+    using p winding_number_exp_integral(2) [of p 0 1 z]
+    apply (simp add: valid_path_def path_defs contour_integral_integral exp_minus field_split_simps)
+    by (metis path_image_def pathstart_def pathstart_in_path_image)
+  then have "winding_number p z \<in> \<int> \<longleftrightarrow> pathfinish p = pathstart p"
+    using p wneq iff by (auto simp: path_defs)
+  then show ?thesis using p eq
+    by (auto simp: winding_number_valid_path)
 qed
 
-lemma simple_closed_path_wn2:
-  fixes a::complex and d e::real
-  assumes "0 < d" "0 < e"
-    and sp_pl: "simple_path(p +++ linepath (a - d) (a + e))"
-    and psp:   "pathstart p = a + e"
-    and pfp:   "pathfinish p = a - d"
-obtains z where "z \<in> inside (path_image (p +++ linepath (a - d) (a + e)))"
-                "cmod (winding_number (p +++ linepath (a - d) (a + e)) z) = 1"
+theorem integer_winding_number:
+  "\<lbrakk>path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>\<rbrakk> \<Longrightarrow> winding_number \<gamma> z \<in> \<int>"
+by (metis integer_winding_number_eq)
+
+
+text\<open>If the winding number's magnitude is at least one, then the path must contain points in every direction.*)
+   We can thus bound the winding number of a path that doesn't intersect a given ray. \<close>
+
+lemma winding_number_pos_meets:
+  fixes z::complex
+  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and 1: "Re (winding_number \<gamma> z) \<ge> 1"
+      and w: "w \<noteq> z"
+  shows "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image \<gamma>"
 proof -
-  have [simp]: "a + of_real x \<in> closed_segment (a - \<alpha>) (a - \<beta>) \<longleftrightarrow> x \<in> closed_segment (-\<alpha>) (-\<beta>)" for x \<alpha> \<beta>::real
-    using closed_segment_translation_eq [of a]
-    by (metis (no_types, hide_lams) add_uminus_conv_diff of_real_minus of_real_closed_segment)
-  have [simp]: "a - of_real x \<in> closed_segment (a + \<alpha>) (a + \<beta>) \<longleftrightarrow> -x \<in> closed_segment \<alpha> \<beta>" for x \<alpha> \<beta>::real
-    by (metis closed_segment_translation_eq diff_conv_add_uminus of_real_closed_segment of_real_minus)
-  have "arc p" and arc_lp: "arc (linepath (a - d) (a + e))" and "path p"
-    and pap: "path_image p \<inter> closed_segment (a - d) (a + e) \<subseteq> {a+e, a-d}"
-    using simple_path_join_loop_eq [of "linepath (a - d) (a + e)" p] assms arc_imp_path  by auto
-  have "0 \<in> closed_segment (-d) e"
-    using \<open>0 < d\<close> \<open>0 < e\<close> closed_segment_eq_real_ivl by auto
-  then have "a \<in> path_image (linepath (a - d) (a + e))"
-    using of_real_closed_segment [THEN iffD2]
-    by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
-  then have "a \<notin> path_image p"
-    using \<open>0 < d\<close> \<open>0 < e\<close> pap by auto
-  then obtain k where "0 < k" and k: "ball a k \<inter> (path_image p) = {}"
-    using \<open>0 < e\<close> \<open>path p\<close> not_on_path_ball by blast
-  define kde where "kde \<equiv> (min k (min d e)) / 2"
-  have "0 < kde" "kde < k" "kde < d" "kde < e"
-    using \<open>0 < k\<close> \<open>0 < d\<close> \<open>0 < e\<close> by (auto simp: kde_def)
-  let ?q = "linepath (a + kde) (a + e) +++ p +++ linepath (a - d) (a - kde)"
-  have "- kde \<in> closed_segment (-d) e"
-    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
-  then have a_diff_kde: "a - kde \<in> closed_segment (a - d) (a + e)"
-    using of_real_closed_segment [THEN iffD2]
-    by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
-  then have clsub2: "closed_segment (a - d) (a - kde) \<subseteq> closed_segment (a - d) (a + e)"
-    by (simp add: subset_closed_segment)
-  then have "path_image p \<inter> closed_segment (a - d) (a - kde) \<subseteq> {a + e, a - d}"
-    using pap by force
-  moreover
-  have "a + e \<notin> path_image p \<inter> closed_segment (a - d) (a - kde)"
-    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>0 < e\<close> by (auto simp: closed_segment_eq_real_ivl)
-  ultimately have sub_a_diff_d: "path_image p \<inter> closed_segment (a - d) (a - kde) \<subseteq> {a - d}"
+  have [simp]: "\<And>x. 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> \<gamma> x \<noteq> z"
+    using z by (auto simp: path_image_def)
+  have [simp]: "z \<notin> \<gamma> ` {0..1}"
+    using path_image_def z by auto
+  have gpd: "\<gamma> piecewise_C1_differentiable_on {0..1}"
+    using \<gamma> valid_path_def by blast
+  define r where "r = (w - z) / (\<gamma> 0 - z)"
+  have [simp]: "r \<noteq> 0"
+    using w z by (auto simp: r_def)
+  have cont: "continuous_on {0..1}
+     (\<lambda>x. Im (integral {0..x} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z))))"
+    by (intro continuous_intros indefinite_integral_continuous_1 winding_number_exp_integral [OF gpd]; simp)
+  have "Arg2pi r \<le> 2*pi"
+    by (simp add: Arg2pi less_eq_real_def)
+  also have "\<dots> \<le> Im (integral {0..1} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))"
+    using 1
+    apply (simp add: winding_number_valid_path [OF \<gamma> z] contour_integral_integral)
+    apply (simp add: Complex.Re_divide field_simps power2_eq_square)
+    done
+  finally have "Arg2pi r \<le> Im (integral {0..1} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z)))" .
+  then have "\<exists>t. t \<in> {0..1} \<and> Im(integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x)/(\<gamma> x - z))) = Arg2pi r"
+    by (simp add: Arg2pi_ge_0 cont IVT')
+  then obtain t where t:     "t \<in> {0..1}"
+                  and eqArg: "Im (integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x)/(\<gamma> x - z))) = Arg2pi r"
     by blast
-  have "kde \<in> closed_segment (-d) e"
-    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
-  then have a_diff_kde: "a + kde \<in> closed_segment (a - d) (a + e)"
-    using of_real_closed_segment [THEN iffD2]
-    by (force dest: closed_segment_translation_eq [of "a", THEN iffD2] simp del: of_real_closed_segment)
-  then have clsub1: "closed_segment (a + kde) (a + e) \<subseteq> closed_segment (a - d) (a + e)"
-    by (simp add: subset_closed_segment)
-  then have "closed_segment (a + kde) (a + e) \<inter> path_image p \<subseteq> {a + e, a - d}"
-    using pap by force
-  moreover
-  have "closed_segment (a + kde) (a + e) \<inter> closed_segment (a - d) (a - kde) = {}"
-  proof (clarsimp intro!: equals0I)
-    fix y
-    assume y1: "y \<in> closed_segment (a + kde) (a + e)"
-       and y2: "y \<in> closed_segment (a - d) (a - kde)"
-    obtain u where u: "y = a + of_real u" and "0 < u"
-      using y1 \<open>0 < kde\<close> \<open>kde < e\<close> \<open>0 < e\<close> apply (clarsimp simp: in_segment)
-      apply (rule_tac u = "(1 - u)*kde + u*e" in that)
-       apply (auto simp: scaleR_conv_of_real algebra_simps)
-      by (meson le_less_trans less_add_same_cancel2 less_eq_real_def mult_left_mono)
-    moreover
-    obtain v where v: "y = a + of_real v" and "v \<le> 0"
-      using y2 \<open>0 < kde\<close> \<open>0 < d\<close> \<open>0 < e\<close> apply (clarsimp simp: in_segment)
-      apply (rule_tac v = "- ((1 - u)*d + u*kde)" in that)
-       apply (force simp: scaleR_conv_of_real algebra_simps)
-      by (meson less_eq_real_def neg_le_0_iff_le segment_bound_lemma)
-    ultimately show False
-      by auto
-  qed
-  moreover have "a - d \<notin> closed_segment (a + kde) (a + e)"
-    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>0 < e\<close> by (auto simp: closed_segment_eq_real_ivl)
-  ultimately have sub_a_plus_e:
-    "closed_segment (a + kde) (a + e) \<inter> (path_image p \<union> closed_segment (a - d) (a - kde))
-       \<subseteq> {a + e}"
-    by auto
-  have "kde \<in> closed_segment (-kde) e"
-    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
-  then have a_add_kde: "a + kde \<in> closed_segment (a - kde) (a + e)"
-    using of_real_closed_segment [THEN iffD2]
-    by (force dest: closed_segment_translation_eq [of "a", THEN iffD2] simp del: of_real_closed_segment)
-  have "closed_segment (a - kde) (a + kde) \<inter> closed_segment (a + kde) (a + e) = {a + kde}"
-    by (metis a_add_kde Int_closed_segment)
-  moreover
-  have "path_image p \<inter> closed_segment (a - kde) (a + kde) = {}"
-  proof (rule equals0I, clarify)
-    fix y  assume "y \<in> path_image p" "y \<in> closed_segment (a - kde) (a + kde)"
-    with equals0D [OF k, of y] \<open>0 < kde\<close> \<open>kde < k\<close> show False
-      by (auto simp: dist_norm dest: dist_decreases_closed_segment [where c=a])
-  qed
-  moreover
-  have "- kde \<in> closed_segment (-d) kde"
-    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
-  then have a_diff_kde': "a - kde \<in> closed_segment (a - d) (a + kde)"
-    using of_real_closed_segment [THEN iffD2]
-    by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
-  then have "closed_segment (a - d) (a - kde) \<inter> closed_segment (a - kde) (a + kde) = {a - kde}"
-    by (metis Int_closed_segment)
-  ultimately
-  have pa_subset_pm_kde: "path_image ?q \<inter> closed_segment (a - kde) (a + kde) \<subseteq> {a - kde, a + kde}"
-    by (auto simp: path_image_join assms)
-  have ge_kde1: "\<exists>y. x = a + y \<and> y \<ge> kde" if "x \<in> closed_segment (a + kde) (a + e)" for x
-    using that \<open>kde < e\<close> mult_le_cancel_left
-    apply (auto simp: in_segment)
-    apply (rule_tac x="(1-u)*kde + u*e" in exI)
-    apply (fastforce simp: algebra_simps scaleR_conv_of_real)
+  define i where "i = integral {0..t} (\<lambda>x. vector_derivative \<gamma> (at x) / (\<gamma> x - z))"
+  have iArg: "Arg2pi r = Im i"
+    using eqArg by (simp add: i_def)
+  have gpdt: "\<gamma> piecewise_C1_differentiable_on {0..t}"
+    by (metis atLeastAtMost_iff atLeastatMost_subset_iff order_refl piecewise_C1_differentiable_on_subset gpd t)
+  have "exp (- i) * (\<gamma> t - z) = \<gamma> 0 - z"
+    unfolding i_def
+    apply (rule winding_number_exp_integral [OF gpdt])
+    using t z unfolding path_image_def by force+
+  then have *: "\<gamma> t - z = exp i * (\<gamma> 0 - z)"
+    by (simp add: exp_minus field_simps)
+  then have "(w - z) = r * (\<gamma> 0 - z)"
+    by (simp add: r_def)
+  then have "z + complex_of_real (exp (Re i)) * (w - z) / complex_of_real (cmod r) = \<gamma> t"
+    apply simp
+    apply (subst Complex_Transcendental.Arg2pi_eq [of r])
+    apply (simp add: iArg)
+    using * apply (simp add: exp_eq_polar field_simps)
     done
-  have ge_kde2: "\<exists>y. x = a + y \<and> y \<le> -kde" if "x \<in> closed_segment (a - d) (a - kde)" for x
-    using that \<open>kde < d\<close> affine_ineq
-    apply (auto simp: in_segment)
-    apply (rule_tac x="- ((1-u)*d + u*kde)" in exI)
-    apply (fastforce simp: algebra_simps scaleR_conv_of_real)
-    done
-  have notin_paq: "x \<notin> path_image ?q" if "dist a x < kde" for x
-    using that using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < k\<close>
-    apply (auto simp: path_image_join assms dist_norm dest!: ge_kde1 ge_kde2)
-    by (meson k disjoint_iff_not_equal le_less_trans less_eq_real_def mem_ball that)
-  obtain z where zin: "z \<in> inside (path_image (?q +++ linepath (a - kde) (a + kde)))"
-           and z1: "cmod (winding_number (?q +++ linepath (a - kde) (a + kde)) z) = 1"
-  proof (rule simple_closed_path_wn1 [of kde ?q a])
-    show "simple_path (?q +++ linepath (a - kde) (a + kde))"
-    proof (intro simple_path_join_loop conjI)
-      show "arc ?q"
-      proof (rule arc_join)
-        show "arc (linepath (a + kde) (a + e))"
-          using \<open>kde < e\<close> \<open>arc p\<close> by (force simp: pfp)
-        show "arc (p +++ linepath (a - d) (a - kde))"
-          using \<open>kde < d\<close> \<open>kde < e\<close> \<open>arc p\<close> sub_a_diff_d by (force simp: pfp intro: arc_join)
-      qed (auto simp: psp pfp path_image_join sub_a_plus_e)
-      show "arc (linepath (a - kde) (a + kde))"
-        using \<open>0 < kde\<close> by auto
-    qed (use pa_subset_pm_kde in auto)
-  qed (use \<open>0 < kde\<close> notin_paq in auto)
-  have eq: "path_image (?q +++ linepath (a - kde) (a + kde)) = path_image (p +++ linepath (a - d) (a + e))"
-            (is "?lhs = ?rhs")
-  proof
-    show "?lhs \<subseteq> ?rhs"
-      using clsub1 clsub2 apply (auto simp: path_image_join assms)
-      by (meson subsetCE subset_closed_segment)
-    show "?rhs \<subseteq> ?lhs"
-      apply (simp add: path_image_join assms Un_ac)
-        by (metis Un_closed_segment Un_assoc a_diff_kde a_diff_kde' le_supI2 subset_refl)
-    qed
-  show thesis
-  proof
-    show zzin: "z \<in> inside (path_image (p +++ linepath (a - d) (a + e)))"
-      by (metis eq zin)
-    then have znotin: "z \<notin> path_image p"
-      by (metis ComplD Un_iff inside_Un_outside path_image_join pathfinish_linepath pathstart_reversepath pfp reversepath_linepath)
-    have znotin_de: "z \<notin> closed_segment (a - d) (a + kde)"
-      by (metis ComplD Un_iff Un_closed_segment a_diff_kde inside_Un_outside path_image_join path_image_linepath pathstart_linepath pfp zzin)
-    have "winding_number (linepath (a - d) (a + e)) z =
-          winding_number (linepath (a - d) (a + kde)) z + winding_number (linepath (a + kde) (a + e)) z"
-      apply (rule winding_number_split_linepath)
-      apply (simp add: a_diff_kde)
-      by (metis ComplD Un_iff inside_Un_outside path_image_join path_image_linepath pathstart_linepath pfp zzin)
-    also have "... = winding_number (linepath (a + kde) (a + e)) z +
-                     (winding_number (linepath (a - d) (a - kde)) z +
-                      winding_number (linepath (a - kde) (a + kde)) z)"
-      by (simp add: winding_number_split_linepath [of "a-kde", symmetric] znotin_de a_diff_kde')
-    finally have "winding_number (p +++ linepath (a - d) (a + e)) z =
-                    winding_number p z + winding_number (linepath (a + kde) (a + e)) z +
-                   (winding_number (linepath (a - d) (a - kde)) z +
-                    winding_number (linepath (a - kde) (a + kde)) z)"
-      by (metis (no_types, lifting) ComplD Un_iff \<open>arc p\<close> add.assoc arc_imp_path eq path_image_join path_join_path_ends path_linepath simple_path_imp_path sp_pl union_with_outside winding_number_join zin)
-    also have "... = winding_number ?q z + winding_number (linepath (a - kde) (a + kde)) z"
-      using \<open>path p\<close> znotin assms zzin clsub1
-      apply (subst winding_number_join, auto)
-      apply (metis (no_types, hide_lams) ComplD Un_iff contra_subsetD inside_Un_outside path_image_join path_image_linepath pathstart_linepath)
-      apply (metis Un_iff Un_closed_segment a_diff_kde' not_in_path_image_join path_image_linepath znotin_de)
-      by (metis Un_iff Un_closed_segment a_diff_kde' path_image_linepath path_linepath pathstart_linepath winding_number_join znotin_de)
-    also have "... = winding_number (?q +++ linepath (a - kde) (a + kde)) z"
-      using \<open>path p\<close> assms zin
-      apply (subst winding_number_join [symmetric], auto)
-      apply (metis ComplD Un_iff path_image_join pathfinish_join pathfinish_linepath pathstart_linepath union_with_outside)
-      by (metis Un_iff Un_closed_segment a_diff_kde' znotin_de)
-    finally have "winding_number (p +++ linepath (a - d) (a + e)) z =
-                  winding_number (?q +++ linepath (a - kde) (a + kde)) z" .
-    then show "cmod (winding_number (p +++ linepath (a - d) (a + e)) z) = 1"
-      by (simp add: z1)
-  qed
+  with t show ?thesis
+    by (rule_tac x="exp(Re i) / norm r" in exI) (auto simp: path_image_def)
+qed
+
+lemma winding_number_big_meets:
+  fixes z::complex
+  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "\<bar>Re (winding_number \<gamma> z)\<bar> \<ge> 1"
+      and w: "w \<noteq> z"
+  shows "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image \<gamma>"
+proof -
+  { assume "Re (winding_number \<gamma> z) \<le> - 1"
+    then have "Re (winding_number (reversepath \<gamma>) z) \<ge> 1"
+      by (simp add: \<gamma> valid_path_imp_path winding_number_reversepath z)
+    moreover have "valid_path (reversepath \<gamma>)"
+      using \<gamma> valid_path_imp_reverse by auto
+    moreover have "z \<notin> path_image (reversepath \<gamma>)"
+      by (simp add: z)
+    ultimately have "\<exists>a::real. 0 < a \<and> z + a*(w - z) \<in> path_image (reversepath \<gamma>)"
+      using winding_number_pos_meets w by blast
+    then have ?thesis
+      by simp
+  }
+  then show ?thesis
+    using assms
+    by (simp add: abs_if winding_number_pos_meets split: if_split_asm)
+qed
+
+lemma winding_number_less_1:
+  fixes z::complex
+  shows
+  "\<lbrakk>valid_path \<gamma>; z \<notin> path_image \<gamma>; w \<noteq> z;
+    \<And>a::real. 0 < a \<Longrightarrow> z + a*(w - z) \<notin> path_image \<gamma>\<rbrakk>
+   \<Longrightarrow> Re(winding_number \<gamma> z) < 1"
+   by (auto simp: not_less dest: winding_number_big_meets)
+
+text\<open>One way of proving that WN=1 for a loop.\<close>
+lemma winding_number_eq_1:
+  fixes z::complex
+  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+      and 0: "0 < Re(winding_number \<gamma> z)" and 2: "Re(winding_number \<gamma> z) < 2"
+  shows "winding_number \<gamma> z = 1"
+proof -
+  have "winding_number \<gamma> z \<in> Ints"
+    by (simp add: \<gamma> integer_winding_number loop valid_path_imp_path z)
+  then show ?thesis
+    using 0 2 by (auto simp: Ints_def)
 qed
 
-lemma simple_closed_path_wn3:
-  fixes p :: "real \<Rightarrow> complex"
-  assumes "simple_path p" and loop: "pathfinish p = pathstart p"
-  obtains z where "z \<in> inside (path_image p)" "cmod (winding_number p z) = 1"
+subsection\<open>Continuity of winding number and invariance on connected sets\<close>
+
+lemma continuous_at_winding_number:
+  fixes z::complex
+  assumes \<gamma>: "path \<gamma>" and z: "z \<notin> path_image \<gamma>"
+  shows "continuous (at z) (winding_number \<gamma>)"
 proof -
-  have ins: "inside(path_image p) \<noteq> {}" "open(inside(path_image p))"
-            "connected(inside(path_image p))"
-   and out: "outside(path_image p) \<noteq> {}" "open(outside(path_image p))"
-            "connected(outside(path_image p))"
-   and bo:  "bounded(inside(path_image p))" "\<not> bounded(outside(path_image p))"
-   and ins_out: "inside(path_image p) \<inter> outside(path_image p) = {}"
-                "inside(path_image p) \<union> outside(path_image p) = - path_image p"
-   and fro: "frontier(inside(path_image p)) = path_image p"
-            "frontier(outside(path_image p)) = path_image p"
-    using Jordan_inside_outside [OF assms] by auto
-  obtain a where a: "a \<in> inside(path_image p)"
-    using \<open>inside (path_image p) \<noteq> {}\<close> by blast
-  obtain d::real where "0 < d" and d_fro: "a - d \<in> frontier (inside (path_image p))"
-                 and d_int: "\<And>\<epsilon>. \<lbrakk>0 \<le> \<epsilon>; \<epsilon> < d\<rbrakk> \<Longrightarrow> (a - \<epsilon>) \<in> inside (path_image p)"
-    apply (rule ray_to_frontier [of "inside (path_image p)" a "-1"])
-    using \<open>bounded (inside (path_image p))\<close> \<open>open (inside (path_image p))\<close> a interior_eq
-       apply (auto simp: of_real_def)
-    done
-  obtain e::real where "0 < e" and e_fro: "a + e \<in> frontier (inside (path_image p))"
-    and e_int: "\<And>\<epsilon>. \<lbrakk>0 \<le> \<epsilon>; \<epsilon> < e\<rbrakk> \<Longrightarrow> (a + \<epsilon>) \<in> inside (path_image p)"
-    apply (rule ray_to_frontier [of "inside (path_image p)" a 1])
-    using \<open>bounded (inside (path_image p))\<close> \<open>open (inside (path_image p))\<close> a interior_eq
-       apply (auto simp: of_real_def)
-    done
-  obtain t0 where "0 \<le> t0" "t0 \<le> 1" and pt: "p t0 = a - d"
-    using a d_fro fro by (auto simp: path_image_def)
-  obtain q where "simple_path q" and q_ends: "pathstart q = a - d" "pathfinish q = a - d"
-    and q_eq_p: "path_image q = path_image p"
-    and wn_q_eq_wn_p: "\<And>z. z \<in> inside(path_image p) \<Longrightarrow> winding_number q z = winding_number p z"
-  proof
-    show "simple_path (shiftpath t0 p)"
-      by (simp add: pathstart_shiftpath pathfinish_shiftpath
-          simple_path_shiftpath path_image_shiftpath \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> assms)
-    show "pathstart (shiftpath t0 p) = a - d"
-      using pt by (simp add: \<open>t0 \<le> 1\<close> pathstart_shiftpath)
-    show "pathfinish (shiftpath t0 p) = a - d"
-      by (simp add: \<open>0 \<le> t0\<close> loop pathfinish_shiftpath pt)
-    show "path_image (shiftpath t0 p) = path_image p"
-      by (simp add: \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> loop path_image_shiftpath)
-    show "winding_number (shiftpath t0 p) z = winding_number p z"
-      if "z \<in> inside (path_image p)" for z
-      by (metis ComplD Un_iff \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> \<open>simple_path p\<close> atLeastAtMost_iff inside_Un_outside
-          loop simple_path_imp_path that winding_number_shiftpath)
-  qed
-  have ad_not_ae: "a - d \<noteq> a + e"
-    by (metis \<open>0 < d\<close> \<open>0 < e\<close> add.left_inverse add_left_cancel add_uminus_conv_diff
-        le_add_same_cancel2 less_eq_real_def not_less of_real_add of_real_def of_real_eq_0_iff pt)
-  have ad_ae_q: "{a - d, a + e} \<subseteq> path_image q"
-    using \<open>path_image q = path_image p\<close> d_fro e_fro fro(1) by auto
-  have ada: "open_segment (a - d) a \<subseteq> inside (path_image p)"
-  proof (clarsimp simp: in_segment)
-    fix u::real assume "0 < u" "u < 1"
-    with d_int have "a - (1 - u) * d \<in> inside (path_image p)"
-      by (metis \<open>0 < d\<close> add.commute diff_add_cancel left_diff_distrib' less_add_same_cancel2 less_eq_real_def mult.left_neutral zero_less_mult_iff)
-    then show "(1 - u) *\<^sub>R (a - d) + u *\<^sub>R a \<in> inside (path_image p)"
-      by (simp add: diff_add_eq of_real_def real_vector.scale_right_diff_distrib)
-  qed
-  have aae: "open_segment a (a + e) \<subseteq> inside (path_image p)"
-  proof (clarsimp simp: in_segment)
-    fix u::real assume "0 < u" "u < 1"
-    with e_int have "a + u * e \<in> inside (path_image p)"
-      by (meson \<open>0 < e\<close> less_eq_real_def mult_less_cancel_right2 not_less zero_less_mult_iff)
-    then show "(1 - u) *\<^sub>R a + u *\<^sub>R (a + e) \<in> inside (path_image p)"
-      apply (simp add: algebra_simps)
-      by (simp add: diff_add_eq of_real_def real_vector.scale_right_diff_distrib)
-  qed
-  have "complex_of_real (d * d + (e * e + d * (e + e))) \<noteq> 0"
-    using ad_not_ae
-    by (metis \<open>0 < d\<close> \<open>0 < e\<close> add_strict_left_mono less_add_same_cancel1 not_sum_squares_lt_zero
-        of_real_eq_0_iff zero_less_double_add_iff_zero_less_single_add zero_less_mult_iff)
-  then have a_in_de: "a \<in> open_segment (a - d) (a + e)"
-    using ad_not_ae \<open>0 < d\<close> \<open>0 < e\<close>
-    apply (auto simp: in_segment algebra_simps scaleR_conv_of_real)
-    apply (rule_tac x="d / (d+e)" in exI)
-    apply (auto simp: field_simps)
+  obtain e where "e>0" and cbg: "cball z e \<subseteq> - path_image \<gamma>"
+    using open_contains_cball [of "- path_image \<gamma>"]  z
+    by (force simp: closed_def [symmetric] closed_path_image [OF \<gamma>])
+  then have ppag: "path_image \<gamma> \<subseteq> - cball z (e/2)"
+    by (force simp: cball_def dist_norm)
+  have oc: "open (- cball z (e / 2))"
+    by (simp add: closed_def [symmetric])
+  obtain d where "d>0" and pi_eq:
+    "\<And>h1 h2. \<lbrakk>valid_path h1; valid_path h2;
+              (\<forall>t\<in>{0..1}. cmod (h1 t - \<gamma> t) < d \<and> cmod (h2 t - \<gamma> t) < d);
+              pathstart h2 = pathstart h1; pathfinish h2 = pathfinish h1\<rbrakk>
+             \<Longrightarrow>
+               path_image h1 \<subseteq> - cball z (e / 2) \<and>
+               path_image h2 \<subseteq> - cball z (e / 2) \<and>
+               (\<forall>f. f holomorphic_on - cball z (e / 2) \<longrightarrow> contour_integral h2 f = contour_integral h1 f)"
+    using contour_integral_nearby_ends [OF oc \<gamma> ppag] by metis
+  obtain p where p: "valid_path p" "z \<notin> path_image p"
+                    "pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma>"
+              and pg: "\<And>t. t\<in>{0..1} \<Longrightarrow> cmod (\<gamma> t - p t) < min d e / 2"
+              and pi: "contour_integral p (\<lambda>x. 1 / (x - z)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z"
+    using winding_number [OF \<gamma> z, of "min d e / 2"] \<open>d>0\<close> \<open>e>0\<close> by (auto simp: winding_number_prop_def)
+  { fix w
+    assume d2: "cmod (w - z) < d/2" and e2: "cmod (w - z) < e/2"
+    then have wnotp: "w \<notin> path_image p"
+      using cbg \<open>d>0\<close> \<open>e>0\<close>
+      apply (simp add: path_image_def cball_def dist_norm, clarify)
+      apply (frule pg)
+      apply (drule_tac c="\<gamma> x" in subsetD)
+      apply (auto simp: less_eq_real_def norm_minus_commute norm_triangle_half_l)
+      done
+    have wnotg: "w \<notin> path_image \<gamma>"
+      using cbg e2 \<open>e>0\<close> by (force simp: dist_norm norm_minus_commute)
+    { fix k::real
+      assume k: "k>0"
+      then obtain q where q: "valid_path q" "w \<notin> path_image q"
+                             "pathstart q = pathstart \<gamma> \<and> pathfinish q = pathfinish \<gamma>"
+                    and qg: "\<And>t. t \<in> {0..1} \<Longrightarrow> cmod (\<gamma> t - q t) < min k (min d e) / 2"
+                    and qi: "contour_integral q (\<lambda>u. 1 / (u - w)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> w"
+        using winding_number [OF \<gamma> wnotg, of "min k (min d e) / 2"] \<open>d>0\<close> \<open>e>0\<close> k
+        by (force simp: min_divide_distrib_right winding_number_prop_def)
+      have "contour_integral p (\<lambda>u. 1 / (u - w)) = contour_integral q (\<lambda>u. 1 / (u - w))"
+        apply (rule pi_eq [OF \<open>valid_path q\<close> \<open>valid_path p\<close>, THEN conjunct2, THEN conjunct2, rule_format])
+        apply (frule pg)
+        apply (frule qg)
+        using p q \<open>d>0\<close> e2
+        apply (auto simp: dist_norm norm_minus_commute intro!: holomorphic_intros)
+        done
+      then have "contour_integral p (\<lambda>x. 1 / (x - w)) = complex_of_real (2 * pi) * \<i> * winding_number \<gamma> w"
+        by (simp add: pi qi)
+    } note pip = this
+    have "path p"
+      using p by (simp add: valid_path_imp_path)
+    then have "winding_number p w = winding_number \<gamma> w"
+      apply (rule winding_number_unique [OF _ wnotp])
+      apply (rule_tac x=p in exI)
+      apply (simp add: p wnotp min_divide_distrib_right pip winding_number_prop_def)
+      done
+  } note wnwn = this
+  obtain pe where "pe>0" and cbp: "cball z (3 / 4 * pe) \<subseteq> - path_image p"
+    using p open_contains_cball [of "- path_image p"]
+    by (force simp: closed_def [symmetric] closed_path_image [OF valid_path_imp_path])
+  obtain L
+    where "L>0"
+      and L: "\<And>f B. \<lbrakk>f holomorphic_on - cball z (3 / 4 * pe);
+                      \<forall>z \<in> - cball z (3 / 4 * pe). cmod (f z) \<le> B\<rbrakk> \<Longrightarrow>
+                      cmod (contour_integral p f) \<le> L * B"
+    using contour_integral_bound_exists [of "- cball z (3/4*pe)" p] cbp \<open>valid_path p\<close> by force
+  { fix e::real and w::complex
+    assume e: "0 < e" and w: "cmod (w - z) < pe/4" "cmod (w - z) < e * pe\<^sup>2 / (8 * L)"
+    then have [simp]: "w \<notin> path_image p"
+      using cbp p(2) \<open>0 < pe\<close>
+      by (force simp: dist_norm norm_minus_commute path_image_def cball_def)
+    have [simp]: "contour_integral p (\<lambda>x. 1/(x - w)) - contour_integral p (\<lambda>x. 1/(x - z)) =
+                  contour_integral p (\<lambda>x. 1/(x - w) - 1/(x - z))"
+      by (simp add: p contour_integrable_inversediff contour_integral_diff)
+    { fix x
+      assume pe: "3/4 * pe < cmod (z - x)"
+      have "cmod (w - x) < pe/4 + cmod (z - x)"
+        by (meson add_less_cancel_right norm_diff_triangle_le order_refl order_trans_rules(21) w(1))
+      then have wx: "cmod (w - x) < 4/3 * cmod (z - x)" using pe by simp
+      have "cmod (z - x) \<le> cmod (z - w) + cmod (w - x)"
+        using norm_diff_triangle_le by blast
+      also have "\<dots> < pe/4 + cmod (w - x)"
+        using w by (simp add: norm_minus_commute)
+      finally have "pe/2 < cmod (w - x)"
+        using pe by auto
+      then have "(pe/2)^2 < cmod (w - x) ^ 2"
+        apply (rule power_strict_mono)
+        using \<open>pe>0\<close> by auto
+      then have pe2: "pe^2 < 4 * cmod (w - x) ^ 2"
+        by (simp add: power_divide)
+      have "8 * L * cmod (w - z) < e * pe\<^sup>2"
+        using w \<open>L>0\<close> by (simp add: field_simps)
+      also have "\<dots> < e * 4 * cmod (w - x) * cmod (w - x)"
+        using pe2 \<open>e>0\<close> by (simp add: power2_eq_square)
+      also have "\<dots> < e * 4 * cmod (w - x) * (4/3 * cmod (z - x))"
+        using wx
+        apply (rule mult_strict_left_mono)
+        using pe2 e not_less_iff_gr_or_eq by fastforce
+      finally have "L * cmod (w - z) < 2/3 * e * cmod (w - x) * cmod (z - x)"
+        by simp
+      also have "\<dots> \<le> e * cmod (w - x) * cmod (z - x)"
+         using e by simp
+      finally have Lwz: "L * cmod (w - z) < e * cmod (w - x) * cmod (z - x)" .
+      have "L * cmod (1 / (x - w) - 1 / (x - z)) \<le> e"
+        apply (cases "x=z \<or> x=w")
+        using pe \<open>pe>0\<close> w \<open>L>0\<close>
+        apply (force simp: norm_minus_commute)
+        using wx w(2) \<open>L>0\<close> pe pe2 Lwz
+        apply (auto simp: divide_simps mult_less_0_iff norm_minus_commute norm_divide norm_mult power2_eq_square)
+        done
+    } note L_cmod_le = this
+    have *: "cmod (contour_integral p (\<lambda>x. 1 / (x - w) - 1 / (x - z))) \<le> L * (e * pe\<^sup>2 / L / 4 * (inverse (pe / 2))\<^sup>2)"
+      apply (rule L)
+      using \<open>pe>0\<close> w
+      apply (force simp: dist_norm norm_minus_commute intro!: holomorphic_intros)
+      using \<open>pe>0\<close> w \<open>L>0\<close>
+      apply (auto simp: cball_def dist_norm field_simps L_cmod_le  simp del: less_divide_eq_numeral1 le_divide_eq_numeral1)
+      done
+    have "cmod (contour_integral p (\<lambda>x. 1 / (x - w)) - contour_integral p (\<lambda>x. 1 / (x - z))) < 2*e"
+      apply simp
+      apply (rule le_less_trans [OF *])
+      using \<open>L>0\<close> e
+      apply (force simp: field_simps)
+      done
+    then have "cmod (winding_number p w - winding_number p z) < e"
+      using pi_ge_two e
+      by (force simp: winding_number_valid_path p field_simps norm_divide norm_mult intro: less_le_trans)
+  } note cmod_wn_diff = this
+  then have "isCont (winding_number p) z"
+    apply (simp add: continuous_at_eps_delta, clarify)
+    apply (rule_tac x="min (pe/4) (e/2*pe^2/L/4)" in exI)
+    using \<open>pe>0\<close> \<open>L>0\<close>
+    apply (simp add: dist_norm cmod_wn_diff)
     done
-  then have "open_segment (a - d) (a + e) \<subseteq> inside (path_image p)"
-    using ada a aae Un_open_segment [of a "a-d" "a+e"] by blast
-  then have "path_image q \<inter> open_segment (a - d) (a + e) = {}"
-    using inside_no_overlap by (fastforce simp: q_eq_p)
-  with ad_ae_q have paq_Int_cs: "path_image q \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}"
-    by (simp add: closed_segment_eq_open)
-  obtain t where "0 \<le> t" "t \<le> 1" and qt: "q t = a + e"
-    using a e_fro fro ad_ae_q by (auto simp: path_defs)
-  then have "t \<noteq> 0"
-    by (metis ad_not_ae pathstart_def q_ends(1))
-  then have "t \<noteq> 1"
-    by (metis ad_not_ae pathfinish_def q_ends(2) qt)
-  have q01: "q 0 = a - d" "q 1 = a - d"
-    using q_ends by (auto simp: pathstart_def pathfinish_def)
-  obtain z where zin: "z \<in> inside (path_image (subpath t 0 q +++ linepath (a - d) (a + e)))"
-             and z1: "cmod (winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z) = 1"
-  proof (rule simple_closed_path_wn2 [of d e "subpath t 0 q" a], simp_all add: q01)
-    show "simple_path (subpath t 0 q +++ linepath (a - d) (a + e))"
-    proof (rule simple_path_join_loop, simp_all add: qt q01)
-      have "inj_on q (closed_segment t 0)"
-        using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close> \<open>t \<noteq> 1\<close>
-        by (fastforce simp: simple_path_def inj_on_def closed_segment_eq_real_ivl)
-      then show "arc (subpath t 0 q)"
-        using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close>
-        by (simp add: arc_subpath_eq simple_path_imp_path)
-      show "arc (linepath (a - d) (a + e))"
-        by (simp add: ad_not_ae)
-      show "path_image (subpath t 0 q) \<inter> closed_segment (a - d) (a + e) \<subseteq> {a + e, a - d}"
-        using qt paq_Int_cs  \<open>simple_path q\<close> \<open>0 \<le> t\<close> \<open>t \<le> 1\<close>
-        by (force simp: dest: rev_subsetD [OF _ path_image_subpath_subset] intro: simple_path_imp_path)
-    qed
-  qed (auto simp: \<open>0 < d\<close> \<open>0 < e\<close> qt)
-  have pa01_Un: "path_image (subpath 0 t q) \<union> path_image (subpath 1 t q) = path_image q"
-    unfolding path_image_subpath
-    using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> by (force simp: path_image_def image_iff)
-  with paq_Int_cs have pa_01q:
-        "(path_image (subpath 0 t q) \<union> path_image (subpath 1 t q)) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}"
-    by metis
-  have z_notin_ed: "z \<notin> closed_segment (a + e) (a - d)"
-    using zin q01 by (simp add: path_image_join closed_segment_commute inside_def)
-  have z_notin_0t: "z \<notin> path_image (subpath 0 t q)"
-    by (metis (no_types, hide_lams) IntI Un_upper1 subsetD empty_iff inside_no_overlap path_image_join
-        path_image_subpath_commute pathfinish_subpath pathstart_def pathstart_linepath q_ends(1) qt subpath_trivial zin)
-  have [simp]: "- winding_number (subpath t 0 q) z = winding_number (subpath 0 t q) z"
-    by (metis \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> atLeastAtMost_iff zero_le_one
-              path_image_subpath_commute path_subpath real_eq_0_iff_le_ge_0
-              reversepath_subpath simple_path_imp_path winding_number_reversepath z_notin_0t)
-  obtain z_in_q: "z \<in> inside(path_image q)"
-     and wn_q: "winding_number (subpath 0 t q +++ subpath t 1 q) z = - winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"
-  proof (rule winding_number_from_innerpath
-          [of "subpath 0 t q" "a-d" "a+e" "subpath 1 t q" "linepath (a - d) (a + e)"
-            z "- winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"],
-         simp_all add: q01 qt pa01_Un reversepath_subpath)
-    show "simple_path (subpath 0 t q)" "simple_path (subpath 1 t q)"
-      by (simp_all add: \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close> \<open>t \<noteq> 1\<close> simple_path_subpath)
-    show "simple_path (linepath (a - d) (a + e))"
-      using ad_not_ae by blast
-    show "path_image (subpath 0 t q) \<inter> path_image (subpath 1 t q) = {a - d, a + e}"  (is "?lhs = ?rhs")
-    proof
-      show "?lhs \<subseteq> ?rhs"
-        using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 1\<close> q_ends qt q01
-        by (force simp: pathfinish_def qt simple_path_def path_image_subpath)
-      show "?rhs \<subseteq> ?lhs"
-        using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
-    qed
-    show "path_image (subpath 0 t q) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}" (is "?lhs = ?rhs")
-    proof
-      show "?lhs \<subseteq> ?rhs"  using paq_Int_cs pa01_Un by fastforce
-      show "?rhs \<subseteq> ?lhs"  using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
-    qed
-    show "path_image (subpath 1 t q) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}" (is "?lhs = ?rhs")
-    proof
-      show "?lhs \<subseteq> ?rhs"  by (auto simp: pa_01q [symmetric])
-      show "?rhs \<subseteq> ?lhs"  using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
-    qed
-    show "closed_segment (a - d) (a + e) \<inter> inside (path_image q) \<noteq> {}"
-      using a a_in_de open_closed_segment pa01_Un q_eq_p by fastforce
-    show "z \<in> inside (path_image (subpath 0 t q) \<union> closed_segment (a - d) (a + e))"
-      by (metis path_image_join path_image_linepath path_image_subpath_commute pathfinish_subpath pathstart_linepath q01(1) zin)
-    show "winding_number (subpath 0 t q +++ linepath (a + e) (a - d)) z =
-      - winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"
-      using z_notin_ed z_notin_0t \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close>
-      by (simp add: simple_path_imp_path qt q01 path_image_subpath_commute closed_segment_commute winding_number_join winding_number_reversepath [symmetric])
-    show "- d \<noteq> e"
-      using ad_not_ae by auto
-    show "winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z \<noteq> 0"
-      using z1 by auto
-  qed
-  show ?thesis
-  proof
-    show "z \<in> inside (path_image p)"
-      using q_eq_p z_in_q by auto
-    then have [simp]: "z \<notin> path_image q"
-      by (metis disjoint_iff_not_equal inside_no_overlap q_eq_p)
-    have [simp]: "z \<notin> path_image (subpath 1 t q)"
-      using inside_def pa01_Un z_in_q by fastforce
-    have "winding_number(subpath 0 t q +++ subpath t 1 q) z = winding_number(subpath 0 1 q) z"
-      using z_notin_0t \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close>
-      by (simp add: simple_path_imp_path qt path_image_subpath_commute winding_number_join winding_number_subpath_combine)
-    with wn_q have "winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z = - winding_number q z"
-      by auto
-    with z1 have "cmod (winding_number q z) = 1"
-      by simp
-    with z1 wn_q_eq_wn_p show "cmod (winding_number p z) = 1"
-      using z1 wn_q_eq_wn_p  by (simp add: \<open>z \<in> inside (path_image p)\<close>)
-    qed
+  then show ?thesis
+    apply (rule continuous_transform_within [where d = "min d e / 2"])
+    apply (auto simp: \<open>d>0\<close> \<open>e>0\<close> dist_norm wnwn)
+    done
 qed
 
-proposition simple_closed_path_winding_number_inside:
-  assumes "simple_path \<gamma>"
-  obtains "\<And>z. z \<in> inside(path_image \<gamma>) \<Longrightarrow> winding_number \<gamma> z = 1"
-        | "\<And>z. z \<in> inside(path_image \<gamma>) \<Longrightarrow> winding_number \<gamma> z = -1"
-proof (cases "pathfinish \<gamma> = pathstart \<gamma>")
-  case True
-  have "path \<gamma>"
-    by (simp add: assms simple_path_imp_path)
-  then have const: "winding_number \<gamma> constant_on inside(path_image \<gamma>)"
-  proof (rule winding_number_constant)
-    show "connected (inside(path_image \<gamma>))"
-      by (simp add: Jordan_inside_outside True assms)
-  qed (use inside_no_overlap True in auto)
-  obtain z where zin: "z \<in> inside (path_image \<gamma>)" and z1: "cmod (winding_number \<gamma> z) = 1"
-    using simple_closed_path_wn3 [of \<gamma>] True assms by blast
-  have "winding_number \<gamma> z \<in> \<int>"
-    using zin integer_winding_number [OF \<open>path \<gamma>\<close> True] inside_def by blast
-  with z1 consider "winding_number \<gamma> z = 1" | "winding_number \<gamma> z = -1"
-    apply (auto simp: Ints_def abs_if split: if_split_asm)
-    by (metis of_int_1 of_int_eq_iff of_int_minus)
-  with that const zin show ?thesis
-    unfolding constant_on_def by metis
-next
-  case False
-  then show ?thesis
-    using inside_simple_curve_imp_closed assms that(2) by blast
-qed
+corollary continuous_on_winding_number:
+    "path \<gamma> \<Longrightarrow> continuous_on (- path_image \<gamma>) (\<lambda>w. winding_number \<gamma> w)"
+  by (simp add: continuous_at_imp_continuous_on continuous_at_winding_number)
 
-lemma simple_closed_path_abs_winding_number_inside:
-  assumes "simple_path \<gamma>" "z \<in> inside(path_image \<gamma>)"
-    shows "\<bar>Re (winding_number \<gamma> z)\<bar> = 1"
-  by (metis assms norm_minus_cancel norm_one one_complex.simps(1) real_norm_def simple_closed_path_winding_number_inside uminus_complex.simps(1))
-
-lemma simple_closed_path_norm_winding_number_inside:
-  assumes "simple_path \<gamma>" "z \<in> inside(path_image \<gamma>)"
-  shows "norm (winding_number \<gamma> z) = 1"
-proof -
-  have "pathfinish \<gamma> = pathstart \<gamma>"
-    using assms inside_simple_curve_imp_closed by blast
-  with assms integer_winding_number have "winding_number \<gamma> z \<in> \<int>"
-    by (simp add: inside_def simple_path_def)
-  then show ?thesis
-    by (metis assms norm_minus_cancel norm_one simple_closed_path_winding_number_inside)
-qed
+subsection\<^marker>\<open>tag unimportant\<close> \<open>The winding number is constant on a connected region\<close>
 
-lemma simple_closed_path_winding_number_cases:
-   "\<lbrakk>simple_path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>\<rbrakk> \<Longrightarrow> winding_number \<gamma> z \<in> {-1,0,1}"
-apply (simp add: inside_Un_outside [of "path_image \<gamma>", symmetric, unfolded set_eq_iff Set.Compl_iff] del: inside_Un_outside)
-   apply (rule simple_closed_path_winding_number_inside)
-  using simple_path_def winding_number_zero_in_outside by blast+
-
-lemma simple_closed_path_winding_number_pos:
-   "\<lbrakk>simple_path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>; 0 < Re(winding_number \<gamma> z)\<rbrakk>
-    \<Longrightarrow> winding_number \<gamma> z = 1"
-using simple_closed_path_winding_number_cases
-  by fastforce
-
-subsection \<open>Winding number for rectangular paths\<close>
-
-definition\<^marker>\<open>tag important\<close> rectpath where
-  "rectpath a1 a3 = (let a2 = Complex (Re a3) (Im a1); a4 = Complex (Re a1) (Im a3)
-                      in linepath a1 a2 +++ linepath a2 a3 +++ linepath a3 a4 +++ linepath a4 a1)"
-
-lemma path_rectpath [simp, intro]: "path (rectpath a b)"
-  by (simp add: Let_def rectpath_def)
-
-lemma valid_path_rectpath [simp, intro]: "valid_path (rectpath a b)"
-  by (simp add: Let_def rectpath_def)
-
-lemma pathstart_rectpath [simp]: "pathstart (rectpath a1 a3) = a1"
-  by (simp add: rectpath_def Let_def)
-
-lemma pathfinish_rectpath [simp]: "pathfinish (rectpath a1 a3) = a1"
-  by (simp add: rectpath_def Let_def)
-
-lemma simple_path_rectpath [simp, intro]:
-  assumes "Re a1 \<noteq> Re a3" "Im a1 \<noteq> Im a3"
-  shows   "simple_path (rectpath a1 a3)"
-  unfolding rectpath_def Let_def using assms
-  by (intro simple_path_join_loop arc_join arc_linepath)
-     (auto simp: complex_eq_iff path_image_join closed_segment_same_Re closed_segment_same_Im)
-
-lemma path_image_rectpath:
-  assumes "Re a1 \<le> Re a3" "Im a1 \<le> Im a3"
-  shows "path_image (rectpath a1 a3) =
-           {z. Re z \<in> {Re a1, Re a3} \<and> Im z \<in> {Im a1..Im a3}} \<union>
-           {z. Im z \<in> {Im a1, Im a3} \<and> Re z \<in> {Re a1..Re a3}}" (is "?lhs = ?rhs")
+lemma winding_number_constant:
+  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" and cs: "connected S" and sg: "S \<inter> path_image \<gamma> = {}"
+  shows "winding_number \<gamma> constant_on S"
 proof -
-  define a2 a4 where "a2 = Complex (Re a3) (Im a1)" and "a4 = Complex (Re a1) (Im a3)"
-  have "?lhs = closed_segment a1 a2 \<union> closed_segment a2 a3 \<union>
-                  closed_segment a4 a3 \<union> closed_segment a1 a4"
-    by (simp_all add: rectpath_def Let_def path_image_join closed_segment_commute
-                      a2_def a4_def Un_assoc)
-  also have "\<dots> = ?rhs" using assms
-    by (auto simp: rectpath_def Let_def path_image_join a2_def a4_def
-          closed_segment_same_Re closed_segment_same_Im closed_segment_eq_real_ivl)
-  finally show ?thesis .
+  have *: "1 \<le> cmod (winding_number \<gamma> y - winding_number \<gamma> z)"
+      if ne: "winding_number \<gamma> y \<noteq> winding_number \<gamma> z" and "y \<in> S" "z \<in> S" for y z
+  proof -
+    have "winding_number \<gamma> y \<in> \<int>"  "winding_number \<gamma> z \<in>  \<int>"
+      using that integer_winding_number [OF \<gamma> loop] sg \<open>y \<in> S\<close> by auto
+    with ne show ?thesis
+      by (auto simp: Ints_def simp flip: of_int_diff)
+  qed
+  have cont: "continuous_on S (\<lambda>w. winding_number \<gamma> w)"
+    using continuous_on_winding_number [OF \<gamma>] sg
+    by (meson continuous_on_subset disjoint_eq_subset_Compl)
+  show ?thesis
+    using "*" zero_less_one
+    by (blast intro: continuous_discrete_range_constant [OF cs cont])
 qed
 
-lemma path_image_rectpath_subset_cbox:
-  assumes "Re a \<le> Re b" "Im a \<le> Im b"
-  shows   "path_image (rectpath a b) \<subseteq> cbox a b"
-  using assms by (auto simp: path_image_rectpath in_cbox_complex_iff)
-
-lemma path_image_rectpath_inter_box:
-  assumes "Re a \<le> Re b" "Im a \<le> Im b"
-  shows   "path_image (rectpath a b) \<inter> box a b = {}"
-  using assms by (auto simp: path_image_rectpath in_box_complex_iff)
+lemma winding_number_eq:
+     "\<lbrakk>path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; w \<in> S; z \<in> S; connected S; S \<inter> path_image \<gamma> = {}\<rbrakk>
+      \<Longrightarrow> winding_number \<gamma> w = winding_number \<gamma> z"
+  using winding_number_constant by (metis constant_on_def)
 
-lemma path_image_rectpath_cbox_minus_box:
-  assumes "Re a \<le> Re b" "Im a \<le> Im b"
-  shows   "path_image (rectpath a b) = cbox a b - box a b"
-  using assms by (auto simp: path_image_rectpath in_cbox_complex_iff
-                             in_box_complex_iff)
-
-proposition winding_number_rectpath:
-  assumes "z \<in> box a1 a3"
-  shows   "winding_number (rectpath a1 a3) z = 1"
+lemma open_winding_number_levelsets:
+  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+    shows "open {z. z \<notin> path_image \<gamma> \<and> winding_number \<gamma> z = k}"
 proof -
-  from assms have less: "Re a1 < Re a3" "Im a1 < Im a3"
-    by (auto simp: in_box_complex_iff)
-  define a2 a4 where "a2 = Complex (Re a3) (Im a1)" and "a4 = Complex (Re a1) (Im a3)"
-  let ?l1 = "linepath a1 a2" and ?l2 = "linepath a2 a3"
-  and ?l3 = "linepath a3 a4" and ?l4 = "linepath a4 a1"
-  from assms and less have "z \<notin> path_image (rectpath a1 a3)"
-    by (auto simp: path_image_rectpath_cbox_minus_box)
-  also have "path_image (rectpath a1 a3) =
-               path_image ?l1 \<union> path_image ?l2 \<union> path_image ?l3 \<union> path_image ?l4"
-    by (simp add: rectpath_def Let_def path_image_join Un_assoc a2_def a4_def)
-  finally have "z \<notin> \<dots>" .
-  moreover have "\<forall>l\<in>{?l1,?l2,?l3,?l4}. Re (winding_number l z) > 0"
-    unfolding ball_simps HOL.simp_thms a2_def a4_def
-    by (intro conjI; (rule winding_number_linepath_pos_lt;
-          (insert assms, auto simp: a2_def a4_def in_box_complex_iff mult_neg_neg))+)
-  ultimately have "Re (winding_number (rectpath a1 a3) z) > 0"
-    by (simp add: winding_number_join path_image_join rectpath_def Let_def a2_def a4_def)
-  thus "winding_number (rectpath a1 a3) z = 1" using assms less
-    by (intro simple_closed_path_winding_number_pos simple_path_rectpath)
-       (auto simp: path_image_rectpath_cbox_minus_box)
+  have opn: "open (- path_image \<gamma>)"
+    by (simp add: closed_path_image \<gamma> open_Compl)
+  { fix z assume z: "z \<notin> path_image \<gamma>" and k: "k = winding_number \<gamma> z"
+    obtain e where e: "e>0" "ball z e \<subseteq> - path_image \<gamma>"
+      using open_contains_ball [of "- path_image \<gamma>"] opn z
+      by blast
+    have "\<exists>e>0. \<forall>y. dist y z < e \<longrightarrow> y \<notin> path_image \<gamma> \<and> winding_number \<gamma> y = winding_number \<gamma> z"
+      apply (rule_tac x=e in exI)
+      using e apply (simp add: dist_norm ball_def norm_minus_commute)
+      apply (auto simp: dist_norm norm_minus_commute intro!: winding_number_eq [OF assms, where S = "ball z e"])
+      done
+  } then
+  show ?thesis
+    by (auto simp: open_dist)
 qed
 
-proposition winding_number_rectpath_outside:
-  assumes "Re a1 \<le> Re a3" "Im a1 \<le> Im a3"
-  assumes "z \<notin> cbox a1 a3"
-  shows   "winding_number (rectpath a1 a3) z = 0"
-  using assms by (intro winding_number_zero_outside[OF _ _ _ assms(3)]
-                     path_image_rectpath_subset_cbox) simp_all
-
-text\<open>A per-function version for continuous logs, a kind of monodromy\<close>
-proposition\<^marker>\<open>tag unimportant\<close> winding_number_compose_exp:
-  assumes "path p"
-  shows "winding_number (exp \<circ> p) 0 = (pathfinish p - pathstart p) / (2 * of_real pi * \<i>)"
+proposition winding_number_zero_in_outside:
+  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" and z: "z \<in> outside (path_image \<gamma>)"
+    shows "winding_number \<gamma> z = 0"
 proof -
-  obtain e where "0 < e" and e: "\<And>t. t \<in> {0..1} \<Longrightarrow> e \<le> norm(exp(p t))"
-  proof
-    have "closed (path_image (exp \<circ> p))"
-      by (simp add: assms closed_path_image holomorphic_on_exp holomorphic_on_imp_continuous_on path_continuous_image)
-    then show "0 < setdist {0} (path_image (exp \<circ> p))"
-      by (metis exp_not_eq_zero imageE image_comp infdist_eq_setdist infdist_pos_not_in_closed path_defs(4) path_image_nonempty)
-  next
-    fix t::real
-    assume "t \<in> {0..1}"
-    have "setdist {0} (path_image (exp \<circ> p)) \<le> dist 0 (exp (p t))"
-      apply (rule setdist_le_dist)
-      using \<open>t \<in> {0..1}\<close> path_image_def by fastforce+
-    then show "setdist {0} (path_image (exp \<circ> p)) \<le> cmod (exp (p t))"
-      by simp
-  qed
-  have "bounded (path_image p)"
-    by (simp add: assms bounded_path_image)
-  then obtain B where "0 < B" and B: "path_image p \<subseteq> cball 0 B"
-    by (meson bounded_pos mem_cball_0 subsetI)
-  let ?B = "cball (0::complex) (B+1)"
-  have "uniformly_continuous_on ?B exp"
-    using holomorphic_on_exp holomorphic_on_imp_continuous_on
-    by (force intro: compact_uniformly_continuous)
-  then obtain d where "d > 0"
-        and d: "\<And>x x'. \<lbrakk>x\<in>?B; x'\<in>?B; dist x' x < d\<rbrakk> \<Longrightarrow> norm (exp x' - exp x) < e"
-    using \<open>e > 0\<close> by (auto simp: uniformly_continuous_on_def dist_norm)
-  then have "min 1 d > 0"
-    by force
-  then obtain g where pfg: "polynomial_function g"  and "g 0 = p 0" "g 1 = p 1"
-           and gless: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm(g t - p t) < min 1 d"
-    using path_approx_polynomial_function [OF \<open>path p\<close>] \<open>d > 0\<close> \<open>0 < e\<close>
-    unfolding pathfinish_def pathstart_def by meson
-  have "winding_number (exp \<circ> p) 0 = winding_number (exp \<circ> g) 0"
-  proof (rule winding_number_nearby_paths_eq [symmetric])
-    show "path (exp \<circ> p)" "path (exp \<circ> g)"
-      by (simp_all add: pfg assms holomorphic_on_exp holomorphic_on_imp_continuous_on path_continuous_image path_polynomial_function)
-  next
-    fix t :: "real"
-    assume t: "t \<in> {0..1}"
-    with gless have "norm(g t - p t) < 1"
-      using min_less_iff_conj by blast
-    moreover have ptB: "norm (p t) \<le> B"
-      using B t by (force simp: path_image_def)
-    ultimately have "cmod (g t) \<le> B + 1"
-      by (meson add_mono_thms_linordered_field(4) le_less_trans less_imp_le norm_triangle_sub)
-    with ptB gless t have "cmod ((exp \<circ> g) t - (exp \<circ> p) t) < e"
-      by (auto simp: dist_norm d)
-    with e t show "cmod ((exp \<circ> g) t - (exp \<circ> p) t) < cmod ((exp \<circ> p) t - 0)"
-      by fastforce
-  qed (use \<open>g 0 = p 0\<close> \<open>g 1 = p 1\<close> in \<open>auto simp: pathfinish_def pathstart_def\<close>)
-  also have "... = 1 / (of_real (2 * pi) * \<i>) * contour_integral (exp \<circ> g) (\<lambda>w. 1 / (w - 0))"
-  proof (rule winding_number_valid_path)
-    have "continuous_on (path_image g) (deriv exp)"
-      by (metis DERIV_exp DERIV_imp_deriv continuous_on_cong holomorphic_on_exp holomorphic_on_imp_continuous_on)
-    then show "valid_path (exp \<circ> g)"
-      by (simp add: field_differentiable_within_exp pfg valid_path_compose valid_path_polynomial_function)
-    show "0 \<notin> path_image (exp \<circ> g)"
-      by (auto simp: path_image_def)
-  qed
-  also have "... = 1 / (of_real (2 * pi) * \<i>) * integral {0..1} (\<lambda>x. vector_derivative g (at x))"
-  proof (simp add: contour_integral_integral, rule integral_cong)
-    fix t :: "real"
-    assume t: "t \<in> {0..1}"
-    show "vector_derivative (exp \<circ> g) (at t) / exp (g t) = vector_derivative g (at t)"
-    proof -
-      have "(exp \<circ> g has_vector_derivative vector_derivative (exp \<circ> g) (at t)) (at t)"
-        by (meson DERIV_exp differentiable_def field_vector_diff_chain_at has_vector_derivative_def
-            has_vector_derivative_polynomial_function pfg vector_derivative_works)
-      moreover have "(exp \<circ> g has_vector_derivative vector_derivative g (at t) * exp (g t)) (at t)"
-        apply (rule field_vector_diff_chain_at)
-        apply (metis has_vector_derivative_polynomial_function pfg vector_derivative_at)
-        using DERIV_exp has_field_derivative_def apply blast
+  obtain B::real where "0 < B" and B: "path_image \<gamma> \<subseteq> ball 0 B"
+    using bounded_subset_ballD [OF bounded_path_image [OF \<gamma>]] by auto
+  obtain w::complex where w: "w \<notin> ball 0 (B + 1)"
+    by (metis abs_of_nonneg le_less less_irrefl mem_ball_0 norm_of_real)
+  have "- ball 0 (B + 1) \<subseteq> outside (path_image \<gamma>)"
+    apply (rule outside_subset_convex)
+    using B subset_ball by auto
+  then have wout: "w \<in> outside (path_image \<gamma>)"
+    using w by blast
+  moreover have "winding_number \<gamma> constant_on outside (path_image \<gamma>)"
+    using winding_number_constant [OF \<gamma> loop, of "outside(path_image \<gamma>)"] connected_outside
+    by (metis DIM_complex bounded_path_image dual_order.refl \<gamma> outside_no_overlap)
+  ultimately have "winding_number \<gamma> z = winding_number \<gamma> w"
+    by (metis (no_types, hide_lams) constant_on_def z)
+  also have "\<dots> = 0"
+  proof -
+    have wnot: "w \<notin> path_image \<gamma>"  using wout by (simp add: outside_def)
+    { fix e::real assume "0<e"
+      obtain p where p: "polynomial_function p" "pathstart p = pathstart \<gamma>" "pathfinish p = pathfinish \<gamma>"
+                 and pg1: "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> cmod (p t - \<gamma> t) < 1)"
+                 and pge: "(\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk> \<Longrightarrow> cmod (p t - \<gamma> t) < e)"
+        using path_approx_polynomial_function [OF \<gamma>, of "min 1 e"] \<open>e>0\<close> by force
+      have pip: "path_image p \<subseteq> ball 0 (B + 1)"
+        using B
+        apply (clarsimp simp add: path_image_def dist_norm ball_def)
+        apply (frule (1) pg1)
+        apply (fastforce dest: norm_add_less)
         done
-      ultimately show ?thesis
-        by (simp add: divide_simps, rule vector_derivative_unique_at)
-    qed
-  qed
-  also have "... = (pathfinish p - pathstart p) / (2 * of_real pi * \<i>)"
-  proof -
-    have "((\<lambda>x. vector_derivative g (at x)) has_integral g 1 - g 0) {0..1}"
-      apply (rule fundamental_theorem_of_calculus [OF zero_le_one])
-      by (metis has_vector_derivative_at_within has_vector_derivative_polynomial_function pfg vector_derivative_at)
+      then have "w \<notin> path_image p"  using w by blast
+      then have "\<exists>p. valid_path p \<and> w \<notin> path_image p \<and>
+                     pathstart p = pathstart \<gamma> \<and> pathfinish p = pathfinish \<gamma> \<and>
+                     (\<forall>t\<in>{0..1}. cmod (\<gamma> t - p t) < e) \<and> contour_integral p (\<lambda>wa. 1 / (wa - w)) = 0"
+        apply (rule_tac x=p in exI)
+        apply (simp add: p valid_path_polynomial_function)
+        apply (intro conjI)
+        using pge apply (simp add: norm_minus_commute)
+        apply (rule contour_integral_unique [OF Cauchy_theorem_convex_simple [OF _ convex_ball [of 0 "B+1"]]])
+        apply (rule holomorphic_intros | simp add: dist_norm)+
+        using mem_ball_0 w apply blast
+        using p apply (simp_all add: valid_path_polynomial_function loop pip)
+        done
+    }
     then show ?thesis
-    apply (simp add: pathfinish_def pathstart_def)
-      using \<open>g 0 = p 0\<close> \<open>g 1 = p 1\<close> by auto
+      by (auto intro: winding_number_unique [OF \<gamma>] simp add: winding_number_prop_def wnot)
   qed
   finally show ?thesis .
 qed
 
-subsection\<^marker>\<open>tag unimportant\<close> \<open>The winding number defines a continuous logarithm for the path itself\<close>
+corollary\<^marker>\<open>tag unimportant\<close> winding_number_zero_const: "a \<noteq> z \<Longrightarrow> winding_number (\<lambda>t. a) z = 0"
+  by (rule winding_number_zero_in_outside)
+     (auto simp: pathfinish_def pathstart_def path_polynomial_function)
+
+corollary\<^marker>\<open>tag unimportant\<close> winding_number_zero_outside:
+    "\<lbrakk>path \<gamma>; convex s; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> s; path_image \<gamma> \<subseteq> s\<rbrakk> \<Longrightarrow> winding_number \<gamma> z = 0"
+  by (meson convex_in_outside outside_mono subsetCE winding_number_zero_in_outside)
+
+lemma winding_number_zero_at_infinity:
+  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+    shows "\<exists>B. \<forall>z. B \<le> norm z \<longrightarrow> winding_number \<gamma> z = 0"
+proof -
+  obtain B::real where "0 < B" and B: "path_image \<gamma> \<subseteq> ball 0 B"
+    using bounded_subset_ballD [OF bounded_path_image [OF \<gamma>]] by auto
+  then show ?thesis
+    apply (rule_tac x="B+1" in exI, clarify)
+    apply (rule winding_number_zero_outside [OF \<gamma> convex_cball [of 0 B] loop])
+    apply (meson less_add_one mem_cball_0 not_le order_trans)
+    using ball_subset_cball by blast
+qed
+
+lemma winding_number_zero_point:
+    "\<lbrakk>path \<gamma>; convex s; pathfinish \<gamma> = pathstart \<gamma>; open s; path_image \<gamma> \<subseteq> s\<rbrakk>
+     \<Longrightarrow> \<exists>z. z \<in> s \<and> winding_number \<gamma> z = 0"
+  using outside_compact_in_open [of "path_image \<gamma>" s] path_image_nonempty winding_number_zero_in_outside
+  by (fastforce simp add: compact_path_image)
+
+
+text\<open>If a path winds round a set, it winds rounds its inside.\<close>
+lemma winding_number_around_inside:
+  assumes \<gamma>: "path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
+      and cls: "closed s" and cos: "connected s" and s_disj: "s \<inter> path_image \<gamma> = {}"
+      and z: "z \<in> s" and wn_nz: "winding_number \<gamma> z \<noteq> 0" and w: "w \<in> s \<union> inside s"
+    shows "winding_number \<gamma> w = winding_number \<gamma> z"
+proof -
+  have ssb: "s \<subseteq> inside(path_image \<gamma>)"
+  proof
+    fix x :: complex
+    assume "x \<in> s"
+    hence "x \<notin> path_image \<gamma>"
+      by (meson disjoint_iff_not_equal s_disj)
+    thus "x \<in> inside (path_image \<gamma>)"
+      using \<open>x \<in> s\<close> by (metis (no_types) ComplI UnE cos \<gamma> loop s_disj union_with_outside winding_number_eq winding_number_zero_in_outside wn_nz z)
+qed
+  show ?thesis
+    apply (rule winding_number_eq [OF \<gamma> loop w])
+    using z apply blast
+    apply (simp add: cls connected_with_inside cos)
+    apply (simp add: Int_Un_distrib2 s_disj, safe)
+    by (meson ssb inside_inside_compact_connected [OF cls, of "path_image \<gamma>"] compact_path_image connected_path_image contra_subsetD disjoint_iff_not_equal \<gamma> inside_no_overlap)
+ qed
+
+subsection \<open>The real part of winding numbers\<close>
 
-lemma winding_number_as_continuous_log:
-  assumes "path p" and \<zeta>: "\<zeta> \<notin> path_image p"
-  obtains q where "path q"
-                  "pathfinish q - pathstart q = 2 * of_real pi * \<i> * winding_number p \<zeta>"
-                  "\<And>t. t \<in> {0..1} \<Longrightarrow> p t = \<zeta> + exp(q t)"
+text\<open>Bounding a WN by 1/2 for a path and point in opposite halfspaces.\<close>
+lemma winding_number_subpath_continuous:
+  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>"
+    shows "continuous_on {0..1} (\<lambda>x. winding_number(subpath 0 x \<gamma>) z)"
 proof -
-  let ?q = "\<lambda>t. 2 * of_real pi * \<i> * winding_number(subpath 0 t p) \<zeta> + Ln(pathstart p - \<zeta>)"
+  have *: "integral {0..x} (\<lambda>t. vector_derivative \<gamma> (at t) / (\<gamma> t - z)) / (2 * of_real pi * \<i>) =
+         winding_number (subpath 0 x \<gamma>) z"
+         if x: "0 \<le> x" "x \<le> 1" for x
+  proof -
+    have "integral {0..x} (\<lambda>t. vector_derivative \<gamma> (at t) / (\<gamma> t - z)) / (2 * of_real pi * \<i>) =
+          1 / (2*pi*\<i>) * contour_integral (subpath 0 x \<gamma>) (\<lambda>w. 1/(w - z))"
+      using assms x
+      apply (simp add: contour_integral_subcontour_integral [OF contour_integrable_inversediff])
+      done
+    also have "\<dots> = winding_number (subpath 0 x \<gamma>) z"
+      apply (subst winding_number_valid_path)
+      using assms x
+      apply (simp_all add: path_image_subpath valid_path_subpath)
+      by (force simp: path_image_def)
+    finally show ?thesis .
+  qed
   show ?thesis
-  proof
-    have *: "continuous (at t within {0..1}) (\<lambda>x. winding_number (subpath 0 x p) \<zeta>)"
-      if t: "t \<in> {0..1}" for t
+    apply (rule continuous_on_eq
+                 [where f = "\<lambda>x. 1 / (2*pi*\<i>) *
+                                 integral {0..x} (\<lambda>t. 1/(\<gamma> t - z) * vector_derivative \<gamma> (at t))"])
+    apply (rule continuous_intros)+
+    apply (rule indefinite_integral_continuous_1)
+    apply (rule contour_integrable_inversediff [OF assms, unfolded contour_integrable_on])
+      using assms
+    apply (simp add: *)
+    done
+qed
+
+lemma winding_number_ivt_pos:
+    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "0 \<le> w" "w \<le> Re(winding_number \<gamma> z)"
+      shows "\<exists>t \<in> {0..1}. Re(winding_number(subpath 0 t \<gamma>) z) = w"
+  apply (rule ivt_increasing_component_on_1 [of 0 1, where ?k = "1::complex", simplified complex_inner_1_right], simp)
+  apply (rule winding_number_subpath_continuous [OF \<gamma> z])
+  using assms
+  apply (auto simp: path_image_def image_def)
+  done
+
+lemma winding_number_ivt_neg:
+    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "Re(winding_number \<gamma> z) \<le> w" "w \<le> 0"
+      shows "\<exists>t \<in> {0..1}. Re(winding_number(subpath 0 t \<gamma>) z) = w"
+  apply (rule ivt_decreasing_component_on_1 [of 0 1, where ?k = "1::complex", simplified complex_inner_1_right], simp)
+  apply (rule winding_number_subpath_continuous [OF \<gamma> z])
+  using assms
+  apply (auto simp: path_image_def image_def)
+  done
+
+lemma winding_number_ivt_abs:
+    assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and "0 \<le> w" "w \<le> \<bar>Re(winding_number \<gamma> z)\<bar>"
+      shows "\<exists>t \<in> {0..1}. \<bar>Re (winding_number (subpath 0 t \<gamma>) z)\<bar> = w"
+  using assms winding_number_ivt_pos [of \<gamma> z w] winding_number_ivt_neg [of \<gamma> z "-w"]
+  by force
+
+lemma winding_number_lt_half_lemma:
+  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>" and az: "a \<bullet> z \<le> b" and pag: "path_image \<gamma> \<subseteq> {w. a \<bullet> w > b}"
+    shows "Re(winding_number \<gamma> z) < 1/2"
+proof -
+  { assume "Re(winding_number \<gamma> z) \<ge> 1/2"
+    then obtain t::real where t: "0 \<le> t" "t \<le> 1" and sub12: "Re (winding_number (subpath 0 t \<gamma>) z) = 1/2"
+      using winding_number_ivt_pos [OF \<gamma> z, of "1/2"] by auto
+    have gt: "\<gamma> t - z = - (of_real (exp (- (2 * pi * Im (winding_number (subpath 0 t \<gamma>) z)))) * (\<gamma> 0 - z))"
+      using winding_number_exp_2pi [of "subpath 0 t \<gamma>" z]
+      apply (simp add: t \<gamma> valid_path_imp_path)
+      using closed_segment_eq_real_ivl path_image_def t z by (fastforce simp: path_image_subpath Euler sub12)
+    have "b < a \<bullet> \<gamma> 0"
     proof -
-      let ?B = "ball (p t) (norm(p t - \<zeta>))"
-      have "p t \<noteq> \<zeta>"
-        using path_image_def that \<zeta> by blast
-      then have "simply_connected ?B"
-        by (simp add: convex_imp_simply_connected)
-      then have "\<And>f::complex\<Rightarrow>complex. continuous_on ?B f \<and> (\<forall>\<zeta> \<in> ?B. f \<zeta> \<noteq> 0)
-                  \<longrightarrow> (\<exists>g. continuous_on ?B g \<and> (\<forall>\<zeta> \<in> ?B. f \<zeta> = exp (g \<zeta>)))"
-        by (simp add: simply_connected_eq_continuous_log)
-      moreover have "continuous_on ?B (\<lambda>w. w - \<zeta>)"
-        by (intro continuous_intros)
-      moreover have "(\<forall>z \<in> ?B. z - \<zeta> \<noteq> 0)"
-        by (auto simp: dist_norm)
-      ultimately obtain g where contg: "continuous_on ?B g"
-        and geq: "\<And>z. z \<in> ?B \<Longrightarrow> z - \<zeta> = exp (g z)" by blast
-      obtain d where "0 < d" and d:
-        "\<And>x. \<lbrakk>x \<in> {0..1}; dist x t < d\<rbrakk> \<Longrightarrow> dist (p x) (p t) < cmod (p t - \<zeta>)"
-        using \<open>path p\<close> t unfolding path_def continuous_on_iff
-        by (metis \<open>p t \<noteq> \<zeta>\<close> right_minus_eq zero_less_norm_iff)
-      have "((\<lambda>x. winding_number (\<lambda>w. subpath 0 x p w - \<zeta>) 0 -
-                  winding_number (\<lambda>w. subpath 0 t p w - \<zeta>) 0) \<longlongrightarrow> 0)
-            (at t within {0..1})"
-      proof (rule Lim_transform_within [OF _ \<open>d > 0\<close>])
-        have "continuous (at t within {0..1}) (g o p)"
-        proof (rule continuous_within_compose)
-          show "continuous (at t within {0..1}) p"
-            using \<open>path p\<close> continuous_on_eq_continuous_within path_def that by blast
-          show "continuous (at (p t) within p ` {0..1}) g"
-            by (metis (no_types, lifting) open_ball UNIV_I \<open>p t \<noteq> \<zeta>\<close> centre_in_ball contg continuous_on_eq_continuous_at continuous_within_topological right_minus_eq zero_less_norm_iff)
-        qed
-        with LIM_zero have "((\<lambda>u. (g (subpath t u p 1) - g (subpath t u p 0))) \<longlongrightarrow> 0) (at t within {0..1})"
-          by (auto simp: subpath_def continuous_within o_def)
-        then show "((\<lambda>u.  (g (subpath t u p 1) - g (subpath t u p 0)) / (2 * of_real pi * \<i>)) \<longlongrightarrow> 0)
-           (at t within {0..1})"
-          by (simp add: tendsto_divide_zero)
-        show "(g (subpath t u p 1) - g (subpath t u p 0)) / (2 * of_real pi * \<i>) =
-              winding_number (\<lambda>w. subpath 0 u p w - \<zeta>) 0 - winding_number (\<lambda>w. subpath 0 t p w - \<zeta>) 0"
-          if "u \<in> {0..1}" "0 < dist u t" "dist u t < d" for u
-        proof -
-          have "closed_segment t u \<subseteq> {0..1}"
-            using closed_segment_eq_real_ivl t that by auto
-          then have piB: "path_image(subpath t u p) \<subseteq> ?B"
-            apply (clarsimp simp add: path_image_subpath_gen)
-            by (metis subsetD le_less_trans \<open>dist u t < d\<close> d dist_commute dist_in_closed_segment)
-          have *: "path (g \<circ> subpath t u p)"
-            apply (rule path_continuous_image)
-            using \<open>path p\<close> t that apply auto[1]
-            using piB contg continuous_on_subset by blast
-          have "(g (subpath t u p 1) - g (subpath t u p 0)) / (2 * of_real pi * \<i>)
-              =  winding_number (exp \<circ> g \<circ> subpath t u p) 0"
-            using winding_number_compose_exp [OF *]
-            by (simp add: pathfinish_def pathstart_def o_assoc)
-          also have "... = winding_number (\<lambda>w. subpath t u p w - \<zeta>) 0"
-          proof (rule winding_number_cong)
-            have "exp(g y) = y - \<zeta>" if "y \<in> (subpath t u p) ` {0..1}" for y
-              by (metis that geq path_image_def piB subset_eq)
-            then show "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> (exp \<circ> g \<circ> subpath t u p) x = subpath t u p x - \<zeta>"
-              by auto
-          qed
-          also have "... = winding_number (\<lambda>w. subpath 0 u p w - \<zeta>) 0 -
-                           winding_number (\<lambda>w. subpath 0 t p w - \<zeta>) 0"
-            apply (simp add: winding_number_offset [symmetric])
-            using winding_number_subpath_combine [OF \<open>path p\<close> \<zeta>, of 0 t u] \<open>t \<in> {0..1}\<close> \<open>u \<in> {0..1}\<close>
-            by (simp add: add.commute eq_diff_eq)
-          finally show ?thesis .
-        qed
-      qed
-      then show ?thesis
-        by (subst winding_number_offset) (simp add: continuous_within LIM_zero_iff)
+      have "\<gamma> 0 \<in> {c. b < a \<bullet> c}"
+        by (metis (no_types) pag atLeastAtMost_iff image_subset_iff order_refl path_image_def zero_le_one)
+      thus ?thesis
+        by blast
+    qed
+    moreover have "b < a \<bullet> \<gamma> t"
+    proof -
+      have "\<gamma> t \<in> {c. b < a \<bullet> c}"
+        by (metis (no_types) pag atLeastAtMost_iff image_subset_iff path_image_def t)
+      thus ?thesis
+        by blast
     qed
-    show "path ?q"
-      unfolding path_def
-      by (intro continuous_intros) (simp add: continuous_on_eq_continuous_within *)
+    ultimately have "0 < a \<bullet> (\<gamma> 0 - z)" "0 < a \<bullet> (\<gamma> t - z)" using az
+      by (simp add: inner_diff_right)+
+    then have False
+      by (simp add: gt inner_mult_right mult_less_0_iff)
+  }
+  then show ?thesis by force
+qed
+
+lemma winding_number_lt_half:
+  assumes "valid_path \<gamma>" "a \<bullet> z \<le> b" "path_image \<gamma> \<subseteq> {w. a \<bullet> w > b}"
+    shows "\<bar>Re (winding_number \<gamma> z)\<bar> < 1/2"
+proof -
+  have "z \<notin> path_image \<gamma>" using assms by auto
+  with assms show ?thesis
+    apply (simp add: winding_number_lt_half_lemma abs_if del: less_divide_eq_numeral1)
+    apply (metis complex_inner_1_right winding_number_lt_half_lemma [OF valid_path_imp_reverse, of \<gamma> z a b]
+                 winding_number_reversepath valid_path_imp_path inner_minus_left path_image_reversepath)
+    done
+qed
 
-    have "\<zeta> \<noteq> p 0"
-      by (metis \<zeta> pathstart_def pathstart_in_path_image)
-    then show "pathfinish ?q - pathstart ?q = 2 * of_real pi * \<i> * winding_number p \<zeta>"
-      by (simp add: pathfinish_def pathstart_def)
-    show "p t = \<zeta> + exp (?q t)" if "t \<in> {0..1}" for t
-    proof -
-      have "path (subpath 0 t p)"
-        using \<open>path p\<close> that by auto
-      moreover
-      have "\<zeta> \<notin> path_image (subpath 0 t p)"
-        using \<zeta> [unfolded path_image_def] that by (auto simp: path_image_subpath)
-      ultimately show ?thesis
-        using winding_number_exp_2pi [of "subpath 0 t p" \<zeta>] \<open>\<zeta> \<noteq> p 0\<close>
-        by (auto simp: exp_add algebra_simps pathfinish_def pathstart_def subpath_def)
-    qed
-  qed
+lemma winding_number_le_half:
+  assumes \<gamma>: "valid_path \<gamma>" and z: "z \<notin> path_image \<gamma>"
+      and anz: "a \<noteq> 0" and azb: "a \<bullet> z \<le> b" and pag: "path_image \<gamma> \<subseteq> {w. a \<bullet> w \<ge> b}"
+    shows "\<bar>Re (winding_number \<gamma> z)\<bar> \<le> 1/2"
+proof -
+  { assume wnz_12: "\<bar>Re (winding_number \<gamma> z)\<bar> > 1/2"
+    have "isCont (winding_number \<gamma>) z"
+      by (metis continuous_at_winding_number valid_path_imp_path \<gamma> z)
+    then obtain d where "d>0" and d: "\<And>x'. dist x' z < d \<Longrightarrow> dist (winding_number \<gamma> x') (winding_number \<gamma> z) < \<bar>Re(winding_number \<gamma> z)\<bar> - 1/2"
+      using continuous_at_eps_delta wnz_12 diff_gt_0_iff_gt by blast
+    define z' where "z' = z - (d / (2 * cmod a)) *\<^sub>R a"
+    have *: "a \<bullet> z' \<le> b - d / 3 * cmod a"
+      unfolding z'_def inner_mult_right' divide_inverse
+      apply (simp add: field_split_simps algebra_simps dot_square_norm power2_eq_square anz)
+      apply (metis \<open>0 < d\<close> add_increasing azb less_eq_real_def mult_nonneg_nonneg mult_right_mono norm_ge_zero norm_numeral)
+      done
+    have "cmod (winding_number \<gamma> z' - winding_number \<gamma> z) < \<bar>Re (winding_number \<gamma> z)\<bar> - 1/2"
+      using d [of z'] anz \<open>d>0\<close> by (simp add: dist_norm z'_def)
+    then have "1/2 < \<bar>Re (winding_number \<gamma> z)\<bar> - cmod (winding_number \<gamma> z' - winding_number \<gamma> z)"
+      by simp
+    then have "1/2 < \<bar>Re (winding_number \<gamma> z)\<bar> - \<bar>Re (winding_number \<gamma> z') - Re (winding_number \<gamma> z)\<bar>"
+      using abs_Re_le_cmod [of "winding_number \<gamma> z' - winding_number \<gamma> z"] by simp
+    then have wnz_12': "\<bar>Re (winding_number \<gamma> z')\<bar> > 1/2"
+      by linarith
+    moreover have "\<bar>Re (winding_number \<gamma> z')\<bar> < 1/2"
+      apply (rule winding_number_lt_half [OF \<gamma> *])
+      using azb \<open>d>0\<close> pag
+      apply (auto simp: add_strict_increasing anz field_split_simps dest!: subsetD)
+      done
+    ultimately have False
+      by simp
+  }
+  then show ?thesis by force
 qed
 
-subsection \<open>Winding number equality is the same as path/loop homotopy in C - {0}\<close>
+lemma winding_number_lt_half_linepath: "z \<notin> closed_segment a b \<Longrightarrow> \<bar>Re (winding_number (linepath a b) z)\<bar> < 1/2"
+  using separating_hyperplane_closed_point [of "closed_segment a b" z]
+  apply auto
+  apply (simp add: closed_segment_def)
+  apply (drule less_imp_le)
+  apply (frule winding_number_lt_half [OF valid_path_linepath [of a b]])
+  apply (auto simp: segment)
+  done
+
 
-lemma winding_number_homotopic_loops_null_eq:
-  assumes "path p" and \<zeta>: "\<zeta> \<notin> path_image p"
-  shows "winding_number p \<zeta> = 0 \<longleftrightarrow> (\<exists>a. homotopic_loops (-{\<zeta>}) p (\<lambda>t. a))"
-    (is "?lhs = ?rhs")
-proof
-  assume [simp]: ?lhs
-  obtain q where "path q"
-             and qeq:  "pathfinish q - pathstart q = 2 * of_real pi * \<i> * winding_number p \<zeta>"
-             and peq: "\<And>t. t \<in> {0..1} \<Longrightarrow> p t = \<zeta> + exp(q t)"
-    using winding_number_as_continuous_log [OF assms] by blast
-  have *: "homotopic_with_canon (\<lambda>r. pathfinish r = pathstart r)
-                       {0..1} (-{\<zeta>}) ((\<lambda>w. \<zeta> + exp w) \<circ> q) ((\<lambda>w. \<zeta> + exp w) \<circ> (\<lambda>t. 0))"
-  proof (rule homotopic_with_compose_continuous_left)
-    show "homotopic_with_canon (\<lambda>f. pathfinish ((\<lambda>w. \<zeta> + exp w) \<circ> f) = pathstart ((\<lambda>w. \<zeta> + exp w) \<circ> f))
-              {0..1} UNIV q (\<lambda>t. 0)"
-    proof (rule homotopic_with_mono, simp_all add: pathfinish_def pathstart_def)
-      have "homotopic_loops UNIV q (\<lambda>t. 0)"
-        by (rule homotopic_loops_linear) (use qeq \<open>path q\<close> in \<open>auto simp: path_defs\<close>)
-      then have "homotopic_with (\<lambda>r. r 1 = r 0) (top_of_set {0..1}) euclidean q (\<lambda>t. 0)"
-        by (simp add: homotopic_loops_def pathfinish_def pathstart_def)
-      then show "homotopic_with (\<lambda>h. exp (h 1) = exp (h 0)) (top_of_set {0..1}) euclidean q (\<lambda>t. 0)"
-        by (rule homotopic_with_mono) simp
-    qed
-    show "continuous_on UNIV (\<lambda>w. \<zeta> + exp w)"
-      by (rule continuous_intros)+
-    show "range (\<lambda>w. \<zeta> + exp w) \<subseteq> -{\<zeta>}"
-      by auto
-  qed
-  then have "homotopic_with_canon (\<lambda>r. pathfinish r = pathstart r) {0..1} (-{\<zeta>}) p (\<lambda>x. \<zeta> + 1)"
-    by (rule homotopic_with_eq) (auto simp: o_def peq pathfinish_def pathstart_def)
-  then have "homotopic_loops (-{\<zeta>}) p (\<lambda>t. \<zeta> + 1)"
-    by (simp add: homotopic_loops_def)
-  then show ?rhs ..
-next
-  assume ?rhs
-  then obtain a where "homotopic_loops (-{\<zeta>}) p (\<lambda>t. a)" ..
-  then have "winding_number p \<zeta> = winding_number (\<lambda>t. a) \<zeta>" "a \<noteq> \<zeta>"
-    using winding_number_homotopic_loops homotopic_loops_imp_subset by (force simp:)+
-  moreover have "winding_number (\<lambda>t. a) \<zeta> = 0"
-    by (metis winding_number_zero_const \<open>a \<noteq> \<zeta>\<close>)
-  ultimately show ?lhs by metis
+text\<open> Positivity of WN for a linepath.\<close>
+lemma winding_number_linepath_pos_lt:
+    assumes "0 < Im ((b - a) * cnj (b - z))"
+      shows "0 < Re(winding_number(linepath a b) z)"
+proof -
+  have z: "z \<notin> path_image (linepath a b)"
+    using assms
+    by (simp add: closed_segment_def) (force simp: algebra_simps)
+  show ?thesis
+    apply (rule winding_number_pos_lt [OF valid_path_linepath z assms])
+    apply (simp add: linepath_def algebra_simps)
+    done
 qed
 
-lemma winding_number_homotopic_paths_null_explicit_eq:
-  assumes "path p" and \<zeta>: "\<zeta> \<notin> path_image p"
-  shows "winding_number p \<zeta> = 0 \<longleftrightarrow> homotopic_paths (-{\<zeta>}) p (linepath (pathstart p) (pathstart p))"
-        (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    apply (auto simp: winding_number_homotopic_loops_null_eq [OF assms])
-    apply (rule homotopic_loops_imp_homotopic_paths_null)
-    apply (simp add: linepath_refl)
-    done
-next
-  assume ?rhs
-  then show ?lhs
-    by (metis \<zeta> pathstart_in_path_image winding_number_homotopic_paths winding_number_trivial)
+proposition winding_number_part_circlepath_pos_less:
+  assumes "s < t" and no: "norm(w - z) < r"
+    shows "0 < Re (winding_number(part_circlepath z r s t) w)"
+proof -
+  have "0 < r" by (meson no norm_not_less_zero not_le order.strict_trans2)
+  note valid_path_part_circlepath
+  moreover have " w \<notin> path_image (part_circlepath z r s t)"
+    using assms by (auto simp: path_image_def image_def part_circlepath_def norm_mult linepath_def)
+  moreover have "0 < r * (t - s) * (r - cmod (w - z))"
+    using assms by (metis \<open>0 < r\<close> diff_gt_0_iff_gt mult_pos_pos)
+  ultimately show ?thesis
+    apply (rule winding_number_pos_lt [where e = "r*(t - s)*(r - norm(w - z))"])
+    apply (simp add: vector_derivative_part_circlepath right_diff_distrib [symmetric] mult_ac)
+    apply (rule mult_left_mono)+
+    using Re_Im_le_cmod [of "w-z" "linepath s t x" for x]
+    apply (simp add: exp_Euler cos_of_real sin_of_real part_circlepath_def algebra_simps cos_squared_eq [unfolded power2_eq_square])
+    using assms \<open>0 < r\<close> by auto
+qed
+
+subsection \<open>Invariance of winding numbers under homotopy\<close>
+
+text\<open>including the fact that it's +-1 inside a simple closed curve.\<close>
+
+lemma winding_number_homotopic_paths:
+    assumes "homotopic_paths (-{z}) g h"
+      shows "winding_number g z = winding_number h z"
+proof -
+  have "path g" "path h" using homotopic_paths_imp_path [OF assms] by auto
+  moreover have pag: "z \<notin> path_image g" and pah: "z \<notin> path_image h"
+    using homotopic_paths_imp_subset [OF assms] by auto
+  ultimately obtain d e where "d > 0" "e > 0"
+      and d: "\<And>p. \<lbrakk>path p; pathstart p = pathstart g; pathfinish p = pathfinish g; \<forall>t\<in>{0..1}. norm (p t - g t) < d\<rbrakk>
+            \<Longrightarrow> homotopic_paths (-{z}) g p"
+      and e: "\<And>q. \<lbrakk>path q; pathstart q = pathstart h; pathfinish q = pathfinish h; \<forall>t\<in>{0..1}. norm (q t - h t) < e\<rbrakk>
+            \<Longrightarrow> homotopic_paths (-{z}) h q"
+    using homotopic_nearby_paths [of g "-{z}"] homotopic_nearby_paths [of h "-{z}"] by force
+  obtain p where p:
+       "valid_path p" "z \<notin> path_image p"
+       "pathstart p = pathstart g" "pathfinish p = pathfinish g"
+       and gp_less:"\<forall>t\<in>{0..1}. cmod (g t - p t) < d"
+       and pap: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number g z"
+    using winding_number [OF \<open>path g\<close> pag \<open>0 < d\<close>] unfolding winding_number_prop_def by blast
+  obtain q where q:
+       "valid_path q" "z \<notin> path_image q"
+       "pathstart q = pathstart h" "pathfinish q = pathfinish h"
+       and hq_less: "\<forall>t\<in>{0..1}. cmod (h t - q t) < e"
+       and paq:  "contour_integral q (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number h z"
+    using winding_number [OF \<open>path h\<close> pah \<open>0 < e\<close>] unfolding winding_number_prop_def by blast
+  have "homotopic_paths (- {z}) g p"
+    by (simp add: d p valid_path_imp_path norm_minus_commute gp_less)
+  moreover have "homotopic_paths (- {z}) h q"
+    by (simp add: e q valid_path_imp_path norm_minus_commute hq_less)
+  ultimately have "homotopic_paths (- {z}) p q"
+    by (blast intro: homotopic_paths_trans homotopic_paths_sym assms)
+  then have "contour_integral p (\<lambda>w. 1/(w - z)) = contour_integral q (\<lambda>w. 1/(w - z))"
+    by (rule Cauchy_theorem_homotopic_paths) (auto intro!: holomorphic_intros simp: p q)
+  then show ?thesis
+    by (simp add: pap paq)
 qed
 
-lemma winding_number_homotopic_paths_null_eq:
-  assumes "path p" and \<zeta>: "\<zeta> \<notin> path_image p"
-  shows "winding_number p \<zeta> = 0 \<longleftrightarrow> (\<exists>a. homotopic_paths (-{\<zeta>}) p (\<lambda>t. a))"
-    (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    by (auto simp: winding_number_homotopic_paths_null_explicit_eq [OF assms] linepath_refl)
-next
-  assume ?rhs
-  then show ?lhs
-    by (metis \<zeta> homotopic_paths_imp_pathfinish pathfinish_def pathfinish_in_path_image winding_number_homotopic_paths winding_number_zero_const)
+lemma winding_number_homotopic_loops:
+    assumes "homotopic_loops (-{z}) g h"
+      shows "winding_number g z = winding_number h z"
+proof -
+  have "path g" "path h" using homotopic_loops_imp_path [OF assms] by auto
+  moreover have pag: "z \<notin> path_image g" and pah: "z \<notin> path_image h"
+    using homotopic_loops_imp_subset [OF assms] by auto
+  moreover have gloop: "pathfinish g = pathstart g" and hloop: "pathfinish h = pathstart h"
+    using homotopic_loops_imp_loop [OF assms] by auto
+  ultimately obtain d e where "d > 0" "e > 0"
+      and d: "\<And>p. \<lbrakk>path p; pathfinish p = pathstart p; \<forall>t\<in>{0..1}. norm (p t - g t) < d\<rbrakk>
+            \<Longrightarrow> homotopic_loops (-{z}) g p"
+      and e: "\<And>q. \<lbrakk>path q; pathfinish q = pathstart q; \<forall>t\<in>{0..1}. norm (q t - h t) < e\<rbrakk>
+            \<Longrightarrow> homotopic_loops (-{z}) h q"
+    using homotopic_nearby_loops [of g "-{z}"] homotopic_nearby_loops [of h "-{z}"] by force
+  obtain p where p:
+       "valid_path p" "z \<notin> path_image p"
+       "pathstart p = pathstart g" "pathfinish p = pathfinish g"
+       and gp_less:"\<forall>t\<in>{0..1}. cmod (g t - p t) < d"
+       and pap: "contour_integral p (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number g z"
+    using winding_number [OF \<open>path g\<close> pag \<open>0 < d\<close>] unfolding winding_number_prop_def by blast
+  obtain q where q:
+       "valid_path q" "z \<notin> path_image q"
+       "pathstart q = pathstart h" "pathfinish q = pathfinish h"
+       and hq_less: "\<forall>t\<in>{0..1}. cmod (h t - q t) < e"
+       and paq:  "contour_integral q (\<lambda>w. 1 / (w - z)) = complex_of_real (2 * pi) * \<i> * winding_number h z"
+    using winding_number [OF \<open>path h\<close> pah \<open>0 < e\<close>] unfolding winding_number_prop_def by blast
+  have gp: "homotopic_loops (- {z}) g p"
+    by (simp add: gloop d gp_less norm_minus_commute p valid_path_imp_path)
+  have hq: "homotopic_loops (- {z}) h q"
+    by (simp add: e hloop hq_less norm_minus_commute q valid_path_imp_path)
+  have "contour_integral p (\<lambda>w. 1/(w - z)) = contour_integral q (\<lambda>w. 1/(w - z))"
+  proof (rule Cauchy_theorem_homotopic_loops)
+    show "homotopic_loops (- {z}) p q"
+      by (blast intro: homotopic_loops_trans homotopic_loops_sym gp hq assms)
+  qed (auto intro!: holomorphic_intros simp: p q)
+  then show ?thesis
+    by (simp add: pap paq)
 qed
 
-proposition winding_number_homotopic_paths_eq:
-  assumes "path p" and \<zeta>p: "\<zeta> \<notin> path_image p"
-      and "path q" and \<zeta>q: "\<zeta> \<notin> path_image q"
-      and qp: "pathstart q = pathstart p" "pathfinish q = pathfinish p"
-    shows "winding_number p \<zeta> = winding_number q \<zeta> \<longleftrightarrow> homotopic_paths (-{\<zeta>}) p q"
-    (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then have "winding_number (p +++ reversepath q) \<zeta> = 0"
-    using assms by (simp add: winding_number_join winding_number_reversepath)
-  moreover
-  have "path (p +++ reversepath q)" "\<zeta> \<notin> path_image (p +++ reversepath q)"
-    using assms by (auto simp: not_in_path_image_join)
-  ultimately obtain a where "homotopic_paths (- {\<zeta>}) (p +++ reversepath q) (linepath a a)"
-    using winding_number_homotopic_paths_null_explicit_eq by blast
-  then show ?rhs
-    using homotopic_paths_imp_pathstart assms
-    by (fastforce simp add: dest: homotopic_paths_imp_homotopic_loops homotopic_paths_loop_parts)
+lemma winding_number_paths_linear_eq:
+  "\<lbrakk>path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;
+    \<And>t. t \<in> {0..1} \<Longrightarrow> z \<notin> closed_segment (g t) (h t)\<rbrakk>
+        \<Longrightarrow> winding_number h z = winding_number g z"
+  by (blast intro: sym homotopic_paths_linear winding_number_homotopic_paths)
+
+lemma winding_number_loops_linear_eq:
+  "\<lbrakk>path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;
+    \<And>t. t \<in> {0..1} \<Longrightarrow> z \<notin> closed_segment (g t) (h t)\<rbrakk>
+        \<Longrightarrow> winding_number h z = winding_number g z"
+  by (blast intro: sym homotopic_loops_linear winding_number_homotopic_loops)
+
+lemma winding_number_nearby_paths_eq:
+     "\<lbrakk>path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;
+      \<And>t. t \<in> {0..1} \<Longrightarrow> norm(h t - g t) < norm(g t - z)\<rbrakk>
+      \<Longrightarrow> winding_number h z = winding_number g z"
+  by (metis segment_bound(2) norm_minus_commute not_le winding_number_paths_linear_eq)
+
+lemma winding_number_nearby_loops_eq:
+     "\<lbrakk>path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;
+      \<And>t. t \<in> {0..1} \<Longrightarrow> norm(h t - g t) < norm(g t - z)\<rbrakk>
+      \<Longrightarrow> winding_number h z = winding_number g z"
+  by (metis segment_bound(2) norm_minus_commute not_le winding_number_loops_linear_eq)
+
+
+lemma winding_number_subpath_combine:
+    "\<lbrakk>path g; z \<notin> path_image g;
+      u \<in> {0..1}; v \<in> {0..1}; w \<in> {0..1}\<rbrakk>
+      \<Longrightarrow> winding_number (subpath u v g) z + winding_number (subpath v w g) z =
+          winding_number (subpath u w g) z"
+apply (rule trans [OF winding_number_join [THEN sym]
+                      winding_number_homotopic_paths [OF homotopic_join_subpaths]])
+  using path_image_subpath_subset by auto
+
+subsection \<open>Winding numbers of some simple paths\<close>
+
+lemma winding_number_circlepath_centre: "0 < r \<Longrightarrow> winding_number (circlepath z r) z = 1"
+  apply (rule winding_number_unique_loop)
+  apply (simp_all add: sphere_def valid_path_imp_path)
+  apply (rule_tac x="circlepath z r" in exI)
+  apply (simp add: sphere_def contour_integral_circlepath)
+  done
+
+proposition winding_number_circlepath:
+  assumes "norm(w - z) < r" shows "winding_number(circlepath z r) w = 1"
+proof (cases "w = z")
+  case True then show ?thesis
+    using assms winding_number_circlepath_centre by auto
 next
-  assume ?rhs
-  then show ?lhs
-    by (simp add: winding_number_homotopic_paths)
+  case False
+  have [simp]: "r > 0"
+    using assms le_less_trans norm_ge_zero by blast
+  define r' where "r' = norm(w - z)"
+  have "r' < r"
+    by (simp add: assms r'_def)
+  have disjo: "cball z r' \<inter> sphere z r = {}"
+    using \<open>r' < r\<close> by (force simp: cball_def sphere_def)
+  have "winding_number(circlepath z r) w = winding_number(circlepath z r) z"
+  proof (rule winding_number_around_inside [where s = "cball z r'"])
+    show "winding_number (circlepath z r) z \<noteq> 0"
+      by (simp add: winding_number_circlepath_centre)
+    show "cball z r' \<inter> path_image (circlepath z r) = {}"
+      by (simp add: disjo less_eq_real_def)
+  qed (auto simp: r'_def dist_norm norm_minus_commute)
+  also have "\<dots> = 1"
+    by (simp add: winding_number_circlepath_centre)
+  finally show ?thesis .
 qed
 
-lemma winding_number_homotopic_loops_eq:
-  assumes "path p" and \<zeta>p: "\<zeta> \<notin> path_image p"
-      and "path q" and \<zeta>q: "\<zeta> \<notin> path_image q"
-      and loops: "pathfinish p = pathstart p" "pathfinish q = pathstart q"
-    shows "winding_number p \<zeta> = winding_number q \<zeta> \<longleftrightarrow> homotopic_loops (-{\<zeta>}) p q"
-    (is "?lhs = ?rhs")
-proof
-  assume L: ?lhs
-  have "pathstart p \<noteq> \<zeta>" "pathstart q \<noteq> \<zeta>"
-    using \<zeta>p \<zeta>q by blast+
-  moreover have "path_connected (-{\<zeta>})"
-    by (simp add: path_connected_punctured_universe)
-  ultimately obtain r where "path r" and rim: "path_image r \<subseteq> -{\<zeta>}"
-                        and pas: "pathstart r = pathstart p" and paf: "pathfinish r = pathstart q"
-    by (auto simp: path_connected_def)
-  then have "pathstart r \<noteq> \<zeta>" by blast
-  have "homotopic_loops (- {\<zeta>}) p (r +++ q +++ reversepath r)"
-  proof (rule homotopic_paths_imp_homotopic_loops)
-    show "homotopic_paths (- {\<zeta>}) p (r +++ q +++ reversepath r)"
-      by (metis (mono_tags, hide_lams) \<open>path r\<close> L \<zeta>p \<zeta>q \<open>path p\<close> \<open>path q\<close> homotopic_loops_conjugate loops not_in_path_image_join paf pas path_image_reversepath path_imp_reversepath path_join_eq pathfinish_join pathfinish_reversepath  pathstart_join pathstart_reversepath rim subset_Compl_singleton winding_number_homotopic_loops winding_number_homotopic_paths_eq)
-  qed (use loops pas in auto)
-  moreover have "homotopic_loops (- {\<zeta>}) (r +++ q +++ reversepath r) q"
-    using rim \<zeta>q by (auto simp: homotopic_loops_conjugate paf \<open>path q\<close> \<open>path r\<close> loops)
-  ultimately show ?rhs
-    using homotopic_loops_trans by metis
-next
-  assume ?rhs
-  then show ?lhs
-    by (simp add: winding_number_homotopic_loops)
+lemma no_bounded_connected_component_imp_winding_number_zero:
+  assumes g: "path g" "path_image g \<subseteq> s" "pathfinish g = pathstart g" "z \<notin> s"
+      and nb: "\<And>z. bounded (connected_component_set (- s) z) \<longrightarrow> z \<in> s"
+  shows "winding_number g z = 0"
+apply (rule winding_number_zero_in_outside)
+apply (simp_all add: assms)
+  by (metis nb [of z] \<open>path_image g \<subseteq> s\<close> \<open>z \<notin> s\<close> contra_subsetD mem_Collect_eq outside outside_mono)
+
+lemma no_bounded_path_component_imp_winding_number_zero:
+  assumes g: "path g" "path_image g \<subseteq> s" "pathfinish g = pathstart g" "z \<notin> s"
+      and nb: "\<And>z. bounded (path_component_set (- s) z) \<longrightarrow> z \<in> s"
+  shows "winding_number g z = 0"
+apply (rule no_bounded_connected_component_imp_winding_number_zero [OF g])
+by (simp add: bounded_subset nb path_component_subset_connected_component)
+
+lemma simply_connected_imp_winding_number_zero:
+  assumes "simply_connected S" "path g"
+           "path_image g \<subseteq> S" "pathfinish g = pathstart g" "z \<notin> S"
+    shows "winding_number g z = 0"
+proof -
+  have hom: "homotopic_loops S g (linepath (pathstart g) (pathstart g))"
+    by (meson assms homotopic_paths_imp_homotopic_loops pathfinish_linepath simply_connected_eq_contractible_path)
+  then have "homotopic_paths (- {z}) g (linepath (pathstart g) (pathstart g))"
+    by (meson \<open>z \<notin> S\<close> homotopic_loops_imp_homotopic_paths_null homotopic_paths_subset subset_Compl_singleton)
+  then have "winding_number g z = winding_number(linepath (pathstart g) (pathstart g)) z"
+    by (rule winding_number_homotopic_paths)
+  also have "\<dots> = 0"
+    using assms by (force intro: winding_number_trivial)
+  finally show ?thesis .
 qed
 
-end
-
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Winding_Numbers_2.thy	Sun Dec 01 19:10:57 2019 +0000
@@ -0,0 +1,1211 @@
+section \<open>More Winding Numbers\<close>
+
+text\<open>By John Harrison et al.  Ported from HOL Light by L C Paulson (2017)\<close>
+
+theory Winding_Numbers_2
+imports
+  Polytope
+  Jordan_Curve
+  Riemann_Mapping
+begin
+
+lemma simply_connected_inside_simple_path:
+  fixes p :: "real \<Rightarrow> complex"
+  shows "simple_path p \<Longrightarrow> simply_connected(inside(path_image p))"
+  using Jordan_inside_outside connected_simple_path_image inside_simple_curve_imp_closed simply_connected_eq_frontier_properties
+  by fastforce
+
+lemma simply_connected_Int:
+  fixes S :: "complex set"
+  assumes "open S" "open T" "simply_connected S" "simply_connected T" "connected (S \<inter> T)"
+  shows "simply_connected (S \<inter> T)"
+  using assms by (force simp: simply_connected_eq_winding_number_zero open_Int)
+
+subsection\<open>Winding number for a triangle\<close>
+
+lemma wn_triangle1:
+  assumes "0 \<in> interior(convex hull {a,b,c})"
+    shows "\<not> (Im(a/b) \<le> 0 \<and> 0 \<le> Im(b/c))"
+proof -
+  { assume 0: "Im(a/b) \<le> 0" "0 \<le> Im(b/c)"
+    have "0 \<notin> interior (convex hull {a,b,c})"
+    proof (cases "a=0 \<or> b=0 \<or> c=0")
+      case True then show ?thesis
+        by (auto simp: not_in_interior_convex_hull_3)
+    next
+      case False
+      then have "b \<noteq> 0" by blast
+      { fix x y::complex and u::real
+        assume eq_f': "Im x * Re b \<le> Im b * Re x" "Im y * Re b \<le> Im b * Re y" "0 \<le> u" "u \<le> 1"
+        then have "((1 - u) * Im x) * Re b \<le> Im b * ((1 - u) * Re x)"
+          by (simp add: mult_left_mono mult.assoc mult.left_commute [of "Im b"])
+        then have "((1 - u) * Im x + u * Im y) * Re b \<le> Im b * ((1 - u) * Re x + u * Re y)"
+          using eq_f' ordered_comm_semiring_class.comm_mult_left_mono
+          by (fastforce simp add: algebra_simps)
+      }
+      with False 0 have "convex hull {a,b,c} \<le> {z. Im z * Re b \<le> Im b * Re z}"
+        apply (simp add: Complex.Im_divide divide_simps complex_neq_0 [symmetric])
+        apply (simp add: algebra_simps)
+        apply (rule hull_minimal)
+        apply (auto simp: algebra_simps convex_alt)
+        done
+      moreover have "0 \<notin> interior({z. Im z * Re b \<le> Im b * Re z})"
+      proof
+        assume "0 \<in> interior {z. Im z * Re b \<le> Im b * Re z}"
+        then obtain e where "e>0" and e: "ball 0 e \<subseteq> {z. Im z * Re b \<le> Im b * Re z}"
+          by (meson mem_interior)
+        define z where "z \<equiv> - sgn (Im b) * (e/3) + sgn (Re b) * (e/3) * \<i>"
+        have "z \<in> ball 0 e"
+          using \<open>e>0\<close>
+          apply (simp add: z_def dist_norm)
+          apply (rule le_less_trans [OF norm_triangle_ineq4])
+          apply (simp add: norm_mult abs_sgn_eq)
+          done
+        then have "z \<in> {z. Im z * Re b \<le> Im b * Re z}"
+          using e by blast
+        then show False
+          using \<open>e>0\<close> \<open>b \<noteq> 0\<close>
+          apply (simp add: z_def dist_norm sgn_if less_eq_real_def mult_less_0_iff complex.expand split: if_split_asm)
+          apply (auto simp: algebra_simps)
+          apply (meson less_asym less_trans mult_pos_pos neg_less_0_iff_less)
+          by (metis less_asym mult_pos_pos neg_less_0_iff_less)
+      qed
+      ultimately show ?thesis
+        using interior_mono by blast
+    qed
+  } with assms show ?thesis by blast
+qed
+
+lemma wn_triangle2_0:
+  assumes "0 \<in> interior(convex hull {a,b,c})"
+  shows
+       "0 < Im((b - a) * cnj (b)) \<and>
+        0 < Im((c - b) * cnj (c)) \<and>
+        0 < Im((a - c) * cnj (a))
+        \<or>
+        Im((b - a) * cnj (b)) < 0 \<and>
+        0 < Im((b - c) * cnj (b)) \<and>
+        0 < Im((a - b) * cnj (a)) \<and>
+        0 < Im((c - a) * cnj (c))"
+proof -
+  have [simp]: "{b,c,a} = {a,b,c}" "{c,a,b} = {a,b,c}" by auto
+  show ?thesis
+    using wn_triangle1 [OF assms] wn_triangle1 [of b c a] wn_triangle1 [of c a b] assms
+    by (auto simp: algebra_simps Im_complex_div_gt_0 Im_complex_div_lt_0 not_le not_less)
+qed
+
+lemma wn_triangle2:
+  assumes "z \<in> interior(convex hull {a,b,c})"
+   shows "0 < Im((b - a) * cnj (b - z)) \<and>
+          0 < Im((c - b) * cnj (c - z)) \<and>
+          0 < Im((a - c) * cnj (a - z))
+          \<or>
+          Im((b - a) * cnj (b - z)) < 0 \<and>
+          0 < Im((b - c) * cnj (b - z)) \<and>
+          0 < Im((a - b) * cnj (a - z)) \<and>
+          0 < Im((c - a) * cnj (c - z))"
+proof -
+  have 0: "0 \<in> interior(convex hull {a-z, b-z, c-z})"
+    using assms convex_hull_translation [of "-z" "{a,b,c}"]
+                interior_translation [of "-z"]
+    by (simp cong: image_cong_simp)
+  show ?thesis using wn_triangle2_0 [OF 0]
+    by simp
+qed
+
+lemma wn_triangle3:
+  assumes z: "z \<in> interior(convex hull {a,b,c})"
+      and "0 < Im((b-a) * cnj (b-z))"
+          "0 < Im((c-b) * cnj (c-z))"
+          "0 < Im((a-c) * cnj (a-z))"
+    shows "winding_number (linepath a b +++ linepath b c +++ linepath c a) z = 1"
+proof -
+  have znot[simp]: "z \<notin> closed_segment a b" "z \<notin> closed_segment b c" "z \<notin> closed_segment c a"
+    using z interior_of_triangle [of a b c]
+    by (auto simp: closed_segment_def)
+  have gt0: "0 < Re (winding_number (linepath a b +++ linepath b c +++ linepath c a) z)"
+    using assms
+    by (simp add: winding_number_linepath_pos_lt path_image_join winding_number_join_pos_combined)
+  have lt2: "Re (winding_number (linepath a b +++ linepath b c +++ linepath c a) z) < 2"
+    using winding_number_lt_half_linepath [of _ a b]
+    using winding_number_lt_half_linepath [of _ b c]
+    using winding_number_lt_half_linepath [of _ c a] znot
+    apply (fastforce simp add: winding_number_join path_image_join)
+    done
+  show ?thesis
+    by (rule winding_number_eq_1) (simp_all add: path_image_join gt0 lt2)
+qed
+
+proposition winding_number_triangle:
+  assumes z: "z \<in> interior(convex hull {a,b,c})"
+    shows "winding_number(linepath a b +++ linepath b c +++ linepath c a) z =
+           (if 0 < Im((b - a) * cnj (b - z)) then 1 else -1)"
+proof -
+  have [simp]: "{a,c,b} = {a,b,c}"  by auto
+  have znot[simp]: "z \<notin> closed_segment a b" "z \<notin> closed_segment b c" "z \<notin> closed_segment c a"
+    using z interior_of_triangle [of a b c]
+    by (auto simp: closed_segment_def)
+  then have [simp]: "z \<notin> closed_segment b a" "z \<notin> closed_segment c b" "z \<notin> closed_segment a c"
+    using closed_segment_commute by blast+
+  have *: "winding_number (linepath a b +++ linepath b c +++ linepath c a) z =
+            winding_number (reversepath (linepath a c +++ linepath c b +++ linepath b a)) z"
+    by (simp add: reversepath_joinpaths winding_number_join not_in_path_image_join)
+  show ?thesis
+    using wn_triangle2 [OF z] apply (rule disjE)
+    apply (simp add: wn_triangle3 z)
+    apply (simp add: path_image_join winding_number_reversepath * wn_triangle3 z)
+    done
+qed
+
+subsection\<open>Winding numbers for simple closed paths\<close>
+
+lemma winding_number_from_innerpath:
+  assumes "simple_path c1" and c1: "pathstart c1 = a" "pathfinish c1 = b"
+      and "simple_path c2" and c2: "pathstart c2 = a" "pathfinish c2 = b"
+      and "simple_path c" and c: "pathstart c = a" "pathfinish c = b"
+      and c1c2: "path_image c1 \<inter> path_image c2 = {a,b}"
+      and c1c:  "path_image c1 \<inter> path_image c = {a,b}"
+      and c2c:  "path_image c2 \<inter> path_image c = {a,b}"
+      and ne_12: "path_image c \<inter> inside(path_image c1 \<union> path_image c2) \<noteq> {}"
+      and z: "z \<in> inside(path_image c1 \<union> path_image c)"
+      and wn_d: "winding_number (c1 +++ reversepath c) z = d"
+      and "a \<noteq> b" "d \<noteq> 0"
+  obtains "z \<in> inside(path_image c1 \<union> path_image c2)" "winding_number (c1 +++ reversepath c2) z = d"
+proof -
+  obtain 0: "inside(path_image c1 \<union> path_image c) \<inter> inside(path_image c2 \<union> path_image c) = {}"
+     and 1: "inside(path_image c1 \<union> path_image c) \<union> inside(path_image c2 \<union> path_image c) \<union>
+             (path_image c - {a,b}) = inside(path_image c1 \<union> path_image c2)"
+    by (rule split_inside_simple_closed_curve
+              [OF \<open>simple_path c1\<close> c1 \<open>simple_path c2\<close> c2 \<open>simple_path c\<close> c \<open>a \<noteq> b\<close> c1c2 c1c c2c ne_12])
+  have znot: "z \<notin> path_image c"  "z \<notin> path_image c1" "z \<notin> path_image c2"
+    using union_with_outside z 1 by auto
+  have wn_cc2: "winding_number (c +++ reversepath c2) z = 0"
+    apply (rule winding_number_zero_in_outside)
+    apply (simp_all add: \<open>simple_path c2\<close> c c2 \<open>simple_path c\<close> simple_path_imp_path path_image_join)
+    by (metis "0" ComplI UnE disjoint_iff_not_equal sup.commute union_with_inside z znot)
+  show ?thesis
+  proof
+    show "z \<in> inside (path_image c1 \<union> path_image c2)"
+      using "1" z by blast
+    have "winding_number c1 z - winding_number c z = d "
+      using assms znot
+      by (metis wn_d winding_number_join simple_path_imp_path winding_number_reversepath add.commute path_image_reversepath path_reversepath pathstart_reversepath uminus_add_conv_diff)
+    then show "winding_number (c1 +++ reversepath c2) z = d"
+      using wn_cc2 by (simp add: winding_number_join simple_path_imp_path assms znot winding_number_reversepath)
+  qed
+qed
+
+lemma simple_closed_path_wn1:
+  fixes a::complex and e::real
+  assumes "0 < e"
+    and sp_pl: "simple_path(p +++ linepath (a - e) (a + e))"
+    and psp:   "pathstart p = a + e"
+    and pfp:   "pathfinish p = a - e"
+    and disj:  "ball a e \<inter> path_image p = {}"
+obtains z where "z \<in> inside (path_image (p +++ linepath (a - e) (a + e)))"
+                "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) = 1"
+proof -
+  have "arc p" and arc_lp: "arc (linepath (a - e) (a + e))"
+    and pap: "path_image p \<inter> path_image (linepath (a - e) (a + e)) \<subseteq> {pathstart p, a-e}"
+    using simple_path_join_loop_eq [of "linepath (a - e) (a + e)" p] assms by auto
+  have mid_eq_a: "midpoint (a - e) (a + e) = a"
+    by (simp add: midpoint_def)
+  then have "a \<in> path_image(p +++ linepath (a - e) (a + e))"
+    apply (simp add: assms path_image_join)
+    by (metis midpoint_in_closed_segment)
+  have "a \<in> frontier(inside (path_image(p +++ linepath (a - e) (a + e))))"
+    apply (simp add: assms Jordan_inside_outside)
+    apply (simp_all add: assms path_image_join)
+    by (metis mid_eq_a midpoint_in_closed_segment)
+  with \<open>0 < e\<close> obtain c where c: "c \<in> inside (path_image(p +++ linepath (a - e) (a + e)))"
+                  and dac: "dist a c < e"
+    by (auto simp: frontier_straddle)
+  then have "c \<notin> path_image(p +++ linepath (a - e) (a + e))"
+    using inside_no_overlap by blast
+  then have "c \<notin> path_image p"
+            "c \<notin> closed_segment (a - of_real e) (a + of_real e)"
+    by (simp_all add: assms path_image_join)
+  with \<open>0 < e\<close> dac have "c \<notin> affine hull {a - of_real e, a + of_real e}"
+    by (simp add: segment_as_ball not_le)
+  with \<open>0 < e\<close> have *: "\<not> collinear {a - e, c,a + e}"
+    using collinear_3_affine_hull [of "a-e" "a+e"] by (auto simp: insert_commute)
+  have 13: "1/3 + 1/3 + 1/3 = (1::real)" by simp
+  have "(1/3) *\<^sub>R (a - of_real e) + (1/3) *\<^sub>R c + (1/3) *\<^sub>R (a + of_real e) \<in> interior(convex hull {a - e, c, a + e})"
+    using interior_convex_hull_3_minimal [OF * DIM_complex]
+    by clarsimp (metis 13 zero_less_divide_1_iff zero_less_numeral)
+  then obtain z where z: "z \<in> interior(convex hull {a - e, c, a + e})" by force
+  have [simp]: "z \<notin> closed_segment (a - e) c"
+    by (metis DIM_complex Diff_iff IntD2 inf_sup_absorb interior_of_triangle z)
+  have [simp]: "z \<notin> closed_segment (a + e) (a - e)"
+    by (metis DIM_complex DiffD2 Un_iff interior_of_triangle z)
+  have [simp]: "z \<notin> closed_segment c (a + e)"
+    by (metis (no_types, lifting) DIM_complex DiffD2 Un_insert_right inf_sup_aci(5) insertCI interior_of_triangle mk_disjoint_insert z)
+  show thesis
+  proof
+    have "norm (winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z) = 1"
+      using winding_number_triangle [OF z] by simp
+    have zin: "z \<in> inside (path_image (linepath (a + e) (a - e)) \<union> path_image p)"
+      and zeq: "winding_number (linepath (a + e) (a - e) +++ reversepath p) z =
+                winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
+    proof (rule winding_number_from_innerpath
+        [of "linepath (a + e) (a - e)" "a+e" "a-e" p
+          "linepath (a + e) c +++ linepath c (a - e)" z
+          "winding_number (linepath (a - e)  c +++ linepath  c (a + e) +++ linepath (a + e) (a - e)) z"])
+      show sp_aec: "simple_path (linepath (a + e) c +++ linepath c (a - e))"
+      proof (rule arc_imp_simple_path [OF arc_join])
+        show "arc (linepath (a + e) c)"
+          by (metis \<open>c \<notin> path_image p\<close> arc_linepath pathstart_in_path_image psp)
+        show "arc (linepath c (a - e))"
+          by (metis \<open>c \<notin> path_image p\<close> arc_linepath pathfinish_in_path_image pfp)
+        show "path_image (linepath (a + e) c) \<inter> path_image (linepath c (a - e)) \<subseteq> {pathstart (linepath c (a - e))}"
+          by clarsimp (metis "*" IntI Int_closed_segment closed_segment_commute singleton_iff)
+      qed auto
+      show "simple_path p"
+        using \<open>arc p\<close> arc_simple_path by blast
+      show sp_ae2: "simple_path (linepath (a + e) (a - e))"
+        using \<open>arc p\<close> arc_distinct_ends pfp psp by fastforce
+      show pa: "pathfinish (linepath (a + e) (a - e)) = a - e"
+           "pathstart (linepath (a + e) c +++ linepath c (a - e)) = a + e"
+           "pathfinish (linepath (a + e) c +++ linepath c (a - e)) = a - e"
+           "pathstart p = a + e" "pathfinish p = a - e"
+           "pathstart (linepath (a + e) (a - e)) = a + e"
+        by (simp_all add: assms)
+      show 1: "path_image (linepath (a + e) (a - e)) \<inter> path_image p = {a + e, a - e}"
+      proof
+        show "path_image (linepath (a + e) (a - e)) \<inter> path_image p \<subseteq> {a + e, a - e}"
+          using pap closed_segment_commute psp segment_convex_hull by fastforce
+        show "{a + e, a - e} \<subseteq> path_image (linepath (a + e) (a - e)) \<inter> path_image p"
+          using pap pathfinish_in_path_image pathstart_in_path_image pfp psp by fastforce
+      qed
+      show 2: "path_image (linepath (a + e) (a - e)) \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) =
+               {a + e, a - e}"  (is "?lhs = ?rhs")
+      proof
+        have "\<not> collinear {c, a + e, a - e}"
+          using * by (simp add: insert_commute)
+        then have "convex hull {a + e, a - e} \<inter> convex hull {a + e, c} = {a + e}"
+                  "convex hull {a + e, a - e} \<inter> convex hull {c, a - e} = {a - e}"
+          by (metis (full_types) Int_closed_segment insert_commute segment_convex_hull)+
+        then show "?lhs \<subseteq> ?rhs"
+          by (metis Int_Un_distrib equalityD1 insert_is_Un path_image_join path_image_linepath path_join_eq path_linepath segment_convex_hull simple_path_def sp_aec)
+        show "?rhs \<subseteq> ?lhs"
+          using segment_convex_hull by (simp add: path_image_join)
+      qed
+      have "path_image p \<inter> path_image (linepath (a + e) c) \<subseteq> {a + e}"
+      proof (clarsimp simp: path_image_join)
+        fix x
+        assume "x \<in> path_image p" and x_ac: "x \<in> closed_segment (a + e) c"
+        then have "dist x a \<ge> e"
+          by (metis IntI all_not_in_conv disj dist_commute mem_ball not_less)
+        with x_ac dac \<open>e > 0\<close> show "x = a + e"
+          by (auto simp: norm_minus_commute dist_norm closed_segment_eq_open dest: open_segment_furthest_le [where y=a])
+      qed
+      moreover
+      have "path_image p \<inter> path_image (linepath c (a - e)) \<subseteq> {a - e}"
+      proof (clarsimp simp: path_image_join)
+        fix x
+        assume "x \<in> path_image p" and x_ac: "x \<in> closed_segment c (a - e)"
+        then have "dist x a \<ge> e"
+          by (metis IntI all_not_in_conv disj dist_commute mem_ball not_less)
+        with x_ac dac \<open>e > 0\<close> show "x = a - e"
+          by (auto simp: norm_minus_commute dist_norm closed_segment_eq_open dest: open_segment_furthest_le [where y=a])
+      qed
+      ultimately
+      have "path_image p \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) \<subseteq> {a + e, a - e}"
+        by (force simp: path_image_join)
+      then show 3: "path_image p \<inter> path_image (linepath (a + e) c +++ linepath c (a - e)) = {a + e, a - e}"
+        apply (rule equalityI)
+        apply (clarsimp simp: path_image_join)
+        apply (metis pathstart_in_path_image psp pathfinish_in_path_image pfp)
+        done
+      show 4: "path_image (linepath (a + e) c +++ linepath c (a - e)) \<inter>
+               inside (path_image (linepath (a + e) (a - e)) \<union> path_image p) \<noteq> {}"
+        apply (clarsimp simp: path_image_join segment_convex_hull disjoint_iff_not_equal)
+        by (metis (no_types, hide_lams) UnI1 Un_commute c closed_segment_commute ends_in_segment(1) path_image_join
+                  path_image_linepath pathstart_linepath pfp segment_convex_hull)
+      show zin_inside: "z \<in> inside (path_image (linepath (a + e) (a - e)) \<union>
+                                    path_image (linepath (a + e) c +++ linepath c (a - e)))"
+        apply (simp add: path_image_join)
+        by (metis z inside_of_triangle DIM_complex Un_commute closed_segment_commute)
+      show 5: "winding_number
+             (linepath (a + e) (a - e) +++ reversepath (linepath (a + e) c +++ linepath c (a - e))) z =
+            winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
+        by (simp add: reversepath_joinpaths path_image_join winding_number_join)
+      show 6: "winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z \<noteq> 0"
+        by (simp add: winding_number_triangle z)
+      show "winding_number (linepath (a + e) (a - e) +++ reversepath p) z =
+            winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z"
+        by (metis 1 2 3 4 5 6 pa sp_aec sp_ae2 \<open>arc p\<close> \<open>simple_path p\<close> arc_distinct_ends winding_number_from_innerpath zin_inside)
+    qed (use assms \<open>e > 0\<close> in auto)
+    show "z \<in> inside (path_image (p +++ linepath (a - e) (a + e)))"
+      using zin by (simp add: assms path_image_join Un_commute closed_segment_commute)
+    then have "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) =
+               cmod ((winding_number(reversepath (p +++ linepath (a - e) (a + e))) z))"
+      apply (subst winding_number_reversepath)
+      using simple_path_imp_path sp_pl apply blast
+       apply (metis IntI emptyE inside_no_overlap)
+      by (simp add: inside_def)
+    also have "... = cmod (winding_number(linepath (a + e) (a - e) +++ reversepath p) z)"
+      by (simp add: pfp reversepath_joinpaths)
+    also have "... = cmod (winding_number (linepath (a - e) c +++ linepath c (a + e) +++ linepath (a + e) (a - e)) z)"
+      by (simp add: zeq)
+    also have "... = 1"
+      using z by (simp add: interior_of_triangle winding_number_triangle)
+    finally show "cmod (winding_number (p +++ linepath (a - e) (a + e)) z) = 1" .
+  qed
+qed
+
+lemma simple_closed_path_wn2:
+  fixes a::complex and d e::real
+  assumes "0 < d" "0 < e"
+    and sp_pl: "simple_path(p +++ linepath (a - d) (a + e))"
+    and psp:   "pathstart p = a + e"
+    and pfp:   "pathfinish p = a - d"
+obtains z where "z \<in> inside (path_image (p +++ linepath (a - d) (a + e)))"
+                "cmod (winding_number (p +++ linepath (a - d) (a + e)) z) = 1"
+proof -
+  have [simp]: "a + of_real x \<in> closed_segment (a - \<alpha>) (a - \<beta>) \<longleftrightarrow> x \<in> closed_segment (-\<alpha>) (-\<beta>)" for x \<alpha> \<beta>::real
+    using closed_segment_translation_eq [of a]
+    by (metis (no_types, hide_lams) add_uminus_conv_diff of_real_minus of_real_closed_segment)
+  have [simp]: "a - of_real x \<in> closed_segment (a + \<alpha>) (a + \<beta>) \<longleftrightarrow> -x \<in> closed_segment \<alpha> \<beta>" for x \<alpha> \<beta>::real
+    by (metis closed_segment_translation_eq diff_conv_add_uminus of_real_closed_segment of_real_minus)
+  have "arc p" and arc_lp: "arc (linepath (a - d) (a + e))" and "path p"
+    and pap: "path_image p \<inter> closed_segment (a - d) (a + e) \<subseteq> {a+e, a-d}"
+    using simple_path_join_loop_eq [of "linepath (a - d) (a + e)" p] assms arc_imp_path  by auto
+  have "0 \<in> closed_segment (-d) e"
+    using \<open>0 < d\<close> \<open>0 < e\<close> closed_segment_eq_real_ivl by auto
+  then have "a \<in> path_image (linepath (a - d) (a + e))"
+    using of_real_closed_segment [THEN iffD2]
+    by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
+  then have "a \<notin> path_image p"
+    using \<open>0 < d\<close> \<open>0 < e\<close> pap by auto
+  then obtain k where "0 < k" and k: "ball a k \<inter> (path_image p) = {}"
+    using \<open>0 < e\<close> \<open>path p\<close> not_on_path_ball by blast
+  define kde where "kde \<equiv> (min k (min d e)) / 2"
+  have "0 < kde" "kde < k" "kde < d" "kde < e"
+    using \<open>0 < k\<close> \<open>0 < d\<close> \<open>0 < e\<close> by (auto simp: kde_def)
+  let ?q = "linepath (a + kde) (a + e) +++ p +++ linepath (a - d) (a - kde)"
+  have "- kde \<in> closed_segment (-d) e"
+    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
+  then have a_diff_kde: "a - kde \<in> closed_segment (a - d) (a + e)"
+    using of_real_closed_segment [THEN iffD2]
+    by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
+  then have clsub2: "closed_segment (a - d) (a - kde) \<subseteq> closed_segment (a - d) (a + e)"
+    by (simp add: subset_closed_segment)
+  then have "path_image p \<inter> closed_segment (a - d) (a - kde) \<subseteq> {a + e, a - d}"
+    using pap by force
+  moreover
+  have "a + e \<notin> path_image p \<inter> closed_segment (a - d) (a - kde)"
+    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>0 < e\<close> by (auto simp: closed_segment_eq_real_ivl)
+  ultimately have sub_a_diff_d: "path_image p \<inter> closed_segment (a - d) (a - kde) \<subseteq> {a - d}"
+    by blast
+  have "kde \<in> closed_segment (-d) e"
+    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
+  then have a_diff_kde: "a + kde \<in> closed_segment (a - d) (a + e)"
+    using of_real_closed_segment [THEN iffD2]
+    by (force dest: closed_segment_translation_eq [of "a", THEN iffD2] simp del: of_real_closed_segment)
+  then have clsub1: "closed_segment (a + kde) (a + e) \<subseteq> closed_segment (a - d) (a + e)"
+    by (simp add: subset_closed_segment)
+  then have "closed_segment (a + kde) (a + e) \<inter> path_image p \<subseteq> {a + e, a - d}"
+    using pap by force
+  moreover
+  have "closed_segment (a + kde) (a + e) \<inter> closed_segment (a - d) (a - kde) = {}"
+  proof (clarsimp intro!: equals0I)
+    fix y
+    assume y1: "y \<in> closed_segment (a + kde) (a + e)"
+       and y2: "y \<in> closed_segment (a - d) (a - kde)"
+    obtain u where u: "y = a + of_real u" and "0 < u"
+      using y1 \<open>0 < kde\<close> \<open>kde < e\<close> \<open>0 < e\<close> apply (clarsimp simp: in_segment)
+      apply (rule_tac u = "(1 - u)*kde + u*e" in that)
+       apply (auto simp: scaleR_conv_of_real algebra_simps)
+      by (meson le_less_trans less_add_same_cancel2 less_eq_real_def mult_left_mono)
+    moreover
+    obtain v where v: "y = a + of_real v" and "v \<le> 0"
+      using y2 \<open>0 < kde\<close> \<open>0 < d\<close> \<open>0 < e\<close> apply (clarsimp simp: in_segment)
+      apply (rule_tac v = "- ((1 - u)*d + u*kde)" in that)
+       apply (force simp: scaleR_conv_of_real algebra_simps)
+      by (meson less_eq_real_def neg_le_0_iff_le segment_bound_lemma)
+    ultimately show False
+      by auto
+  qed
+  moreover have "a - d \<notin> closed_segment (a + kde) (a + e)"
+    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>0 < e\<close> by (auto simp: closed_segment_eq_real_ivl)
+  ultimately have sub_a_plus_e:
+    "closed_segment (a + kde) (a + e) \<inter> (path_image p \<union> closed_segment (a - d) (a - kde))
+       \<subseteq> {a + e}"
+    by auto
+  have "kde \<in> closed_segment (-kde) e"
+    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
+  then have a_add_kde: "a + kde \<in> closed_segment (a - kde) (a + e)"
+    using of_real_closed_segment [THEN iffD2]
+    by (force dest: closed_segment_translation_eq [of "a", THEN iffD2] simp del: of_real_closed_segment)
+  have "closed_segment (a - kde) (a + kde) \<inter> closed_segment (a + kde) (a + e) = {a + kde}"
+    by (metis a_add_kde Int_closed_segment)
+  moreover
+  have "path_image p \<inter> closed_segment (a - kde) (a + kde) = {}"
+  proof (rule equals0I, clarify)
+    fix y  assume "y \<in> path_image p" "y \<in> closed_segment (a - kde) (a + kde)"
+    with equals0D [OF k, of y] \<open>0 < kde\<close> \<open>kde < k\<close> show False
+      by (auto simp: dist_norm dest: dist_decreases_closed_segment [where c=a])
+  qed
+  moreover
+  have "- kde \<in> closed_segment (-d) kde"
+    using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < e\<close> closed_segment_eq_real_ivl by auto
+  then have a_diff_kde': "a - kde \<in> closed_segment (a - d) (a + kde)"
+    using of_real_closed_segment [THEN iffD2]
+    by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del: of_real_closed_segment)
+  then have "closed_segment (a - d) (a - kde) \<inter> closed_segment (a - kde) (a + kde) = {a - kde}"
+    by (metis Int_closed_segment)
+  ultimately
+  have pa_subset_pm_kde: "path_image ?q \<inter> closed_segment (a - kde) (a + kde) \<subseteq> {a - kde, a + kde}"
+    by (auto simp: path_image_join assms)
+  have ge_kde1: "\<exists>y. x = a + y \<and> y \<ge> kde" if "x \<in> closed_segment (a + kde) (a + e)" for x
+    using that \<open>kde < e\<close> mult_le_cancel_left
+    apply (auto simp: in_segment)
+    apply (rule_tac x="(1-u)*kde + u*e" in exI)
+    apply (fastforce simp: algebra_simps scaleR_conv_of_real)
+    done
+  have ge_kde2: "\<exists>y. x = a + y \<and> y \<le> -kde" if "x \<in> closed_segment (a - d) (a - kde)" for x
+    using that \<open>kde < d\<close> affine_ineq
+    apply (auto simp: in_segment)
+    apply (rule_tac x="- ((1-u)*d + u*kde)" in exI)
+    apply (fastforce simp: algebra_simps scaleR_conv_of_real)
+    done
+  have notin_paq: "x \<notin> path_image ?q" if "dist a x < kde" for x
+    using that using \<open>0 < kde\<close> \<open>kde < d\<close> \<open>kde < k\<close>
+    apply (auto simp: path_image_join assms dist_norm dest!: ge_kde1 ge_kde2)
+    by (meson k disjoint_iff_not_equal le_less_trans less_eq_real_def mem_ball that)
+  obtain z where zin: "z \<in> inside (path_image (?q +++ linepath (a - kde) (a + kde)))"
+           and z1: "cmod (winding_number (?q +++ linepath (a - kde) (a + kde)) z) = 1"
+  proof (rule simple_closed_path_wn1 [of kde ?q a])
+    show "simple_path (?q +++ linepath (a - kde) (a + kde))"
+    proof (intro simple_path_join_loop conjI)
+      show "arc ?q"
+      proof (rule arc_join)
+        show "arc (linepath (a + kde) (a + e))"
+          using \<open>kde < e\<close> \<open>arc p\<close> by (force simp: pfp)
+        show "arc (p +++ linepath (a - d) (a - kde))"
+          using \<open>kde < d\<close> \<open>kde < e\<close> \<open>arc p\<close> sub_a_diff_d by (force simp: pfp intro: arc_join)
+      qed (auto simp: psp pfp path_image_join sub_a_plus_e)
+      show "arc (linepath (a - kde) (a + kde))"
+        using \<open>0 < kde\<close> by auto
+    qed (use pa_subset_pm_kde in auto)
+  qed (use \<open>0 < kde\<close> notin_paq in auto)
+  have eq: "path_image (?q +++ linepath (a - kde) (a + kde)) = path_image (p +++ linepath (a - d) (a + e))"
+            (is "?lhs = ?rhs")
+  proof
+    show "?lhs \<subseteq> ?rhs"
+      using clsub1 clsub2 apply (auto simp: path_image_join assms)
+      by (meson subsetCE subset_closed_segment)
+    show "?rhs \<subseteq> ?lhs"
+      apply (simp add: path_image_join assms Un_ac)
+        by (metis Un_closed_segment Un_assoc a_diff_kde a_diff_kde' le_supI2 subset_refl)
+    qed
+  show thesis
+  proof
+    show zzin: "z \<in> inside (path_image (p +++ linepath (a - d) (a + e)))"
+      by (metis eq zin)
+    then have znotin: "z \<notin> path_image p"
+      by (metis ComplD Un_iff inside_Un_outside path_image_join pathfinish_linepath pathstart_reversepath pfp reversepath_linepath)
+    have znotin_de: "z \<notin> closed_segment (a - d) (a + kde)"
+      by (metis ComplD Un_iff Un_closed_segment a_diff_kde inside_Un_outside path_image_join path_image_linepath pathstart_linepath pfp zzin)
+    have "winding_number (linepath (a - d) (a + e)) z =
+          winding_number (linepath (a - d) (a + kde)) z + winding_number (linepath (a + kde) (a + e)) z"
+      apply (rule winding_number_split_linepath)
+      apply (simp add: a_diff_kde)
+      by (metis ComplD Un_iff inside_Un_outside path_image_join path_image_linepath pathstart_linepath pfp zzin)
+    also have "... = winding_number (linepath (a + kde) (a + e)) z +
+                     (winding_number (linepath (a - d) (a - kde)) z +
+                      winding_number (linepath (a - kde) (a + kde)) z)"
+      by (simp add: winding_number_split_linepath [of "a-kde", symmetric] znotin_de a_diff_kde')
+    finally have "winding_number (p +++ linepath (a - d) (a + e)) z =
+                    winding_number p z + winding_number (linepath (a + kde) (a + e)) z +
+                   (winding_number (linepath (a - d) (a - kde)) z +
+                    winding_number (linepath (a - kde) (a + kde)) z)"
+      by (metis (no_types, lifting) ComplD Un_iff \<open>arc p\<close> add.assoc arc_imp_path eq path_image_join path_join_path_ends path_linepath simple_path_imp_path sp_pl union_with_outside winding_number_join zin)
+    also have "... = winding_number ?q z + winding_number (linepath (a - kde) (a + kde)) z"
+      using \<open>path p\<close> znotin assms zzin clsub1
+      apply (subst winding_number_join, auto)
+      apply (metis (no_types, hide_lams) ComplD Un_iff contra_subsetD inside_Un_outside path_image_join path_image_linepath pathstart_linepath)
+      apply (metis Un_iff Un_closed_segment a_diff_kde' not_in_path_image_join path_image_linepath znotin_de)
+      by (metis Un_iff Un_closed_segment a_diff_kde' path_image_linepath path_linepath pathstart_linepath winding_number_join znotin_de)
+    also have "... = winding_number (?q +++ linepath (a - kde) (a + kde)) z"
+      using \<open>path p\<close> assms zin
+      apply (subst winding_number_join [symmetric], auto)
+      apply (metis ComplD Un_iff path_image_join pathfinish_join pathfinish_linepath pathstart_linepath union_with_outside)
+      by (metis Un_iff Un_closed_segment a_diff_kde' znotin_de)
+    finally have "winding_number (p +++ linepath (a - d) (a + e)) z =
+                  winding_number (?q +++ linepath (a - kde) (a + kde)) z" .
+    then show "cmod (winding_number (p +++ linepath (a - d) (a + e)) z) = 1"
+      by (simp add: z1)
+  qed
+qed
+
+lemma simple_closed_path_wn3:
+  fixes p :: "real \<Rightarrow> complex"
+  assumes "simple_path p" and loop: "pathfinish p = pathstart p"
+  obtains z where "z \<in> inside (path_image p)" "cmod (winding_number p z) = 1"
+proof -
+  have ins: "inside(path_image p) \<noteq> {}" "open(inside(path_image p))"
+            "connected(inside(path_image p))"
+   and out: "outside(path_image p) \<noteq> {}" "open(outside(path_image p))"
+            "connected(outside(path_image p))"
+   and bo:  "bounded(inside(path_image p))" "\<not> bounded(outside(path_image p))"
+   and ins_out: "inside(path_image p) \<inter> outside(path_image p) = {}"
+                "inside(path_image p) \<union> outside(path_image p) = - path_image p"
+   and fro: "frontier(inside(path_image p)) = path_image p"
+            "frontier(outside(path_image p)) = path_image p"
+    using Jordan_inside_outside [OF assms] by auto
+  obtain a where a: "a \<in> inside(path_image p)"
+    using \<open>inside (path_image p) \<noteq> {}\<close> by blast
+  obtain d::real where "0 < d" and d_fro: "a - d \<in> frontier (inside (path_image p))"
+                 and d_int: "\<And>\<epsilon>. \<lbrakk>0 \<le> \<epsilon>; \<epsilon> < d\<rbrakk> \<Longrightarrow> (a - \<epsilon>) \<in> inside (path_image p)"
+    apply (rule ray_to_frontier [of "inside (path_image p)" a "-1"])
+    using \<open>bounded (inside (path_image p))\<close> \<open>open (inside (path_image p))\<close> a interior_eq
+       apply (auto simp: of_real_def)
+    done
+  obtain e::real where "0 < e" and e_fro: "a + e \<in> frontier (inside (path_image p))"
+    and e_int: "\<And>\<epsilon>. \<lbrakk>0 \<le> \<epsilon>; \<epsilon> < e\<rbrakk> \<Longrightarrow> (a + \<epsilon>) \<in> inside (path_image p)"
+    apply (rule ray_to_frontier [of "inside (path_image p)" a 1])
+    using \<open>bounded (inside (path_image p))\<close> \<open>open (inside (path_image p))\<close> a interior_eq
+       apply (auto simp: of_real_def)
+    done
+  obtain t0 where "0 \<le> t0" "t0 \<le> 1" and pt: "p t0 = a - d"
+    using a d_fro fro by (auto simp: path_image_def)
+  obtain q where "simple_path q" and q_ends: "pathstart q = a - d" "pathfinish q = a - d"
+    and q_eq_p: "path_image q = path_image p"
+    and wn_q_eq_wn_p: "\<And>z. z \<in> inside(path_image p) \<Longrightarrow> winding_number q z = winding_number p z"
+  proof
+    show "simple_path (shiftpath t0 p)"
+      by (simp add: pathstart_shiftpath pathfinish_shiftpath
+          simple_path_shiftpath path_image_shiftpath \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> assms)
+    show "pathstart (shiftpath t0 p) = a - d"
+      using pt by (simp add: \<open>t0 \<le> 1\<close> pathstart_shiftpath)
+    show "pathfinish (shiftpath t0 p) = a - d"
+      by (simp add: \<open>0 \<le> t0\<close> loop pathfinish_shiftpath pt)
+    show "path_image (shiftpath t0 p) = path_image p"
+      by (simp add: \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> loop path_image_shiftpath)
+    show "winding_number (shiftpath t0 p) z = winding_number p z"
+      if "z \<in> inside (path_image p)" for z
+      by (metis ComplD Un_iff \<open>0 \<le> t0\<close> \<open>t0 \<le> 1\<close> \<open>simple_path p\<close> atLeastAtMost_iff inside_Un_outside
+          loop simple_path_imp_path that winding_number_shiftpath)
+  qed
+  have ad_not_ae: "a - d \<noteq> a + e"
+    by (metis \<open>0 < d\<close> \<open>0 < e\<close> add.left_inverse add_left_cancel add_uminus_conv_diff
+        le_add_same_cancel2 less_eq_real_def not_less of_real_add of_real_def of_real_eq_0_iff pt)
+  have ad_ae_q: "{a - d, a + e} \<subseteq> path_image q"
+    using \<open>path_image q = path_image p\<close> d_fro e_fro fro(1) by auto
+  have ada: "open_segment (a - d) a \<subseteq> inside (path_image p)"
+  proof (clarsimp simp: in_segment)
+    fix u::real assume "0 < u" "u < 1"
+    with d_int have "a - (1 - u) * d \<in> inside (path_image p)"
+      by (metis \<open>0 < d\<close> add.commute diff_add_cancel left_diff_distrib' less_add_same_cancel2 less_eq_real_def mult.left_neutral zero_less_mult_iff)
+    then show "(1 - u) *\<^sub>R (a - d) + u *\<^sub>R a \<in> inside (path_image p)"
+      by (simp add: diff_add_eq of_real_def real_vector.scale_right_diff_distrib)
+  qed
+  have aae: "open_segment a (a + e) \<subseteq> inside (path_image p)"
+  proof (clarsimp simp: in_segment)
+    fix u::real assume "0 < u" "u < 1"
+    with e_int have "a + u * e \<in> inside (path_image p)"
+      by (meson \<open>0 < e\<close> less_eq_real_def mult_less_cancel_right2 not_less zero_less_mult_iff)
+    then show "(1 - u) *\<^sub>R a + u *\<^sub>R (a + e) \<in> inside (path_image p)"
+      apply (simp add: algebra_simps)
+      by (simp add: diff_add_eq of_real_def real_vector.scale_right_diff_distrib)
+  qed
+  have "complex_of_real (d * d + (e * e + d * (e + e))) \<noteq> 0"
+    using ad_not_ae
+    by (metis \<open>0 < d\<close> \<open>0 < e\<close> add_strict_left_mono less_add_same_cancel1 not_sum_squares_lt_zero
+        of_real_eq_0_iff zero_less_double_add_iff_zero_less_single_add zero_less_mult_iff)
+  then have a_in_de: "a \<in> open_segment (a - d) (a + e)"
+    using ad_not_ae \<open>0 < d\<close> \<open>0 < e\<close>
+    apply (auto simp: in_segment algebra_simps scaleR_conv_of_real)
+    apply (rule_tac x="d / (d+e)" in exI)
+    apply (auto simp: field_simps)
+    done
+  then have "open_segment (a - d) (a + e) \<subseteq> inside (path_image p)"
+    using ada a aae Un_open_segment [of a "a-d" "a+e"] by blast
+  then have "path_image q \<inter> open_segment (a - d) (a + e) = {}"
+    using inside_no_overlap by (fastforce simp: q_eq_p)
+  with ad_ae_q have paq_Int_cs: "path_image q \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}"
+    by (simp add: closed_segment_eq_open)
+  obtain t where "0 \<le> t" "t \<le> 1" and qt: "q t = a + e"
+    using a e_fro fro ad_ae_q by (auto simp: path_defs)
+  then have "t \<noteq> 0"
+    by (metis ad_not_ae pathstart_def q_ends(1))
+  then have "t \<noteq> 1"
+    by (metis ad_not_ae pathfinish_def q_ends(2) qt)
+  have q01: "q 0 = a - d" "q 1 = a - d"
+    using q_ends by (auto simp: pathstart_def pathfinish_def)
+  obtain z where zin: "z \<in> inside (path_image (subpath t 0 q +++ linepath (a - d) (a + e)))"
+             and z1: "cmod (winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z) = 1"
+  proof (rule simple_closed_path_wn2 [of d e "subpath t 0 q" a], simp_all add: q01)
+    show "simple_path (subpath t 0 q +++ linepath (a - d) (a + e))"
+    proof (rule simple_path_join_loop, simp_all add: qt q01)
+      have "inj_on q (closed_segment t 0)"
+        using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close> \<open>t \<noteq> 1\<close>
+        by (fastforce simp: simple_path_def inj_on_def closed_segment_eq_real_ivl)
+      then show "arc (subpath t 0 q)"
+        using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close>
+        by (simp add: arc_subpath_eq simple_path_imp_path)
+      show "arc (linepath (a - d) (a + e))"
+        by (simp add: ad_not_ae)
+      show "path_image (subpath t 0 q) \<inter> closed_segment (a - d) (a + e) \<subseteq> {a + e, a - d}"
+        using qt paq_Int_cs  \<open>simple_path q\<close> \<open>0 \<le> t\<close> \<open>t \<le> 1\<close>
+        by (force simp: dest: rev_subsetD [OF _ path_image_subpath_subset] intro: simple_path_imp_path)
+    qed
+  qed (auto simp: \<open>0 < d\<close> \<open>0 < e\<close> qt)
+  have pa01_Un: "path_image (subpath 0 t q) \<union> path_image (subpath 1 t q) = path_image q"
+    unfolding path_image_subpath
+    using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> by (force simp: path_image_def image_iff)
+  with paq_Int_cs have pa_01q:
+        "(path_image (subpath 0 t q) \<union> path_image (subpath 1 t q)) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}"
+    by metis
+  have z_notin_ed: "z \<notin> closed_segment (a + e) (a - d)"
+    using zin q01 by (simp add: path_image_join closed_segment_commute inside_def)
+  have z_notin_0t: "z \<notin> path_image (subpath 0 t q)"
+    by (metis (no_types, hide_lams) IntI Un_upper1 subsetD empty_iff inside_no_overlap path_image_join
+        path_image_subpath_commute pathfinish_subpath pathstart_def pathstart_linepath q_ends(1) qt subpath_trivial zin)
+  have [simp]: "- winding_number (subpath t 0 q) z = winding_number (subpath 0 t q) z"
+    by (metis \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> atLeastAtMost_iff zero_le_one
+              path_image_subpath_commute path_subpath real_eq_0_iff_le_ge_0
+              reversepath_subpath simple_path_imp_path winding_number_reversepath z_notin_0t)
+  obtain z_in_q: "z \<in> inside(path_image q)"
+     and wn_q: "winding_number (subpath 0 t q +++ subpath t 1 q) z = - winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"
+  proof (rule winding_number_from_innerpath
+          [of "subpath 0 t q" "a-d" "a+e" "subpath 1 t q" "linepath (a - d) (a + e)"
+            z "- winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"],
+         simp_all add: q01 qt pa01_Un reversepath_subpath)
+    show "simple_path (subpath 0 t q)" "simple_path (subpath 1 t q)"
+      by (simp_all add: \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 0\<close> \<open>t \<noteq> 1\<close> simple_path_subpath)
+    show "simple_path (linepath (a - d) (a + e))"
+      using ad_not_ae by blast
+    show "path_image (subpath 0 t q) \<inter> path_image (subpath 1 t q) = {a - d, a + e}"  (is "?lhs = ?rhs")
+    proof
+      show "?lhs \<subseteq> ?rhs"
+        using \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close> \<open>t \<noteq> 1\<close> q_ends qt q01
+        by (force simp: pathfinish_def qt simple_path_def path_image_subpath)
+      show "?rhs \<subseteq> ?lhs"
+        using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
+    qed
+    show "path_image (subpath 0 t q) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}" (is "?lhs = ?rhs")
+    proof
+      show "?lhs \<subseteq> ?rhs"  using paq_Int_cs pa01_Un by fastforce
+      show "?rhs \<subseteq> ?lhs"  using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
+    qed
+    show "path_image (subpath 1 t q) \<inter> closed_segment (a - d) (a + e) = {a - d, a + e}" (is "?lhs = ?rhs")
+    proof
+      show "?lhs \<subseteq> ?rhs"  by (auto simp: pa_01q [symmetric])
+      show "?rhs \<subseteq> ?lhs"  using \<open>0 \<le> t\<close> \<open>t \<le> 1\<close> q01 qt by (force simp: path_image_subpath)
+    qed
+    show "closed_segment (a - d) (a + e) \<inter> inside (path_image q) \<noteq> {}"
+      using a a_in_de open_closed_segment pa01_Un q_eq_p by fastforce
+    show "z \<in> inside (path_image (subpath 0 t q) \<union> closed_segment (a - d) (a + e))"
+      by (metis path_image_join path_image_linepath path_image_subpath_commute pathfinish_subpath pathstart_linepath q01(1) zin)
+    show "winding_number (subpath 0 t q +++ linepath (a + e) (a - d)) z =
+      - winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z"
+      using z_notin_ed z_notin_0t \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close>
+      by (simp add: simple_path_imp_path qt q01 path_image_subpath_commute closed_segment_commute winding_number_join winding_number_reversepath [symmetric])
+    show "- d \<noteq> e"
+      using ad_not_ae by auto
+    show "winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z \<noteq> 0"
+      using z1 by auto
+  qed
+  show ?thesis
+  proof
+    show "z \<in> inside (path_image p)"
+      using q_eq_p z_in_q by auto
+    then have [simp]: "z \<notin> path_image q"
+      by (metis disjoint_iff_not_equal inside_no_overlap q_eq_p)
+    have [simp]: "z \<notin> path_image (subpath 1 t q)"
+      using inside_def pa01_Un z_in_q by fastforce
+    have "winding_number(subpath 0 t q +++ subpath t 1 q) z = winding_number(subpath 0 1 q) z"
+      using z_notin_0t \<open>0 \<le> t\<close> \<open>simple_path q\<close> \<open>t \<le> 1\<close>
+      by (simp add: simple_path_imp_path qt path_image_subpath_commute winding_number_join winding_number_subpath_combine)
+    with wn_q have "winding_number (subpath t 0 q +++ linepath (a - d) (a + e)) z = - winding_number q z"
+      by auto
+    with z1 have "cmod (winding_number q z) = 1"
+      by simp
+    with z1 wn_q_eq_wn_p show "cmod (winding_number p z) = 1"
+      using z1 wn_q_eq_wn_p  by (simp add: \<open>z \<in> inside (path_image p)\<close>)
+    qed
+qed
+
+proposition simple_closed_path_winding_number_inside:
+  assumes "simple_path \<gamma>"
+  obtains "\<And>z. z \<in> inside(path_image \<gamma>) \<Longrightarrow> winding_number \<gamma> z = 1"
+        | "\<And>z. z \<in> inside(path_image \<gamma>) \<Longrightarrow> winding_number \<gamma> z = -1"
+proof (cases "pathfinish \<gamma> = pathstart \<gamma>")
+  case True
+  have "path \<gamma>"
+    by (simp add: assms simple_path_imp_path)
+  then have const: "winding_number \<gamma> constant_on inside(path_image \<gamma>)"
+  proof (rule winding_number_constant)
+    show "connected (inside(path_image \<gamma>))"
+      by (simp add: Jordan_inside_outside True assms)
+  qed (use inside_no_overlap True in auto)
+  obtain z where zin: "z \<in> inside (path_image \<gamma>)" and z1: "cmod (winding_number \<gamma> z) = 1"
+    using simple_closed_path_wn3 [of \<gamma>] True assms by blast
+  have "winding_number \<gamma> z \<in> \<int>"
+    using zin integer_winding_number [OF \<open>path \<gamma>\<close> True] inside_def by blast
+  with z1 consider "winding_number \<gamma> z = 1" | "winding_number \<gamma> z = -1"
+    apply (auto simp: Ints_def abs_if split: if_split_asm)
+    by (metis of_int_1 of_int_eq_iff of_int_minus)
+  with that const zin show ?thesis
+    unfolding constant_on_def by metis
+next
+  case False
+  then show ?thesis
+    using inside_simple_curve_imp_closed assms that(2) by blast
+qed
+
+lemma simple_closed_path_abs_winding_number_inside:
+  assumes "simple_path \<gamma>" "z \<in> inside(path_image \<gamma>)"
+    shows "\<bar>Re (winding_number \<gamma> z)\<bar> = 1"
+  by (metis assms norm_minus_cancel norm_one one_complex.simps(1) real_norm_def simple_closed_path_winding_number_inside uminus_complex.simps(1))
+
+lemma simple_closed_path_norm_winding_number_inside:
+  assumes "simple_path \<gamma>" "z \<in> inside(path_image \<gamma>)"
+  shows "norm (winding_number \<gamma> z) = 1"
+proof -
+  have "pathfinish \<gamma> = pathstart \<gamma>"
+    using assms inside_simple_curve_imp_closed by blast
+  with assms integer_winding_number have "winding_number \<gamma> z \<in> \<int>"
+    by (simp add: inside_def simple_path_def)
+  then show ?thesis
+    by (metis assms norm_minus_cancel norm_one simple_closed_path_winding_number_inside)
+qed
+
+lemma simple_closed_path_winding_number_cases:
+   "\<lbrakk>simple_path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>\<rbrakk> \<Longrightarrow> winding_number \<gamma> z \<in> {-1,0,1}"
+apply (simp add: inside_Un_outside [of "path_image \<gamma>", symmetric, unfolded set_eq_iff Set.Compl_iff] del: inside_Un_outside)
+   apply (rule simple_closed_path_winding_number_inside)
+  using simple_path_def winding_number_zero_in_outside by blast+
+
+lemma simple_closed_path_winding_number_pos:
+   "\<lbrakk>simple_path \<gamma>; pathfinish \<gamma> = pathstart \<gamma>; z \<notin> path_image \<gamma>; 0 < Re(winding_number \<gamma> z)\<rbrakk>
+    \<Longrightarrow> winding_number \<gamma> z = 1"
+using simple_closed_path_winding_number_cases
+  by fastforce
+
+subsection \<open>Winding number for rectangular paths\<close>
+
+definition\<^marker>\<open>tag important\<close> rectpath where
+  "rectpath a1 a3 = (let a2 = Complex (Re a3) (Im a1); a4 = Complex (Re a1) (Im a3)
+                      in linepath a1 a2 +++ linepath a2 a3 +++ linepath a3 a4 +++ linepath a4 a1)"
+
+lemma path_rectpath [simp, intro]: "path (rectpath a b)"
+  by (simp add: Let_def rectpath_def)
+
+lemma valid_path_rectpath [simp, intro]: "valid_path (rectpath a b)"
+  by (simp add: Let_def rectpath_def)
+
+lemma pathstart_rectpath [simp]: "pathstart (rectpath a1 a3) = a1"
+  by (simp add: rectpath_def Let_def)
+
+lemma pathfinish_rectpath [simp]: "pathfinish (rectpath a1 a3) = a1"
+  by (simp add: rectpath_def Let_def)
+
+lemma simple_path_rectpath [simp, intro]:
+  assumes "Re a1 \<noteq> Re a3" "Im a1 \<noteq> Im a3"
+  shows   "simple_path (rectpath a1 a3)"
+  unfolding rectpath_def Let_def using assms
+  by (intro simple_path_join_loop arc_join arc_linepath)
+     (auto simp: complex_eq_iff path_image_join closed_segment_same_Re closed_segment_same_Im)
+
+lemma path_image_rectpath:
+  assumes "Re a1 \<le> Re a3" "Im a1 \<le> Im a3"
+  shows "path_image (rectpath a1 a3) =
+           {z. Re z \<in> {Re a1, Re a3} \<and> Im z \<in> {Im a1..Im a3}} \<union>
+           {z. Im z \<in> {Im a1, Im a3} \<and> Re z \<in> {Re a1..Re a3}}" (is "?lhs = ?rhs")
+proof -
+  define a2 a4 where "a2 = Complex (Re a3) (Im a1)" and "a4 = Complex (Re a1) (Im a3)"
+  have "?lhs = closed_segment a1 a2 \<union> closed_segment a2 a3 \<union>
+                  closed_segment a4 a3 \<union> closed_segment a1 a4"
+    by (simp_all add: rectpath_def Let_def path_image_join closed_segment_commute
+                      a2_def a4_def Un_assoc)
+  also have "\<dots> = ?rhs" using assms
+    by (auto simp: rectpath_def Let_def path_image_join a2_def a4_def
+          closed_segment_same_Re closed_segment_same_Im closed_segment_eq_real_ivl)
+  finally show ?thesis .
+qed
+
+lemma path_image_rectpath_subset_cbox:
+  assumes "Re a \<le> Re b" "Im a \<le> Im b"
+  shows   "path_image (rectpath a b) \<subseteq> cbox a b"
+  using assms by (auto simp: path_image_rectpath in_cbox_complex_iff)
+
+lemma path_image_rectpath_inter_box:
+  assumes "Re a \<le> Re b" "Im a \<le> Im b"
+  shows   "path_image (rectpath a b) \<inter> box a b = {}"
+  using assms by (auto simp: path_image_rectpath in_box_complex_iff)
+
+lemma path_image_rectpath_cbox_minus_box:
+  assumes "Re a \<le> Re b" "Im a \<le> Im b"
+  shows   "path_image (rectpath a b) = cbox a b - box a b"
+  using assms by (auto simp: path_image_rectpath in_cbox_complex_iff
+                             in_box_complex_iff)
+
+proposition winding_number_rectpath:
+  assumes "z \<in> box a1 a3"
+  shows   "winding_number (rectpath a1 a3) z = 1"
+proof -
+  from assms have less: "Re a1 < Re a3" "Im a1 < Im a3"
+    by (auto simp: in_box_complex_iff)
+  define a2 a4 where "a2 = Complex (Re a3) (Im a1)" and "a4 = Complex (Re a1) (Im a3)"
+  let ?l1 = "linepath a1 a2" and ?l2 = "linepath a2 a3"
+  and ?l3 = "linepath a3 a4" and ?l4 = "linepath a4 a1"
+  from assms and less have "z \<notin> path_image (rectpath a1 a3)"
+    by (auto simp: path_image_rectpath_cbox_minus_box)
+  also have "path_image (rectpath a1 a3) =
+               path_image ?l1 \<union> path_image ?l2 \<union> path_image ?l3 \<union> path_image ?l4"
+    by (simp add: rectpath_def Let_def path_image_join Un_assoc a2_def a4_def)
+  finally have "z \<notin> \<dots>" .
+  moreover have "\<forall>l\<in>{?l1,?l2,?l3,?l4}. Re (winding_number l z) > 0"
+    unfolding ball_simps HOL.simp_thms a2_def a4_def
+    by (intro conjI; (rule winding_number_linepath_pos_lt;
+          (insert assms, auto simp: a2_def a4_def in_box_complex_iff mult_neg_neg))+)
+  ultimately have "Re (winding_number (rectpath a1 a3) z) > 0"
+    by (simp add: winding_number_join path_image_join rectpath_def Let_def a2_def a4_def)
+  thus "winding_number (rectpath a1 a3) z = 1" using assms less
+    by (intro simple_closed_path_winding_number_pos simple_path_rectpath)
+       (auto simp: path_image_rectpath_cbox_minus_box)
+qed
+
+proposition winding_number_rectpath_outside:
+  assumes "Re a1 \<le> Re a3" "Im a1 \<le> Im a3"
+  assumes "z \<notin> cbox a1 a3"
+  shows   "winding_number (rectpath a1 a3) z = 0"
+  using assms by (intro winding_number_zero_outside[OF _ _ _ assms(3)]
+                     path_image_rectpath_subset_cbox) simp_all
+
+text\<open>A per-function version for continuous logs, a kind of monodromy\<close>
+proposition\<^marker>\<open>tag unimportant\<close> winding_number_compose_exp:
+  assumes "path p"
+  shows "winding_number (exp \<circ> p) 0 = (pathfinish p - pathstart p) / (2 * of_real pi * \<i>)"
+proof -
+  obtain e where "0 < e" and e: "\<And>t. t \<in> {0..1} \<Longrightarrow> e \<le> norm(exp(p t))"
+  proof
+    have "closed (path_image (exp \<circ> p))"
+      by (simp add: assms closed_path_image holomorphic_on_exp holomorphic_on_imp_continuous_on path_continuous_image)
+    then show "0 < setdist {0} (path_image (exp \<circ> p))"
+      by (metis exp_not_eq_zero imageE image_comp infdist_eq_setdist infdist_pos_not_in_closed path_defs(4) path_image_nonempty)
+  next
+    fix t::real
+    assume "t \<in> {0..1}"
+    have "setdist {0} (path_image (exp \<circ> p)) \<le> dist 0 (exp (p t))"
+      apply (rule setdist_le_dist)
+      using \<open>t \<in> {0..1}\<close> path_image_def by fastforce+
+    then show "setdist {0} (path_image (exp \<circ> p)) \<le> cmod (exp (p t))"
+      by simp
+  qed
+  have "bounded (path_image p)"
+    by (simp add: assms bounded_path_image)
+  then obtain B where "0 < B" and B: "path_image p \<subseteq> cball 0 B"
+    by (meson bounded_pos mem_cball_0 subsetI)
+  let ?B = "cball (0::complex) (B+1)"
+  have "uniformly_continuous_on ?B exp"
+    using holomorphic_on_exp holomorphic_on_imp_continuous_on
+    by (force intro: compact_uniformly_continuous)
+  then obtain d where "d > 0"
+        and d: "\<And>x x'. \<lbrakk>x\<in>?B; x'\<in>?B; dist x' x < d\<rbrakk> \<Longrightarrow> norm (exp x' - exp x) < e"
+    using \<open>e > 0\<close> by (auto simp: uniformly_continuous_on_def dist_norm)
+  then have "min 1 d > 0"
+    by force
+  then obtain g where pfg: "polynomial_function g"  and "g 0 = p 0" "g 1 = p 1"
+           and gless: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm(g t - p t) < min 1 d"
+    using path_approx_polynomial_function [OF \<open>path p\<close>] \<open>d > 0\<close> \<open>0 < e\<close>
+    unfolding pathfinish_def pathstart_def by meson
+  have "winding_number (exp \<circ> p) 0 = winding_number (exp \<circ> g) 0"
+  proof (rule winding_number_nearby_paths_eq [symmetric])
+    show "path (exp \<circ> p)" "path (exp \<circ> g)"
+      by (simp_all add: pfg assms holomorphic_on_exp holomorphic_on_imp_continuous_on path_continuous_image path_polynomial_function)
+  next
+    fix t :: "real"
+    assume t: "t \<in> {0..1}"
+    with gless have "norm(g t - p t) < 1"
+      using min_less_iff_conj by blast
+    moreover have ptB: "norm (p t) \<le> B"
+      using B t by (force simp: path_image_def)
+    ultimately have "cmod (g t) \<le> B + 1"
+      by (meson add_mono_thms_linordered_field(4) le_less_trans less_imp_le norm_triangle_sub)
+    with ptB gless t have "cmod ((exp \<circ> g) t - (exp \<circ> p) t) < e"
+      by (auto simp: dist_norm d)
+    with e t show "cmod ((exp \<circ> g) t - (exp \<circ> p) t) < cmod ((exp \<circ> p) t - 0)"
+      by fastforce
+  qed (use \<open>g 0 = p 0\<close> \<open>g 1 = p 1\<close> in \<open>auto simp: pathfinish_def pathstart_def\<close>)
+  also have "... = 1 / (of_real (2 * pi) * \<i>) * contour_integral (exp \<circ> g) (\<lambda>w. 1 / (w - 0))"
+  proof (rule winding_number_valid_path)
+    have "continuous_on (path_image g) (deriv exp)"
+      by (metis DERIV_exp DERIV_imp_deriv continuous_on_cong holomorphic_on_exp holomorphic_on_imp_continuous_on)
+    then show "valid_path (exp \<circ> g)"
+      by (simp add: field_differentiable_within_exp pfg valid_path_compose valid_path_polynomial_function)
+    show "0 \<notin> path_image (exp \<circ> g)"
+      by (auto simp: path_image_def)
+  qed
+  also have "... = 1 / (of_real (2 * pi) * \<i>) * integral {0..1} (\<lambda>x. vector_derivative g (at x))"
+  proof (simp add: contour_integral_integral, rule integral_cong)
+    fix t :: "real"
+    assume t: "t \<in> {0..1}"
+    show "vector_derivative (exp \<circ> g) (at t) / exp (g t) = vector_derivative g (at t)"
+    proof -
+      have "(exp \<circ> g has_vector_derivative vector_derivative (exp \<circ> g) (at t)) (at t)"
+        by (meson DERIV_exp differentiable_def field_vector_diff_chain_at has_vector_derivative_def
+            has_vector_derivative_polynomial_function pfg vector_derivative_works)
+      moreover have "(exp \<circ> g has_vector_derivative vector_derivative g (at t) * exp (g t)) (at t)"
+        apply (rule field_vector_diff_chain_at)
+        apply (metis has_vector_derivative_polynomial_function pfg vector_derivative_at)
+        using DERIV_exp has_field_derivative_def apply blast
+        done
+      ultimately show ?thesis
+        by (simp add: divide_simps, rule vector_derivative_unique_at)
+    qed
+  qed
+  also have "... = (pathfinish p - pathstart p) / (2 * of_real pi * \<i>)"
+  proof -
+    have "((\<lambda>x. vector_derivative g (at x)) has_integral g 1 - g 0) {0..1}"
+      apply (rule fundamental_theorem_of_calculus [OF zero_le_one])
+      by (metis has_vector_derivative_at_within has_vector_derivative_polynomial_function pfg vector_derivative_at)
+    then show ?thesis
+    apply (simp add: pathfinish_def pathstart_def)
+      using \<open>g 0 = p 0\<close> \<open>g 1 = p 1\<close> by auto
+  qed
+  finally show ?thesis .
+qed
+
+subsection\<^marker>\<open>tag unimportant\<close> \<open>The winding number defines a continuous logarithm for the path itself\<close>
+
+lemma winding_number_as_continuous_log:
+  assumes "path p" and \<zeta>: "\<zeta> \<notin> path_image p"
+  obtains q where "path q"
+                  "pathfinish q - pathstart q = 2 * of_real pi * \<i> * winding_number p \<zeta>"
+                  "\<And>t. t \<in> {0..1} \<Longrightarrow> p t = \<zeta> + exp(q t)"
+proof -
+  let ?q = "\<lambda>t. 2 * of_real pi * \<i> * winding_number(subpath 0 t p) \<zeta> + Ln(pathstart p - \<zeta>)"
+  show ?thesis
+  proof
+    have *: "continuous (at t within {0..1}) (\<lambda>x. winding_number (subpath 0 x p) \<zeta>)"
+      if t: "t \<in> {0..1}" for t
+    proof -
+      let ?B = "ball (p t) (norm(p t - \<zeta>))"
+      have "p t \<noteq> \<zeta>"
+        using path_image_def that \<zeta> by blast
+      then have "simply_connected ?B"
+        by (simp add: convex_imp_simply_connected)
+      then have "\<And>f::complex\<Rightarrow>complex. continuous_on ?B f \<and> (\<forall>\<zeta> \<in> ?B. f \<zeta> \<noteq> 0)
+                  \<longrightarrow> (\<exists>g. continuous_on ?B g \<and> (\<forall>\<zeta> \<in> ?B. f \<zeta> = exp (g \<zeta>)))"
+        by (simp add: simply_connected_eq_continuous_log)
+      moreover have "continuous_on ?B (\<lambda>w. w - \<zeta>)"
+        by (intro continuous_intros)
+      moreover have "(\<forall>z \<in> ?B. z - \<zeta> \<noteq> 0)"
+        by (auto simp: dist_norm)
+      ultimately obtain g where contg: "continuous_on ?B g"
+        and geq: "\<And>z. z \<in> ?B \<Longrightarrow> z - \<zeta> = exp (g z)" by blast
+      obtain d where "0 < d" and d:
+        "\<And>x. \<lbrakk>x \<in> {0..1}; dist x t < d\<rbrakk> \<Longrightarrow> dist (p x) (p t) < cmod (p t - \<zeta>)"
+        using \<open>path p\<close> t unfolding path_def continuous_on_iff
+        by (metis \<open>p t \<noteq> \<zeta>\<close> right_minus_eq zero_less_norm_iff)
+      have "((\<lambda>x. winding_number (\<lambda>w. subpath 0 x p w - \<zeta>) 0 -
+                  winding_number (\<lambda>w. subpath 0 t p w - \<zeta>) 0) \<longlongrightarrow> 0)
+            (at t within {0..1})"
+      proof (rule Lim_transform_within [OF _ \<open>d > 0\<close>])
+        have "continuous (at t within {0..1}) (g o p)"
+        proof (rule continuous_within_compose)
+          show "continuous (at t within {0..1}) p"
+            using \<open>path p\<close> continuous_on_eq_continuous_within path_def that by blast
+          show "continuous (at (p t) within p ` {0..1}) g"
+            by (metis (no_types, lifting) open_ball UNIV_I \<open>p t \<noteq> \<zeta>\<close> centre_in_ball contg continuous_on_eq_continuous_at continuous_within_topological right_minus_eq zero_less_norm_iff)
+        qed
+        with LIM_zero have "((\<lambda>u. (g (subpath t u p 1) - g (subpath t u p 0))) \<longlongrightarrow> 0) (at t within {0..1})"
+          by (auto simp: subpath_def continuous_within o_def)
+        then show "((\<lambda>u.  (g (subpath t u p 1) - g (subpath t u p 0)) / (2 * of_real pi * \<i>)) \<longlongrightarrow> 0)
+           (at t within {0..1})"
+          by (simp add: tendsto_divide_zero)
+        show "(g (subpath t u p 1) - g (subpath t u p 0)) / (2 * of_real pi * \<i>) =
+              winding_number (\<lambda>w. subpath 0 u p w - \<zeta>) 0 - winding_number (\<lambda>w. subpath 0 t p w - \<zeta>) 0"
+          if "u \<in> {0..1}" "0 < dist u t" "dist u t < d" for u
+        proof -
+          have "closed_segment t u \<subseteq> {0..1}"
+            using closed_segment_eq_real_ivl t that by auto
+          then have piB: "path_image(subpath t u p) \<subseteq> ?B"
+            apply (clarsimp simp add: path_image_subpath_gen)
+            by (metis subsetD le_less_trans \<open>dist u t < d\<close> d dist_commute dist_in_closed_segment)
+          have *: "path (g \<circ> subpath t u p)"
+            apply (rule path_continuous_image)
+            using \<open>path p\<close> t that apply auto[1]
+            using piB contg continuous_on_subset by blast
+          have "(g (subpath t u p 1) - g (subpath t u p 0)) / (2 * of_real pi * \<i>)
+              =  winding_number (exp \<circ> g \<circ> subpath t u p) 0"
+            using winding_number_compose_exp [OF *]
+            by (simp add: pathfinish_def pathstart_def o_assoc)
+          also have "... = winding_number (\<lambda>w. subpath t u p w - \<zeta>) 0"
+          proof (rule winding_number_cong)
+            have "exp(g y) = y - \<zeta>" if "y \<in> (subpath t u p) ` {0..1}" for y
+              by (metis that geq path_image_def piB subset_eq)
+            then show "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> (exp \<circ> g \<circ> subpath t u p) x = subpath t u p x - \<zeta>"
+              by auto
+          qed
+          also have "... = winding_number (\<lambda>w. subpath 0 u p w - \<zeta>) 0 -
+                           winding_number (\<lambda>w. subpath 0 t p w - \<zeta>) 0"
+            apply (simp add: winding_number_offset [symmetric])
+            using winding_number_subpath_combine [OF \<open>path p\<close> \<zeta>, of 0 t u] \<open>t \<in> {0..1}\<close> \<open>u \<in> {0..1}\<close>
+            by (simp add: add.commute eq_diff_eq)
+          finally show ?thesis .
+        qed
+      qed
+      then show ?thesis
+        by (subst winding_number_offset) (simp add: continuous_within LIM_zero_iff)
+    qed
+    show "path ?q"
+      unfolding path_def
+      by (intro continuous_intros) (simp add: continuous_on_eq_continuous_within *)
+
+    have "\<zeta> \<noteq> p 0"
+      by (metis \<zeta> pathstart_def pathstart_in_path_image)
+    then show "pathfinish ?q - pathstart ?q = 2 * of_real pi * \<i> * winding_number p \<zeta>"
+      by (simp add: pathfinish_def pathstart_def)
+    show "p t = \<zeta> + exp (?q t)" if "t \<in> {0..1}" for t
+    proof -
+      have "path (subpath 0 t p)"
+        using \<open>path p\<close> that by auto
+      moreover
+      have "\<zeta> \<notin> path_image (subpath 0 t p)"
+        using \<zeta> [unfolded path_image_def] that by (auto simp: path_image_subpath)
+      ultimately show ?thesis
+        using winding_number_exp_2pi [of "subpath 0 t p" \<zeta>] \<open>\<zeta> \<noteq> p 0\<close>
+        by (auto simp: exp_add algebra_simps pathfinish_def pathstart_def subpath_def)
+    qed
+  qed
+qed
+
+subsection \<open>Winding number equality is the same as path/loop homotopy in C - {0}\<close>
+
+lemma winding_number_homotopic_loops_null_eq:
+  assumes "path p" and \<zeta>: "\<zeta> \<notin> path_image p"
+  shows "winding_number p \<zeta> = 0 \<longleftrightarrow> (\<exists>a. homotopic_loops (-{\<zeta>}) p (\<lambda>t. a))"
+    (is "?lhs = ?rhs")
+proof
+  assume [simp]: ?lhs
+  obtain q where "path q"
+             and qeq:  "pathfinish q - pathstart q = 2 * of_real pi * \<i> * winding_number p \<zeta>"
+             and peq: "\<And>t. t \<in> {0..1} \<Longrightarrow> p t = \<zeta> + exp(q t)"
+    using winding_number_as_continuous_log [OF assms] by blast
+  have *: "homotopic_with_canon (\<lambda>r. pathfinish r = pathstart r)
+                       {0..1} (-{\<zeta>}) ((\<lambda>w. \<zeta> + exp w) \<circ> q) ((\<lambda>w. \<zeta> + exp w) \<circ> (\<lambda>t. 0))"
+  proof (rule homotopic_with_compose_continuous_left)
+    show "homotopic_with_canon (\<lambda>f. pathfinish ((\<lambda>w. \<zeta> + exp w) \<circ> f) = pathstart ((\<lambda>w. \<zeta> + exp w) \<circ> f))
+              {0..1} UNIV q (\<lambda>t. 0)"
+    proof (rule homotopic_with_mono, simp_all add: pathfinish_def pathstart_def)
+      have "homotopic_loops UNIV q (\<lambda>t. 0)"
+        by (rule homotopic_loops_linear) (use qeq \<open>path q\<close> in \<open>auto simp: path_defs\<close>)
+      then have "homotopic_with (\<lambda>r. r 1 = r 0) (top_of_set {0..1}) euclidean q (\<lambda>t. 0)"
+        by (simp add: homotopic_loops_def pathfinish_def pathstart_def)
+      then show "homotopic_with (\<lambda>h. exp (h 1) = exp (h 0)) (top_of_set {0..1}) euclidean q (\<lambda>t. 0)"
+        by (rule homotopic_with_mono) simp
+    qed
+    show "continuous_on UNIV (\<lambda>w. \<zeta> + exp w)"
+      by (rule continuous_intros)+
+    show "range (\<lambda>w. \<zeta> + exp w) \<subseteq> -{\<zeta>}"
+      by auto
+  qed
+  then have "homotopic_with_canon (\<lambda>r. pathfinish r = pathstart r) {0..1} (-{\<zeta>}) p (\<lambda>x. \<zeta> + 1)"
+    by (rule homotopic_with_eq) (auto simp: o_def peq pathfinish_def pathstart_def)
+  then have "homotopic_loops (-{\<zeta>}) p (\<lambda>t. \<zeta> + 1)"
+    by (simp add: homotopic_loops_def)
+  then show ?rhs ..
+next
+  assume ?rhs
+  then obtain a where "homotopic_loops (-{\<zeta>}) p (\<lambda>t. a)" ..
+  then have "winding_number p \<zeta> = winding_number (\<lambda>t. a) \<zeta>" "a \<noteq> \<zeta>"
+    using winding_number_homotopic_loops homotopic_loops_imp_subset by (force simp:)+
+  moreover have "winding_number (\<lambda>t. a) \<zeta> = 0"
+    by (metis winding_number_zero_const \<open>a \<noteq> \<zeta>\<close>)
+  ultimately show ?lhs by metis
+qed
+
+lemma winding_number_homotopic_paths_null_explicit_eq:
+  assumes "path p" and \<zeta>: "\<zeta> \<notin> path_image p"
+  shows "winding_number p \<zeta> = 0 \<longleftrightarrow> homotopic_paths (-{\<zeta>}) p (linepath (pathstart p) (pathstart p))"
+        (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  then show ?rhs
+    apply (auto simp: winding_number_homotopic_loops_null_eq [OF assms])
+    apply (rule homotopic_loops_imp_homotopic_paths_null)
+    apply (simp add: linepath_refl)
+    done
+next
+  assume ?rhs
+  then show ?lhs
+    by (metis \<zeta> pathstart_in_path_image winding_number_homotopic_paths winding_number_trivial)
+qed
+
+lemma winding_number_homotopic_paths_null_eq:
+  assumes "path p" and \<zeta>: "\<zeta> \<notin> path_image p"
+  shows "winding_number p \<zeta> = 0 \<longleftrightarrow> (\<exists>a. homotopic_paths (-{\<zeta>}) p (\<lambda>t. a))"
+    (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  then show ?rhs
+    by (auto simp: winding_number_homotopic_paths_null_explicit_eq [OF assms] linepath_refl)
+next
+  assume ?rhs
+  then show ?lhs
+    by (metis \<zeta> homotopic_paths_imp_pathfinish pathfinish_def pathfinish_in_path_image winding_number_homotopic_paths winding_number_zero_const)
+qed
+
+proposition winding_number_homotopic_paths_eq:
+  assumes "path p" and \<zeta>p: "\<zeta> \<notin> path_image p"
+      and "path q" and \<zeta>q: "\<zeta> \<notin> path_image q"
+      and qp: "pathstart q = pathstart p" "pathfinish q = pathfinish p"
+    shows "winding_number p \<zeta> = winding_number q \<zeta> \<longleftrightarrow> homotopic_paths (-{\<zeta>}) p q"
+    (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  then have "winding_number (p +++ reversepath q) \<zeta> = 0"
+    using assms by (simp add: winding_number_join winding_number_reversepath)
+  moreover
+  have "path (p +++ reversepath q)" "\<zeta> \<notin> path_image (p +++ reversepath q)"
+    using assms by (auto simp: not_in_path_image_join)
+  ultimately obtain a where "homotopic_paths (- {\<zeta>}) (p +++ reversepath q) (linepath a a)"
+    using winding_number_homotopic_paths_null_explicit_eq by blast
+  then show ?rhs
+    using homotopic_paths_imp_pathstart assms
+    by (fastforce simp add: dest: homotopic_paths_imp_homotopic_loops homotopic_paths_loop_parts)
+next
+  assume ?rhs
+  then show ?lhs
+    by (simp add: winding_number_homotopic_paths)
+qed
+
+lemma winding_number_homotopic_loops_eq:
+  assumes "path p" and \<zeta>p: "\<zeta> \<notin> path_image p"
+      and "path q" and \<zeta>q: "\<zeta> \<notin> path_image q"
+      and loops: "pathfinish p = pathstart p" "pathfinish q = pathstart q"
+    shows "winding_number p \<zeta> = winding_number q \<zeta> \<longleftrightarrow> homotopic_loops (-{\<zeta>}) p q"
+    (is "?lhs = ?rhs")
+proof
+  assume L: ?lhs
+  have "pathstart p \<noteq> \<zeta>" "pathstart q \<noteq> \<zeta>"
+    using \<zeta>p \<zeta>q by blast+
+  moreover have "path_connected (-{\<zeta>})"
+    by (simp add: path_connected_punctured_universe)
+  ultimately obtain r where "path r" and rim: "path_image r \<subseteq> -{\<zeta>}"
+                        and pas: "pathstart r = pathstart p" and paf: "pathfinish r = pathstart q"
+    by (auto simp: path_connected_def)
+  then have "pathstart r \<noteq> \<zeta>" by blast
+  have "homotopic_loops (- {\<zeta>}) p (r +++ q +++ reversepath r)"
+  proof (rule homotopic_paths_imp_homotopic_loops)
+    show "homotopic_paths (- {\<zeta>}) p (r +++ q +++ reversepath r)"
+      by (metis (mono_tags, hide_lams) \<open>path r\<close> L \<zeta>p \<zeta>q \<open>path p\<close> \<open>path q\<close> homotopic_loops_conjugate loops not_in_path_image_join paf pas path_image_reversepath path_imp_reversepath path_join_eq pathfinish_join pathfinish_reversepath  pathstart_join pathstart_reversepath rim subset_Compl_singleton winding_number_homotopic_loops winding_number_homotopic_paths_eq)
+  qed (use loops pas in auto)
+  moreover have "homotopic_loops (- {\<zeta>}) (r +++ q +++ reversepath r) q"
+    using rim \<zeta>q by (auto simp: homotopic_loops_conjugate paf \<open>path q\<close> \<open>path r\<close> loops)
+  ultimately show ?rhs
+    using homotopic_loops_trans by metis
+next
+  assume ?rhs
+  then show ?lhs
+    by (simp add: winding_number_homotopic_loops)
+qed
+
+end
+