no preference wrt. fold(l/r); prefer fold rather than foldr for iterating over lists in generated code
--- a/NEWS Fri Apr 06 14:40:00 2012 +0200
+++ b/NEWS Fri Apr 06 18:17:16 2012 +0200
@@ -208,10 +208,11 @@
SUPR_set_fold ~> SUP_set_fold
INF_code ~> INF_set_foldr
SUP_code ~> SUP_set_foldr
- foldr.simps ~> foldr_Nil foldr_Cons (in point-free formulation)
- foldl.simps ~> foldl_Nil foldl_Cons
- foldr_fold_rev ~> foldr_def
- foldl_fold ~> foldl_def
+ foldr.simps ~> foldr.simps (in point-free formulation)
+ foldr_fold_rev ~> foldr_conv_fold
+ foldl_fold ~> foldl_conv_fold
+ foldr_foldr ~> foldr_conv_foldl
+ foldl_foldr ~> foldl_conv_foldr
INCOMPATIBILITY.
@@ -220,11 +221,12 @@
rev_foldl_cons, fold_set_remdups, fold_set, fold_set1,
concat_conv_foldl, foldl_weak_invariant, foldl_invariant,
foldr_invariant, foldl_absorb0, foldl_foldr1_lemma, foldl_foldr1,
-listsum_conv_fold, listsum_foldl, sort_foldl_insort. INCOMPATIBILITY.
-Prefer "List.fold" with canonical argument order, or boil down
-"List.foldr" and "List.foldl" to "List.fold" by unfolding "foldr_def"
-and "foldl_def". For the common phrases "%xs. List.foldr plus xs 0"
-and "List.foldl plus 0", prefer "List.listsum".
+listsum_conv_fold, listsum_foldl, sort_foldl_insort, foldl_assoc,
+foldr_conv_foldl, start_le_sum, elem_le_sum, sum_eq_0_conv.
+INCOMPATIBILITY. For the common phrases "%xs. List.foldr plus xs 0"
+and "List.foldl plus 0", prefer "List.listsum". Otherwise it can
+be useful to boil down "List.foldr" and "List.foldl" to "List.fold"
+by unfolding "foldr_conv_fold" and "foldl_conv_fold".
* Congruence rules Option.map_cong and Option.bind_cong for recursion
through option types.
--- a/src/HOL/Library/AList.thy Fri Apr 06 14:40:00 2012 +0200
+++ b/src/HOL/Library/AList.thy Fri Apr 06 18:17:16 2012 +0200
@@ -97,7 +97,7 @@
have "map_of \<circ> fold (prod_case update) (zip ks vs) =
fold (\<lambda>(k, v) f. f(k \<mapsto> v)) (zip ks vs) \<circ> map_of"
by (rule fold_commute) (auto simp add: fun_eq_iff update_conv')
- then show ?thesis by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_def split_def)
+ then show ?thesis by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_conv_fold split_def)
qed
lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\<mapsto>]vs)) k"
@@ -427,7 +427,7 @@
lemma merge_updates:
"merge qs ps = updates (rev (map fst ps)) (rev (map snd ps)) qs"
- by (simp add: merge_def updates_def foldr_def zip_rev zip_map_fst_snd)
+ by (simp add: merge_def updates_def foldr_conv_fold zip_rev zip_map_fst_snd)
lemma dom_merge: "fst ` set (merge xs ys) = fst ` set xs \<union> fst ` set ys"
by (induct ys arbitrary: xs) (auto simp add: dom_update)
@@ -448,7 +448,7 @@
fold (\<lambda>(k, v) m. m(k \<mapsto> v)) (rev ys) \<circ> map_of"
by (rule fold_commute) (simp add: update_conv' prod_case_beta split_def fun_eq_iff)
then show ?thesis
- by (simp add: merge_def map_add_map_of_foldr foldr_def fun_eq_iff)
+ by (simp add: merge_def map_add_map_of_foldr foldr_conv_fold fun_eq_iff)
qed
corollary merge_conv:
--- a/src/HOL/Library/RBT_Impl.thy Fri Apr 06 14:40:00 2012 +0200
+++ b/src/HOL/Library/RBT_Impl.thy Fri Apr 06 18:17:16 2012 +0200
@@ -1076,7 +1076,7 @@
from this Empty_is_rbt have
"lookup (List.fold (prod_case insert) (rev xs) Empty) = lookup Empty ++ map_of xs"
by (simp add: `ys = rev xs`)
- then show ?thesis by (simp add: bulkload_def lookup_Empty foldr_def)
+ then show ?thesis by (simp add: bulkload_def lookup_Empty foldr_conv_fold)
qed
hide_const (open) R B Empty insert delete entries keys bulkload lookup map_entry map fold union sorted
--- a/src/HOL/List.thy Fri Apr 06 14:40:00 2012 +0200
+++ b/src/HOL/List.thy Fri Apr 06 18:17:16 2012 +0200
@@ -85,18 +85,20 @@
syntax (HTML output)
"_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
-primrec -- {* canonical argument order *}
- fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
- "fold f [] = id"
- | "fold f (x # xs) = fold f xs \<circ> f x"
-
-definition
- foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
- [code_abbrev]: "foldr f xs = fold f (rev xs)"
-
-definition
- foldl :: "('b \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b" where
- "foldl f s xs = fold (\<lambda>x s. f s x) xs s"
+primrec fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b"
+where
+ fold_Nil: "fold f [] = id"
+| fold_Cons: "fold f (x # xs) = fold f xs \<circ> f x" -- {* natural argument order *}
+
+primrec foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b"
+where
+ foldr_Nil: "foldr f [] = id"
+| foldr_Cons: "foldr f (x # xs) = f x \<circ> foldr f xs" -- {* natural argument order *}
+
+primrec foldl :: "('b \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"
+where
+ foldl_Nil: "foldl f a [] = a"
+| foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs"
primrec
concat:: "'a list list \<Rightarrow> 'a list" where
@@ -250,8 +252,8 @@
@{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
@{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
@{lemma "fold f [a,b,c] x = f c (f b (f a x))" by simp}\\
-@{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by (simp add: foldr_def)}\\
-@{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by (simp add: foldl_def)}\\
+@{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
+@{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
@{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
@{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
@{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
@@ -277,7 +279,7 @@
@{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate_def eval_nat_numeral)}\\
@{lemma "replicate 4 a = [a,a,a,a]" by (simp add:eval_nat_numeral)}\\
@{lemma "[2..<5] = [2,3,4]" by (simp add:eval_nat_numeral)}\\
-@{lemma "listsum [1,2,3::nat] = 6" by (simp add: listsum_def foldr_def)}
+@{lemma "listsum [1,2,3::nat] = 6" by (simp add: listsum_def)}
\end{tabular}}
\caption{Characteristic examples}
\label{fig:Characteristic}
@@ -2387,7 +2389,7 @@
by(auto simp add: set_zip list_all2_eq list_all2_conv_all_nth cong: conj_cong)
-subsubsection {* @{const fold} with canonical argument order *}
+subsubsection {* @{const fold} with natural argument order *}
lemma fold_remove1_split:
assumes f: "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f x \<circ> f y = f y \<circ> f x"
@@ -2477,7 +2479,7 @@
qed
qed
-lemma union_set_fold:
+lemma union_set_fold [code]:
"set xs \<union> A = fold Set.insert xs A"
proof -
interpret comp_fun_idem Set.insert
@@ -2485,7 +2487,11 @@
show ?thesis by (simp add: union_fold_insert fold_set_fold)
qed
-lemma minus_set_fold:
+lemma union_coset_filter [code]:
+ "List.coset xs \<union> A = List.coset (List.filter (\<lambda>x. x \<notin> A) xs)"
+ by auto
+
+lemma minus_set_fold [code]:
"A - set xs = fold Set.remove xs A"
proof -
interpret comp_fun_idem Set.remove
@@ -2494,6 +2500,18 @@
by (simp add: minus_fold_remove [of _ A] fold_set_fold)
qed
+lemma minus_coset_filter [code]:
+ "A - List.coset xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
+ by auto
+
+lemma inter_set_filter [code]:
+ "A \<inter> set xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
+ by auto
+
+lemma inter_coset_fold [code]:
+ "A \<inter> List.coset xs = fold Set.remove xs A"
+ by (simp add: Diff_eq [symmetric] minus_set_fold)
+
lemma (in lattice) Inf_fin_set_fold:
"Inf_fin (set (x # xs)) = fold inf xs x"
proof -
@@ -2503,6 +2521,8 @@
by (simp add: Inf_fin_def fold1_set_fold del: set.simps)
qed
+declare Inf_fin_set_fold [code]
+
lemma (in lattice) Sup_fin_set_fold:
"Sup_fin (set (x # xs)) = fold sup xs x"
proof -
@@ -2512,6 +2532,8 @@
by (simp add: Sup_fin_def fold1_set_fold del: set.simps)
qed
+declare Sup_fin_set_fold [code]
+
lemma (in linorder) Min_fin_set_fold:
"Min (set (x # xs)) = fold min xs x"
proof -
@@ -2521,6 +2543,8 @@
by (simp add: Min_def fold1_set_fold del: set.simps)
qed
+declare Min_fin_set_fold [code]
+
lemma (in linorder) Max_fin_set_fold:
"Max (set (x # xs)) = fold max xs x"
proof -
@@ -2530,6 +2554,8 @@
by (simp add: Max_def fold1_set_fold del: set.simps)
qed
+declare Max_fin_set_fold [code]
+
lemma (in complete_lattice) Inf_set_fold:
"Inf (set xs) = fold inf xs top"
proof -
@@ -2538,6 +2564,8 @@
show ?thesis by (simp add: Inf_fold_inf fold_set_fold inf_commute)
qed
+declare Inf_set_fold [where 'a = "'a set", code]
+
lemma (in complete_lattice) Sup_set_fold:
"Sup (set xs) = fold sup xs bot"
proof -
@@ -2546,73 +2574,74 @@
show ?thesis by (simp add: Sup_fold_sup fold_set_fold sup_commute)
qed
+declare Sup_set_fold [where 'a = "'a set", code]
+
lemma (in complete_lattice) INF_set_fold:
"INFI (set xs) f = fold (inf \<circ> f) xs top"
unfolding INF_def set_map [symmetric] Inf_set_fold fold_map ..
+declare INF_set_fold [code]
+
lemma (in complete_lattice) SUP_set_fold:
"SUPR (set xs) f = fold (sup \<circ> f) xs bot"
unfolding SUP_def set_map [symmetric] Sup_set_fold fold_map ..
+declare SUP_set_fold [code]
subsubsection {* Fold variants: @{const foldr} and @{const foldl} *}
text {* Correspondence *}
-lemma foldr_foldl: -- {* The ``Third Duality Theorem'' in Bird \& Wadler: *}
+lemma foldr_conv_fold [code_abbrev]:
+ "foldr f xs = fold f (rev xs)"
+ by (induct xs) simp_all
+
+lemma foldl_conv_fold:
+ "foldl f s xs = fold (\<lambda>x s. f s x) xs s"
+ by (induct xs arbitrary: s) simp_all
+
+lemma foldr_conv_foldl: -- {* The ``Third Duality Theorem'' in Bird \& Wadler: *}
"foldr f xs a = foldl (\<lambda>x y. f y x) a (rev xs)"
- by (simp add: foldr_def foldl_def)
-
-lemma foldl_foldr:
+ by (simp add: foldr_conv_fold foldl_conv_fold)
+
+lemma foldl_conv_foldr:
"foldl f a xs = foldr (\<lambda>x y. f y x) (rev xs) a"
- by (simp add: foldr_def foldl_def)
+ by (simp add: foldr_conv_fold foldl_conv_fold)
lemma foldr_fold:
assumes "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f y \<circ> f x = f x \<circ> f y"
shows "foldr f xs = fold f xs"
- using assms unfolding foldr_def by (rule fold_rev)
-
-lemma
- foldr_Nil [code, simp]: "foldr f [] = id"
- and foldr_Cons [code, simp]: "foldr f (x # xs) = f x \<circ> foldr f xs"
- by (simp_all add: foldr_def)
-
-lemma
- foldl_Nil [simp]: "foldl f a [] = a"
- and foldl_Cons [simp]: "foldl f a (x # xs) = foldl f (f a x) xs"
- by (simp_all add: foldl_def)
+ using assms unfolding foldr_conv_fold by (rule fold_rev)
lemma foldr_cong [fundef_cong]:
"a = b \<Longrightarrow> l = k \<Longrightarrow> (\<And>a x. x \<in> set l \<Longrightarrow> f x a = g x a) \<Longrightarrow> foldr f l a = foldr g k b"
- by (auto simp add: foldr_def intro!: fold_cong)
+ by (auto simp add: foldr_conv_fold intro!: fold_cong)
lemma foldl_cong [fundef_cong]:
"a = b \<Longrightarrow> l = k \<Longrightarrow> (\<And>a x. x \<in> set l \<Longrightarrow> f a x = g a x) \<Longrightarrow> foldl f a l = foldl g b k"
- by (auto simp add: foldl_def intro!: fold_cong)
+ by (auto simp add: foldl_conv_fold intro!: fold_cong)
lemma foldr_append [simp]:
"foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
- by (simp add: foldr_def)
+ by (simp add: foldr_conv_fold)
lemma foldl_append [simp]:
"foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
- by (simp add: foldl_def)
+ by (simp add: foldl_conv_fold)
lemma foldr_map [code_unfold]:
"foldr g (map f xs) a = foldr (g o f) xs a"
- by (simp add: foldr_def fold_map rev_map)
+ by (simp add: foldr_conv_fold fold_map rev_map)
lemma foldl_map [code_unfold]:
"foldl g a (map f xs) = foldl (\<lambda>a x. g a (f x)) a xs"
- by (simp add: foldl_def fold_map comp_def)
-
-text {* Executing operations in terms of @{const foldr} -- tail-recursive! *}
+ by (simp add: foldl_conv_fold fold_map comp_def)
lemma concat_conv_foldr [code]:
"concat xss = foldr append xss []"
- by (simp add: fold_append_concat_rev foldr_def)
-
-lemma minus_set_foldr [code]:
+ by (simp add: fold_append_concat_rev foldr_conv_fold)
+
+lemma minus_set_foldr:
"A - set xs = foldr Set.remove xs A"
proof -
have "\<And>x y :: 'a. Set.remove y \<circ> Set.remove x = Set.remove x \<circ> Set.remove y"
@@ -2620,11 +2649,7 @@
then show ?thesis by (simp add: minus_set_fold foldr_fold)
qed
-lemma subtract_coset_filter [code]:
- "A - List.coset xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
- by auto
-
-lemma union_set_foldr [code]:
+lemma union_set_foldr:
"set xs \<union> A = foldr Set.insert xs A"
proof -
have "\<And>x y :: 'a. insert y \<circ> insert x = insert x \<circ> insert y"
@@ -2632,31 +2657,23 @@
then show ?thesis by (simp add: union_set_fold foldr_fold)
qed
-lemma union_coset_foldr [code]:
- "List.coset xs \<union> A = List.coset (List.filter (\<lambda>x. x \<notin> A) xs)"
- by auto
-
-lemma inter_set_filer [code]:
- "A \<inter> set xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
- by auto
-
-lemma inter_coset_foldr [code]:
+lemma inter_coset_foldr:
"A \<inter> List.coset xs = foldr Set.remove xs A"
by (simp add: Diff_eq [symmetric] minus_set_foldr)
-lemma (in lattice) Inf_fin_set_foldr [code]:
+lemma (in lattice) Inf_fin_set_foldr:
"Inf_fin (set (x # xs)) = foldr inf xs x"
by (simp add: Inf_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
-lemma (in lattice) Sup_fin_set_foldr [code]:
+lemma (in lattice) Sup_fin_set_foldr:
"Sup_fin (set (x # xs)) = foldr sup xs x"
by (simp add: Sup_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
-lemma (in linorder) Min_fin_set_foldr [code]:
+lemma (in linorder) Min_fin_set_foldr:
"Min (set (x # xs)) = foldr min xs x"
by (simp add: Min_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
-lemma (in linorder) Max_fin_set_foldr [code]:
+lemma (in linorder) Max_fin_set_foldr:
"Max (set (x # xs)) = foldr max xs x"
by (simp add: Max_fin_set_fold ac_simps foldr_fold fun_eq_iff del: set.simps)
@@ -2668,13 +2685,11 @@
"Sup (set xs) = foldr sup xs bot"
by (simp add: Sup_set_fold ac_simps foldr_fold fun_eq_iff)
-declare Inf_set_foldr [where 'a = "'a set", code] Sup_set_foldr [where 'a = "'a set", code]
-
-lemma (in complete_lattice) INF_set_foldr [code]:
+lemma (in complete_lattice) INF_set_foldr:
"INFI (set xs) f = foldr (inf \<circ> f) xs top"
by (simp only: INF_def Inf_set_foldr foldr_map set_map [symmetric])
-lemma (in complete_lattice) SUP_set_foldr [code]:
+lemma (in complete_lattice) SUP_set_foldr:
"SUPR (set xs) f = foldr (sup \<circ> f) xs bot"
by (simp only: SUP_def Sup_set_foldr foldr_map set_map [symmetric])
@@ -3108,7 +3123,7 @@
lemma (in comm_monoid_add) listsum_rev [simp]:
"listsum (rev xs) = listsum xs"
- by (simp add: listsum_def foldr_def fold_rev fun_eq_iff add_ac)
+ by (simp add: listsum_def foldr_fold fold_rev fun_eq_iff add_ac)
lemma (in monoid_add) fold_plus_listsum_rev:
"fold plus xs = plus (listsum (rev xs))"
@@ -3116,40 +3131,12 @@
fix x
have "fold plus xs x = fold plus xs (x + 0)" by simp
also have "\<dots> = fold plus (x # xs) 0" by simp
- also have "\<dots> = foldr plus (rev xs @ [x]) 0" by (simp add: foldr_def)
+ also have "\<dots> = foldr plus (rev xs @ [x]) 0" by (simp add: foldr_conv_fold)
also have "\<dots> = listsum (rev xs @ [x])" by (simp add: listsum_def)
also have "\<dots> = listsum (rev xs) + listsum [x]" by simp
finally show "fold plus xs x = listsum (rev xs) + x" by simp
qed
-lemma (in semigroup_add) foldl_assoc:
- "foldl plus (x + y) zs = x + foldl plus y zs"
- by (simp add: foldl_def fold_commute_apply [symmetric] fun_eq_iff add_assoc)
-
-lemma (in ab_semigroup_add) foldr_conv_foldl:
- "foldr plus xs a = foldl plus a xs"
- by (simp add: foldl_def foldr_fold fun_eq_iff add_ac)
-
-text {*
- Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
- difficult to use because it requires an additional transitivity step.
-*}
-
-lemma start_le_sum:
- fixes m n :: nat
- shows "m \<le> n \<Longrightarrow> m \<le> foldl plus n ns"
- by (simp add: foldl_def add_commute fold_plus_listsum_rev)
-
-lemma elem_le_sum:
- fixes m n :: nat
- shows "n \<in> set ns \<Longrightarrow> n \<le> foldl plus 0 ns"
- by (force intro: start_le_sum simp add: in_set_conv_decomp)
-
-lemma sum_eq_0_conv [iff]:
- fixes m :: nat
- shows "foldl plus m ns = 0 \<longleftrightarrow> m = 0 \<and> (\<forall>n \<in> set ns. n = 0)"
- by (induct ns arbitrary: m) auto
-
text{* Some syntactic sugar for summing a function over a list: *}
syntax
@@ -3186,17 +3173,18 @@
lemma listsum_eq_0_nat_iff_nat [simp]:
"listsum ns = (0::nat) \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)"
- by (simp add: listsum_def foldr_conv_foldl)
+ by (induct ns) simp_all
+
+lemma member_le_listsum_nat:
+ "(n :: nat) \<in> set ns \<Longrightarrow> n \<le> listsum ns"
+ by (induct ns) auto
lemma elem_le_listsum_nat:
"k < size ns \<Longrightarrow> ns ! k \<le> listsum (ns::nat list)"
-apply(induct ns arbitrary: k)
- apply simp
-apply(fastforce simp add:nth_Cons split: nat.split)
-done
+ by (rule member_le_listsum_nat) simp
lemma listsum_update_nat:
- "k<size ns \<Longrightarrow> listsum (ns[k := (n::nat)]) = listsum ns + n - ns ! k"
+ "k < size ns \<Longrightarrow> listsum (ns[k := (n::nat)]) = listsum ns + n - ns ! k"
apply(induct ns arbitrary:k)
apply (auto split:nat.split)
apply(drule elem_le_listsum_nat)
@@ -4053,7 +4041,7 @@
show "(insort_key f y \<circ> insort_key f x) zs = (insort_key f x \<circ> insort_key f y) zs"
by (induct zs) (auto intro: * simp add: **)
qed
- then show ?thesis by (simp add: sort_key_def foldr_def)
+ then show ?thesis by (simp add: sort_key_def foldr_conv_fold)
qed
lemma (in linorder) sort_conv_fold:
@@ -4601,7 +4589,7 @@
lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)"
proof (rule mono_inf [where f=listsp, THEN order_antisym])
show "mono listsp" by (simp add: mono_def listsp_mono)
- show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI predicate1I)
+ show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro!: listsp_infI)
qed
lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_def inf_bool_def]
@@ -5756,3 +5744,4 @@
by (simp add: wf_iff_acyclic_if_finite)
end
+
--- a/src/HOL/Nominal/Examples/Standardization.thy Fri Apr 06 14:40:00 2012 +0200
+++ b/src/HOL/Nominal/Examples/Standardization.thy Fri Apr 06 18:17:16 2012 +0200
@@ -213,7 +213,8 @@
prefer 2
apply (erule allE, erule impE, rule refl, erule spec)
apply simp
- apply (clarsimp simp add: foldr_conv_foldl [symmetric] foldr_def fold_plus_listsum_rev listsum_map_remove1)
+ apply (simp only: foldl_conv_fold add_commute fold_plus_listsum_rev)
+ apply (fastforce simp add: listsum_map_remove1)
apply clarify
apply (subgoal_tac "\<exists>y::name. y \<sharp> (x, u, z)")
prefer 2
@@ -232,8 +233,10 @@
apply clarify
apply (erule allE, erule impE)
prefer 2
- apply blast
- apply (force intro: le_imp_less_Suc trans_le_add1 trans_le_add2 elem_le_sum)
+ apply blast
+ apply simp
+ apply (simp only: foldl_conv_fold add_commute fold_plus_listsum_rev)
+ apply (fastforce simp add: listsum_map_remove1)
done
theorem Apps_lam_induct:
@@ -855,3 +858,4 @@
qed
end
+
--- a/src/HOL/Proofs/Lambda/ListApplication.thy Fri Apr 06 14:40:00 2012 +0200
+++ b/src/HOL/Proofs/Lambda/ListApplication.thy Fri Apr 06 18:17:16 2012 +0200
@@ -110,10 +110,8 @@
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
- apply (rule lem0)
- apply force
- apply (rule elem_le_sum)
- apply force
+ apply (simp only: foldl_conv_fold add_commute fold_plus_listsum_rev)
+ apply (fastforce simp add: listsum_map_remove1)
apply clarify
apply (rule assms)
apply (erule allE, erule impE)
@@ -128,8 +126,8 @@
apply (rule le_imp_less_Suc)
apply (rule trans_le_add1)
apply (rule trans_le_add2)
- apply (rule elem_le_sum)
- apply force
+ apply (simp only: foldl_conv_fold add_commute fold_plus_listsum_rev)
+ apply (simp add: member_le_listsum_nat)
done
theorem Apps_dB_induct:
@@ -143,3 +141,4 @@
done
end
+